
NASA/TM–20240006865

Recommendations on Evidence and Process
for Certification of Learning-enabled
Components in Aerospace Systems

Adrian Agogino, Guillaume Brat, Yuning He, Daniel Hulse,
Rory Lipkis, and Thomas Pressburger
Ames Research Center, Moffett Field, California

Divya Gopinath, Lukman Irshad, Andreas Katis, Anastasia Mavridou,
Ganesh Pai, Corina Pǎsǎreanu, Ivan Perez, and Johann Schumann
KBR, Inc.
Ames Research Center, Moffett Field, California

May 2024

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The
NASA STI Program provides access to the
NASA Aeronautics and Space Database and its
public interface, the NASA Technical Report
Server, thus providing one of the largest
collection of aeronautical and space science STI
in the world. Results are published in both
non-NASA channels and by NASA in the NASA
STI Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s
mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320

NASA/TM–2024–20240006865

Recommendations on Evidence and Process
for Certification of Learning-enabled
Components in Aerospace Systems

Adrian Agogino, Guillaume Brat, Yuning He, Daniel Hulse,
Rory Lipkis, and Thomas Pressburger
Ames Research Center, Moffett Field, California

Divya Gopinath, Lukman Irshad, Andreas Katis, Anastasia Mavridou,
Ganesh Pai, Corina Pǎsǎreanu, Ivan Perez, and Johann Schumann
KBR, Inc.
Ames Research Center, Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

May 2024

Acknowledgments

This work has been performed for the System-wide Safety (SWS) Project of the Airspace Operations and
Safety Program (AOSP) within the Aeronautics Research Mission Directorate (ARMD). Errors in this
report are those of the authors.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
offical endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Summary

This report primarily identifies a collection of relevant and necessary evidence for assurance of machine
learnt components (MLCs)—also known as learning-enabled components—integrated into aircraft systems,
and gives preliminary suggestions on the elements of a certification process that invoke the identified evi-
dence. The main focus is on feedforward neural networks that are static and trained offline through su-
pervised learning. A brief background on the generic elements of the lifecycle of an MLC is given to
contextualize the assurance considerations and, consequently, the evidence that is relevant and necessary to
support certification.

At the level of an MLC, those considerations relate to: (i) the consistency and correctness of MLC
contributions to system functions in the context of a validated functional intent; and (ii) the absence of
MLC contributions to aircraft-level failure conditions. At an ML model level, confidence in model and data
properties contribute to assurance of the containing MLC, in particular: (a) generalizability and robustness of
models, in the presence of inputs not previously seen during training, disturbances to inputs, and unexpected
inputs; and (b) valid data, i.e., data that are at least representative, relevant, complete, and accurate.

Evidence for the above spans the elements of the ML lifecycle, and includes, at a minimum, lifecycle
artifacts that pertain to: (1) properties of requirements capturing functional intent, safety constraints, and as-
pects of the intended use and operating environment; (2) model performance, model complexity and design,
and algorithm choice; (3) achievement of required performance at the levels of a trained model during model
development, a trained model after model development is complete, and a trained model that is transformed
into an executable equivalent; (4) model implementation aspects necessary for transforming a trained model
into the executable equivalent; (5) integration of the executable trained model into the containing MLC, and
eventually the larger system; and, (6) lastly, the verification and validation (V&V) of each of the above. Such
V&V lifecycle artifacts themselves include: aspects of coverage, e.g., of various levels of requirements by
the input space of the model and the data; traceability (where applicable); application of formal methods for
property specification, analysis, and checking. Examples of evidence generation methods and tools further
ground the discussion on what constitutes evidence, and the contribution to assurance during certification.

The identified assurance considerations and supporting evidence is not a comprehensive set. Addition-
ally, neither what should be considered as sufficient evidence relative to the assigned criticality of an MLC,
nor how criticality ought to be determined and adjusted, have been considered in this report. However,
recommendations and suggestions are made for potential activities of the ML lifecycle that are aimed at
providing confidence that an MLC can be relied upon when integrated into its containing (aircraft) system.
Those activities are proposed as candidate elements of a certification process for MLCs. The main purpose
of this report to inform regulatory guidance and consensus standards that may be used to meet the safety
intent of the applicable regulations.

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Contents

1 Introduction 3
1.1 Purpose and Scope . 3
1.2 Outline . 3

2 Background 3
2.1 Terminology and Concepts . 3
2.2 General Elements of a Machine Learning Lifecycle . 5

2.2.1 Operating Context and Requirements Development 5
2.2.2 Data Management . 6
2.2.3 Model Development . 6
2.2.4 Model Implementation and Deployment . 6
2.2.5 Verification and Validation Activities . 7

2.3 Machine Learning Lifecycle Interactions . 8

3 Suggestions and Recommendations 8
3.1 Assurance Considerations . 9

3.1.1 Model Properties . 9
3.1.2 Data Properties . 11

3.2 Evidence . 12
3.2.1 System and Operating Context . 12
3.2.2 Machine Learning Requirements . 14
3.2.3 Data for Machine Learning . 15
3.2.4 Machine Learning Performance . 16
3.2.5 Architecture . 17
3.2.6 Verification . 18

3.3 Lifecycle Aspects . 19

4 Concluding Remarks 22

A Methods and Tools Supporting Assurance of Machine Learning 29
A.1 Formal Requirements Elicitation Tool (FRET) . 29
A.2 System Analysis using Statistical AI (SYSAI) . 35
A.3 Runtime Monitoring with Ogma and Copilot . 42
A.4 Realizable Responsive Unobtrusive Unit (R2U2) . 43
A.5 SafeDNN . 46

B Acronyms 52

1

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

List of Figures

1 FRET requirements editor . 30
2 FRET Analysis Portal . 33
3 SYSAI architecture . 35
4 Analysis of training and test data . 37
5 Analysis of requirements thresholds and safety envelope boundaries 38
6 Operational Requirements Analysis with SYSAI . 39
7 Performance analysis of two different DNN architectures 39
8 Robustness analysis with SYSAI . 41
9 Metrics for Accuracy Measurement . 41
10 High Level Application of Ogma . 42
11 Typical Runtime Assurance Architecture . 43

List of Tables

1 Requirements Formats and Characteristics . 29
2 Examples of System Requirements stated in FRETISH . 31
3 Examples of MLC Requirements stated in FRETISH . 31
4 Examples of ML Model Requirements stated in FRETISH 31
5 ML lifecycle elements supported by SYSAI . 36
6 Methods for Generalization Improvement . 40
7 R2U2 Property Checks . 44
8 Applicability of R2U2 to the ML Lifecycle . 45
9 Suitability of R2U2 and R2U2-based RTA for Model Properties 45

2

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

1 Introduction

1.1 Purpose and Scope

This report aims to inform and support both: (i) the US civil aviation regulator—the Federal Aviation Ad-
ministration (FAA)—in their development of the appropriate guidance and regulations, and (ii) the wider
aviation industry in their development of consensus guidelines and standards, for certification of aircraft
containing systems implementing machine learning (ML). Towards those objectives, this report discusses
what evidence may be relevant and necessary for assurance. Additionally it discusses where that evidence
may be invoked in a lifecycle for ML, towards relating the evidence to a certification process.

The main application focus is airborne systems that integrate machine learnt functionality to deliver
aircraft level functions. The main technical focus is on assurance of the machine learnt functionality—in
particular feedforward artificial neural networks (ANNs) that are static and that have been developed using
supervised, offline learning algorithms—from the standpoint of the artifacts developed using ML and their
associated properties (Section 2.1 clarifies the italicized terms). This report does not discuss what constitutes
sufficient assurance, commensurate with the safety criticality of an application, and the extent of evidence
necessary for the same (though it is intended to be addressed as part of a future revision of the report).

1.2 Outline

This report is structured as follows: Section 2 introduces the terms used (Section 2.1), and gives a brief
background on the general elements of an ML lifecycle (Section 2.2). Section 3 presents recommendations
on evidence and a process in a narrative form: first, the aspects of assurance of ML functionality that need to
be considered, at a minimum, are elaborated in Section 3.1; then Section 3.2 presents the kinds of relevant
and necessary evidence for assurance of ML functionality, also summarizing the assurance considerations
they address, referencing candidate evidence generation methods and tools (elaborated in Appendix A);
lastly, in Section 3.3, the lifecycle aspects of ML functionality are related to the identified evidence, towards
formulating the elements of a certification process. Section 4 concludes with an outline for further maturing
the recommendations of this report.

2 Background

2.1 Terminology and Concepts

The following terms and concepts are relevant for this report: assurance is the provision of justified con-
fidence that a product or service can be relied upon. Evidence refers to one or more lifecycle artifacts
(the byproducts of a process, method, or tool) accompanied by verifiable evidence assertions (qualitative or
quantitative statements of fact), which directly or indirectly provide confirmation that a product or service
meets its requirements (and, therefore, can be relied upon). An item is a type of lifecycle artifact that is “a
defined and bounded set of either (one or more) hardware elements or (one or more) software elements that
are treated as a single entity for analytical purposes” [1].

A machine learnt model (MLM) is a mathematical formula constructed by applying learning algorithms
to data. A machine learnt component (MLC) is a specialized item comprising one or more hardware and/or
software implementations of one or more MLMs and their supporting functionality—usually pre-processing
routines applied to the data that will be received by the models1, and post-processing routines applied to the
responses the models produce for the data they receive. This concept of MLC is compatible with similar
concepts defined elsewhere [2, 3], and is synonymous with learning enabled component (LEC) [4].

1Henceforth, unless otherwise indicated, this report will use model and component to mean an MLM and an MLC respectively.

3

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

An MLC architecture is a structure relating the models and supporting functionality of an MLC, which
is selected to implement the allocated MLC requirements. An ML model architecture is a computational
structure (such as a graph) selected to express a model. Usually, a model architecture is selected together
with a learning algorithm.

An artificial neural network (ANN) is a specific type of model inspired by biological networks of
neurons. The model architecture of an ANN, also known as a neural architecture, comprises nodes (artificial
neurons) organized in layers (a collection of nodes that are siblings in a graph structured arrangement of
nodes) interconnected by edges (links between nodes). Nodes and edges are associated with biases and
weights respectively that, together with activation functions, transform inputs (numerical values from one
layer) into outputs (numerical values at the next connected layer). Deep neural networks (DNNs) are a type
of ANN with multiple hidden layers between the input layer (the first layer of an ANN) and the output layer
(the last layer of an ANN). A feedforward ANN is a neural architecture (specifically, a directed acyclic
graph) in which the information flow is unidirectional from its input layers through the hidden layers, if any,
to the output layers.

Model parameters are the variables of an MLM established from data through the learning process, e.g.,
the weights and biases of an ANN. Model hyperparameters are those variables of the learning process (e.g.,
the number of training iterations) and the model (e.g., the number of hidden layers and activation functions)
that are not learnt from data, but that are necessary to control how learning occurs and how a model is
constructed respectively.

Learning algorithms used to build models may be broadly characterized as facilitating supervised, un-
supervised, and reinforcement learning. Supervised ML, which is the focus of this report, is concerned
with building models that infer a mathematical function from labeled data, i.e., data constituting correct
examples of the function to be inferred, given in terms of its inputs and outputs. Usually, the intended use
of such models is for prediction on inputs that were not amongst the examples used to build those models.
Unsupervised and reinforcement learning are not further considered in this report.

Training data, also referred to as a training set, comprises those examples to which (supervised) learn-
ing algorithms will be applied to train (i.e., build) an ML model. Validation data comprises additional
examples that are used to tune (i.e., configure) the model parameters of the MLM initially built using the
training set. Test data, also known as a test set, consists of examples that are used to evaluate a trained and
tuned MLM, against various performance metrics or criteria. When training, tuning, and testing have con-
cluded, the result is a completely specified inference model, representing what will be implemented using
hardware and/or software in an MLC. Section 3.1 gives additional terms and concepts related to data and
ML models.

Offline learning, also termed as batch learning, occurs when a learning algorithm considers all the
examples in a training set at once. Online learning occurs when the training examples are presented to a
learning algorithm sequentially, and the training is incremental. A static model is an inference model whose
parameter values and architecture do not change after offline learning, or after its subsequent implementation
in an MLC and eventual use in a wider system, i.e., when it has been deployed into service.2

An operational design domain (ODD) for an MLM or an MLC is the (abstract) description of its
respective input space, as captured in its requirements, for which its behavior is (to be) designed. More
generally, an ODD is the allocated portion of a specification of the intended operating environment(s) of a
given system—that includes all foreseeable operating conditions—for which that system is designed and in
which it is expected to fulfill its missions [5]. An ODD can be characterized in terms of ODD parameters,

2In other words, a static model does not continue to learn in use. In principle, when developing a system including MLCs,
either offline or online learning may be employed. Typically, it is convenient to perform offline learning first when a system
is being developed, and then subsequently when it has been deemed necessary to modify the models/components based on data
gathered in service, after a defined period of use, or a defined number of operations. In such cases, an initial static model will be
replaced with another, new static model, developed through offline learning.

