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ABSTRACT
Emerging operational concepts for aviation hinge on novel

paradigms for human machine interaction. Critical to their safe
operation is early consideration of human error into the design
process. Existing methods for consideration of human error re-
quire significant expert input, which is challenging both in early
design and in novel systems for which there is little existing safety
expertise. In this research, we propose a methodology for iden-
tifying human error, error producing factors, and mechanisms in
early design from historical incident reports. Additionally, we
hypothesize that cross-domain sharing of lessons learned can aid
with early design human considerations in circumstances where
data is not relevant or incomplete. This is addressed by iden-
tifying causes of human error in aviation and railway domains
through applying state-of-the art natural language processing
techniques to historical incident reports. Using this method, it
is possible to extract extensive reports on human error from past
incidents. Using the proposed approach, we identify nine human
errors from railway reports and fourteen from aviation reports,
with three errors common to both domains. There is at least
one error producing conditions for each human error while a
majority of the errors have more than one error mechanism. We
also found that a majority of the human errors, error producing
factors, and error mechanisms (even if they are not common be-
tween the domains) can be used to inform safe operations across
domains as long as the errors are not domain specific and are
interpreted and contextualized using engineering judgement.
Keywords: Human Errors, Hazard Analysis, LLMs, Human
Error Mechanisms, BERTopic, sBERT

1. INTRODUCTION
Many emerging aviation operational concepts include new

paradigms for human machine interaction, such as m:N (multi-
vehicle) operations for Unmanned Aerial Systems (UAS). In the
mid-term future, these paradigms form the basis for Advanced
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Air Mobility (AAM) for passenger use as well as new concepts
for emergency response operations [1]. As these new paradigms
for human involvement are introduced, it is increasingly impor-
tant to consider human behavior early in the design, so safety can
be built into systems. One way to ensure safety is to consider the
human errors during early design hazard and safety assessments
to ensure that the system is built from the ground up with an
emphasis on mitigating human errors. Currently, however, con-
sideration of human errors, particularly in early design, is limited.
This has been recognized by, and is currently being considered
by, standards organizations, notably through the formation of the
Society of Automotive Engineers (SAE) S-18H Human Consid-
erations for Safety Assessment Committee [2]. Existing methods
for assessing human error tend to be expert-driven, require de-
tailed expert interviews, and/or require detailed models or data
about the system in order to implement [3]. This detailed infor-
mation and analysis are often not available in early design stages.
Limited research has addressed this challenge of human consid-
erations in early design [4–7]; however, more work is needed,
particularly for designs with high novelty.

For novel technologies, there is little safety expertise to rely
on, which is critical when relying on expert-driven hazard as-
sessment processes [8]. For instance, there is little historical
precedent for autonomy in the aviation domain; however, there is
more historical precedent for autonomy in other domains, such
as automotive (i.e., self-driving cars) and railway (i.e., driverless
trains [9]). It is known that, generally, archetypal mechanisms
causing human error have cross-domain relevance. One reason
for this is that a common cognitive model and understanding of
human behavior can explain many domain-agnostic causes of hu-
man error [10]. Consequently, Human Reliability Assessment
(HRA) methods and applications tend to be relatively consistent
across domains albeit with slight modifications, which are typ-
ically based on conditions that affect human performance that
tend to be different across domains (i.e., performance shaping
factors and human error probabilities). For instance, the Human
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Error Assessment and Reduction Technique (HEART) has been
applied with minor modifications to industrial settings [11], the
aviation domain and air traffic management in particular [12], nu-
clear power [13], railways [14], and maritime applications [15].
Another method, the Cognitive Reliability and Error Analysis
Method (CREAM) [16], has been extended for aviation applica-
tions to include characteristics seen in long-distance flights [17].
The factors or conditions affecting human performance that are
considered in CREAM have also been adjusted for other domains
such as maritime [18] and space flight [19]. In sum, with minor
modifications or adaptations, human error assessment tools tend
to remain largely applicable across domains, indicating the abil-
ity of human error-related knowledge to be transferred from one
application area to another.

One way in which human error knowledge is documented
and used to inform future operations is through incident and acci-
dent reports. Historically, it has been difficult to capture lessons
in these reports due to sheer volume of information collected – it
is simply not feasible for designers to manually review thousands
of reports of varying degrees of relevance. However, recent ad-
vances with Large Language Models (LLMs) have made possible
the rapid, and, for the most part, highly accurate, use of these
large repositories of historical documents. It is now possible to
discover and extract relevant information quickly and efficiently
using state-of-the-art natural language processing techniques. In
particular, research on Manager for Intelligent Knowledge Access
(MIKA) [20] has previously shown that techniques such as LLM-
enabled topic modeling and semantic search can be used within a
human-in-the-loop process to extract useful information that can
inform early design hazard assessment [21]. Prior research has
not, however, specifically analyzed human errors, error producing
factors, and error mechanisms. Moreover, it has been assumed
that incident reports from a relevant domain must be used, which
raises challenges for implementing these techniques for systems
with a high degree of novelty. However, as has been established,
human errors have substantial cross-domain applicability, and,
consequently, this will likely also apply to human errors found
in incident and accident reports. As such, for systems with a
high degree of novelty, it may be possible to use incident reports
from one domain to inform early design hazard assessment of a
system in another domain, thereby reducing risk associated with
the integration of the novel technology. Even later in the design
process, complete enumeration of possible human error causes
and mechanisms can assist with human reliability assessment.

