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A practical formulation is proposed for aircraft parameter estimation using the filter-error method, which is a

maximum likelihood estimator for dynamic systems with both process noise and measurement noise. The novelty of

the proposed formulation is that by accurately estimating the measurement noise covariance matrix using a time

series analysis method, the remaining unknowns (which include the unknown parameters in the state-spacematrices

and the process noise covariance matrix) become decorrelated and can be estimated simultaneously in a

straightforward manner. The approach is demonstrated using simulation data and flight test data from a subscale

airplane. Results indicate that the proposed algorithm can produce accurate modeling results when both

measurement noise and process noise are present in the data.

Nomenclature

cov�:� = covariance
E�:� = expected value
ln = natural logarithm
ℜ = real number
∂ = partial derivative
δ�t� = Dirac delta function
δij = Kronecker delta function

j:j = absolute value or determinant

Superscripts

T = transpose
−1 = matrix inverse

⋅ = time derivative
^ = estimated value

I. Introduction

PARAMETER estimation is the process of determining values
and uncertainties of unknown constants in amathematicalmodel

so that model outputs best match experimental data. There are
numerous uses for parameter estimation in aerospace applications,
such as quantifying aircraft stability and control characteristics,
determining flight instrumentation errors, representing high-fidelity
simulations with reduced-order models, evaluating flying qualities,
determining actuator or sensor transfer functions, and many others
[1–4].

Maximum likelihood approaches for aircraft parameter estima-
tion, which have been used widely in practice, can be classified by
assumptions made in the modeling problem. In the equation-error
(EE) method, process noise is considered but measurement noise is
neglected. Conversely, in the output-error (OE) method, measure-
ment noise is considered but process noise is neglected. Both of
these methods involve a noise assumption that is not strictly correct
because flight test applications always include some amount of
both process and measurement noise. Despite this fact, EE and OE

have been successfully used for decades, and several improve-
ments have been made to mitigate the shortcomings of these
approaches.
The maximum likelihood estimator that considers both process

noise and measurement noise is called the filter-error (FE) method.
Although FE is the most general approach in this family of estima-
tors and contains the most complete theory, it is also the most
difficult to use, in part due to the increased complexity of the
estimation problem, issues with convergence and identifiability,
difficulty in interpreting the results, and the need for more inform-
ative data [4]. For those reasons and others, EE and OE have
remained the standard approaches for practical parameter estima-
tion at NASA Langley Research Center (LaRC) and at other
institutions [2,4–7].
Nevertheless, there are several routinely encountered problems for

which FE would be a useful, if not the preferred, approach for
parameter estimation. One example is flight in atmospheric turbu-
lence, which is usually present to some extent, where gust velocities
act as process noise and influence the aircraft flight dynamics.
Alternatives to using FE for parameter estimation in this case include
flight testing in calm conditions, increasing the excitation amplitudes
to dominate the effects of turbulence [8], and using measured or
reconstructed turbulence in the estimation [9,10]. Another example is
data compatibility analysis, where kinematically related measure-
ments are compared to estimate and remove instrumentation errors
such as biases, scale factors, and time skews. In this problem,which is
examined in more detail later, the process noise is due to noise on the
measured inputs used for data compatibility. Nonlinear versions of
the Kalman filter or complex iterative filter-smoothers have been
applied to this problem [11,12], but OE is a commonly used approach
[4,13]. Lastly, model structure error, which is always present in
practical modeling problems, can be regarded as a form of process
noise, although this can also be addressed with other techniques [4].
In this paper, a practical formulation of the FE parameter estima-

tion method is presented and demonstrated. The key to this formu-
lation is to separately estimate the measurement noise covariance
matrix using time series analysis, then treat that as a fixed and known
quantity during the subsequent parameter estimation. Measurement
noise is a physical quantity that can be independently determined
using time series analysis techniques. Fixing this value during the
subsequent parameter estimation breaks correlations among the
remaining unknowns (which include parameters in the dynamic
model equations) and eliminates convergence issues that have
plagued other implementations of FE. With this new formulation,
parameter estimation can proceed in a straightforward manner using
relatively simple optimization methods.
The paper is organized as follows: Section II introduces the param-

eter estimation problem. Section III summarizes other parameter
estimation approaches, including previous implementations of FE, to
provide context for the present formulation. Section IV discusses
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details of the proposedFE implementation.SectionVdemonstrates the
approach using a simulation example involving the roll dynamics of an
airplane. Section VI demonstrates the approach using a data compat-
ibility analysis with flight test data for the X-56A airplane. SectionVII
concludes the paper.

II. Problem Description

This section briefly summarizes the parameter estimation problem
considered. Formore details and a complete description of the theory,
see Refs. [4,14] and the references therein.
Consider the linear time-invariant (LTI) model

_x�t� � Ax�t� � Bu�t� � Gw�t� (1a)

y�t� � Cx�t� �Du�t� �Hw�t� (1b)

z�i� � y�i� � v�i�; for i � 1; 2; : : : ; N (1c)

Bold-italic lower-case symbols are vectors, bold upper-case symbols
are matrices, and nonbold symbols are scalars.The vector u�t� ∈ Rni

is the deterministic input to the system and is assumed to elicit
sufficient data information in the response for accurate identification.
The vector x�t� ∈ Rns is the state, y�t� ∈ Rno is the output, and
z�i� ∈ Rno is the sampled measurement.
The matrices A, B, C, D, G, and H are constant matrices that

contain model parameters with unknown values. In flight test appli-
cations, these parameters are typically stability and control deriva-
tives. The pair �A;B� is assumed to be controllable so that the inputs
can excite each state. Similarly, the pair �A;C� is assumed to be
observable so that each state can be reconstructed by the measure-
ments. The system model can be stable or unstable.
The inputs, states, outputs, and measurements represent perturba-

tions about reference values. Equations (1a) and (1b) evolve contin-
uously over time t, whereas Eq. (1c) is valid at discrete instances of
time iΔt, where i is the integer sample index and Δt is the sampling
interval. Equations (1a–1c) are therefore a continuous-discrete, state-
space representation of the system. Figure 1 depicts this system
model as a block diagram.
The vectorsw�t� ∈ Rns and v�i� ∈ Rno in Eq. (1) are the process

noise and sampledmeasurement noise, respectively. These quantities
are modeled as random and white noise with

E�w�t�� � 0 (2a)

E�v�i�� � 0 (2b)

E�w�t�w�τ�T � � Qc�t�δ�t − τ� (2c)

E�v�i�v�j�T � � R�i�δij (2d)

whereQc andR are symmetric and positive definite matrices that are
assumed to be uncorrelated with each other. Typically,R is assumed
to be a diagonal matrix to reflect the independence of sensor meas-
urement errors, although both R and Qc may be fully populated.
The initial conditions for the state vector are given by themean and

covariance

E�x�0�� � x0 (3a)

Ef�x�0� − x0��x�0� − x0�Tg � P0 (3b)

The matrix P0 is usually assumed to be diagonal for simplicity.
Because the system is stochastic rather than deterministic, a state
estimator is needed to solve the equations of motion for the discrete-
time output estimate ŷ�iji − 1�. This notation means an estimate of y
at sample i using data up to and including sample i − 1.