4

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

i.e., variables associated with the input space of an MLM/MLC.

2.2 General Elements of a Machine Learning Lifecycle

Various efforts have investigated the safety, development, assurance, and certification aspects of integrating
MLCs into safety-critical systems [6,7], including in aviation [2,3,8–13]. Each of those efforts have put forth
potential development lifecycles for ML, detailing to varying degrees the corresponding process objectives,
inputs, outputs, and the underlying activities and flows. Based on and abstracting from those efforts, a
lifecycle for an MLC comprises at least the following elements:

• operating context definition and requirements development (Section 2.2.1);
• data management (Section 2.2.2);
• model development (Section 2.2.3);
• model implementation and deployment (Section 2.2.4);
• verification and validation (V&V) activities (Section 2.2.5).
The elements above may also be seen as stages or, equivalently, phases of an ML lifecycle, with the

exception of V&V activities, which are cross-cutting. That is, each element involves specific V&V activities
applicable to one or more lifecycle artifacts related to that element (see Section 2.2.5 for more details).

The definition of a process and flow based on the above elements—for example, as the so-called W pro-
cess [2,3,8], or a modified V process [12]—is not in scope for this report. Although, typically, such process
flows involve a combination of sequential, concurrent, and/or iterative application of the generic elements.
Note that the descriptions that follow are not comprehensive, and the intent is to give a background for:
(i) the assurance considerations emerging from the use of ML, and (ii) the evidence relevant and necessary
for addressing (some of) those concerns, together with suggestions for a certification process where that
evidence is applicable.

2.2.1 Operating Context and Requirements Development

An established and well-understood practice in the development of an aircraft system is to describe the
intended operating environment(s) for which that system is to be designed and in which it is expected to
fulfill its missions. The system requirements, which capture that description, are developed following the
conventional processes for (aircraft) system development [1] and safety assessment [14]. Those processes
guide how the identified requirements are decomposed, refined, and allocated across the different levels of
a system hierarchy, i.e., from (aircraft) function to system, subsystem, and eventually item.

As such, the development of an MLC commences from the (item level) requirements that it is allocated.
MLC requirements specify the functionality needed, including the desired performance, behaviors, and the
associated tolerances [9]. Additionally, MLC requirements include requirements on the intended operating
environment (i.e., its ODD), the data necessary for learning, data quality [2, 3, 8, 11], characteristics of the
underlying ML model, and the learning process (including model hyperparameters). Safety requirements
allocated to an MLC reflect what is necessary to mitigate or otherwise control the contribution of an MLC
to system-level failure conditions.

As with conventional items, the requirements for an MLC are analyzed for (internal) completeness,
consistency, traceability to higher-level requirements, and validity. The analysis of MLC requirements, in
conjunction with the constraints on its design, and operation can induce derived requirements, i.e., additional
MLC requirements not directly traceable to higher-level parent requirements that result from (MLC) design
choices [15]. Such requirements are analyzed with respect to their safety impact. Requirements development
for an MLC together with defining its operating context inform the subsequent elements of an ML lifecycle.

5

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

2.2.2 Data Management

The capacity of an MLC to meet its requirements is in part critically dependent on the data used to develop
it. Indeed, when an MLC must exhibit certain behaviors (as captured in its allocated requirements), the
data used to build the underlying models must contain sufficient and valid examples of those behaviors.
Conversely, when learning algorithms are applied to data, the behaviors that an MLC will exhibit will reflect
what the training data encodes. Data management is thus broadly concerned with curating [9] data: that is,
acquisition, preparation, and maintenance of valid and sufficient data for applying ML algorithms. Each of
those in turn can involve specific additional activities.

For example, requirements are to be first defined on both the data to be collected [3, 9], and the quality
attributes those data must exhibit [2,8]. Subsequently, data collection can involve sampling of ODD param-
eters, as well as augmentation with data from synthetic sources, e.g., high-fidelity simulators. Following
those, data may undergo various preprocessing steps including cleaning (e.g., removing or fixing values that
are missing, duplicates, irrelevant, noisy, and inconsistent), and labeling (i.e., annotating the ground truth
output), a prerequisite for supervised learning.

Thereafter, various transformations (e.g., normalization, encoding) may be employed to make data suit-
able for ML. When multiple data sources are involved, additional steps may be necessary for ensuring data
consistency, and reduced complexity [6]. Data segregation allocates preprocessed data into training, val-
idation, and test datasets. A so-called verification dataset may be considered additionally to confirm the
behavior of the implementation of a learnt model, e.g., as executable code [9].

2.2.3 Model Development

In general, model development starts with model selection [6], also known as paradigm selection [9], learn-
ing process management [2, 8], and model design [3]. Effectively, a model architecture is to be chosen that
best meets the allocated requirements and suits the type of problem being addressed (e.g., regression versus
classification).

Where ANNs are the focus, model selection is concerned with the choice and refinement of specific neu-
ral architectures. Amongst the activities involved in this refinement are: selecting the training algorithm(s)
that will be used for learning; determining the hyperparameters of the model and the chosen algorithm, in-
cluding establishing the criteria to determine when training is complete; and defining so-called loss functions
that are the basis to quantitatively evaluate how the model performs during training.

Model training applies the chosen learning algorithm to the training data, through which model pa-
rameters are determined. The validation data serves to confirm that a trained model performs as required.
Multiple training and validation iterations are typical for tuning both model parameters and hyperparame-
ters towards achieving the required model performance as specified in the allocated requirements. A specific
aspect of tuning is model optimization [2, 3] that can involve changes to the model architecture. A specific
form of model training is transfer learning [6], in which a previously trained model, possibly from a dif-
ferent application domain, is reused as a starting point to reduce the duration of training. When model
training has concluded, the result is a fully specified model, also termed as an inference model [2, 8, 12].
It is this inference model that is subsequently implemented in software and/or hardware. Note that model
training typically does not conclude without evaluation of a trained and tuned model on the test data, which
is described later (Section 2.2.5) as part of the V&V activities of an ML lifecycle.

2.2.4 Model Implementation and Deployment

Model implementation alludes to the transformation of an inference model into a form that executes in its
deployment environment, i.e., as software and/or target hardware of the airborne system [2,3,12,13]. For the

6

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

rest of the report, the resulting lifecycle artifact is termed as an executable inference model. Model deploy-
ment then refers to the integration of the executable inference model into the containing subsystem/system.
It is worth noting that the inference model resulting from the conclusion of model training is also executable,
albeit on the hardware and environment meant for the learning algorithms, which often differ from those of
airborne systems.

Developing the executable inference model may involve additional optimizations and modifications to
the model architecture, e.g., through model pruning to remove unused nodes, edges, and parameters, if any;
and replacement of variables representing model parameters with the learnt constant values. Subsequent
to these transformations, implementation in hardware and/or software follows conventional processes [15].
Likewise, integration of executable inference models into an MLC, and the subsequent integration of that
MLC into its containing subsystem also follows the conventional systems development process [1].

2.2.5 Verification and Validation Activities

As mentioned earlier, V&V activities cut across all the elements of an ML lifecycle. Conventional processes
are leveraged to confirm that the system requirements have been correctly allocated to MLCs, that the
allocated MLC requirements are valid, i.e., reflect the functional intent, and that the requirements exhibit
the usual properties of completeness, consistency, unambiguity, and verifiability [1, 2]. When considering
ODD aspects of the allocated requirements, the relevance, completeness, and accuracy of the identified ODD
parameters (including their respective admissible values) are amongst the foci of requirements validation [2,
3, 8, 10].

Given the central role of data for ML, key attributes of the data acquired are to be confirmed through
the V&V activities related to data management. For example, confirmation is sought that data are relevant
to and representative of both the intended operating environment as captured by the ODD, and the intended
behavior as defined in the allocated requirements [2,3,9]. Additional data attributes that are assessed through
data management related V&V include correctness or accuracy, completeness, sufficiency, and balance [2,
3, 6, 9]. Besides data attributes, V&V activities also aim to confirm that the activities performed during
data management yield data that meet the applicable data requirements, including those on data format,
resolution, timeliness, and integrity. V&V activities also apply based on the constraints emerging from a
proper application of ML, e.g., ensuring that the data are correctly labeled, that the training and validation
data are independent from the test data, and that the training process did not access the test data. Special
emphasis is also given to verifying that the training, validation, and test data can be traced to the unsegregated
data.

Model selection induces model architecture validation, also termed as paradigm validation [9] to con-
firm that a chosen model architecture can indeed meet the allocated requirements, and that it is appropriate
for the type of problem it is meant to solve. Model verification, also called learning process verifica-
tion [2, 8, 13] is an integral step in the training process, but distinct from model development. Specifically,
it closes the training and tuning loop to assess whether or not a trained model meets model performance re-
quirements based on the test data set. Those requirements usually encode desired properties of models such
as generalizability, and robustness (see Section 3.1). Additional verification can involve requirements-based
test to assess the extent to which the behavior of the trained model as exercised by test cases constructed
from test data cover the allocated requirements.

The conclusion of model verification also concludes model development, producing an inference model
that is ready for model implementation (as described in Section 2.2.4). Verification of the resulting exe-
cutable inference model is aimed at confirming that (executable inference) model performance on the test
data, and the associated properties of generalization and robustness have been preserved after model im-
plementation activities. Verification of the integration of executable inference models in an MLC, and its
subsequent integration into the containing subsystem follows conventional verification processes

7

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

2.3 Machine Learning Lifecycle Interactions

The progress of an MLC through its lifecycle stages occurs within the context of system and item level
processes, e.g., those in [1, 14, 15]. The interactions between those processes and the ML lifecycle can
impact the safety, development, assurance, and certification aspects of integrating MLCs into an aircraft
system.

For example, the definition of MLC requirements and its ODD straddles the interface between sys-
tem level development and safety assessment, and the data management element of an ML lifecycle (Sec-
tion 2.2.2). Inadequate definition of the intended operating environment at a system level can affect ODD
characterization of the MLC, which can subsequently impact data collection and, in turn, model perfor-
mance. Conversely, model performance insufficiencies that result from the inherent limitations of ML
algorithms—e.g., inferring bounded approximations from data samples, rather than the true required input-
output relationship, and the infeasibility of perfect and complete sampling—can necessitate modifying the
operating environment definition at the system level. That can potentially impact system requirements,
safety assessment, and the system architecture.

Although such interactions are not inherently unique to ML, the reliance upon data introduces additional
considerations. For instance, item requirements can be traced to system requirements for conventionally
developed items. Such traceability contributes to assurance of, for example, requirements coverage, and also
of item functionality not contributing to aircraft-level safety effects, in accordance with the safety objectives
established for the containing function. When transitioning from the general, higher level requirements on
the intended behavior of an MLC, to the data that encodes the lower level requirements on the behavior
expected from the underlying ML models, traceability cannot be readily established in a similar way for
certain kinds of functionality, e.g., perception. Moreover, model performance metrics that establish whether
or not a model meets its allocated requirements (see Sections 2.2.3 through 2.2.5) also do not readily relate
to safety objectives.

Similarly, model implementation and deployment (Section 2.2.4) is the interface to conventional hard-
ware and software implementation and assurance processes. Insufficiencies in executable inference models
in the target environments that are revealed when evaluating their performance on the associated test data
used during model development and model verification necessitates re-entry of the ML lifecycle. Again,
traceability from implementation to various levels of requirements cannot be leveraged for assurance of
MLCs in the same way as it can for conventionally developed items. Moreover, V&V of the performance
of executable inference models integrated into an aircraft system requires test data at various levels of the
system to confirm that the functional intent has been preserved.

Configuration management (CM) and quality assurance (QA) processes are additionally paramount to
ensure that the attributes and properties of MLCs are maintained through the ML lifecycle and the lifecycle
of the containing system [3, 9, 16]. As such, those processes are tightly coupled with the ML lifecycle;
though, this report does not further consider CM and QA aspects.

3 Suggestions and Recommendations

This section formulates suggestions and recommendations on evidence and process for certification of air-
craft systems integrating ML, as an extended narrative that addresses the following:

• at a minimum, what aspects of assurance of an MLC need to be considered (Section 3.1);
• at a minimum, what constitutes evidence for assurance of an MLC, including from V&V activities,

and what can be concluded regarding their contribution to assurance of an MLC (Section 3.2);
• in the context of the generic elements of an ML lifecycle (described earlier in Section 2.2), where is

the evidence for assurance required or invoked, and its relation to a certification process (Section 3.3).