The main contributions of this paper are (1) introducing a
methodology to identify more causes and mechanisms of human
error into design (and particularly early design hazard assessment)
and (2) evaluate cross-domain knowledge transfer for human er-
ror. To this end, we use the proposed LLM-enabled methodol-
ogy to (1) identify human errors in incident reports in the avi-
ation domain, (2) identify human errors in incident reports for
railways, and (3) assess whether identified human errors-related
information have any cross-domain applicability. Human errors
are identified from historical domain documents using the natural
language processing toolkit Manager for Intelligent Knowledge
Access (MIKA) [20]. For the aviation domain documents, avi-
ation incident reports from the National Transportation Safety
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FIGURE 1: The vision for MIKA as an assistive design tool that can
extract useful, succinct summaries of information from historical
incident reports.

Board (NTSB) are used [22]. For the railway domain docu-
ments, accident investigation reports from the European Union
Agency for Railways [23] and NTSB are used. The MIKA work-
flow includes two natural language processing techniques: topic
modeling using BERTopic [24] and information retrieval using
semantic search with sentence-BERT [25]. Causes and mecha-
nisms of failure are extracted using this pipeline, with steps for
human expert interpretation to disambiguate the natural language
processing results as needed. The cross-domain use of the results
are then demonstrated and discussed.

2. BACKGROUND
There is a sizable precedent for the application of Natural

Language Processing (NLP) to various tasks in the engineering
design process. For instance, NLP has been applied and adapted
to use in extracting information from maintenance work orders
[26], function knowledge [27], and design ideas [28]. Topic mod-
eling in particular (one of the approaches used in the NLP pipeline
in this paper) has been applied successfully to study themes in
large sets of incident reports [29, 30]. Significant technical ad-
vances in NLP over the past several years (for example, and
notably, Bidirectional Encoder Representations from Transform-
ers, or BERT [31], and GPT-4 [32]) have led to numerous novel
applications of these technologies. State-of-the-art methods that
rely on Large Language Models (LLMs) have demonstrated high
performance in diverse tasks, including assistive system model-
ing [33]. The Manager for Intelligent Knowledge Access (MIKA)
has been developed to support diverse knowledge discovery tasks,
including topic modeling using multiple applicable algorithms
such as BERTopic and Latent Dirichlet Allocation and deriva-
tives [34], and information retrieval tasks, specifically semantic
search using sentence-BERT [35]. MIKA has been applied to
engineering documents with a particular focus on extracting in-
formation related to risk [21]. The vision for MIKA is to extract a
succinct report of lessons learned from historical incident reports
to assist with early design failure analysis, as summarized in Fig.
1. MIKA has been applied successfully for supporting develop-
ment of fishbone diagrams [36] and model-based failure modes
and effects development [37] using information extracted from
historical incident reports. In this study, we extend the processes
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developed in this prior work to extracting human errors, error
producing factors, and error mechanisms from historical incident
reports and comparing the results across domains.

There have been other research efforts dedicated to mining
historical safety reports to understand human operators’ role in
safety, notably to the human’s contribution to safety [38]. Re-
searchers have studied different NLP approaches to extracting re-
silient operator behaviors, including state-of-the-art approaches
such as BERT, beyond the standard metadata searches possible
in many safety reporting system databases [39]. These efforts
differ from the focus of this paper in that they are searching for
resilient operator behavior whereas the focus of this research is
understanding human error. Each of these concepts represents a
useful, but different, goal. In recent years, limited studies have
begun to use machine-learning and NLP-enabled approaches to
extract various aspects of human performance. In particular,
Sawyer et al. used NLP to extract mental health indicators from
aviation safety reports (e.g., related to organizational and stress
factors) [40, 41]. Other approaches have used machine learning
classification approaches to identify causes of human error [42].
Compared to these approaches, this paper considers a broader set
of human factors considerations (as opposed to a very specific set
such as mental health indicators). Other studies have evaluated
the potential use of LLMs for summarization and attribution of
human error in incident reports [43]. These are useful methods for
improving the value of datasets, but have a different goal than this
paper, which is to efficiently learn relevant information from large
sets of reports. Building on this recent work, in this study, we
use state-of-the-art NLP tools, namely BERT-based approaches
to topic modeling and semantic search, to assess whether hu-
man error information extracted from one domain is applicable
to another, and moreover to evaluate the joint knowledge discov-
ery and information retrieval processes developed and refined in
prior work [36, 37].

3. METHODOLOGY
Our primary goal in this research is to study if NLP can be

used to extract information related to human error from historic
incident/accident reports to inform early design hazard assess-
ments. We further propose an approach to qualitatively assess
if data from different domains have cross-domain applicability,
so lessons from other domains can be applied to design in the
domain of interest. To this effect, we have chosen the aviation
and railways domains due to the availability of data. For aviation
domain, we use a dataset from the National Transportation Safety
Board (NTSB) aviation accident database, which holds investiga-
tion reports for all civil aviation accidents and selected incidents
that were investigated by NTSB since 1962 [22]. All completed
reports for incidents that occurred after January 1𝑠𝑡 , 2020 were
chosen for this study, resulting in a total of 6501 investigation re-
ports. For railways domain, data from investigation reports from
NTSB railways investigation database and European Railway Ac-
cident Information Links (ERAIL) database were selected. The
NTSB railways investigation database holds investigation reports
for accidents that occurred since 2010 [22], which amounts to
160 total reports. The ERAIL database, which is maintained
by the European Union Agency for Railways holds all accident

investigation reports that were submitted by the member nations
since 2006 [23], amounting to 3707 total reports. The total num-
ber of investigation reports recorded here are a snapshot from
when the data was downloaded on February 28𝑡ℎ, 2024. Note
that the aviation data we use for this study is only a subset of the
available data whereas we use all available data from the railways
databases. The main reason for this is that we want to maintain
a large enough dataset to demonstrate how NLP can be used to
extract human error related information when it is not feasible
manually, while also making sure that it is not too large to where
it makes this demonstration convoluted.

