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• Characterize tunnel for acoustic tests
• Background noise

• New acoustic floor treatments

• Interrogate acoustic characteristics at lower frequencies
• Recent tests focused on airframe noise (higher frequencies)

• Future tests will include rotorcraft and propeller/rotor noise (lower frequencies)

• Investigate methods for capturing signal in low signal-to-noise ratio (SNR) 
environments 



Tests conducted in the NASA 
Langley 14- by 22-Foot Subsonic 
Tunnel (14x22)

• Closed-circuit wind tunnel

• 14 ½ x 21 ¾ x 50 foot test section

• Operating speeds up to 348 ft/s

• Mach numbers from 0.02 to 0.26 
(open-jet)

• Can operate in closed- or open-jet 
configuration 

• Can be acoustically treated

Facility Overview

Source: NASA
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• Tunnel open-jet configuration is really 
quasi-open-jet

• New out-of-flow treatment 
• Previous treatment was foam panels 

glued to the floor
• New treatment used cloth-wrapped 

fiberglass in bolted-down frames
• Reusable and thicker material than old 

treatment

• New in-flow floor treatment
• Still “baskets” filled with foam
• Previous baskets tops: metal perforate 

sheets covered with adhesive-backed felt
• New basket tops: no perforate sheets and 

nonadhesive felt stretched over top

• Comparison of new vs previous 
treatment in upcoming publication 
(Zawodny et al. 2024)

Facility Overview
Previous 

Treatment

New 

Treatment
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• Two microphone arrays on traverses outside the 
flow
• Linear tower array with 11 mics
• Phased array with 55 mics (companion paper, Houston et al.)

• Two test set-ups
• Static testing: reflectivity
• Flow-on testing: background flow noise

• Two static noise sources

• Two fairing-mounted in-flow sources

Test Overview
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• Rudimentary computer model of 
open-jet test section created
• Based on nominal measurements

• Only captured major structures

• Model used to predict 
propagation paths
• Basic equal-angle reflections

• Only captured most direct paths

Reflection Identification

7



• Simple model was able to 
capture major reflections:
• Floor

• South wall
(behind array)

• Crane rails 

• Collector
edges

Reflection Identification

Impulse Waveform from Omnidirectional Source
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• Simple model also 
captured motion 
of array

• Floor and south 
crane were 
symmetric for 
symmetric motion 
about source

• Also captured 
change in depth of 
south wall (behind 
array) at upstream 
location

Reflection Identification
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• Method for processing periodic signals
• Ensemble average based on signal period

• Can remove stochastic noise 

• Method applied to data collected with in-
flow source using signal with ½-second 
period

• General shape of signal captured by 
periodic averaging

• Method struggles at higher Mach numbers

Periodic Averaging

Static – Mach 0.00
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• Method applied to pure tone signal

• Tonal signal demonstrates effects of 
freestream flow on amplitude and phase of 
measured signal

• Likely caused by the facility turbulent shear 
layer

Periodic Averaging

Mach 0.12
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• Method successfully removes background noise from spectra even for SNR < 0 dB

• Microphone capturing higher-frequency content in “raw” data

• Turbulent shear layer effects attenuate higher-frequency content in periodic 
averaging

Periodic Averaging
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• Observed a hydrodynamic pressure 
pulse through the test section
• Known phenomenon in closed-

circuit/open-jet tunnels (Hu et al. 2022, Wickern et al. 2000)

• Exacerbated in quasi-open-jets (Jin et al. 2022)

• “Low”-frequency (occurrence, not 
content)

• Severity of pulse is a function of Mach 
number, strongest around Mach 0.04-
0.06

• Previous studies in 14x22 on this 
pulse:
• Focused on freestream turbulence
• Proposed solutions generated noise

(Sellers et al. 1985, Manuel et al. 1992)

Test Section Pressure Wave
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• Proposed simple 
processing solution: 
Median Averaging
• Break data into time 

segments and calculate 
autospectrum of each 
segment

• Find median spectral 
amplitude at at each 
frequency bin

• Pulse captured in small
number of spectra

• Acoustic signals still
captured

Test Section Pressure Wave
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• Pulse observed in phased
array data but not linear
array data. Why?

• Linear array outfitted
with windscreens
• In-house design
• Mesh stretched over a

thin frame

• Removed windscreen
from one mic and
compared data

• Also implemented
median averaging to
uncovered microphone

Test Section Pressure Wave
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• Major reflective surfaces identified in the 14x22 test section
• Floor and walls 

• Will inform potential future upgrades of acoustic treatment 

• Investigated periodic averaging as a method for capturing data with low 
signal-to-noise ratios
• Captured acoustic signals at lower frequencies where background noise could be 

upwards of 20 dB greater

• Method has limitations at higher frequencies once measuring though a shear layer

• Test set-up (windscreens) and data processing methods for rejecting the 
hydrodynamic pressure pulse in the test section

Conclusions
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