8

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

3.1 Assurance Considerations

Integrating and using an MLC in an airborne system that will be certified, necessitates assurance of its fitness
for purpose. That is: (i) the contributions of an MLC to system/aircraft functions are correct and consistent
with respect to a validated functional intent, and (ii) the system safety contributions are benign, i.e., an MLC
does not cause or contribute to aircraft-level (failure) conditions that can result in harm. Those, in turn,
rely upon assurance of the ML model(s) and the supporting functionalities that compose an MLC, the data
used to develop the model(s), as well as the MLC architecture. This section focuses on and highlights the
minimum assurance considerations from the perspective of desired ML model properties and the properties
of the data used in their development.

Various prior efforts have identified additional assurance considerations beyond those given here, from
the standpoints of certification, safety, attributes and properties of ML lifecycle artifacts as well as the
processes producing those artifacts, and the applicability of the extant assurance guidelines for aircraft
systems, software, and hardware [2, 6, 9, 10, 17, 18]. Assurance of both the supporting functionality in
an MLC, and the MLC architecture leverage conventional processes [15] and are not considered further in
this report.

3.1.1 Model Properties

Key properties of the inference model related to MLC fitness for purpose include generalizability—also
called generalization capability [2, 3, 8]—and robustness.

Generalizability The capacity of an ML model to perform as required in use, on inputs from its ODD
not previously encountered during its development is known as generalizability. This suggests the need
for (i) defining and selecting the data that will be used in an ML lifecycle, and (ii) defining and assessing
required model performance.

Due to the data-driven nature of ML and the inherent infeasibility of completely sampling a poten-
tially infinite input space, model performance and consequently generalizability can only be empirically
determined. Model performance is defined and assessed on the training, validation, and test data, using
performance metrics appropriate for the type of problem being addressed (i.e., classification or regression).
For supervised ML, model performance metrics usually quantify the average error on a given data set. Here
error is a quantitative characterization of the disagreement between the response of the model to an input—
often an approximation of the required response—and the true required response for that input. For example,
a performance metric for regression problems is mean squared error (MSE), while for classification prob-
lems, misclassification rate is another performance metric [19]. What constitutes required performance is (to
be) established based on a decomposition and refinement of higher-level requirements (see Section 3.2.4).

Generalizability is assessed in terms of the so-called generalization gap, a measure of the difference
between model performance on the true distribution of its input space in use, and its performance on (the
inputs in) the training data. Since the former is unknown, the test data is usually chosen as a surrogate.
Both model performance and the generalization gap are then computed using the training and test data, first
for a trained model during model development, then for an inference model during model verification, and
subsequently for an executable inference model during model implementation and deployment. Here, an
additional aspect of defining required model performance is to establish suitable bounds or tolerances on the
generalization gap.

In the combined context of using test data as a surrogate of the intended operating environment, and
bounding the generalization gap, a model whose performance does not violate those bounds as it progresses
through the ML lifecycle (i.e., from trained model to inference model to an executable inference model)
is expected to generalize. In other words, the model performance on the test data may approximate its
performance in use. That, in turn, may be confirmed by gathering additional data in use, and re-assessing

9

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

model performance.
As such, additional assurance considerations are induced on the data required for model development, in

particular its properties relative to the intended operating environment (see Section 3.1.2). A key requirement
for the test data that it is independent (I) from and identically distributed (ID) as the training data (i.e.,
so-called IID data).

Robustness This concept applies to a collection of related but subtly different notions, as considered in
the context of software assurance, machine learning, and for integration of ML into aviation systems.

For example, in [9], robustness (for an MLC) is “bounded input-output sensitivity” for regression prob-
lems; for classification problems it is instead the constancy of the model response to a defined and bounded
change to its expected inputs as captured by the data used during model development. Those two notions are
similar to what is considered to be robustness (and also termed as model stability) in [8]: that is, “maintain-
ing the input-output relations of a trained model”, so that “small variations in the input yield small variations
in the output”.

In turn, the concept of robustness (equivalently, stability) from [8] is considered as robustness related
to generalizability in [2]. Together with robustness to adverse conditions—i.e., when inputs are so-called
boundary cases, edge cases, and/or adversarial—robustness in [2] is defined as “the ability of a system to
maintain its level of performance under all foreseeable operating conditions”. It is worth noting that this
definition of robustness is well-aligned with robustness of conventional (non machine learnt) software [15],
which is “the extent to which software can continue to operate correctly despite abnormal inputs and con-
ditions”. Robustness related to adverse conditions (as earlier), is the concept of model robustness adopted
in [3], and it instead defines model stability as “the capacity of a model to preserve the intended responses,
within specified tolerances under well-characterized and bounded perturbations to its inputs and operating
conditions in its ODD”.

Each of the preceding notions of robustness represent desiderata for ML models. As such, this report
proposes the following notion of robustness: an ML model is robust when its intended behavior is main-
tained under bounded perturbation or variation in its input. This notion of robustness is compatible with the
analogous concepts in in [2,3,8,9]. It extends generalizability on (previously unseen) inputs from the model
ODD by admitting uncertainty or variability in both the model inputs and its responses. Thus, the distribu-
tion of the inputs need not be identical to that of the training data, e.g., due to distribution shift. For inputs
not from the model ODD, a robust model response is one that does not violate the allocated requirement on
intended behavior.

One aspect of defining required model performance for robustness—as with generalizability—is to de-
fine the bounds or tolerances on model input and response variability. An additional consideration is defining
those regions of the input space where robustness is required. For instance, for a classification model, ro-
bustness is required for all inputs except at so-called decision boundaries (or surfaces for higher-dimensional
input spaces) where it is (required to be) different.

A concept closely related to the robustness property of inference models is out of distribution (OOD)
performance. As mentioned earlier, generalizability requires that the datasets for model development, im-
plementation, and verification are IID. If the inputs to a model in use emerge from a distribution different
from that of the training data, model performance is typically worse than what was measured in develop-
ment. This is a common situation since the usage conditions are rarely exactly identical to those during
development. Since an ODD specifies the input space for a model, and since the data for model develop-
ment are to be sampled (or generated) according to that ODD, by definition, all model inputs consistent with
the ODD are in-distribution. A distribution shift occurs when the usage conditions are sufficiently different
from the ODD for the model, and what is subsequently represented in the training and validation data, e.g.,
when there is a difference in the time of day and weather conditions in use, from what they were when the
data for training was collected. Thus, out-of-distribution inputs are those that the model encounters in use

10

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

that it has encountered neither in the training data nor the test data. A critical data property related to this
situation is representativeness (discussed in Section 3.1.2).

3.1.2 Data Properties

Data is central to developing an ML model, and it encodes the behaviors that are to be inferred through
the application of learning algorithms. In effect, data can be seen as instances of the requirements on the
behavior that a trained model must exhibit. As such, the characteristics of valid, complete, consistent re-
quirements may be translated into properties of the data—including (but not limited to) representativeness,
relevance, completeness, accuracy, balance, bias, and validity—which are described next. Beyond these,
extant standards for processing aeronautical data [20] refer to data quality attributes such as resolution, as-
surance level, traceability, and format. Data properties related to those attributes are not further considered
in this report.

Representativeness Data representativeness has been defined in various different (but compatible) ways:
for example, in terms of: (i) the similarity of the distribution of the characteristics of the data and the model
input state space [2]; (ii) coverage of ODD parameters and their respective ranges of values, together with the
matching of the distributions of the characteristics of the data and ODD parameters [3]; and (iii) coverage
of the foreseeable usage scenarios of the system integrating an MLC [9]. For this report, the following
definition is considered: given a domain of interest—in this context, an operating environment, ODD (or
input space), space of operating scenarios, or behaviors—that can be described as a statistical population,
a dataset representative of that population is a subset that accurately reflects the characteristics of that
population and the relative proportions of those characteristics.

Relevance Data used to develop an ML model are relevant for model development when the character-
istics of the data relate to both the functional intent of the model (equivalently, its intended use) and the
intended operating environment. In the context of ML model development, functional intent is reflected
in the requirements allocated to the models, while their respective ODDs represent the intended operating
environment. In [6], relevance of data is characterized in terms of the intersection of the dataset and the
desired behaviors of a model in its specified operating environment. A related concept in [3] is suitability,
which relates to whether or not data are appropriate for a specific purpose, and can satisfy so-called data
quality attributes invoked in the data requirements formulated during the data management lifecycle stage
(Section 2.2.2).

Completeness One notion of completeness of datasets used for model development is sufficient coverage
of the model ODD [2, 3]. Thus, a key aspect of completeness for a dataset for model development is for
the datapoints to map to the state space (the valid combinations of every independent characteristic) of the
domain of interest (that is, as before, the operating environment, ODD, operating scenarios, or space of
intended behaviors). The number of data points for each characteristic or combination thereof is determined
by the joint distribution of those characteristics, e.g., for an ODD, the joint distribution of the combination
of ODD parameters, each of which must be independent of every other parameter. As such, completeness of
a dataset closely relates to its representativeness. This concept of completeness also may be considered as
internal, since it assumes that the domain characteristics have themselves been completely identified. Ad-
ditionally, some combinations of the identified domain characteristics may render data collection infeasible.
Thus, considerations for data requirements include (i) in-depth domain modeling towards a comprehen-
sive identification of the relevant domain characteristics and their interrelations; and (ii) specifying what
constitutes sufficient data for a dataset to be considered complete and representative.

Accuracy The accuracy of data is usually given in terms of how close the (measured, sampled, or esti-
mated) values of the characteristics of a domain are to their true values. Accuracy also relates to the retention

11

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

of the trueness of data that has been transformed, processed, or augmented, e.g., by inclusion of data labels.
The preceding aspects of data accuracy together with the degree to which the distribution of the data con-
forms to the distributions of the characteristics of the domain thus impact data representativeness. In other
words, data that is representative of a population is also accurate and complete. An additional aspect of
accuracy, which relates to data relevance, is fidelity with the intended use and functional intent. That is,
data ought not to inadvertently encode unintended and undesired behaviors, e.g., through the use of a single
source [8].

Balance and Bias For classification problems, a balanced dataset is one which contains equal or almost
equal proportions of the classes comprising a valid response of a model. A biased dataset is one whose
characteristics have distributions that are skewed, imbalanced, or otherwise have a systematic error, relative
to those of the population from which the dataset was sampled. Thus, by definition, a biased dataset is not
representative of the population/domain of interest. In general, the characteristics of a domain need not be
balanced, so that some characteristics are rare (minority classes), while others are more prevalent (majority
classes). Thus, when a dataset that samples from such a domain is balanced, it is biased; however such data
bias is desirable for classification problems to mitigate the introduction of model bias, i.e., the systematic
error in the model response, where a majority class is consistently and erroneously selected despite an input
that should have resulted in a minority class as a response.

Validity Data that are representative and relevant, both of which, in turn, rely upon data being accurate and
complete, are valid. Considering that the datasets used for model development embody the requirements on
the intended behavior of a model, this intuitively aligns with the notion of validation of requirements [1],
which is “the determination that the requirements for a product are correct and complete.”

3.2 Evidence

Recalling from Section 2.1, here evidence refers to ML lifecycle artifacts accompanied by qualitative or
quantitative statements of fact (evidence assertions), which can be based on measurements, observations,
and test/verification that can themselves be verified (i.e., verification of verification results). Collectively,
they provide direct or indirect confirmation of, and thereby confidence in, the properties of an ML model and
the associated data. That, in turn, contributes to assurance of the fitness for purpose of the containing MLC.
Evidence concerning at least the following aspects are relevant and necessary for assurance of an MLC in
support of approval/certification: system and operating context, requirements for ML (i.e., on the MLCs
and associated models), data relevant for model development, ML performance, MLC and model architec-
ture, and the artifacts produced from the associated V&V activities. Each of these aspects—which were
inspired by FAA policy development efforts for ML [21]—is described next, elaborating on the minimum
information that is likely to be necessary for certification of systems integrating ML components.

3.2.1 System and Operating Context

The system context for MLC development—i.e., the aircraft or system function to which it contributes,
together with the characterization of its intended operating environment—are embodied in its allocated re-
quirements. This section focuses on the operating environment as described by an operational design domain
(ODD). The evidence from and related to MLC requirements is discussed subsequently (Section 3.2.2).

As indicated earlier (Section 2.1), an ODD gives an abstract description of the input space for an MLC
and its underlying ML model(s) in terms of domain-specific concepts associated with ODD parameters.
Defining and collecting the data necessary for ML relies upon a valid and complete ODD.

Establishing ODD coverage contributes to assurance of ODD validity and completeness, for example by
showing that ODD parameters at a model level trace to those at the MLC level, and additionally to operating

12

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

environment concepts referenced in the system requirements. Besides influencing component and model
design, an ODD additionally serves as a reference against which to confirm the data properties, and the
operating context when verifying an MLC implementation or validating the function inferred from learning.
Additionally, systematic exploration of the ODD—analogous to hazard analysis conducted in conventional
aircraft safety assessment processes [14]—can provide assurance of ODD validity and completeness.