With the datasets identified, we expand upon previous ap-
plications of MIKA [36, 37] to extract human error related in-
formation. When assessing human errors, the error producing
conditions (also known as performance shaping factors or perfor-
mance influencing factors) must be accounted for to fully under-
stand the errors and the context in which they are produced (as
done in a majority modern human reliability assessment methods
such as CREAM [16] and ATHEANA [44]) [45]. Recent re-
search has also identified that understanding the underlying error
mechanisms is also important to understanding human error [45].
The understanding of these error producing conditions and error
mechanisms can help in deriving mitigations and design recom-
mendations that will minimize the likelihood of human errors.
For example, if the human error is a pilots failure to perceive
a signal, understanding underlying contributing factors such as
(lack of) attention or fatigue that caused the missed perception
have important implications for design. Hence, the knowledge
extraction related to hazards caused by human error must account
for these error causing conditions and mechanisms. Additionally,
this research aims to explore the cross-domain applicability of his-
toric incident data, so knowledge extracted from one domain can
be used in another to complement safety assessments. Account-
ing for these needs, we first propose an approach (as summarized
in Fig.2) to identify human error caused hazards, human error
causing conditions, and contributing factors from historic docu-
ments. Next, we propose a qualitative assessment that can help
study the cross domain applicability of the extracted knowledge.

3.1 Extracting Human Error Related Knowledge from
Historic Incident Reports
As shown in Fig. 2, the process for extracting human error

related knowledge from historic documents involves three high
level steps; (1) pre-processing the data, (2) identifying human
error related hazard themes, and (3) extracting more details about
the hazard themes to generate human error related knowledge.
In the following subsections, we explore each of these steps and
provide details on the application of these steps to the chosen
aviation and railways datasets.

3.1.1 Pre-processing the Data. The goal of the pre-
processing step is to identify any natural language fields of interest
in the dataset while also making sure that there are no anomalies
in the data. With the NTSB datasets (both aviation and railways),
the column of interest was “Probable Cause,” which included a
natural language description of the cause of the accident/incident.
However, this column was blank for some records. We omitted
the blank probable cause records because there was no natural
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FIGURE 2: An approach to extracting human error related knowledge from historic incident/accident reports using Large Language Models
(LLMs) via the MIKA toolkit, where the shaded boxes indicate steps performed through MIKA and white boxes indicate steps performed by
experts.

language to process, resulting in 3,826 and 127 remaining records
for aviation and railways, respectively. With the ERAIL dataset,
the columns of interest were “Direct cause description” and “Un-
derlying root causes description.” As with the NTSB datasets,
any records with both these columns left blank were omitted from
the study. Additionally, some entries had languages other than
English and some had a different language and an English transla-
tion. We omitted any entry that had only non-English descriptions
and removed the non-English portion from the description for en-
tries with English translations. After this omission, 2,852 entries
remained in the dataset. Finally, we combined both the NTSB
railways and ERAIL datasets (by appending the “Probable Cause”
column in the NTSB dataset with “Direct cause description” col-
umn in the ERAIL dataset) since these datasets are similar in
nature and the extracted hazards may be duplicated if they are
analyzed separately. This is also a method to manage the occa-
sional challenge of contributors entering very short descriptions
into individual fields (columns). After the pre-processing of the
data, the total entries to be processed were 3,826 and 2,979 for
aviation and railways, respectively.

3.1.2 Human Error Related Hazard Theme
Identification. To identify human errors, error causing
conditions, and contributing factors from historic documents, we
must first understand the types of human error related hazards
present in the documents, so specific information related to
these hazards can be extracted. We propose topic modeling
to identify these human error caused hazard themes. Topic
modeling returns themes which are represented through a list
of words that are shared among documents that contain the
theme [36]. Past research has used topic modeling to extract
hazard themes [34, 36, 37]. While there are many different

topic modeling approaches (e.g., Latent Dirichlet Allocation
(LDA) [46] and Hierarchical Dirichlet Process (HDP) [47]),
in this research, we use BERTopic [24] topic modeling via
the MIKA toolkit because of its ease of use and its ability to
produce high-quality results [36]. In particular, BERTopic tends
to produce highly human-readable topics compared to other
techniques. In this method, documents are transformed using
an embedding model into a vector representation, in particular
using the sentence transformer model, which embeds sentences
[25]. This method leads to improved context understanding
compared to methods that embed words individually. Once
topics are modeled, there are several options for representing
them. Past work has suggested that short phrases can represent
topics better than single words [48]. We set the number of words
per topic to ten to make sure that enough words are returned per
theme to be able to build a coherent interpretation while avoiding
over-constraining the topic. Additionally, we use n-grams with
𝑛 = 3 as the tokens used in the algorithm rather than single
words. An example of an n-gram is “Space Shuttle Program,”
in which these three words are treated as a single entity rather
than three separate words. This is a meaningful option to use
when there are key phrases that have a specific meaning apart
from their individual words, as is often the case with engineering
texts. Finally, we set the minimum number of documents a
theme should be represented in to three to make sure that we
are extracting themes that are relatively common in the accident
reports. The aviation and railways datasets returned 260 and 208
total topics, respectively.