All of the unknowns in the system are grouped together in the
vector θ ∈ ℜnp. In general, parameters in θ can include contributions
from the following:
1) Terms in the systemmatricesA,B,C,D,G, andH fromEq. (1),

listed in the vector θ1
2) Elements of the process noise spectral densityQc from Eq. (2c),

or its discrete-time counterpart Q, listed in the vector

θ2 � q11 q12 : : : qnsns
T (4)

3) Elements of the discrete-time measurement noise covarianceR
from Eq. (2d), listed in the vector

θ3 � r11 r12 : : : rnono
T (5)

4) Initial conditions x0 and elements of the associated covariance
P0 from Eq. (3), listed in the vector

θ4 � x01 x02 : : : x0ns p011
p012

: : : p0nsns
T (6)

The totalmodel parameter vector to be estimated is then assembled
as

θ �
θ1
θ2
θ3
θ4

(7)

For a specific application, a subset of the full parameter list in Eq. (7)
could be estimated. For example, only the diagonal elements of R
could be estimated.A commonpractice, which is used in this paper, is
that initial conditions can be determined from the data rather than
estimated.
The parameter estimation problem is then to determine values and

uncertainties for θ that result in the best match of ŷ�iji − 1� to z�i� for
the entire time series, i � 1; 2; : : : ; N. Note that the model residuals,
which are the differences between the measured responses and the
updated estimates ŷ�iji�, are not considered in this problem. Because
of this, it is incorrect to use a smoother or state estimator other than the
Kalman filter to solve the equations ofmotion.Different formulations
of the estimation problem for which other observers are appropriate
can also be developed [14,15] but are not considered in this paper for
simplicity and practicality.
In this work, the matching is evaluated using the maximum

likelihood approach, which seeks to maximize the likelihood of
observing the measured data for the specified model. Maximum
likelihood estimators are practical and have been successfully
used in aircraft system identification analyses for decades
[1,2,4,5,7,13,14,16]. These estimators have a number of favorable
properties, including being asymptotically unbiased, consistent,
and efficient [4,14].
The likelihood function evaluated at sample i is

L�z�i�; θ� � �2π�−no
2 jS�i�j−1

2 exp −
1

2
νT�i�S−1�i�ν�i� (8)

where

ν�i� � z�i� − ŷ�iji − 1� (9)

is the innovation and S�i� is the innovation covariance. Instead of
maximizing the likelihood function directly, it is more convenient
and computationally simpler to minimize the negative logarithm of
the likelihood function. These two problems are equivalent because

∆
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Fig. 1 System model block diagram.
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logarithms are monotonic functions. For N data points, the cost
function to be minimized then simplifies to

J � 1

2

N

i�1

νT�i�S−1�i�ν�i� � 1

2
ln jS�i�j (10)

The first term in the cost function is the innovation sum of squares,
weighted by the innovation covariance matrix inverse. The second
term reflects the size of the innovation covariance matrix. A third
term, which was removed from the cost function and not shown in
Eq. (10), is a constant that does not affect the optimization. In this
way, the maximum likelihood estimator seeks the parameter esti-
mates that minimize the weighted square and covariance of innova-
tions, based on measurements of the potentially multiple-input
multiple-output (MIMO) system.

III. Parameter Estimation Methods

This section briefly summarizes some common approaches for
aircraft parameter estimation to provide context for the proposed FE
formulation. This summary is not intended to be comprehensive. For
more information on the approaches mentioned, see Refs. [4,14,16].
Unless otherwise noted, the noise statistics are assumed to be constant
with time, for simplicity, and arguments are omitted in the notation.

A. Equation Error

The EE method is the maximum likelihood estimator when proc-
ess noise is considered butmeasurement noise is neglected. Although
in practice all measurements contain noise, accurate results can be
obtained, even in real time, by smoothing explanatory variables or
performing the estimation over a reduced bandwidth in the frequency
domain with Fourier transform data [4,17]. The estimation problem
typically reduces to ordinary least squares, which has an analytical
solution for each state equation or aerodynamic coefficient consid-
ered. In addition to θ1, an estimate of Q can be obtained from the
model residuals. However, all explanatory variables must be accu-
rately measured or reconstructed.

B. Output Error

The OE method is the maximum likelihood estimator when meas-
urement noise is considered but process noise is neglected. This
formulation is consistent with the fact that sensor data contain
measurement noise, and with the standard practice of conducting
flight tests for system identification analysis in relatively calm air.
Due to these and several other reasons [4], OE is used widely. The
parameter estimation problem considered in OE, which is nonlinear
and requires iteration, is to estimate θ1 and R. Because these
unknowns are correlated, a relaxation technique is used where one
group of unknowns is held fixed while the other group is estimated,
and vice versa, until both sets of unknowns converge [4,14]. Other
benefits of using OE include that state variables do not necessarily
need to be measured, the estimation can be done in the frequency
domain with Fourier transform or frequency response data for LTI
models, and a time-domain analysis can include arbitrarily nonlinear
and time-varying systems. In the presence of significant process
noise or model structure error, though, OE can produce biased
estimates with large uncertainties or may fail to converge.