Data-centric ODD Characterization A data-centric ODD characterization [5] contributes to determin-
ing the requirements necessary to drive ML model design, identifying the potential effects of MLC misbe-
havior on the (sub)system that contains it, whilst informing both architectural choices, and the assurance
activities necessary for confidence that the learning process itself did not introduce errors. This characteri-
zation comprises the following data categories: nominal, edge case, corner case, inlier, outlier, novelty, and
singularity. It also gives the following kinds of data: in sample, out of sample, in-ODD, and out-of-ODD,
with the latter two qualified in terms of whether the data is relevant for the model, or its containing MLC.

Though the detailed definitions of the data categories and kinds of data is not in scope for this report, the
following can give an intuitive understanding: a model should receive in-ODD inputs, which are data from
the nominal, edge case, and corner case categories. The latter two are special types of inputs that represent
the limiting conditions of the environment, described by the extrema of the ODD parameters values and their
valid combinations. Additionally they may (but need not) be rare in terms of their occurrence frequency
relative to the remainder of the in-ODD inputs. Nominal data are thus all in-ODD inputs that are not edge
or corner cases. All out-of-ODD inputs are outliers. Novelty data are outlier inputs miscategorized as in-
ODD, or vice versa. Thus, they are deficiencies in the ODD specification, while inliers are special cases
of novelties resulting from errors in data management. Singularities are special in-ODD data where model
behavior may not be (or is not required to be) robust. By construction, the data categories are complete, i.e.,
they address the full model input space.

Data that meets its properties, gathered from the data categories of a valid and complete ODD is thus
necessary for and contributes to assurance of model robustness and generalizability. The combination of the
categories and kinds of real data in operation, facilitates partitioning an ODD, and each such partition may
be analyzed from a safety standpoint for the contribution of the model and its containing MLC to system
hazards in terms of the effects produced in response to inputs drawn from that partition. Subsequently, the
(high-level) requirements that an MLC should fulfill can be established, which can include, for instance,
restrictions on model behavior, constraints on data processing, limitations of use, as well as requirements
necessary to manage the safety impact of the identified effects. The latter, in turn, also informs the selection
of the mitigation measures appropriate for sufficient safety assurance. Such mitigations include the applica-
tion of learning assurance processes, architectural mechanisms, as well as traditional development assurance
processes as appropriate.

Scenario-based Assessment Scenario-based assessment [22,23] gives an approach to explore and validate
requirements that invoke ODD parameters, and thereby the ODD itself. A collection of scenarios describes
the intended use of the system in the ODD. Conventional hazard analysis techniques are leveraged to con-
struct the scenarios, and to establish failure conditions, their effects, as well as the impacts of variations in
ODD parameters and events tied to ODD parameters. A distinction from conventional functional hazard
assessment (FHA) and preliminary system safety assessment (PSSA) is the focus on operational use, which
resides at a higher level than aircraft functions.3

Required performance at a system level can be decomposed and allocated to various elements of the
scenarios which then can be confirmed through, first, an exploratory analysis in the early stages, and subse-
quently in system development and verification. Evidence from scenario-based assessment are safety perfor-

3It is noted that operational safety assessment generally resides at a higher level of analysis than what is considered in the
prevailing aircraft safety assessment and system development standard practices [1, 14].

13

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

mance metrics tied to operational scenarios describing system use, through which performance thresholds
tied to safety objectives can be confirmed, e.g., by aggregating metrics for each scenario and checking that
in aggregate, they meet the set targets. This is inspired by aviation safety management systems (SMS) prac-
tice [24]. Although, such analysis relies upon additional confirmation that the assumptions made during
scenario modeling are themselves valid relative to the functional intent and intended use. That, in turn, may
rely upon simulation techniques providing evidence (and thereby assurance) of validity.

3.2.2 Machine Learning Requirements

This section explores the evidence that can be derived from activities related to the specification and analysis
of requirements. The characteristic and common attributes of requirements for systems/components inte-
grating ML has been explored in [25], and suggests that requirements of various kinds can be formulated;
for example, requirements on intended functionality that may or may not include probabilities and confi-
dence levels, and requirements invoking model and data properties (Sections 3.1.1, 3.1.2). Amongst those,
some requirements are amenable to mathematically-based specification using structured natural language
that have an underlying formal semantics [26, 27].

Requirements Formalization and Properties Formal specifications can provide assurance of fitness for
purpose, when they are:

• Complete: all necessary and relevant system behaviors are specified;
• Correct (Valid): each requirement captures the right functional intent, i.e., the intended meaning;
• Consistent: the set of requirements contains no logical contradictions, i.e., the set of requirements are

satisfiable for some set of inputs from the environment;
• Realizable: a strengthening of consistency, such that the set of requirements describes a system that is

satisfiable for all assumed environment behavior. In other words, given any input from an environment
that an MLC may receive, a system behavior or output exists such that all the requirements are met;

• Verifiable (or formally analyzable): unambiguously stated such that they can be verified, e.g., using
(formal) static or dynamic analysis tools such as model checkers.

Evidence supporting claims that formally stated MLC requirements meet the preceding properties in-
clude the results of: (i) requirements verification activities using techniques for requirements-based testing,
and formal verification, e.g., of requirements consistency, realizability, and model robustness; (ii) require-
ments validation activities, such as inspection, and simulation.

Formal Requirements Analysis Consistency and realizability analysis [28, 29] involves using formal
methods to provide a mathematically sound confirmation as to whether or not a set of requirements is
realizable (and, therefore, also consistent). The result of such an analysis is a TRUE or FALSE result, with the
latter returning a counterexample. In general, realizability checking is a hard problem for MLCs including
non-linearities, and compositional techniques are necessary to decompose a realizability check into smaller,
more tractable analyses. For an example of compositional realizability analysis, see Appendix A.1.

Satisfiability modulo theory (SMT), and techniques built around SMT can be used to ensure local ro-
bustness of a model by providing mathematically-based analysis that, for a suitably-sized region around an
input space point, the same model response will always be returned [6,30–32]. Local robustness here refers
to both so-called adversarial variations to inputs, and natural perturbations, representing stochastically oc-
curring changes to the inputs, e.g., due to changes in the environment, and noise. Global robustness refers
to network robustness for all inputs, which extends the concept of local robustness. SMT can be used for
global robustness verification together with approaches that decompose global robustness as a property on
an ML model into a collection of local robustness checks [33]. For additional details on such robustness
verification techniques, see Appendix A.5

14

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Testing and Coverage Testing is amongst the key steps to gaining confidence that a trained model is
robust and generalizable. Indeed, the purpose of the test set is exactly to test a trained model (as well as
the inference model and executable inference model) to gauge how it performs on data not previously seen
during model training.

This notion of testing is different from requirements-based testing that uses a formal requirements spec-
ification attached to the code, which rather gives a coverage assessment of test cases. For instance, the
so-called FLIP coverage metric [34] is a formally defined criterion to assess the extent to which a given test
suite covers a requirement specified formally in temporal logic: for each Boolean constraint in a formally
specified requirement with no logical operators, the metric generates an obligation to show how that con-
straint contributes to meeting the requirement. Then a test suite adhering to the set of obligations is devised.
Intuitively, full coverage means that for each obligation, at least one test can be generated that demonstrates
how that obligation is met and, in turn, how the requirement is met. Section 3.2.3 discusses the use of the
FLIP metric for analysis of data quality and for data augmentation.

Additional notions of coverage relate requirements and ODD parameters: each MLC requirement refer-
ences at least one ODD parameter, and all ODD parameters are referenced by at least one MLC requirement.

Requirements Validation Inspection and simulation of formal specifications of MLC behavior provides
confidence that requirements are valid, i.e., encode the functional intent, according to the underlying seman-
tics of the formalisms used. The extent of confidence in validity is dependent on the amount and diversity
of simulation scenarios. For an example, see Appendix A.1.

Additionally, statistically based surrogate models can be used for validation of the safety envelopes and
the thresholds stated in MLC requirements; for example, by identifying regions in the system state space
where failures impact performance.

Formal verification of large inference models—both individually, and when integrated into its contain-
ing system—is constrained by model complexity and scale [35]. However, probabilistic abstractions built
on trained model performance metrics, e.g., confusion matrices for classification problems, can be readily
integrated into a system level model for abstraction-based closed loop analysis at a system level [36]. Such
models can leverage conventional model-checking techniques [37], together with assume-guarantee reason-
ing. The results of such analyses can serve as evidence providing assurance that system-level requirements
(in particular those that can be formalized in formal logic, such as probabilistic temporal logic) can be met
with the inference model integrated into the system.

However, validation evidence of this form requires additional evidence, e.g., empirically gathered data,
that confirm that the assumptions made in the surrogate statistical models are themselves valid and ap-
propriate. For instance, that the data used to build the abstractions are indeed representative of the intended
operating environment and usage, or that the abstractions are a faithful approximation of the learned models.

For more details, see Appendices A.2 and A.5.

3.2.3 Data for Machine Learning

Evidence that the datasets gathered for model development have the properties listed in Section 3.1.2 con-
tributes to assurance of the properties of the learned model (Section 3.1.1) and that the containing MLC is
fit for purpose.

For example, assurance of data validity can leverage, in part, verification that preprocessing has produced
accurately labelled data, i.e., data labels that highlight what a learning algorithm should consider as ground
truth during model training and testing, in fact tag the true instance of the domain concept; for example,
if the data comprises still image frames each showing a scene of the landing environment, then region(s)
labeled in each such frame as a runway indeed contain an instance of a runway image.

Coverage of the ODD by the data is evidence providing partial support for the data completeness and

15

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

representativeness properties. That is, the data represents all ODD parameters and the full range of their
admissible values, e.g., according to a metric such as a goodness of fit of the data distribution and the
distributions specified in the ODD. In [13], for instance, a quantitative characterization of such coverage is
formulated in terms of a coverage ratio which measures how much of the data in a dataset belongs to the
input state space of a model as described by the combinations of ODD parameters.

Assurance in data completeness can be strengthened using the results of requirements-based testing
through evidence assertions about coverage of requirements and through enabling data augmentation (i.e.,
adding programmatically generated data to the training, validation, and test data). Recall that the FLIP
coverage metric (see Section 3.2.2) evaluates a test suite for its coverage of formal requirements, i.e., the
extent to which a test suite covers all possible ways to satisfy a formal requirement.

In the context of data used for model development, each element of the dataset (i.e., a pair of inputs
and outputs) can be considered as analogous to an execution trace, and then assessed against the obligations
generated by the FLIP metric on formalized MLC (and system) requirements. Full coverage then means that
the data set contains at least one element satisfying each generated obligation of the respective requirements.

For data augmentation, test cases can be considered as a sequence of input-output values defining, as
before, an execution trace on which MLC behavior can be observed and evaluated. By model checking
the obligations generated (on a formalized requirement) using the FLIP metric against a simplified system
representation, e.g., a black box with only inputs and outputs specified, the counterexamples generated are
the test cases that satisfy the obligations. In other words, including those test cases in the test suite achieves
full requirements coverage. Since datasets for model development are effectively pairs of inputs and outputs,
the test cases generated represent the data augmentations for the ML datasets.

3.2.4 Machine Learning Performance

The response/output of an ML model to an input is usually an approximation of the required response; the
difference between the output produced and the required response is its error. By bounding the error in the
requirements, model output can be evaluated as either being the required response (i.e., the error is within
the stated bounds, and the response is correct), or not being the required response (i.e., the error exceeds
the bounds, and the response is incorrect). Whenever the model output is not correct, it can be said to
have failed (on that input).4 Equivalently, when a model meets its allocated, validated requirements, it is
considered as correct. When a model does not meet its allocated, validated requirements, it is considered
as not correct. ML model performance is a quantification of the long term behavior of a given model, in
terms of its error, according to a metric (or a set of metrics) relative to its requirements, e.g., as an error
distribution for regression problems, or a confusion matrix for classification problems.

Surrogate statistical models (which are similar to ML models but are differentiated in that they are an-
other mathematical abstraction of the functionality to be learned) can be used to explore both generalizabil-
ity and robustness of a trained model (and subsequently the inference model and the executable inference
model). For example, a white-box analysis of robustness in terms of the changes to model responses to
defined changes to the model inputs can be visualized as a heat map, giving a visualization of robustness.
Similarly, a white-box analysis of model generalizability can be examined by comparing the distributions of
the errors in responses produced to those of the test data, and to other models. Appendix A.2 gives a detailed
description of a specific framework for surrogate modeling through which assurance of model performance
can be during model development.

Defining valid performance metrics is both problem and context dependent. It ties model properties,
via requirements, to the aircraft/system function to which the model ultimately contributes; for example,
clarifying how model performance is derived from, or contributes to system safety objectives. As such,

4This report adopts the definitions in [38], which provides a precise, unambiguous, and internally consistent taxonomy of
dependability concepts, wherein a failure is a transition from correct service to incorrect service.