The next step in the human error related hazard identifi-
cation is to interpret the topic modeling results to identify the
hazard themes. This must be done based on expert judgement
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TABLE 1: A sample of topic modeling results and their interpretation from the aviation data with highlighted rows showing ignored topics.

Topic Words Hazard Theme Interpretation
1 disorientation, spatial disorientation, spatial, meteorological conditions,

meteorological, instrument, instrument meteorological conditions, in-
strument meteorological, control spatial, control spatial disorientation

Pilot was using instruments due to poor
weather, which caused spatial disorienta-
tion.

2 failure maintain proper, maintain proper, glidepath, proper, proper glide-
path, path, glide path, maintain proper glidepath, glide, approach

Pilot fails to maintain proper glide path dur-
ing the approach.

3 power takeoff, throttle, engine power takeoff, power takeoff undetermined,
takeoff undetermined reasons, takeoff undetermined, undetermined rea-
sons, properly secure throttle, secure throttle, takeoff reasons determined

Pilot fails to properly secure throttle during
takeoff.

4 decision abort, decision abort takeoff, delayed decision abort, abort, abort
takeoff, delayed decision, pilots delayed decision, pilots delayed, delayed,
abort takeoff resulted

Pilot’s delayed decision to abort takeoff re-
sulted in some incident.

5 collision bird, inflight collision bird, bird, inflight collision, bird inflight,
collision bird inflight, bird inflight collision, inflight, collision, aerobatics
inflight collision

Bird strike during the flight. Ignored be-
cause this is not related to human error.

6 grass, wet, turf, grass runway, wet grass runway, wet grass, turf runway,
grass pilots, grass pilots decision, grass runway resulting

Ignored due to poor quality.

to ensure that the group of topics are converted to actionable
hazards. A sample of topics from the BERTopic results and
their interpretation are presented in Tables 1 and 2 for aviation
and railway datasets, respectively. Next, an expert must identify
hazard themes that are high quality and relevant to human error
and ignore the remaining topics. In this study, in addition to non-
human related hazard themes and poor quality themes, any hazard
themes that were caused by external factors (e.g., weather with no
human element, pedestrians in railway level crossings, and road
vehicle causing railway accident) were ignored, resulting in 83
and 42 themes for aviation and railway datasets, respectively. The
shaded rows (last two) in Tables 1 and 2 show examples of themes
that were ignored in both datasets. The final step in human error
related hazard theme identification is to use human factors and
systems engineering judgement to merge similar themes to create
a final list of unique human error related hazard themes present in
the historic documents. In the case of the Aviation and Railways
datasets, 25 and 20 unique human error related hazard themes
were identified.

3.1.3 Human Error Related Knowledge Extraction.
While the themes identified can give information on the
high level human error caused hazards, they give very little
information on the error producing conditions and mechanisms.
To retrieve information related to error producing conditions
and mechanisms, the dataset must be further analyzed. Even
though a keyword search on the documents relevant to each
theme can give some details on error producing conditions and
mechanisms, a better approach would be to perform a semantic
search, so the search is “context aware,” yielding more accurate
search results. We propose formulating a few queries for each
identified theme to perform the semantic search, so the search
is not too narrow or broad. The hazard themes identified in the
previous steps keep the queries relevant to the data present in
the documents, which is impossible without deep knowledge
about the dataset. In other words, the human error related

hazard identification step removes the need for expert knowledge
about datasets, enabling the assessment to be performed by
practitioners who are even new to the dataset. In the case of
the railway and aviation datasets in this research, we formulated
one to three queries per identified theme. When formulating
the queries, we set out to extract more details on each theme by
approaching the theme through a variety of subjects (i.e., causes,
consequences, and error circumstances), as appropriate for each
theme. For example, for the theme “Pilot exceeds angle of
attack” in Table 3, the first query covers causes, the second covers
consequences, and the last covers error circumstances. For some
themes, one or more of these aspects may already be apparent
from the theme description itself (such as the circumstances,
for example), in which case fewer queries may be necessary.
A sample of identified themes and formulated queries for each
theme for both datasets are presented in Table 3. Note that the
query formulation is a trial and error-based iterative process,
where the queries can be refined based on the search results to
improve the relevance of the results.

To perform the semantic search, we use MIKA’s sentence-
BERT based semantic search (information retrieval) capability.
It is possible when replicating the approach used in this paper to
substitute other search methods. However, semantic search, be-
ing context aware, shows substantial improvement over keyword
search. For example, when searching for documents about cy-
bersecurity incidents, a keyword search might return documents
about physical building security due to the two concepts sharing
the word “security” even in different contexts [35]. As we are al-
ready using MIKA for BERTopic, the datasets are already loaded
into MIKA, meaning using MIKA’s semantic search capability is
not too time-consuming. The search capability is asymmetric: a
short phrase or question, similar to what you might enter into a
standard web search engine, is used to represent an information
need and query the dataset, and a ranked list of documents is
returned (in contrast, a symmetric search would require either
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TABLE 2: A sample of topic modeling results and their interpretation from the railways data with highlighted rows showing ignored topics.