C. Filter Error

The FE method is the maximum likelihood estimator that consid-
ers both process noise andmeasurement noise. Previous formulations
of FE are reviewed in Refs. [4,18], which are summarized here.
According to Ref. [18], previous implementations can be grouped
as follows.
The first group is called the natural formulation. These implemen-

tations attempt to estimate all the unknowns (θ1, Q, R, x0, and P0)
simultaneously. This approach leads to high computational costs due
to the large number of unknowns and complicated interdependencies
created by the Kalman filter. More importantly, convergence issues

and numerical singularities for Q are typically encountered. As a
result, very few practical applications of this formulation have been
reported, and these have usually required further compromises, such
as in Refs. [19,20].
The second group is called the innovation formulation. To

circumvent problems associated with estimating both Q and R,
the Kalman filter gain matrix K (defined later in Sec. IV.B) and
the innovation covariance matrix S are instead estimated using the
relaxation technique, alongwith θ1. This formulation eliminates the
convergence and numerical problems associated with the natural
formulation but introduces other new problems. For instance,K has
potentially many elements and is typically fully populated, which
increases the number of unknowns to be estimated and can lead to
convergence issues and long computation times. Furthermore, ele-
ments ofK have little physical connection, which makes it difficult
to find adequate starting values and to apply intuition when verify-
ing results. Also, because elements of K are estimated rather than
computed from other known quantities in the usual way, a more
sophisticated optimization technique is needed to constrain the
values and keep the resulting filter realizable.
The third formulation could be called theMaine–Iliff formulation

[18]. In this method, elements of θ1 and Q are estimated, followed
by S, in a relaxation technique until all parameters converge. This
method reduces the computational burden, removes the numerical
singularities, and mitigates convergence issues that were incurred
by the previous formulations. This formulation was implemented in
software at NASADryden Flight Research Center (DFRC) [18,21–
23] and the Deutsches Zentrum für Luft- und Raumfahrt (DLR)
[24–26]. However, this method still requires a sophisticated opti-
mization to respect constraints associated with the Kalman filter.

D. Dual State and Parameter Estimation

Another approach for FE parameter estimation, which is some-
times called the dual estimation problem, is to use a nonlinear Kal-
man filter to estimate both x�i� and θ1 given known statistics and
initial conditions. This is mechanized by appending the unknown
constants to the state vector and sometimes also by exciting the
associated differential equations with a computer-generated white
noise sequence during the analysis. Because estimated parameters
multiply the estimated states, a nonlinear Kalman filter, such as the
extended Kalman filter (EKF) or unscented Kalman filter (UKF), is
needed. This approach is suited for real-time estimation and has been
used with some success [11,24,27]. This formulation also has the
potential to track time-varying dynamics. However, nonlinear Kal-
man filters were developed for state estimation and can incur con-
vergence issues when applied to parameter estimation. Furthermore,
they rely on accurate knowledge of Q and R [28] and are in general
inferior to batch-processed maximum likelihood estimates, which
take multiple passes through the data [18].

IV. Proposed Formulation

This section presents the details of the proposed FE formulation.
The main novelty of this formulation, which drives the subsequent
nature of its solution, is that R � R̂ is determined separately using a
time series analysis method and is held as a fixed value during the
subsequent state and parameter estimation. As discussed more in
Sec. IV.A, the measurement noise covariance matrix is a physically
meaningful quantity that can be estimated accurately using a variety
of techniques. WithR held fixed, a Kalman filter is used to solve the
equations of motion, as discussed in Sec. IV.B, and this process is

coupled to a nonlinear optimizer that simultaneously adjusts θ̂1 and Q̂
to minimize the negative log likelihood function, as discussed in
Sec. IV.C. Figure 2 depicts this process as a block diagram. Sec-
tions IV.D and IV.E discuss accuracy of the parameter estimates and
practical aspects of the approach, respectively.
The decision to fix R simplifies the estimation problem in three

regards. First, and most important, this choice breaks any correlations
between θ1 and R. Parameter correlations have hindered previous
attempts at FE, and relaxation techniques are often required tomitigate
these correlations at the cost of decreased rates of overall convergence.
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The impact of this choice for the proposed FE formulation is that the
remaining unknowns (θ1 and Q) are generally well-conditioned and
should be estimated simultaneously. Second, this choice simplifies the
parameter estimation problem by decreasing the number of unknowns
to be estimated. This simplification in turn reduces the computational
burden and lowers the uncertainties on estimated parameters. Third,

the separate estimation assigns values to R̂ that are consistent with the
model formulation, so that the implementation matches the theory. In
general, if model parameters can be assigned appropriate values, then
the overall parameter estimation is simplified andaccuracy is improved
for the remaining parameter estimates.
It is assumed in the proposed formulation that θ1 and Q are

unknown constants for the data analyzed. Additional information
would be needed to identify time-varying process noise levels and
model parameters. However, the assumption that the parameters are
unknown constants is common, andmost maneuvers used for aircraft
system identification are relatively short in duration and involve only
small perturbations about a reference flight condition. It is also
assumed that R is constant. This choice was made in part because
R reflects sensormeasurement noise,which is not expected to change
quickly in time, and in part to facilitate using a steady-state Kalman
filter for computational efficiency. At the cost of longer computation
times and additional information supplied by the analyst, time-
varying measurement noise levels could also be incorporated into
the estimation problem.

A. Measurement Noise Covariance

The random error observed in sensor data can often be modeled as
additive white noise, which is an uncorrelated random sequencewith
zero mean and constant power over frequency. The measurement
noise covariance matrix can be obtained in a variety of ways. Using
manufacturer specifications on sensor noise levels or estimates from
ground testing would result in measurement noise estimates that are
too low to accurately represent flight test data.
In thiswork, noise levels are extracted from themeasured flight test

data and some knowledge of the instrumentation. The basic idea is to
determine the noise floor using frequency-domain transforms of the
data. For example, Fig. 3 shows a power spectral density (PSD)
estimate of the pitch rate measurements for the X-56A airplane
during a dynamic maneuver intended for system identification of
the short period and first wing bending modes. The primary response
of the vehicle occurred at frequencies below about 7 Hz. Low-pass
filters attenuated the spectrum above frequencies of about 60 Hz.
Assumingwhitemeasurement noise, an estimate of the noise floor for
this measurement can therefore be obtained over about 7–60 Hz,
where the spectrum is relatively flat. From this estimate, the noise
variance on this measurement can be computed.
Another approach is to use a Fourier sine series decomposition, as

discussed in Refs. [4,29–31]. The data are detrended, reflected about
the origin to create odd symmetry without magnitude or slope dis-
continuity, and then projected onto sine functions using sine series
coefficients. By discarding the coefficients outside a frequency band
of interest where the noise floor is assumed, for example, outside the
range 7–60Hz in Fig. 3, the noise signal can then be reconstituted as a