16

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

evidence supporting assurance of model performance includes, at a minimum, (i) analyses showing that
model performance metrics (a) are relevant (i.e., suitable for the type of problem), (b) are related to the
requirements of the containing MLC, as well as the higher-level system or function, (c) account for the MLC
architecture, and (d) are valid (retains the intent of the higher-level requirements to which they are related);
(ii) verification that the stated performance metrics are met by a trained model in model development, and
then subsequently by the inference model and executable inference model in model implementation and
deployment.

3.2.5 Architecture

Recalling (Section 2.1) that the concept of model architecture is different from that of MLC architecture,
assurance from an architecture standpoint considers different levels of the system hierarchy.

Assurance of an ML model may require mechanisms such as monitoring, and the definition of a suitable
internal configuration of the MLC that contains the model (i.e., MLC architecture). For instance, when a
model cannot deliver its required performance on certain inputs (such as inputs that are out of its specified
ODD), then reliance is placed on the MLC architecture that such out-of-ODD inputs will be filtered and
never supplied to the model.

On the other hand, assurance of the ML model architecture relies upon verification that a trained model
(also, subsequently, both the inference model and the executable inference model) meets not only the allo-
cated requirements but also the constraints of the various activities in model development, i.e., selection and
tuning of model and learning algorithm hyperparameters.

(Runtime) monitors can detect and respond during the execution/use of an MLC as to whether or not an
applicable property (used here in the sense of a requirement or condition that evaluates to TRUE or FALSE) is
valid. Effectively, monitoring provides a layer of protection against the propagation of MLC requirements
violations. Monitors for MLCs need to address temporal and probabilistic properties, for instance when an
MLC is used in responding to a sequence of inputs, or when an ML model response is given as a probability
(for more details on methods and tools for monitoring see Appendices A.3 and A.4).

A common architectural pattern involving monitors is the runtime assurance (RTA) pattern [39] that
defines a class of configurations (specifically a simplex architecture and its variations) involving monitors
and switches organized around an MLC (or any other system/item for which there is insufficient assurance
in design), and a so-called assured fallback or backup function. Though an RTA architecture employing
runtime monitoring is mainly relevant in use (i.e., during deployment), runtime monitoring can also be used
during MLC development, e.g., as oracles for testing. During unit or system testing, monitoring can aid
in checking the validity of multiple requirements, and provide insightful information based on observing
the internals of an inference model, i.e., the model parameter values and the results of activation functions
within a neural network.

A key requirement for using an RTA architecture is for the monitors to be unobtrusive, i.e., there must
be no impact or effect on the state of the system being monitored due to the monitor. Other characteristics
for an RTA architecture have been elaborated in [39].

Formalized requirements (see Section 3.2.2 and Appendix A.1) can be used to generate runtime monitors
during the deployment of an MLC. More generally, monitors can apply at all levels of the system hierarchy
depending on the property being checked. For instance, (i) from requirements on inputs monitors can be
generated to check whether inputs are within acceptable bounds before they are provided to the executable
inference model; (ii) from requirements that describe assumptions on the environment, monitors can be
generated that check whether or not the observed environment of the system matches the assumptions of
an MLC and executable inference model; and (iii) monitors can be generated from requirements on model
output to check that an MLC produces the correct reponses.

17

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

3.2.6 Verification

Model and Component Verification Section 3.2.1 has described coverage of ODD parameters against the
higher-level description of the intended operating environment as one means of assuring ODD validity and
completeness. Likewise, Section 3.2.2 has discussed various verification approaches for requirements stated
at the system, MLC, and ML model levels, including formal techniques, testing, coverage, and simulation-
based validation. Similarly, some approaches to verifying properties of the data used during ML have been
discussed in Section 3.2.3, while Section 3.2.5 has discussed monitoring as an approach to architecture-
centered assurance.

Additional verification approaches applicable to an inference model are described next, whose results
contribute to assurance of model generalizability and robustness.

Neuron Pattern Based Property Checking Formal analyses based on neuron patterns define rules based
on pre-conditions and post-conditions of a trained model. For example, in [30] a trained model is
decomposed into a set of compact rules, which makes it more amenable for analysis. Specifically,
given a model and a set of inputs, rules of the form pre ⇒ post are mined.

Here, post is a desirable property of the output, such as a label being a certain class (for a classifi-
cation problem), and pre represents a condition characterizing inputs on which the model displays
desirable behavior with respect to post. The condition is in terms of neuron patterns, potentially
capturing the logic of the model. Each rule has the form of an input-output specification of the func-
tionality of the model, which enables verifying the model behavior beyond concrete inputs. Such
analysis contributes to assurance of model generalizability.

Probabilistic Verification Model counting based verification can provide precise estimates of the long-run
probabilities of output state occupancy. This approach provides an alternative to statistical methods
that estimate model performance based on test data, which relies upon representativeness with respect
to the intended operating environment and being IID as the training data. The idea is to perform the
verification on the executable inference model using model checking together with model counting.

An example of this is [40], where model counting has been applied to assess correctness properties that
have a bearing on safety, as well as generalizability and robustness. A trained model is translated into
a C program that is analyzed with the C Bounded Model Checker (CBMC) [41] to produce a formula
in Conjunctive Normal Form (CNF), which in turn is analyzed with state-of-the-art model counters
to efficiently obtain precise counts with respect to different outputs, i.e., the relative frequencies of
different outputs, providing a probabilistic characterization of state occupancy.

The verification results produced include: (i) an assessment of generalizability from a comparison of
the probability of model outputs against the ground truth outputs, expressed as logical predicates (if
available); (ii) a comparison of the performance of different ML models, possibly built using different
algorithms; and (iii) a quantification of correctness and robustness of the trained models in terms of a
probability that the analyzed property holds assuming an input distribution. These, in turn, contribute
to assurance of model generalizability and robustness. For additional methods and tools supporting a
probabilistic analysis of trained models, see Appendix A.5.

Traceability by Bridging the Semantic Gap from Model to Requirements Establishing traceability
from system requirements (which reference high-level domain-specific concepts) to the implementation of
an ML component (where the input space is higher dimensional and the inputs are raw data) is a chal-
lenge. Traceability of this form can contribute to assurance that an executable inference model completely
implements the allocated requirements.

Extracting task-specific features from the internal representation of a neural network can potentially
serve as a link to the system-level requirements [42]. Extracted feature representations enable verification

18

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

of models with respect to system-level requirements. Specifically, the pre-condition in the requirements,
expressed in terms of high-level features, can be translated into a constraint, pre′, expressed over neuron
values, by substituting the features with their corresponding representations. The modified requirement
pre′ ⇒ post can be checked automatically using off-the-shelf verification tools.

Rule-based testing [43] contributes to assurance that an inference model completely implements its
requirements. Using rules that abstract input-output behavior to drive testing the model can translate into
adequate coverage of the rules, which have clear semantic meaning with respect to network behavior as
compared to purely structural entities such as neurons. This approach supports fundamental testing tasks,
such as: (i) automatically generating test oracles or ground truths for new (unlabelled) test inputs, and
(ii) providing a meaningful coverage metric which can evaluate test suites for functional diversity, defect
defection capabilities, and coverage of different input scenarios.

Verification in Integration Verification of a system integrating MLCs is challenging, since the integration
and interactions with the intended environment create dynamics that are hard to model. Though, in some
situations (e.g., where the criticality of a failure condition is low), it may be sufficient to use sample-based
testing to statistically validate system behavior. Random testing is insufficient when an MLC may be well-
trained. Testing that aims to probe the extreme and corner cases in an ODD, as well as other situations, e.g.,
edge cases and singularities (see Section 3.2.1), is necessary but can be incomplete. Domain expertise can
help to bias tests towards certain system failure conditions, but a lack of independence between testing and
development can lead to an undesired bias in the test results.

Adaptive stress testing (AST) [44] is a framework that uses ML for automatic discovery of weaknesses
in MLCs for sequential decision making applications in simulation. AST assumes that the MLC runs de-
terministically within a system that may have stochastic environmental inputs, and it perturbs those inputs
to elicit failures in the system under test. The results of AST serve as an independent black-box based
alternative to complement other conventional testing techniques. Independence here is gained through an
exploration of the system behavior based on a higher-level requirements specification rather than devel-
oper/tester knowledge to explore regions of the ODD of an MLC where there may be inadequate model
performance.

3.3 Lifecycle Aspects

The model and data properties described in the preceding narrative (Section 3.1.1 and 3.1.2), as well as the
evidence that provides assurance that those properties hold (Sections 3.2.1 – 3.2.6), can be associated with
activities related to the general elements of an ML lifecycle (Section 2.2). Those activities, together with
other processes, have been referred to collectively as learning assurance [2,3,8,12,13]. Learning assurance
is the analog of so-called development assurance [45] but applied to the elements of an ML lifecycle.5

That, in turn, can serve to inform what elements may constitute a certification process for ML components,
analogous to how development assurance has been considered in current certification processes [46].

Operating Context and Requirements Development As discussed earlier (Section 3.1.1), model prop-
erties and their contribution to MLC fitness for purpose rely upon validated requirements that capture func-
tional intent (of the aircraft/system function that invokes the MLC). ML model requirements include a
description of the input space for a model, or its ODD (Section 2.2.1). That in turn is an allocation from a
decomposition and subsequent refinement of a higher-level description of the intended operating environ-
ment of the containing system. Moreover, it is the ODD from which data are to be collected in accordance
with the defined (and validated) data requirements (Section 2.2.2).

From the standpoint of an ODD used for characterizing the operating context of an MLC, it is thus im-

5Development assurance has also been termed as design assurance in the context of airborne software [15].

19

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

perative to have, at least: (i) a detailed characterization of the ODDs of both an ML model and its containing
MLC in terms of ODD parameters, and their admissible values; (ii) Confirmation of sufficiency, complete-
ness, and validity of the ODDs of the models and the MLCs, e.g., through a mapping from the model ODD to
its input space, and traceability from the ODD to the data sampled from the intended operating environment.

From a requirements development standpoint, it is likewise necessary to at least: (i) formulate MLC and
model performance requirements related to both functional and safety objectives; (ii) identify the bounds
of acceptable MLC and model performance such that they correctly reflect the higher-level requirements,
e.g., the bounds are such that failing to meet the allocated MLC requirements is less frequent than the safety
target allocated to an MLC; (iii) have confirmation (i.e., V&V) of requirements validity, completeness,
and consistency for model, data, and MLC requirements such that there is assurance that the intent of the
functions or services being provided are met. Examples of techniques that may be leveraged here include
formal methods, e.g., for realizability checking, simulation-based validation, or requirements-based test.

Data Management A core focus of data management is (as mentioned in Section 2.2.2) is ensuring that
the data collected are representative, relevant, complete, balanced, and accurate (see Section 3.1.2). A de-
ficiency of these data properties invariably contributes to a model whose performance is insufficient, i.e., it
cannot meet its requirements, is not robust, and does not generalize. The various activities inherent to data
management—including acquisition, preparation, maintenance, preprocessing, and allocation (or segrega-
tion) into training, validation, and test data—thus inherit the obligation to preserve the aforementioned data
properties.

These obligations may be discharged through V&V activities that confirm the properties at each step
in the data management. For example, assessment of various forms of coverage (e.g., of the data against
the ODD, and MLC requirements) serve to provide confirmation of completeness and representativeness, as
does traceability from data characteristics to ODD parameters. While for higher-dimensional data traceabil-
ity is a known gap, for lower-dimensional input spaces traceability can be readily established from inputs
to ODD parameters (e.g., for measurable physical and environmental parameters such as air temperature,
airspeed, and altitude).

Similarly reducing data acquisition errors, such as those in measurement, sampling, and preprocessing,
contributes to data accuracy, data completeness, and thereby also data validity. A critical related activity is
ensuring that that the training, validation and test data individually meet the requirement of being IID with
respect to each other and the intended operating environment.

Model Development The earlier elements of context formulation, requirements development, and data
management are critical initial activities that set the foundation for developing performant ML models that,
in turn, contribute to a fit for purpose MLC.

Model development builds on that foundation to iteratively select, train, and optimize a model that infers
the intended behavior from the data to meet the allocated requirements. This overall process may be consid-
ered as a form of systematized and partially mechanized trial and error, where domain and subject matter
expertise is usually leveraged to first select an initial model form (or architecture), learning algorithm6, and
to define the appropriate model performance metrics for evaluating the results of training.

Important considerations for model section include model complexity, model design, and out of distri-
bution (OOD) performance.

Model Complexity This relates to choosing a model form and algorithm whose degrees of freedom
are appropriate to the underlying statistics of the problem. Using an algorithm that is too simple for the
target domain results in poor model performance. In contrast, an overly complex algorithm can model the
data well but may not be able to generalize as required (i.e., overfitting).