Topic Words Hazard Theme Interpretation
1 inattention driver drive, driver drive, inattention driver, inattention, drive,

drive inattention driver, driver drive inattention, drive inattention, follow-
ing signs, following signs driver

Driver fails to follow signs due to not paying
attention.

2 traffic, traffic controllers, controllers, systems, traffic control, wrong rout-
ings, train 1b78, routings, 1b78, driver train 1b78

Traffic controller routing the trains incor-
rectly.

3 train dispatcher, error train dispatcher, dispatcher, error train, trains train
dispatcher, 52760, train dispatcher derailment, train dispatcher deficient,
train communicate operational, train communicate

Communication error between the train dis-
patcher and driver.

4 acoustic warnings, acoustic, warnings, crossing time forbidden, time
forbidden, light acoustic warnings, failure respect light, drivers failure
respect, level crossing time, respect light

Driver fails to adhere to acoustic and visual
warnings.

5 inattention, inattention pedestrian crossing, inattention pedestrian, pedes-
trian crossing, inattentiveness driver user, inattention person, music inat-
tention, near crossing inattention, oncoming train use, pedestrian crossing
platform

Accidents caused at level crossings due to
the inattention of persons other than the train
driver. Ignored because it is not relevant to
the study.

6 bearing, roller, bearings, roller bearings, heat load, axle, old, afferent
wheel, overheating, wheelseat

Mechanical failure causing the incident. Ig-
nored due to irrelevance to this study.

TABLE 3: A sample of identified themes and derived queries from aviation and railways datasets.

dataset Theme Queries
Aviation Pilot exceeds angle of attack What are some causes for pilots exceeding the angle of attack?

What are consequences of exceeding angle of attack?
What are circumstances that lead to exceeding angle of attack?

Runway excursion due to loss of control What are some causes of runway excursions?
What pilot errors lead to runway excursions?
Under what circumstances do runway excursions occur?

Railways Communications failure Can communications failure result in accidents?
What are some causes of communications failure?

Failed to perceive light and acoustic warning signals What are some causes of failure to perceiving light signals?
What are some causes of failure to perceiving acoustic warnings?
What leads to drivers not respecting warnings?

a longer text or passage as query with a similar length docu-
ment expected to be returned, or a shorter text returned from a
shorter query). Semantic search with sentence-BERT embeds
documents and queries into a vector space, where it is possible
to match query embeddings with closely related document em-
beddings, with closeness dictated by semantic similarity rather
than lexical similarity [25]. The sentence transformer model
(sentence-BERT) is essential to enabling this process. BERT
models are trained on large datasets (i.e., hundreds of thousands
to millions of documents) and their training is carried out through
a Masked Language Model (MLM), in which the model is asked
to predict a masked word [31]. The model is asked to predict the
masked word from both left and right (“bidirectional”), which im-
proves context understanding [31]. Sentence-BERT differs from
the standard BERT method in that it uses a specialized trans-
former model for sentences (the Siamese transformer, essentially
two BERT networks with a pooling operation), which is more
computationally efficient for sentence-level understanding [25].
It is possible to fine-tune sentence-BERT models on domain-

specific datasets [35]. However, in prior studies, we have found
pre-trained models perform sufficiently well [35], as such, we
have chosen the pre-trained model for this study.

The ranked list of most relevant documents returned by the
search can be reviewed by experts using human factors and sys-
tems engineering judgement to obtain information related to hu-
man errors, error producing conditions, and error mechanisms.
An example of doc strings from the returned documents for the
query “what leads to drivers not respecting warning?” are pre-
sented in Fig. 3. In some cases, the structured datasets used may
not contain the entire reports content. For example, the field
“Probable Cause” in the NTSB dataset is the only field with nat-
ural language, and at times is just a summary of the contents of
the reports. If the details in the short summaries in the dataset are
not sufficient (as in the second example presented in Fig. 3), ex-
perts may directly refer the specific document, which may contain
more details than the database entries. Experts may also refine the
theme or query based on the returned information and repeat the
search, if needed. In the case of the aviation and railway datasets
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FIGURE 3: Top three most relevant documents returned by the se-
mantic search for the query “what leads to drivers not respecting
warning,” where documents one and three are redacted to manage
space. Text is printed exactly from source. The highlighted text
shows the text that is relevant to the query.

in this research, we chose to look into the top five semantic search
results for each entry and explore the detailed reports (if avail-
able and written in English) when the database entries are not
sufficient to extract the needed information. While studying the
search results, we first identified human errors and error produc-
ing conditions, and next tried to draw connections between them
to understand the error mechanisms if it is not explicitly stated.
To be conservative, we took an exhaustive approach, where we
did not discard any error producing conditions and mechanisms
even if they are only mentioned in one report. The resulting
human errors, error producing conditions, and mechanisms are
discussed in detail in the section 4.