time series and its sample variance computed. Alternatively, the noise
variance can be computed directly from the mean square value of the
sine series coefficients in the frequency range 7–60Hz. In doing so, R̂
is usually constructed as a diagonal matrix. This implies that meas-
urement noise sequences for different sensors are mutually uncorre-
lated, which is a good assumption in practice.
Estimating the noise levels from measured data is expected to be

the most accurate and convenient approach for determining R̂. This
obviates the need for sensor manufacturer specifications, which are
often optimistic, or analytically propagating the statistics for derived
measurements such as airspeed. It is not detrimental to the estimation
process but is worth noting that other sources of error, such as
vibrations of the structure or engine, may be incorporated into the
noise estimate when determined this way from experimental data.
Alternatively, because frequency-domain methods are used to esti-
mate the noise levels, strong components (e.g., the peak near 100 Hz

in Fig. 3) could be omitted when determining R̂ and regarded as a
contribution to the process noise.

B. State Estimation

This section briefly summarizes the Kalman filter used to solve the
equations of motion in Eq. (1). For more details on the Kalman filter,
see Refs. [4,32,33] and others.
To simplify the estimation problem and the computations, a steady-

state Kalman filter is used, which assumes that the plant model is LTI,
the pair �A;C� is observable, and that Q and R are constants. These
assumptions are sufficient in cases where the flight test maneuver
involves only small perturbations about a reference flight condition
and for relatively short periods of time, which is typical of most
maneuvers used for aircraft system identification. Extensions to this
situation could be applied, but they are beyond the scope of this work.
The first step in forming theKalman filter is discretizing the system

model in Eq. (1). The state dynamics and outputs are written using
zero-order hold (ZOH) sampling as

x�i� � Φx�i − 1� � Γu�i − 1� � Λw�i − 1� (11a)

y�i� � Cx�i� �Du�i� �Hw�i� (11b)

z�i� � y�i� � v�i�; for i � 1; 2; : : : ; N (11c)

where

Φ � eAΔt (12a)

Γ �
Δt

0

eAτdτ B (12b)

Fig. 3 Example measurement noise estimation from X-56A pitch-rate
gyroscope data.
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Fig. 2 Proposed filter-error method block diagram.
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Λ �
Δt

0

eAτdτ G (12c)

are the discrete-time versions of the system matrices. The process
noise spectral density matrix is discretized as the covariance matrix

Q �
Δt

0

eAτQce
ATτdτ (13)

The second step in forming the Kalman filter is to solve the
algebraic Riccati equation (ARE)

Q � P −ΦPΦT � L �R−1LT (14)

for the steady-state versions of the state error covariancematrixP and
the associated Kalman gain

K � L �R−1 (15)

where

L � ΦPCT � ΛQHT (16)

�R � CPCT � R̂�HQHT (17)

Afterward, the steady-state innovation covariance matrix can be
computed as

S � CPCT � R̂ (18)

Having now determined each component part, the Kalman filter
can then be used to solve the equations of motion using the two-step
predictor/corrector procedure. The prediction step first extrapolates
the state and output vectors to the next sample time using the current
known information as

x̂�iji − 1� � Φx̂�i − 1ji − 1� � Γu�i − 1� (19a)

ŷ�iji − 1� � Cx̂�iji − 1� �Du�i� (19b)

The correction step then considers a measurement and updates the
state and output estimates as

x̂�iji� � x̂�iji − 1� � Kν�i� (20a)

ŷ�iji� � Cx̂�iji� �Du�i� (20b)

where the innovations were defined in Eq. (9). More information on
this process can be found in standard textbooks, for example,
Refs. [4,32,33].
This procedure yields a time history of the estimated model output

based onmeasurements ofu and z and estimates of θ1,Q, andR. This
model output estimate is compared with the measured output in the
optimization step to update estimates of θ1 andQ, as described in the
next section.

C. Optimization

The optimization process depicted in Fig. 2 determines estimates θ̂
that minimize the cost function in Eq. (10). While the optimization is

running, updated estimates θ̂ are supplied to the Kalman filter, which
then returns updates of ν�i� and S back to the optimizer.

The estimation problem is nonlinear and therefore requires an
iterative solver. As a result, sufficiently good starting values of the
estimates θ̂0 must be provided for the first iteration. These can come
from a previous EE or OE analysis, prior information, wind tunnel

tests, analyst judgment, etc. Specifically for Q̂0, starting values can be
obtained from the residuals of an EE analysis or can usually be set to a
small, diagonal, positive-definite matrix.

Any relevant optimization routine can be used to minimize the
negative log likelihood cost function in Eq. (10). For this paper,
the unconstrained simplex method [34], as implemented in the
MATLAB®‡ function fminsearch.m, was used. This approach
samples the parameter space around the starting values and then
follows a simple set of rules to minimize the cost function. Although
convergence can be comparatively slow and local minima may be
found, the approach is relatively robust to poor starting values and
does not require derivatives to be calculated.
A gradient-based optimization, for example, the Gauss–Newton

approach often used in OE [4,31], could also be used. In this case, the
optimization block in Fig. 2 also includes inputs of the cost gradient
and the (approximated) cost Hessian matrix from the Kalman filter.
These terms are best obtained from numerical central finite
differences rather than from analytical derivations due to the complex
dependence of the cost function on the unknown parameters.

D. Accuracy of Parameter Estimates

The uncertainties in the parameter estimates are given by the
Cramér–Rao bound matrix

Σ � cov�θ̂� ≥ �M−1�θ�θ̂ (21)

which provides a theoretical lower limit of uncertainty. The standard
errors for the parameter estimates are obtained from the square root of
the diagonal elements in this matrix. In Eq. (21),

M � −E
∂2 ln L
∂θ∂θT

� ∂2J
∂θ∂θT θ�θ̂

(22)

is the information matrix. For this paper, the information matrix was
computed numerically using central finite differences after the opti-
mization procedure converged. If instead a gradient-based optimiza-
tion is used, the information matrix can be computed from the cost
gradient and parameter sensitivity functions computed during the
optimization iterations.