6This reflects the state of the practice, although the state of the art has employed so-called neural architecture search, and
meta-learning which attempts to learn how to learn. Those topics are not in scope for this report.

20

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

The so-called bias-variance tradeoff relates model complexity, predictive accuracy (i.e., the estimated
total error of the model response to a future input not seen during its training), and its generalizability. It
represents the situation where a model being built through supervised ML cannot simultaneously minimize
both bias and variance. The total error in the response of a model is characterized in terms of model
bias (a systematic error that measures the difference between the expected response of the model and the
true response for a given input), and its variance (a component of error that measures the variation in the
expected response of a model and its true response for minor variations of a given input). Thus, critical
activities for model complexity management, and in turn, for model development include those targeted at
reducing the total error (to a jointly optimal point).

Model Design and Interpretability Models that generate rules and those that make decisions directly
from exemplars are two classes of algorithms that have enhanced interpretability, i.e., the logic of rule gener-
ation and decision making in the learnt model can be readily understood via human inspection. That, in turn,
provides confidence that the models reflect the functional intent as captured in their allocated requirements,
analogous to systematic inspection of a software architecture that embodies a design.

A popular algorithm in the first category is decision trees where the rules in the nodes of the tree can be
inspected to see how they are processing data. In the second category, so-called nearest neighbor algorithms
can tie a decision directly to a set of examples in the training set that were used. While these more inter-
pretable algorithms can usually only handle problems of limited capacity, more complex algorithms can use
portions of these more interpretable algorithms in key parts of their system. For instance a convolutional
neural network can use a convolutional deep neural network to process inputs into a representation state, but
can then use a nearest neighbor network to convert these representations into a decision.

Thus, developing a model architecture that leverages interpretable model forms and algorithms can addi-
tionally contribute to assurance that a model architecture is suitable to implement the allocated requirements.

Out of Distribution (OOD) Performance As previously discussed (Section 3.1.1), OOD performance
impacts both model robustness and generalizability. In general, trained models may perform well on tests for
data closely related to the training data, but perform poorly on data that is different (i.e., out of distribution).
The contributors to OOD inputs to a model include:

• incomplete or underspecified ODD(s), i.e., corresponding to ODD parameters that were not included
in an ODD, but should have been;

• deficient data acquisition (including errors in measurement, sampling, and preprocessing), i.e., cor-
responding to ODD parameters that were specified but were not sampled, inaccurately sampled, or
sampled with measurement errors; and

• inadequacies or deficiencies in the MLC architecture, i.e., failure to filter inputs that should have been
excluded (because they are not part of the functional intent, i.e., out of (model) ODD inputs.

Of these, the former two activities are within the scope of the earlier elements of the ML lifecycle
(namely operating context development, and data management, respectively), whereas the third requires an
architectural mechanism not in the scope of the model (also see Section 3.2), i.e., by defining the appropriate
MLC architecture. As such, model development activities need to confirm that the input space for the chosen
model form and algorithm are consistent with what is specified for that model in the MLC architecture.

Model training, tuning, and subsequent optimization to build a trained model is iterative after the selec-
tion of a model form and algorithm. Each iteration of training yields a model that is assessed against the
validation set(s) for achieving the required performance in terms of generalizability and robustness. Ad-
ditional aspects of this stage of model development include confirmation that iterative training and tuning
never access the test data until after training has been deemed complete.

Model Implementation and Deployment Amongst the main objectives of model implementation is to
ensure that the inference model that results from model development maintains its performance when trans-

21

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

formed into an executable form. The learning process can mask certain flaws during that transformation
into, for example, conventional software. For instance, the stochasticity in learning often yields models
whose performance is not predictable (though it may nevertheless meet the requirements). These variations
in performance may mask certain errors that can be difficult to reproduce.

Simulation-based testing is particularly susceptible to situations where learning algorithms may exploit
modeling errors (affecting simulation fidelity), to yield performant models in test that may be insufficiently
performant in use, especially when the datasets for model development contain augmented data produced in
an algorithmic way. Thus it may be necessary for the test data—used to re-confirm the performance of an
executable inference model—to contain samples from the intended real world environment to the extent pos-
sible. Additional verification steps are also likely necessary to gain assurance that both the functional intent
of the allocated requirements, and the allocated safety objectives continue to be met. As mentioned in Sec-
tion 3.2.6, confirmation activities can involve property checking (e.g., using neuron patterns), probabilistic
approaches and surrogate models that verify integrated behavior, rule-based testing, and stress testing.

Verification and Validation Section 2.2 has indicated that V&V activites span the entire ML lifecycle.
Indeed, the earlier discussions in this section have described various V&V activities (albeit not a compre-
hensive nor sufficient set) that serve to provide evidence for assurance of model properties, data properties,
and in turn of MLC fitness for purpose. The verification of an executable inference model that results
from model implementation, as well as verifying its integration both into the containing MLC and then into
the higher-level system, leverage conventional assurance processes at the item-level and the system-level
respectively [1, 14, 15].

4 Concluding Remarks

This report presents assurance considerations for machine learnt components (MLCs) and their underlying
models, with suggestions for the minimum necessary and relevant evidence. Based on those, and based on
the general elements of a lifecycle for MLCs, this report also suggests potential activities in that lifecycle
aimed at providing confidence that an MLC can be relied upon when integrated into its containing (aircraft)
system. Those activities are proposed as candidate elements of a certification process for MLCs.

The methodology underpinning the core outcomes, above, is based on a synthesis of: primarily, the
collective research of the report authors, the literature available on contemporary research and practical
efforts at integrating MLCs into aircraft systems; and—to a lesser but nevertheless appreciable extent—
knowledge gained from technical discussions with some of the key stakeholders for this report: the FAA,
and aviation industry consensus standardization bodies. As such, the suggestions and recommendations in
this report can be further expanded, beyond its current content:

(i) The identified assurance considerations and supporting evidence is not a comprehensive set. Addi-
tionally, neither what should be considered as sufficient evidence relative to the assigned criticality of an
MLC, nor how criticality ought to be determined and adjusted, were in scope for this report, though they are
under consideration for a future revision of this work.

(ii) The rationale linking MLC and ML model assurance considerations, associated evidence, and asso-
ciated activities is presently implicit and can be made explicit; attempts at crafting such a rationale do exist
in other contemporary efforts [2, 3] though as part of the working knowledge of those efforts. A similar
effort here can provide a common, concise basis for comparison, gap analysis, and harmonization.

(iii) Lastly, the suggestions and recommendations made can be adjusted, and refined based on an end-to-
end application to concrete functionality that relies upon ML and is deployed into a real (but low criticality)
aircraft system. Although the research that has informed this work has been applied to real examples,
applying all the suggested techniques, tools, and suggestions to a common application will further enhance
their credibility.

22

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

References

[1] S-18, Aircraft And System Development And Safety Assessment Committee, “Guidelines for De-
velopment of Civil Aircraft and Systems.” Aerospace Recommended Practice ARP4754 Rev. B, Oct.
2023.

[2] European Union Aviation Safety Agency (EASA), “Guidance for Level 1 and 2 Machine Learning
Applications.” EASA Concept Paper Issue 02, March 2024.

[3] SAE G-34 Committee for AI in Aviation and EUROCAE WG-114 for AI, “Process Guidelines for
Development and Certification/Approval of Aeronautical Safety-Related Products Implementing AI.”
Aerospace Recommended Practice ARP6983 / ED-324 - Work in Progress.

[4] E. Denney, R. Lee, G. Pai, and I. Šljivo, “QUASAR: Quantifiable Assurance Cases for Trusted Au-
tonomy,” Technical Report AFRL-RI-RS-TR-2023-162, Air Force Research Laboratory (AFRL), Sep.
2023.

[5] F. Kaakai, S. Adibhatla, G. Pai, and E. Escorihuela, “Data-centric operational design domain char-
acterization for machine learning-based aeronautical products,” in Computer Safety, Reliability, and
Security (J. Guiochet, S. Tonetta, and F. Bitsch, eds.), (Cham), pp. 227–242, Springer Nature Switzer-
land, 2023.

[6] R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the Machine Learning Lifecycle: Desiderata,
Methods, and Challenges,” ACM Computing Surveys, vol. 54, May 2021.

[7] R. Hawkins, C. Paterson, C. Picardi, Y. Jia, R. Calinescu, and I. Habli, “Guidance on the Assurance of
Machine Learning in Autonomous Systems (AMLAS).” Assuring Autonomy International Programme
Report version 1.1, March 2021.

[8] J. M. Cluzeau, X. Henriquel, G. Rebender, G. Soudain, L. van Dijk, A. Gronskiy, D. Haber, C. Perret-
Gentil, and R. Polak, “Concepts of Design Assurance for Neural Networks (CoDANN),” Public Report
Extract Version 1.0, European Union Aviation Safety Agency (EASA) and Daedalean AG, March
2020.

[9] AFE 87 Project Members, “AFE 87 - Machine Learning,” Final Report 87-REP-01, Aerospace Vehi-
cles Systems Institute, College Station, TX, June 2020.

[10] SAE G-34 Committee for AI in Aviation, “Artificial Intelligence in Aeronautical Systems: Statement
of Concerns.” AIR6988, April 2021.

[11] F. Kaakai, K. Dmitriev, S. Adibhatla, E. Baskaya, E. Bezzecchi, R. Bharadwaj, B. Brown, G. Gentile,
C. Gingins, S. Grihon, and C. Travers, “Toward a Machine Learning Development Lifecycle for Prod-
uct Certification and Approval in Aviation,” SAE International Journal of Aerospace, vol. 15, no. 2,
pp. 127–143, 2022.

[12] M. Gariel, B. Shimanuki, R. Timpe, and E. Wilson, “Framework for Certification of AI-Based Sys-
tems.” arXiv: 2302.11049 [cs.LG], Feb 2023.

[13] G. Balduzzi, M. F. Bravo, A. Chernova, C. Cruceru, L. van Dijk, P. de Lange, J. Jerez, N. Koehler,
M. Koerner, C. Perret-Gentil, Z. Pillio, R. Polak, H. Silva, R. Valentin, I. Whittington, and G. Yaku-
shev, “Neural Network Based Runway Landing Guidance for General Aviation Autoland,” Technical
Report DOT/FAA/TC-21/48, Federal Aviation Administration, William J. Hughes Technical Center,
New Jersey, November 2021.

23

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

[14] S-18, Aircraft And System Development And Safety Assessment Committee, “Guidelines and Meth-
ods for Conducting the Safety Assessment Process on Civil Aircraft, Systems, and Equipment.”
Aerospace Recommended Practice ARP4761 Rev. A, Oct. 2023.

[15] RTCA SC-205 and EUROCAE WG-71, “Software Considerations in Airborne Systems and Equip-
ment Certification.” DO-178C / ED-12C, Dec. 2011.

[16] SAE G-33 Configuration Management Committee, “Configuration Management Standard.” SAE
ANSI/EIA-649C.

[17] G. Brat, H. Yu, E. Atkins, P. Sharma, D. Cofer, M. Durling, B. Meng, C. Alexander, S. Borgyos,
C. Fan, and K. Garg, “Autonomy Verification & Validation Roadmap and Vision 2045,” Technical
Memorandum NASA/TM-20230003734, NASA Ames Research Center, January 2023.

[18] Safety of Autonomous Systems Working Group (SASWG), “Safety Assurance Objectives for Au-
tonomous Systems.” SCSC-153C Version 4.0, February 2024.

[19] K. P. Murphy, Probabilistic Machine Learning: An Introduction. MIT Press, 2022.

[20] RTCA SC-217 and EUROCAE , “Standards for Processing Aeronautical Data.” DO-200B / ED-76A,
June 2015.

[21] J. Pastore, “AI and Machine Learning Policy Development,” in FAA Artificial Intelligence Safety As-
surance: Roadmap and Technical Exchange Meetings, MITRE, March 2024.

[22] E. Denney and G. Pai, “Reconciling Safety Measurement and Dynamic Assurance,” in Proceedings
of the 43rd International Conference on Computer Safety, Reliability and Security (SafeComp) (to
Appear), September 2024.

[23] L. Irshad and D. Hulse, “Resilience modeling in complex engineered systems with human-machine
interactions,” in International Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, vol. 86212, p. V002T02A024, American Society of Mechanical
Engineers, 2022.

[24] Federal Aviation Administration (FAA), “Safety Management System.” Order 8000.369C, June 2020.

[25] M. Farrell, A. Mavridou, and J. Schumann, “Exploring requirements for software that learns: A
research preview,” in Requirements Engineering: Foundation for Software Quality (A. Ferrari and
B. Penzenstadler, eds.), (Cham), pp. 179–188, Springer Nature Switzerland, 2023.