3.2 Assessing the Cross-domain Applicability of Datasets
Assessing data for cross-domain applicability can not only

help fill gaps in human error related insights in one domain
with insights in another domain (e.g., when designing UAS’s,
data from self-driving car industry can have some human error-
related insight that is useful) but also help practitioners think
deeply about the elicited human errors. Additionally, qualitative
assessments of human errors can be more helpful in deriving
mitigations [45]. Thus, we propose a qualitative assessment for
studying cross-domain applicability of human error related infor-
mation extracted from historic reports. The first step to assess
cross domain applicability is to select human errors that are com-
mon between datasets and build a graph (as shown in Fig. 4)
with the aviation error in the left, railway error in the right, and
the error producing conditions from both datasets in the middle.
Next, the relationships between the error and error mechanisms (if

FIGURE 4: A generic representation of human errors common be-
tween domains with color shades representing the relationships
between human error themes and error producing conditions and
dotted arrows showing the error mechanisms.

feasible) are represented by color coding and connecting blocks
as shown in Fig. 4. For example, the aviation hazard has error
producing conditions 1, 2, and 3 mentioned in the reports. The
error mechanism starts with error producing condition 1 leading
to error producing condition 2, which then combines with er-
ror producing condition 3 to produce the error. We then aim to
answer the following questions through the graph.

• Are there any overlapping human error mechanisms?

• Are there any error producing conditions that are common
for both domains?

• If there is no overlap, are there any relationships between
error producing conditions and unconnected errors

• If there are new connections, can we derive any new error
mechanisms?

For human error themes that are not common between the two
domains, we first omit any errors that are domain specific (e.g.,
failing to extend the landing gear or completing a prelanding
checklist are errors specific to aviation and have no applicability in
railways). Next, we use engineering judgement to contextualize
the remaining human errors and error producing conditions to
make them relevant to the domain of application. We finally
explore if the contextualized human error related knowledge is
applicable across domains.

4. RESULTS
A subset of the human errors, error producing factors, and er-

ror mechanisms extracted from the railways and aviation dataset
using the proposed LLM-enabled pipeline are presented in Ta-
bles 4 and 5, respectively. We identified nine and fourteen human
errors each from the railways and aviation datasets. Note that the
number of human errors is less than the number of actual human
error related themes identified. This reduction is expected be-
cause the topic modeling methodology extracts general themes,
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TABLE 4: A subset of the Human Errors, Error Producing Factors, and Error Mechanisms from the Railways dataset.

Human Error Error Producing Factors Error Mechanisms
Misrepresenting
signals

Task repetition, task infrequency, habitual
driving, unfamiliar environment, inatten-
tion, poor signal design, poor regulations,
poor safety culture

Task repetition can lead to habitual driving and task infrequency
can lead to unfamiliar environment. Similarly, poor regula-
tions can lead to poor safety culture. All of these can result in
inattention, this with or without poor signal design can lead to
misrepresenting a signal.

Not complying
with signals

Distraction, poor alertness, inexperience,
weakening automatic reflexes (due to
working after a long break), inadequate
training, reduced visibility, lack of
situation awareness, poor task design
(e.g., lack of communication protocols),
poor signal design, poor interface design
(e.g., warning system)

Poor interface design can result in distraction, leading to poor
alertness. This can combine with poor signal and interface
design, leading to not complying with signals.
Inexperienced operators working after long breaks can lead to
weakening of automatic reflexes, this combined with poor signal
design can lead to not complying with signals.
Reduced visibility can lead to poor situation awareness which
can lead to not complying with signals.

Poor route
planning

Poor safety culture and regulations, lack
of situation awareness, poor workspace
design, mismatch in mental model, lack
of trust in automated system, high
workload, inadequate training,
organizational factors, poor interface
design, poor interaction (communication
channel) design, poor operating
procedures

Poor safety culture and regulations and poor workspace design
can lead to diminished situation awareness, leading to poor route
planning.
Inadequate training can lead to mismatch in the mental model.
This combined with poor interface design can result in lack of
trust in automated systems, resulting in them not being used as
they should, increasing the workload. This combined with poor
interaction design, safety regulations, and organizational factors
can lead to poor route planning.

Late/no braking Fatigue, poor shift design, poor workspace
design, poor regulations, poor safety cul-
ture

Poor shift design can lead to fatigue, which can couple with poor
workspace design, regulations and/or safety culture resulting in
late/no braking.

Over speeding Fatigue, poor alertness, intoxication, poor
shift design, poor regulations, poor
interface design, inattention

Intoxication can lead to poor alertness, leading to over speeding.
Poor interface design can lead to inattention, which results in
over speeding.
Fatigue leads to poor alertness. This coupled with poor regula-
tions can lead to drivers over speeding.

not final human errors, and expert interpretation is needed and de-
sired to ensure quality of the final results. Additionally, the num-
ber of errors may change depending on the level of abstraction.
For the purposes of this assessment, we maintain the high level of
abstraction because it is needed for analyzing the cross-domain
applicability (so similar errors can be compared and contrasted)
of the human error related knowledge. We find numerous error
producing conditions and at least one error mechanism for each
human error, except for two human errors in the aviation dataset
(e.g., last entry in Table 5) that has one error producing condi-
tion and no error mechanisms. In general, we find more error
producing conditions per human error and more detailed error
mechanisms in the railways dataset. This difference is mainly
because the aviation dataset (or the NTSB reports) did not detail
the human error producing conditions or human error mecha-
nisms as the railways dataset did. This discrepancy is one of the
motivations for studying the cross-domain applicability of these
datasets (for which the results are detailed later in this section), so
when data is not readily available or data quality is lacking in one
domain, practitioners can use information from other domains
with better data to fill gaps in information in their assessments.