E. Practical Aspects

So far, discussion of the proposed FE implementation has pri-
marily focused on the theory of the estimation. There are several
practical aspects of the approach that warrant further discussion,
which is the subject of this section.
The covariance matrix Q is, by definition, a positive definite

matrix. However, it is possible for its elements to be adjusted during
the optimization process such that this is not true, which makes the
Kalman filter unrealizable. One solution to this problem is to add
constraints to the optimization to enforce the matrix to be positive
definite. Another simpler approach is to check for positive definite-
ness and temporarily set any offending elements to small positive
numbers for the remainder of that iteration. Another approach, which
was used in this paper, is to estimate the square root ofQ (given by its
Cholesky factorization) rather than Q directly, similar to the square-
root formulation of the Kalman filter [33]. This last approach proved
to be a simple and straightforward solution to the practical problems.
The optimality of the Kalman filter performance, which depends

on the correct selection of the dynamic model and noise statistics for
the data, can be cross-checked in various ways [28,33]. For example,
ν should be approximately zero mean, normally distributed, and
spectrally white. In addition, S computed from Eq. (18) should
approximately match the sample covariance matrix computed from
the innovations. If this is not the case, then the filter is suboptimal,
which could be due to error in the systemmodel and noise covariance
matrices.
TheKalman filter assumes that themeasurement and process noise

are uncorrelated white noise processes. If the process noise is not

‡The use of trademarks or names of manufacturers in this report is for
accurate reporting and does not constitute an official endorsement, either
expressed or implied, of such products or manufacturers by NASA.
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expected to be white, additional states can be appended to the state
vector in the dynamicmodel to adjust the spectral coloring [16,33]. If
the measurement and process noise are known to be significantly
correlated, the Kalman filter can be generalized to account for the
correlation E�w�i�v�j�� as discussed in Ref. [33].
The process noise acting on the system dynamics sometimes

comes from measurement noise on an input. An example of this
occurs in data compatibility analysis, which is discussed later in
Sec. VI. For these cases, the same techniques discussed in Sec. IV.A
to estimate R̂ can be used to estimate Q̂. This estimate can either serve
as a starting value, or Q could be fixed at this value during the
parameter estimation if the model structure is well known, to further
reduce computations.
In some cases, particularly when there is only one process noise

input and one outputmeasurement, elements ofQ andG and/orH are
confounded, and each term cannot be uniquely determined. When
this happens, one parameter should be estimated and the others fixed
at unity.
If there is prior knowledge on some of the unknown parameters,

the cost function in Eq. (10) can be augmented as

J � 1

2

N

i�1

νT�i�S−1ν�i� � N

2
ln jSj � 1

2
�θ − θ̂p�TΣ−1

p �θ − θ̂p�T

(23)

where θ̂p and Σp are the mean and covariance of the prior estimate,
respectively [4]. No other changes to the method are necessary. This
augmentation is useful, for example, when the data information
content from one maneuver is insufficient or when combining results
from multiple maneuvers.

V. Simulation Example

To demonstrate the method and make comparisons against a
known solution, a simple simulation model using the roll mode
approximation of an aircraft is examined. Section V.A considers a
baseline case, Sec. V.B examines diagnostic metrics of the estima-
tion, Sec. V.C looks at the sensitivity functions, and Sec. V.D con-
siders errors in the measurement noise covariance matrix.

A. Baseline Case

The simplified roll mode approximation of an aircraft [3,4,35] is

_p�t� � Lpp�t� � Lδaδa�t� � w�t� (24a)

wherep is the roll rate in rad∕s, δa is the aileron deflection in rad, and
w is process noise in rad∕s2. The model parameters Lp and Lδa are

stability and control derivatives, which are assumed to be constants
for a given flight condition. The system equations are completed by

pm�i� � p�i� � v�i� (24b)

which is a discrete-time measurement of the roll rate from a rate
gyroscope, including sensor measurement noise. The subscript m is
used to distinguish the roll rate measurement from the model output
for roll rate of the aircraft. This problem could be a first approxima-
tion to the roll dynamics of an aircraft flying through turbulence.
The system was simulated for 30 s at a sampling rate of 100 Hz.

True values of the system parameters were Lp � −2 s−1 and

Lδa � −10 s−2. The process andmeasurement noise sequences were

generated as white random sequences with Q � 0.2 rad2∕s4 and

R � 30 × 10−6 rad2∕s2, which corresponded to standard deviations

of about 26 deg∕s2 and 0.31deg∕s, respectively. The initial condi-

tions were specified with the covariance P0 � 3.0 × 10−6 rad2∕s2,
which corresponded to a standard deviation of 0.1 deg∕s. During the
maneuver, a multisine input [4] with 2 deg amplitude, 20 s duration,
and frequency content between 0.1 and 1.0 Hz was applied to the
aileron. The simulation and analysis were repeated 500 times using
different realizations of the noise sequences. Figure 4 shows input

and output data for one simulation run, drawn in blue and converted
from rad to deg. In terms of root-mean-square (RMS) values for the
different roll moment terms, Lppwas approximately equal to Lδaδa,
and w was about twice as large.
For this problem,

θ1 �
Lp

Lδa

(25)

θ2 � Q (26)

and θ3 and θ4 were both empty vectors, which made the total
parameter vector to be estimated:

θ � θ1
θ2

�
Lp

Lδa

Q

(27)

In this initial baseline case, the truemeasurement noise variancewas

supplied to the estimator, R̂ � R. Initial conditionswere assumed to be

zero in the analysis. Starting values for θ̂0 were obtained from an EE
analysis using time-domain data. Over the 500 simulation runs, the
optimization converged for every run and used 76 � 5 iterations and
137 � 8 function evaluations, which needed 0.55 � 0.04 s of com-
putation time on a standard laptop computer with an Apple® M2 Pro
chip. The uncertainties with these numbers indicate one standard
deviation of scatter. Figure 4 also includes themodel fit to themeasured
roll rate data using FE for that run, drawn in red. The coefficient of

determination for the FE fit to themeasured data,R2, was 0.996,which
is good and consistent with the signal-to-noise ratio for the roll rate
data. As expected, the fitted model followed the trend of the measure-
ments closely but avoided fitting the measurement noise.
Figure 5 summarizes the parameter estimates for the 500 simu-

lation runs. True values are shown by the red, horizontal, dashed
lines. Mean estimates for this baseline case are given by the blue
circles, with the associated left error bounds showing two deviations
of scatter in the estimates and right error bounds showing averaged
two standard errors (95% confidence intervals) computed in the FE