[26] D. Giannakopoulou, T. Pressburger, A. Mavridou, J. Rhein, J. Schumann, and N. Shi, “Formal require-
ments elicitation with FRET,” in Joint Proceedings of 26th International Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ 2020) Workshops, Doctoral Symposium, Live
Studies Track, and Poster Track (M. Sabetzadeh, A. Vogelsang, S. Abualhaija, M. Borg, F. Dalpiaz,
M. Daneva, N. Condori-Fernández, X. Franch, D. Fucci, V. Gervasi, E. C. Groen, R. S. S. Guizzardi,
A. Herrmann, J. Horkoff, L. Mich, A. Perini, and A. Susi, eds.), vol. 2584 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, 2020.

[27] D. Giannakopoulou, T. Pressburger, A. Mavridou, and J. Schumann, “Automated formalization of
structured natural language requirements,” Information and Software Technology, vol. 137, p. 106590,
2021.

24

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

[28] A. Katis, A. Mavridou, D. Giannakopoulou, T. Pressburger, and J. Schumann, “Capture, analyze, diag-
nose: Realizability checking of requirements in FRET,” in 34th International Conference on Computer
Aided Verification (CAV 2022) (S. Shoham and Y. Vizel, eds.), vol. 13372 of Lecture Notes in Computer
Science, pp. 490–504, Springer, August 2022.

[29] A. Mavridou, A. Katis, D. Giannakopoulou, D. Kooi, T. Pressburger, and M. W. Whalen, “From Par-
tial to Global Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET,” in 24th
International Symposium on Formal Methods (FM 2021), pp. 503–523, Springer, November 2021.

[30] D. Gopinath, H. Converse, C. S. Pasareanu, and A. Taly, “Property inference for deep neural net-
works,” in 34th IEEE/ACM International Conference on Automated Software Engineering (ASE 2019),
pp. 797–809, IEEE, November 2019.

[31] D. Gopinath, M. Zhang, K. Wang, I. B. Kadron, C. S. Pasareanu, and S. Khurshid, “Symbolic execu-
tion for importance analysis and adversarial generation in neural networks,” in 30th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2019) (K. Wolter, I. Schieferdecker, B. Gal-
lina, M. Cukier, R. Natella, N. R. Ivaki, and N. Laranjeiro, eds.), pp. 313–322, IEEE, October 2019.

[32] C. Paterson, H. Wu, J. Grese, R. Calinescu, C. S. Pasareanu, and C. W. Barrett, “Deepcert: Verifi-
cation of contextually relevant robustness for neural network image classifiers,” in 40th International
Conference on Computer Safety, Reliability, and Security (SAFECOMP 2021) (I. Habli, M. Sujan, and
F. Bitsch, eds.), vol. 12852 of Lecture Notes in Computer Science, pp. 3–17, Springer, September 2021.

[33] D. Gopinath, G. Katz, C. S. Pasareanu, and C. W. Barrett, “Deepsafe: A data-driven approach for
assessing robustness of neural networks,” in 16th International Symposium on Automated Technology
for Verification and Analysis (ATVA 2018) (S. K. Lahiri and C. Wang, eds.), vol. 11138 of Lecture
Notes in Computer Science, pp. 3–19, Springer, October 2018.

[34] C. Pecheur, F. Raimondi, and G. Brat, “A formal analysis of requirements-based testing,” in Proceed-
ings of the 18th International Symposium on Software Testing and Analysis (ISSTA), pp. 47–56, 2009.

[35] M. Baleani, A. Clavière, D. Cofer, E. DeWind, L. D. Guglielmo, O. Ferrante, G. Gentile, D. Kirov,
D. Larsen, L. Mangeruca, S. F. Rollini, G. Cima, R. Schneider, H. Semde, and G. Soudain, “Formal
Methods use for Learning Assurance (ForMuLA),” Technical Report version 1.0, Collins Aerospace
and EASA, April 2023.

[36] C. S. Pasareanu, R. Mangal, D. Gopinath, S. G. Yaman, C. Imrie, R. Calinescu, and H. Yu, “Closed-
loop analysis of vision-based autonomous systems: A case study,” in 35th International Conference
on Computer Aided Verification (CAV 2023) (C. Enea and A. Lal, eds.), vol. 13964 of Lecture Notes in
Computer Science, pp. 289–303, Springer, July 2023.

[37] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of Probabilistic Real-time Sys-
tems,” in Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11)
(G. Gopalakrishnan and S. Qadeer, eds.), vol. 6806 of LNCS, pp. 585–591, Springer, 2011.

[38] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable
and secure computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, pp. 11–33,
Jan 2004.

[39] G. Brat and G. Pai, “Runtime Assurance of Aeronautical Products: Preliminary Recommendations,”
Technical Memorandum NASA/TM-20220015734, NASA Ames Research Center, January 2023.

25

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

[40] M. Usman, D. Gopinath, and C. S. Pasareanu, “QuantifyML: How Good is my Machine Learning
Model?,” in Proceedings of the 3rd Workshop on Formal Methods for Autonomous Systems, (FMAS
2021) (M. Farrell and M. Luckcuck, eds.), vol. 348 of EPTCS, pp. 92–100, October 2021.

[41] D. Kroening, P. Schrammel, and M. Tautschnig, “CBMC: The C Bounded Model Checker.” arXiv
2302.02384 [cs.SE], February 2023.

[42] D. Gopinath, L. Lungeanu, R. Mangal, C. S. Pasareanu, S. Xie, and H. Yu, “Feature-guided analysis
of neural networks,” in 26th International Conference on Fundamental Approaches to Software En-
gineering (FASE 2023) (L. Lambers and S. Uchitel, eds.), vol. 13991 of Lecture Notes in Computer
Science, pp. 133–142, Springer, April 2023.

[43] M. Usman, Y. Sun, D. Gopinath, and C. S. Pasareanu, “Rule-based testing of neural networks,” in
Proceedings of the 1st International Workshop on Dependability and Trustworthiness of Safety-Critical
Systems with Machine Learned Components (M. Chechik, S. G. Elbaum, B. C. Hu, L. Marsso, and
M. von Stein, eds.), pp. 1–5, ACM, December 2023.

[44] R. Lipkis, R. Lee, J. Silbermann, and T. Young, “Adaptive Stress Testing of Collision Avoidance
Systems for Small UASs with Deep Reinforcement Learning,” in AIAA SCITECH 2022 Forum, 2022.

[45] S-18, Aircraft And System Development And Safety Assessment Committee, “Development Assur-
ance Principles for Aerospace Vehicles and Systems.” Aerospace Informartion Report AIR7209, Oc-
tober 2022.

[46] AIR-134, Systems Integration Section, Federal Aviation Administration (FAA), “Airborne Software
Development Assurance Using EUROCAE ED-12() and RTCA DO-178().” Advisory Circular AC
20-115D, July 2017.

[47] C. S. Pasareanu, R. Mangal, D. Gopinath, S. G. Yaman, C. Imrie, R. Calinescu, and H. Yu, “Closed-
loop analysis of vision-based autonomous systems: A case study,” in 24th International Symposium
on Computer Aided Verification (CAV 2023) (C. Enea and A. Lal, eds.), vol. 13964 of Lecture Notes in
Computer Science, pp. 289–303, Springer, July 2023.

[48] A. Mavridou, H. Bourbouh, D. Giannakopoulou, T. Pressburger, M. Hejase, P.-L. Garoche, and J. Schu-
mann, “The Ten Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and Explained,”
in Requirements Engineering, pp. 300–310, 2020.

[49] C. Elliott, “On example models and challenges ahead for the evaluation of complex cyber-physical
systems with state of the art formal methods V&V, Lockheed Martin Skunk Works,” in Safe & Secure
Systems and Software Symposium (S5), Air Force Research Laboratory, July 2015.

[50] C. Elliott, “An example set of cyber-physical V&V challenges for S5, Lockheed Martin Skunk Works,”
in Safe & Secure Systems and Software Symposium (S5), Air Force Research Laboratory, July 2016.

[51] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tac-
chella, “NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking,” in Proceedings of
the International Conference on Computer-Aided Verification (CAV), vol. 2404 of LNCS, Springer,
July 2002.

[52] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind 2 model checker,” in International
Conference on Computer Aided Verification (CAV), pp. 510–517, Springer, 2016.

26

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

[53] G. Hamon, B. Dutertre, L. Erkok, J. Matthews, D. Sheridan, D. Cok, J. Rushby, P. Bokor, S. Shukla,
A. Pataricza, et al., “Simulink Design Verifier: Applying Automated Formal Methods to Simulink and
Stateflow,” in Third Workshop on Automated Formal Methods, 2008.

[54] Y. He, “Online detection and modeling of safety boundaries for aerospace applications using active
learning and bayesian statistics,” in 2015 International Joint Conference on Neural Networks, IJCNN
2015, Killarney, Ireland, July 12-17, 2015, pp. 1–8, 2015.

[55] M. A. Taddy, R. B. Gramacy, and N. G. Polson, “Dynamic trees for learning and design,” Journal of
the American Statistical Association, vol. 106, no. 493, pp. 109–123, 2011.

[56] R. Gramacy and N. Polson, “Particle learning of Gaussian process models for sequential design and
optimization,” Journal of Computational and Graphical Statistics, vol. 20, no. 1, pp. 467–478, 2011.

[57] Y. He, Variable-length Functional Output Prediction and Boundary Detection for an Adaptive Flight
Control Simulator. PhD thesis, University of California at Santa Cruz, 2012.

[58] Y. He, H. Yu, G. Brat, and M. Davies, “Statistical learning framework for safety and failure analysis of
a DNN-based autonomous aircraft system,” in Proc. International Conference on Machine Learning
Applications (ICMLA), IEEE, 2021.

[59] ASTM International, “Standard Practice for Methods to Safely Bound Behavior of Aircraft Systems
Containing Complex Functions Using Run-Time Assurance.” ASTM F3269-21, November 2021.

[60] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing
properties of neural networks.” arXiv: 1312.6199 [cs.CV], December 2013.

[61] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks,” in Proceedings of the 29th International Conference on Computer
Aided Verification (CAV) (R. Majumdar and V. Kunčak, eds.), vol. 10426 of Lecture Notes in Computer
Science, pp. 97–117, Springer, July 2017.

[62] H. Wu, T. Tagomori, A. Robey, F. Yang, N. Matni, G. Pappas, H. Hassani, C. Pasareanu, and C. Bar-
rett, “Toward certified robustness against real-world distribution shifts,” in 2023 IEEE Conference on
Secure and Trustworthy Machine Learning (SaTML), pp. 537–553, IEEE, 2023.

[63] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks.” arXiv 1702.01135 [cs.AI], February 2017.

[64] I. B. Kadron, D. Gopinath, C. S. Pasareanu, and H. Yu, “Case study: Analysis of autonomous cen-
ter line tracking neural networks,” in 13th International Conference on Software Verification (VSTTE
2021) (R. Bloem, R. Dimitrova, C. Fan, and N. Sharygina, eds.), vol. 13124 of Lecture Notes in Com-
puter Science, pp. 104–121, Springer, October 2021.

[65] H. Converse, A. Filieri, D. Gopinath, and C. S. Pasareanu, “Probabilistic symbolic analysis of neural
networks,” in 31st IEEE International Symposium on Software Reliability Engineering (ISSRE 2020)
(M. Vieira, H. Madeira, N. Antunes, and Z. Zheng, eds.), pp. 148–159, IEEE, October 2020.

[66] M. Usman, Y. Sun, D. Gopinath, R. Dange, L. Manolache, and C. S. Pasareanu, “An overview of
structural coverage metrics for testing neural networks,” International Journal of Software Tools and
Technology Transfer, vol. 25, no. 3, pp. 393–405, 2023.

27

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

[67] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety Verification of Deep Neural Networks,” in
Computer Aided Verification (CAV 2017) (R. Majumdar and V. Kunčak, eds.), vol. 10426 of Lecture
Notes in Computer Science, Springer, July 2017.

[68] J. Kim, R. Feldt, and S. Yoo, “Guiding Deep Learning System Testing using Surprise Adequacy.”
arXiv:1808.08444 [cs.SE], August 2018.

[69] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore, “Structural test coverage criteria
for deep neural networks,” ACM Transactions on Embedded Computing Systems (TECS), 2019.

[70] C. S. Pasareanu, R. Mangal, D. Gopinath, and H. Yu, “Assumption generation for learning-enabled au-
tonomous systems,” in 23rd International Conference on Runtime Verification (RV 2023) (P. Katsaros
and L. Nenzi, eds.), vol. 14245 of Lecture Notes in Computer Science, pp. 3–22, Springer, October
2023.

[71] M. Usman, D. Gopinath, Y. Sun, and C. S. Pasareanu, “Rule-based runtime mitigation against poison
attacks on neural networks,” in Proceedings of the 22nd International Conference on Runtime Veri-
fication (RV 2022) (T. Dang and V. Stolz, eds.), vol. 13498 of Lecture Notes in Computer Science,
pp. 67–84, Springer, 2022.