The human errors presented in Tables 4 and 5 can be traced

from the LLM output. For example, (1) in Table 2, the fifth topic is
interpreted as “driver fails to adhere to acoustic and visual warn-
ings;” (2) in Table 3, under the same theme, the query “What
leads to drivers not respecting warnings?” is used to elicit further
details; (3) in Fig. 3, the query results in documents describing
incidents in which a driver did not respect a warning, with associ-
ated details highlighted; and (4) in Table 4, these details are used
to inform expert analysis of the derived human error, “not com-
plying with signals,” with error producing factors including “poor
alertness” (compare to the highlighted text in Fig. 3, “[driver’s]
level of alertness was not optimal”) and error mechanisms includ-
ing “inexperienced operators” (compare to the highlighted text in
Fig. 3, “a risk for drive’s little experience to incorrectly read a
signal”). This process requires additional interpretation for the
aviation dataset because the error producing conditions and error
mechanisms were not explicitly stated. For example, if the text
described an aircarft experiencing a sudden emergency and the
pilot’s response to it, we interpret the error producing conditions
to be high stress. Similarly, if the accident happened during a
high workload phase of flight (e.g., landing, takeoff), we include
high workload into the error producing conditions even when it
is not explicitly stated in the description.
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TABLE 5: A subset of the Human Errors, Error Producing Factors, and Error Mechanisms from the Aviation dataset.

Human Error Error Producing Conditions Human Error Mechanisms
Exceeding angle of attack Stress, high workload, distraction,

unfamiliar environment (e.g., trees
to clear during takeoff), intoxication

Unfamiliar operating environments can increase workload and
stress, which can result in distractions, leading to exceeding the
angle of attack.
Intoxication can lead to poor judgement which can result in
exceeding the angle of attack.

Failure to follow
prelanding checklist

Time pressure, poor interface
design, inattention, high workload

High workload can lead to inattention, this and/or poor interface
design can result in pilots failing to follow prelanding checklists.
Time pressure can lead to pilots failing to follow prelanding
checklists.

Loss of spatial orientation Inadequate training, inexperience,
low visibility, high workload,
distraction, maintenance issues
(e.g., failed deicing equipment),
stress

Maintenance issues can lead to high workload and stress, which
can lead to distraction. This coupled with low visibility condi-
tions can result in loss of spatial orientation.
Inadequate training and inexperience coupled with high work-
load in low visibility conditions can lead to loss of spatial ori-
entation.

Loss of directional control
during landing/takeoff

Stress, operating conditions (e.g.,
wind), high workload, inexperience,
distraction

High workload coupled with inexperience can lead to stress and
distraction. This and/or adverse operational conditions can lead
to directional control loss.

Inadequate preflight in-
spection

Poor judgement N/A

FIGURE 5: Cross-domain comparison for the error “misrepresent-
ing a signal,” where the red and blue color arrows represent avia-
tion, and railways error mechanisms, respectively.

Note that for each of the error mechanisms in Tables 4 and 5,
it is not necessary for all of the error producing conditions to be

present for an error to occur. They instead show a general flow
of how the error producing conditions interact to produce errors.
For example, the first error mechanism for the human error “loss
of spatial orientation” in Table 5 starts with maintenance issues
leading to high workload and stress, which can result in distrac-
tion. When distraction is coupled with low visibility it can lead to
loss of spatial orientation. This mechanism must be interpreted
as having low visibility with or without distraction can lead to
“loss of spatial orientation,” while stress and high workload can
lead to distractions with or without having maintenance issues.
From a design perspective, designers may use the results from
these assessment to inform human factors considerations early
on. For example, if they are designing a system to automate route
planning in railways, they may develop requirements to minimize
error producing factors for the “poor route planning” error (e.g.,
the interface design should help operator attain high levels of
situation awareness) in Table 4. Accounting for the second error
mechanism, they may have strict training requirements to ensure
that the operator can maintain an appropriate mental model and
trust the system, so they use it appropriately in practice to ensure
that their workload is not too high. They may also set interface
design requirements to remind users to use the automated system
to ensure that it is used when it should be. Having these consid-
erations early on in design can help designers build safety into
the system proactively.