Fig. 4 Data and FE fit for one simulation run.
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algorithm. The green squares and error bounds, which are discussed
later in Sec. V.D, are the results for another set of 500 runs where an
estimate of R was used in place of the true value. The baseline
estimates were very close to the true values and were in statistical
agreement. For the averaged results, biaseswere small andwithin 0.2,

0.3, and 5% for L̂p, L̂δa , and Q̂, respectively. The scatter in the

estimates (left bounds) approximately matched the estimated uncer-
tainty (right bounds), which indicates that the Cramér–Rao bounds
were accurate representations of the uncertainty. The averaged stan-
dard errors were 8.3, 5.3, and 5.6% of the averaged parameter values,
which is relatively small. Compared to the stability and control

derivative estimates, the results for Q̂ had a larger bias and a slight
mismatch between the two error bars. This is expected to be due to the
difficulty in estimating the process noise covariance from noisy data.
However, these estimates can still be considered accurate by conven-
tional standards.

B. Innovation Diagnostics

Performance metrics were applied to the innovations for the sim-
ulation run shown in Fig. 4. Themean of the innovation sequencewas
−0.003 deg ∕s, which was approximately zero and very small com-
pared to the maximum roll rate measurement of about 10 deg∕s. The
theoretical innovation covariance matrix computed in Eq. (18) was

64.0 × 10−6 rad2∕s2, whereas the sample covariance of the innova-

tions was 63.4 × 10−6 rad2∕s2. This difference is less than 1% and
suggests that the Kalman filter was working optimally.
Figure 6a shows a probability density function (PDF) of the inno-

vations. Thedatawerepartitioned into20bins,which are drawnasblue
rectangles. AGaussian function, drawn as a green solid line, was fitted
to these binned data. A second Gaussian function, drawn as a red
dashed line, shows the theoretical distribution based on the innovation
covariance computed using Eq. (18). Only small differences in the
mean and variance are evident, which suggests that the innovations
were normally distributed with the mean value close to zero.
Figure 6b shows the sample autocorrelation function of the

innovations

r̂νν�k� �
1

N

N−k

i�1

ν�i�ν�i� k�; for k � 0; 1; : : : ; N − 1 (28)

Two standard errors for the innovation autocorrelation estimate,

computed from σ̂ � r̂νν�0�∕ N
p

, are shown by the red, horizontal,

dashed lines. The autocorrelation plot is characteristic of white noise

in that it has a large peak at the origin approximately equal to the

variance, and it otherwise generally remains within two standard

errors of zero. Only 67 out of the 6001 samples, or about 1%, fell

outside the 95% confidence region, which is in statistical agreement

with the estimated uncertainty.
In summary, an examination of the innovations supported the

quality of the estimation results. The innovations had a small mean

and a covariance that matched its theoretical value. This provided

evidence that the Kalman filter was running optimally, which occurs

when the model parameters and noise statistics are accurate. The

estimated PDF and autocorrelation of the innovations indicated that

these were normally distributed and spectrally white, as expected.

C. Output Sensitivity Functions

The output parameter sensitivity functions quantify the change in

the model outputs due to a change in a single model parameter, with

all the other model parameters held fixed. Examining these functions

can often provide insight into parameter uncertainties and the per-

formance of the optimization. Ideally, sensitivity functions are large

in amplitude and distinct from one another to speed convergence.
The three sensitivity functions for this example were

∂p̂�iji − 1�
∂L̂p

∂p̂�iji − 1�
∂L̂δa

∂p̂�iji − 1�
∂Q̂

Figure 7a shows time histories of these sensitivity functions for the

run in Fig. 4, which were numerically computed using central finite

differences. These time histories resemble the roll ratemeasurements,

aileron deflections, and process noise inputs shown in Fig. 4, respec-

tively. Visually, each time history in Fig. 7a appears distinct from the

other two.

a) , 1/s b) , 1/s2

c) , rad2/s4 d) , rad2/s2

Fig. 5 Summary of parameter estimates for 500 simulation runs:
dashed line = true value,marker =mean estimate, left bar = two standard
deviations of scatter, and right bar = estimated two standard errors.

a) Innovation probability density function estimate

b) Innovation sample autocorrelation function

Fig. 6 Innovation diagnostic plots for one simulation run.
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The degree to which the sensitivity functions are linearly distinct
from each other can be quantified by the correlation coefficient.

Figure 7b shows this correlation visually in a plot matrix. The
diagonal labels denote each sensitivity function. The time histories
are cross plotted in the upper triangle, and the correlation coefficient
is displayed in the corresponding lower triangle. Overall, the pairwise

correlations were relatively low in absolute value, andmuch less than
the 0.9 threshold value recommended in Ref. [4] for obtaining
accurate estimates. This is confirmed visually in how the cross plots
resemble scatter rather than a straight line. A separate check using a
variety of metrics [4] (not shown due to complexity) indicated that

multi-collinearity was also not a factor for these data. As discussed in
Sec. IV, specifying the measurement noise covariance breaks param-
eter correlations between the process noise covariance and the sta-
bility and control derivatives.

D. Measurement Noise Covariance Accuracy

Another factor investigated using this simulation example was the
sensitivity of the results to the accuracy of the specified measurement
noise covariance matrix. For the previous baseline results, the true

measurement noise covariance was provided to the estimator. In this
section, that assumption is removed.

Another set of 500 simulations were run, where this time the R̂
supplied to the estimator was obtained from the measurements, as
discussed in Sec. IV.A. Upon examining the PSD, which was similar

to Fig. 3, R̂ was estimated using sine series coefficients [4,29,30]
from 10 to 50 Hz. In Fig. 5, the parameter estimation results from this
section are summarized in green: again, the markers indicate the
mean values, the left bars denote two standard deviations of scatter,
and the right bars denote the averaged two standard errors computed

by the FE algorithm. There is no right error bound associated with R̂
because an uncertainty was not developed for that estimate. On

average, the bias in R̂ was small at 3.7%. The scatter in the results,
which was about 7.2% of the mean estimate, was in statistical agree-
ment with the true value. Estimating R instead of using the true value
did not cause noticeable degradation in the estimates. The left bounds
were approximately the same as the right bounds, which again
suggested that the uncertainty estimates were accurate.
Figure 8 shows another sensitivity test in which R̂ was supplied

with a multiplicative error. The red, horizontal, dashed lines indicate
true values for the parameters. Each marker denotes the mean param-
eter estimate from a separate set of 500 simulation runs. The error
bars denote averaged two standard errors from the FE algorithm.