To perform the cross-domain applicability study, we first
identified common errors between the two domains, specifically
looking for common themes rather than looking for an exact
match, which resulted in three identified common errors, namely
“failure to comply with operating procedure,” “failure to main-
tain speed,” and “misrepresenting a signal.” Among the three
human errors, “misrepresenting a signal” had one common error
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producing factor (inattention, as seen in Fig. 5) while the others
had none. Consequently, the mechanism related to the inatten-
tion factor for “misrepresenting a signal” had an overlap, while
the mechanisms for the other errors had no overlap. However, all
of the error producing conditions for each common error, even if
they had no common connections between domains, were appli-
cable for both domains. For example, all of the error producing
factors that were unique to aviation domain (high workload and
mismatch in the mental model) were applicable to the railways
domain and vise versa for the “misrepresenting a signal error.”
However, engineering judgement must be exercised to account
for the context of these conditions. For example, the factor habit-
ual driving from the railways domain must be contextualized for
the aviation domain (i.e., consider it as habitual piloting tasks)
to ensure they are applicable in the aviation domain. Similarly,
the mechanisms were also common for both domains even when
no explicit overlaps were identified. Among the errors that were
not common across domains, four of the six uncommon railways
errors (“poor route planning,” “poor signaling,” “not comply-
ing with signals,” and “failure to perceive signals”) and related
information (error producing conditions and mechanisms) were
applicable for aviation. Three of the eleven uncommon aviation
errors (“failure to communicate,“loss of control,” and “failure to
maintain clearance in low altitude flights”) and related informa-
tion were applicable for railways. As with the common errors,
engineering judgement had to be used to contextualize the errors
to make them applicable for the other domain. For instance, the
railways error “poor signalling” can be taken in the context of air
traffic control providing poor information. When this is contex-
tualized, the error producing factors (lack of situation awareness,
poor interface design, lack of trust in automated system, dis-
traction, inattention, and stress) and the mechanisms ((1) poor
interface design and lack of trust in automated systems can lead
to poor situation awareness, leading to poor signaling and (2)
distractions can lead to inattention, resulting in poor signaling)
become relevant to the aviation domain.

5. DISCUSSION
In this research, we have demonstrated how the LLM inter-

face in the MIKA toolkit can be used to extract human errors,
error producing conditions, and human error mechanisms from
incident reports from two domain datasets (aviation and railways).
The results indicate that the human error related knowledge ex-
tracted can be valuable early on in design in helping with human
considerations being built into the system. One of the challenges
in considering the human elements in early design hazard assess-
ment is that hazard assessment methods often rely on task analysis
to identify human errors. Task analyses are often conducted later
in design when system is designed using a variety of sources
(e.g., expert interviews and surveys, past incidents, etc.). This
approach allows designers consider the human without any task
analysis, which makes it usable for early design hazard assessment
approaches such as functional hazard assessment. This approach
can also complement expert driven safety assurance approaches
by helping them extract knowledge from historic data, rather than
only relying on their judgement. For example, this approach can
benefit simulation based hazard assessment tools that simulate

human error propagation by helping experts setup their models
by complementing their expertise with the knowledge extracted
through this process. This approach has some implications for
human reliability assessments as well. One of the challenges
of human reliability assessment methods is identifying human
failure events [45]. This approach identifies human failure event
through the hazard themes. The human failure events along with
human error mechanisms which are identified as part of this ap-
proach can complement the human reliability assessments.

Knowledge extracted using the presented approach is only
as good as the data source. So, the results may not be com-
prehensive. For example, for a specific error, the approach may
not find all possible error producing conditions or mechanisms.
From a safety perspective, this can lead to poor considerations
of hazards. As a means of overcoming this challenge, we have
defined the approach to be fully expert driven where automation
is used to aid with only interpreting documents. In other words,
the hazard elicitation will only be complete once the experts in-
terpret the results and complete any missing information. We see
this as a strength of this approach rather than a weakness due to
two reasons. First, the approach encourages designers to system-
atically think about the human considerations of the system more
deeply early on, which can result in them considering factors that
they might not have otherwise, minimizing the need for design
changes and workarounds later. Next, the approach, through the
historic data can help designers validate their assumptions, re-
sulting in less uncertainty and more confidence in the analysis.
Additionally, we have shown through a qualitative assessment
that some of the errors have cross-domain applicability as long
as an expert is accounting for domain specific assumptions and
constraints. The results indicate there are causes of human errors
that are common across domains (aviation and railways) as well
as causes that are found in one domain dataset but not the other.
This is consistent with prior research findings from extending
human reliability methodologies from one domain to another.

To summarize, this research shows that LLMs via the MIKA
toolkit can be used to elicit human errors, error producing con-
ditions, and error mechanisms early in design. The findings in
this paper indicate that it may be possible, for example while
eliciting hazards during early design (i.e., for functional hazard
assessment), to use lessons learned from an established domain
with many documents available to inform a domain that has fewer
historical incident reports to learn from. Typically, hazard elic-
itation requires expert interviews, which are invaluable but take
time. With this approach of eliciting hazards using historical inci-
dent reports, including from other domains where needed, it may
be possible to consider human errors earlier in the design process
(while refining the set of hazards with expert input once avail-
able). This approach gives the flexibility for practitioners to elicit
hazards at varying granularity (limited only by the data availabil-
ity), tailored to their applications and assessments, which makes
the approach usable at different design stages (e.g., component
hazard assessment, system hazard assessment, preliminary safety
assessment, etc.). All of these factors will be essential in assuring
the safety of emerging operational concepts where autonomy and
human machine interaction are central and critical.
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6. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown that human errors, extracted

using a natural language processing pipeline from historical inci-
dent reports, can be applicable across domains (aviation to rail-
ways and vice versa). This is consistent with existing knowledge
of human reliability, but has implications on the use of lessons
learned from other domains to inform early design failure anal-
ysis activities such as functional hazard assessment. Moreover,
the human errors identified in this study can be used to include
human considerations in early design failure analysis for emerg-
ing aviation operational concepts. Future work will extend the
demonstrated process to other datasets, notably to incident re-
ports and lessons learned documents related to self-driving cars.
Moreover, research efforts into the inclusion of a MIKA-based
design assistant for functional hazard assessment are ongoing.
Work remains to be completed to specify requirements for such
an assistant, develop a prototype, and perform user studies.
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