When the multiplier is unity, R̂ � R and the results shown in Fig. 5

and drawn in blue are obtained. As the multiplier on R̂ increases,
more of the random variation in the data is attributed to measurement
noise, which gradually lowers the estimated process noise level and

increases biases in the parameter estimates. As the multiplier on R̂
decreases, the opposite occurs, but happens at a higher rate. Based on
this limited sensitivity study, it is best to specify the correct meas-
urement noise covariance, but otherwise it is better to provide an
overestimate rather than an underestimate for this simple case.

VI. Flight Test Example

In this section, the proposed FE approach is demonstrated with a
data compatibility analysis, also known as a kinematic consistency
analysis, using flight test data. In this problem, subsets of the mea-
surements are compared through kinematic relationships to estimate
and remove instrumentation errors. For example, in the absence of
any errors, integrated velocity measurements should match position
measurements. Because the inputs in this problem contain noise,
process noise appears in the state equations and FE is the most
appropriate choice for estimating the unknown parameters.
Flight data are from the X-56A airplane, which is a subscale

aeroelastic demonstrator. Figure 9 is a photograph of the airplane
in flight over NASAArmstrong Flight Research Center (AFRC). The
maneuver considered includes an automated doublet with 5 s pulse

a) Time histories

b) Pairwise correlations

Fig. 7 Output sensitivity functions for one simulation run.

Fig. 8 Sensitivity of the roll mode parameter estimates to the specified
measurement noise covariance.
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durations and 3 deg amplitude on the flight path angle command,

starting from an initial flight condition of straight and level flight at

4060 ft altitude, 125 ft∕s airspeed, and 2.4 deg angle of attack.

Longitudinal responses during this maneuver were small, and

lateral-directional responses were negligible.
The equations of motion for this data compatibility analysis are

represented in the form of Eq. (1), where

u � azm qm 1 T (29a)

x � Δα Δθ T (29b)

z � αm θm
T (29c)

w � vaz vq T (29d)

v � vα vθ
T (29e)

A � 0 0

0 0
(29f)

B �
g

V0

1 −
g

V0

�baz � az0� − bq

0 1 −bq
(29g)

G �
−

g

V0

−1

0 −1
(29h)

C � 1� λα 0

0 1� λθ
(29i)

D � 0 −�1� λα�
xα
V0

bα � �1� λα� α0 �
xα
V0

bq

0 0 bθ � �1� λθ�θ0
(29j)

H � 0 �1� λα�
xα
V0

0 0
(29k)

The Appendix includes a derivation of these equations and defini-
tions for the included terms. The inputs to this system are the vertical
accelerometer measurements, taken near the center of mass, and the
pitch rate gyroscope measurements, taken near the nose of the
vehicle. The input vector includes a 1 at the end to account for
constant terms in the equations. The states are perturbations in the
angle of attack at the center of mass and the pitch angle. The outputs
are angle of attack at the noseboom and pitch angle. Noise on the
accelerometer and pitch rate gyroscope measurements comprise Q,
whereas noise on the angle-of-attack vane and the pitch-angle mea-
surements comprise R. The unknowns to be estimated using FE are

θ � baz bq λα λθ bα bθ Qaz Qq
T (30)

which include the bias and scale factor error parameters, aswell as the
diagonal elements of the process noise covariance matrix. Off-
diagonal elements of Q were not included because the majority of
the process noisewas expected to be due tomeasurement noise on the
two sensors, which is generally uncorrelated.
Figure 10 shows flight test data in blue for one maneuver. Diagonal

elements of R̂ were estimated from PSDs over 7–60 Hz, as in Fig. 3,
with standard deviations of 0.070 and 0.020 deg for the angle-of-attack
vane and pitch-anglemeasurements, respectively. Initial conditions for

the states were set to zero, as well as all starting values θ̂0. Values of
steady-state terms in Eq. (29), such as α0, were estimated from the first
2 s of recorded data. The optimization converged in 719 iterations and
1026 function evaluations, which took about 17 s on the same standard
laptop computer mentioned previously. Figure 10 also showsFE fits to
the output data as the red lines. These fits followed the data trends

closely but avoided the noise. Values of R2 were 0.963 and 1.000 for
the angle of attack and pitch angle, respectively. The residuals on the
angle of attack and pitch angle had standard deviations of 0.068 and

0.014 deg,whichwerewithin 3 and 30%of the estimated values for R̂,
respectively.
Table 1 presents the estimated parameters and uncertainties. All

estimateswere small, whichwas expected because high-quality instru-
mentation was used and calibrations were done carefully. The process
noise variance estimates, which are given in Table 1 as standard
deviations, were an order of magnitude larger than the values of
0.0095 g and 0.13 deg∕s estimated from PSDs over 7–60 Hz. The
process noise estimates from the FE algorithm were larger due to

Fig. 9 X-56A in flight (credit: NASA / Jim Ross).

Fig. 10 Flight test data and FE fit.
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model structure error outside of the 7–60 Hz frequency range that was

included in the process noise variance estimates. For this problem,

sources of model structure error include linearization, unmodeled

structural mode responses, neglected covariances between the two

inputs or two outputs, errors in correcting the angle of attack and

vertical accelerometer measurements to the center of mass, and a

0.050 s time delay in the pitch-angle measurement.

Figure 11 shows diagnostic plots for these results. Figure 11a

shows time histories for the angle-of-attack and pitch-angle innova-

tions, whereas Fig. 11b shows these data as histograms. For the

histograms, the blue boxes show 20 bins of data, the green lines are

Gaussians fitted to these binned data, and the red dashed lines are

Gaussians based on the innovation covariancematrix provided by the

Kalman filter. Although the angle-of-attack innovations resembled

white noise, the pitch-angle innovations contained colored noise that
occurred about 2, 7, and 12 s into the data record when the gamma
command changed value. This colored noise was from the excitation
of the first bending mode of the aircraft structure, which was at about
3 Hz, and was recorded by the high-rate gyroscopes near the aircraft
nose. The structural responses were below the frequency range used
to estimate themeasurement noise levels andwere therefore regarded
as process noise. Because the theory does not fit this situation with
colored noise, the innovation covariance estimate is impacted, as can
be seen fromEqs. (14–18), which results in a slight degradation in the
performance of the Kalman filter.
In summary, this section applied the proposed FE method to flight

test data from the X-56A subscale aeroelastic demonstrator for a data
compatibility analysis. As in any application to a physical system,
there was error in the model structure used for the parameter estima-
tion, which was detected by the innovation diagnostics. However, the
approach was able to obtain reasonable estimates of all parameters
and produced excellent fits to the measured data.

VII. Conclusions

This paper proposes a practical algorithm for implementing air-
craft parameter estimation with the filter-error method, which con-
siders both process noise and measurement noise in the dynamic
system model. The key component of the algorithm is that by
separately estimating the measurement noise covariance matrix,
correlations between the unknown model parameters and the
unknown process noise covariance matrix elements are broken, and
the estimation can proceed in a straightforward manner using simple
nonlinear optimization techniques.
The proposed formulation was demonstrated using a simulation

example and a flight test example using data from the X-56A air-
plane. The findings of this paper can be summarized as follows:
1) The proposed method can produce accurate estimates of model

parameters and uncertainties, assuming that both measurement noise
and process noise are present.
2) Diagnostics on the innovations are helpful in understanding

results.
3) Simple nonlinear optimization techniques, without relaxation

steps, can be used because the model parameters and the process
noise covariance matrix are decorrelated.
4) There is some robustness to error in the measurement noise

covariance matrix estimate.
5) The proposed method is practical, has relatively low computa-

tional costs, maintains physical insight for themodel parameters, and
avoids convergence problems in the parameter estimation.
The present work considered LTI systems with constant process

and measurement noise statistics and time-domain data. The analysis
is relegated to batch postflight analysis due to the nonlinear estima-
tion problem requiring iterative solutions. Despite those limitations,
the approach shows promise for estimating stability and control
derivatives for flight testing in turbulence or with model structure
errors, as well as estimating instrumentation error parameters in a
kinematic consistency analysis and other applications.
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Appendix: Simplified Data Compatibility Equations

This Appendix includes a derivation of the simplified equations
used for the data compatibility analysis in Sec. VI. For more infor-
mation on the data compatibility analysis, see Refs. [4,11,13].
The nonlinear differential equations for the translational and rota-

tional kinematics of a rigid-body aircraft are

_u � rv − qw − g sin θ� gax (A1a)

_v � pw − ru� g sinϕ cos θ� gay (A1b)

Table 1 Estimated parameters and uncertainties
for the X-56A data compatibility example

Parameter Estimate Std. Error % Std. Error Unit

baz −0.0031 0.0013 43.4 g

bq �0.0964 0.0181 18.8 deg/s

λα −0.0886 0.0212 24.0 ——

λθ −0.0210 0.0085 40.5 ——

bα �0.2121 0.0598 28.2 deg

bθ −0.0329 0.0232 70.4 deg

Qaz
�0.1230 0.0120 9.7 g

Qq �1.6690 0.0594 3.6 deg/s

a) Innovation time histories

b) Innovation probability density function estimates

Fig. 11 Innovation diagnostic plots: X-56A example.
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_w � qu − pv� g cosϕ cos θ� gaz (A1c)

_ϕ � p� tan θ�q sinϕ� r cosϕ� (A1d)

_θ � q cosϕ − r sinϕ (A1e)

_ψ � q sinϕ� r cosϕ

cos θ
(A1f)

where u, v, and w are the body-axis components of translational
velocity; p, q, and r are the angular rates; ϕ, θ, and ψ are the bank,
pitch, and heading Euler angles; ax, ay, and az are linear accelerom-

eter measurements at the center of mass and aligned with the body
axes; and g is the acceleration due to gravity.
The system inputs for this problem are the accelerometer and

angular rate measurements, whereas the states are the translational
velocity components and the Euler angles. The outputs are the air-
speed V, angle of attack α, and flank angle μ (which is related to the
sideslip angle β [36]),

V � �u − yvr� zvq�2 � �v� xvr − zvp�2 � �w − xvq� yvp�2
(A2a)

α � arctan
w − xαq� yαp

u − yαr� zαq
(A2b)

μ � arctan
v� xμr − zμp

u − yμr� zμq
(A2c)

as well as the bank and pitch Euler angles. The x, y, and z terms
represent the body-axis positions of the three sensors relative to the
center of mass.
For pure longitudinal flight, the variables v, p, r, ψ , and μ are

ignored. Over short durations of time, the forward speed is assumed
to be constant, u ≃ u0, where the subscript "0" denotes a steady-state
value. In straight and level flight, ϕ ≃ 0. Linearizing under these
conditions and assuming a small pitch angle and a small vertical
offset of the air data vane result in the state-space model

_w�t�
_θ�t� � 0 0

0 0

Δw�t�
Δθ�t� � g u0

0 1

Δaz�t�
q�t� (A3a)

Δα�t�
Δθ�t� � 1∕u0 0

0 1

Δw�t�
Δθ�t� � 0 −xα∕u0

0 0

Δaz�t�
q�t�

(A3b)

whereΔ indicates a perturbationvariable. Bymaking the substitution
Δα ≃ Δw∕u0 and further assuming flight at low angles of attack such
that u ≃ V, the model can be rewritten in terms of true airspeed and
angle of attack as

_α�t�
_θ�t� � 0 0

0 0

Δα�t�
Δθ�t� � g∕V0 1

0 1

Δaz�t�
q�t� (A4a)

Δα�t�
Δθ�t� � 1 0

0 1

Δα�t�
Δθ�t� � 0 −xα∕V0

0 0

Δaz�t�
q�t�

(A4b)

Next, each measurement instrumentation error is generically mod-
eled as

ym � �1� λy�y� by � vy (A5a)

� �1� λy��Δy� y0� � by � vy (A5b)

where ym is the measured value, y is the true value, λy is a scale factor
error,by is a bias error, and vy is zero-meanwhitemeasurement noise.

Scale factors for accelerometer and gyroscope measurements are
typically small and are neglected [4]. In going from Eq. (A5a) and
(A5b), y is decomposed into a perturbation value Δy and a steady-
state value y0, which could be zero.
Solving Eq. (A5b) for Δy, substituting that expression for each

measurement in Eq. (A4), and collecting terms result in the simplified
data compatibility equations used for parameter estimation.
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