28

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

A Methods and Tools Supporting Assurance of Machine Learning

A.1 Formal Requirements Elicitation Tool (FRET)

The characteristic and common attributes of requirements on systems and components integrating ML has
been explored in [25], and suggests that requirements of at least the following kinds can be formulated:

• conventionally stated requirements that do not always involve probabilities, despite ML models dis-
playing behavior and responses which can be described in a probabilistic manner. Extant techniques
for requirements development and verification can be employed for such requirements. For example,

The ML model shall produce as output a sensible angle between −90°and +90°

• requirements that can be formulated as logical statements containing probabilities. For instance,

The minimum accuracy of the ML model on the training set shall be X%; and on the test
set shall be Y%

• confidence levels or probabilities on requirements, giving quantitative bounds on the uncertainty in
a verification of the requirement or the accuracy of a verification procedure for a requirement. For
example,

The cross track error shall not exceed ±X with confidence Y%

ML requirements often rely on probabilities to represent uncertainty. There are two important challenges
associated with Requirements Engineering (RE), which are aggravated by the use of probabilities. First, RE
is an inherently human-centric activity and so the language chosen to specify requirements is important for
usability and interpretation of requirements. To this end, developers typically write requirements in intu-
itive natural language, which however can be very ambiguous. Adding probabilities only exacerbates the
existing ambiguity issue. The second challenge is related to connecting requirements with formal analysis
tools. A variety of analysis tools have been developed for specifications written in probabilistic temporal
logics, such as model checking and runtime monitoring. However, expecting developers to directly write
requirements in such complex specification formalisms is error prone or even unrealistic. The Formal Re-
quirements Elicitation Tool (FRET) aims to tackle these two challenges. FRET is an open source tool for
writing, understanding, formalizing, and analyzing requirements [26, 27]

Table 1. Requirements Formats and Characteristics

Requirements Format Example Characteristics

Natural Language The absolute error between the zt truth
data and the output z shall never exceed a
tolerance of 0.01, when input is equivalent
to truth data

Intuitive, ambiguous, not
amenable to formal
analysis

FRETISH (Restricted
Natural Language)

Whenever (x = xt & y = yt) NN shall
within 1 seconds satisfy
absReal(zt− z) ≤ 0.01

Intuitive, unambiguous

Temporal Logic Formula (LAST V (((x = xt) & (y =
yt)) -> ((F[0,1]
(absReal((zt - z)) <= 0.01))
| LAST)))

Unintuitive, unambiguous,
automatically generated
from FRETISH, amenable
to formal analysis

29

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

A.1.1 FRET Capabilities

Figure 1. FRET requirements editor

Requirements Elicitation Users of FRET write requirements in an intuitive, restricted natural language,
called FRETISH, with precise, unambiguous meaning (see Table 1) using FRET’s requirement elicitation
interface (Figure 1). As shown in the figure, the FRETISH requirement [NN-004]: “whenever (x = xt)
& (y = yt) NN shall within 1 seconds satisfy absReal(zt − z) ≤ 0.01” expresses the natural language
description for the neural network (NN) included in the “Rationale and Comments” field.

FRETISH requirements have up to six fields: scope, condition, component, timing and response. To
specify and reason about uncertainty, a probability field has been recently added, that specifies a probability
bound on the requirement. To this end, FRET can be used to specify non-probabilistic requirements as well
as probabilistic requirements.

Tables 2, 3 and 4 contain examples of requirements at a system, MLC, and ML model levels as specified
in FRETISH.

30

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Table 2. Examples of System Requirements stated in FRETISH

Natural Language Requirement FRETISH Requirement

The probability that the aircraft leaves the taxiway,
i.e., |cte| > 8 meters, shall be extremely low [47]

The aircraft shall with probability <= 0.001
eventually satisfy absReal(cte) > 8

The probability that the aircraft turns more than a
prescribed degree (|he| ≤ 35°) shall be extremely

low [47]

The aircraft shall with probability ≤ 0.002
eventually satisfy absReal(he) ≤ 35

When aircraft is near the right border of the
runway, the aircraft shall not move further to the

right (he > 0) for an extended time.

Whenever he > limit the aircraft shall for T
seconds satisfy dhe dt <= 0

The aircraft shall reach the end of the runway
within T seconds.

The aircraft shall within T seconds satisfy
endOfRunway

Table 3. Examples of MLC Requirements stated in FRETISH

Natural Language Requirement FRETISH Requirement

Upon receiving an image, the component shall
output the cross track error within T seconds with

a high probability

Upon imageReceived the component shall with a
probability ≥ 0.98 within T seconds outputCTE

If DNN1 is active and a camera obstruction occurs
in a sensitive area, DNN2 shall be activated.

The aircraft shall with probability <= 0.002
eventually satisfy absReal(he) <= 35

When aircraft is near the right border of the
runway, the aircraft shall not move further to the

right (he > 0) for an extended time.

whenever active(DNN1) & obstructed component
shall immediately satisfy active(DNN2)
Whenever active(DNN1) & obstructed the aircraft
shall immediately satisfy activeDNN2

The MLC shall receive an image frame every 0.2
seconds (0.1 second clock rate) and over the

duration of 1 second shall correctly classify at
least half of the received image frames.

Two FRETISH requirements are necessary for
formalization: (1) The MLC shall every 2 ticks
satisfy receivedImage; (2) The MLC shall every 5
ticks satisfy correctlyClassifiedImages > 2

Table 4. Examples of ML Model Requirements stated in FRETISH

Natural Language Requirement FRETISH Requirement

The DNN output should not fluctuate The DNN shall always satisfy
absReal(output− preReal(output)) <= theta

31

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Table 4. Examples of ML Model Requirements stated in FRETISH (Continued)

Natural Language Requirement FRETISH Requirement

The maximum value of the NN output, z, shall
always be less than or equal to 1.1, regardless of

the input values [48]

The NN shall always satisfy z <= 1.1

The absolute error between the zt truth data and
the output z shall never exceed a tolerance of 0.01,

when inputs x, y are equivalent to truth data xt,
yt [48]

Whenever (x = xt & y = yt) NN shall within 1
seconds satisfy absReal(zt− z) <= 0.01

From properties examined so far, data requirements—e.g., whether a training set reflects completeness
over a real environment (such as lighting, weather, terrain)—usually are not formal properties. In the future,
different types data requirements shall be considered in more detail. If these can be formulated as formal
properties, then they can be captured by FRET.

Validation of Semantics Through Explanations and Simulation Getting a requirement with temporal
relationships right is a tricky and subtle task. FRET produces natural language and diagrammatic explana-
tions of a requirement’s exact meaning (see the ASSISTANT tab in Figure 1).

Furthermore, FRET supports interactive simulation of a FRETISH requirement to ensure that it captures
the user’s intention. Given a FRETISH requirement, the simulator shows temporal traces of each of the
signals (variables) involved as well as the valuation of the requirement for each point in time. The user
can modify the input signals; the valuation of the requirement is updated automatically and thus makes it
possible for the user to visually inspect and validate the temporal behavior of the requirement. FRET allows
the simultaneous validation of multiple related requirements through its simulator component.

Automatic Generation of Logic Formalizations FRET formalizes FRETISH requirements in metric tem-
poral logics and in probabilistic temporal logics. Such formalizations are difficult to correctly specify man-
ually, even for formal methods experts. See the examples in Table 1.

Realizability Analysis of Requirements FRET allows a user to check that a set of requirements is re-
alizable, i.e., it remains satisfiable given any expected input from the environment [28]. If the set is not
realizable, FRET supports explainability features: it performs a diagnosis to find minimal sets of conflicting
requirements, and shows counter-example traces. Figure 2 shows a screenshot of the FRET analysis portal,
giving an example of unrealizable requirements of a neural network based component from [48–50]. This
diagnosis process provides critical information on how to repair subsets of conflicting requirements. On the
other hand, if the set is realizable then the realizability checking mechanism guarantees that there are no
conflicts between the requirements for any environment input. Being able to check realizability of a set of
requirements can enhance the quality of the requirements set.

Realizability checking is a hard problem especially within the context of ML components since these
usually include non-linear behavior. To enhance the scalability, in [29], an approach has been proposed that
decomposes realizability checking into smaller, more tractable problems (partitions). There, it is proved that
checking whether or not a specification is realizable reduces to checking that each partition is realizable.
Currently, realizability can only be checked when the requirements are not probabilistic but in the future
extending realizability checking to account for probabilistic requirements has been planned.

Connections to Analysis Tools FRET generates specifications that can be automatically consumed by
tools that perform runtime monitor generation, such as Copilot (Section A.3) and R2U2 (Section A.4),

32

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Figure 2. FRET Analysis Portal

conventional model checking tools (e.g., NuSMV [51], Kind2 [52], Simulink Design Verifier [53]), as well
as probabilistic model checking tool, such as PRISM [37].

Automated Requirement-based Test Case Generation Automated test case generation is possible from
requirements stated in FRETISH. The automatically generated tests for a requirement provide requirements-
based test coverage according to the FLIP test coverage metric [34], which identifies the extent to which
each atomic proposition in the requirement uniquely affects its satisfaction. Furthermore, we are currently
studying the application of FLIP (1) as a metric on the quality of a dataset, and (2) as a data augmentation
approach for a data set.

The FRET test case generation mechanism is shown with an example requirement from [48]. The nat-
ural language requirement and the FRETISH version are shown in Table 1. For the sake of simplicity of
explanations, we simplify the requirement to use the immediately timing instead of within 1 second. Thus
the requirement becomes:

Whenever (x = xt & y = yt) NN shall immediately satisfy absReal(zt− z) ≤ 0.01

In the above formalization, three Boolean constraints exist: x = xt, y = yt and absReal(zt−z) ≤ 0.01.
As such, three obligations need to be generated that show the effect that each of the three constraints may
have in the satisfaction of the requirement. FRET translates the FRETISH requirement into the following
Linear Temporal Logic (LTL) formula:

G((x = xt ∧ y = yt) ⇒ absReal(zt− z) ≤ 0.01)

33

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

which formally encapsulates the tolerance constraint on the absolute error between zt and z, specifying
that it needs to always ((G)lobally) be met during the NN’s operation, if the precondition (x = xt∧ y = yt)
holds. If the precondition is false, the requirement is trivially satisfied, and the threshold constraint does not
need to hold. Assume that we want to cover x = xt while satisfying the requirement. FRET generates the
following LTL obligation towards this objective:

G((x = xt ∧ y = yt) ⇒ absReal(zt− z) ≤ 0.01)

∧ F (¬(x = xt ∧ y = yt) ∧ absReal(zt− z) > 0.01)

The obligation captures the following:
• The original requirement must still be satisfied.
• Eventually, i.e., in the future (F), absReal(zt − z) > 0.01 is observed while either x ̸= xt, y ̸= yt,

or both. Note that this case still satisfies the natural language requirement.
More interestingly, the obligation above is the same as the obligation that would be generated for y = yt.

This relays the fact that x = xt cannot be shown to solely affect the satisfaction of the requirement, but rather
that it has to be considered in combination with the truth of y = yt.

Considering the above, an adequate test case for this obligation needs to 1) satisfy the requirement and
2) demonstrate how the threshold can be exceeded when the precondition x = xt ∧ y = yt does not hold.
Such a test covers the case where the original requirement is expected to be trivially true when the input
constraints on x, xt, y and yt do not hold. Requiring the test to show that the threshold can be exceeded is
important in this case, as the resulting test is more indicative of the requirement semantics, when compared
to a test where the requirement is satisfied because the precondition is FALSE and absReal(zt− z) ≤ 0.01.

The semantics of FLIP coverage can also be understood when compared against the Modified Condition
and Decision Coverage criterion (MC/DC) [15]. In MCDC, a test suite is evaluated in terms of how well
it covers each decision (i.e. Boolean expression) in the code. Towards that end, for every decision, every
condition (i.e., subexpression in decision with no logical operators) needs to be shown to uniquely affect
the decision’s truth. In the case of FLIP, the Boolean constraints expressed in the formal requirement can
be mapped to MCDC’s conditions, whereas the requirement itself can be mapped to MCDC’s concept of
decisions.

34

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

A.2 System Analysis using Statistical AI (SYSAI)

SYSAI (System Analysis using Statistical AI) [54] is a flexible statistical learning framework for V&V and
the analysis of complex and high-dimensional cyber-physical systems with AI components.

A.2.1 SYSAI Tool Architecture

Figure 3 shows the high-level architecture of SYSAI analysis framework. On the left-hand side, we have
the system under test (SuT), which is executed given a set of parameters provided by the statistical learning
model of SYSAI. The result of each test run is then used to incrementally construct the statistical model.

SYSAI can be used to analyze an entire system in a black-box manner as well as the behavior of an
ML Component in both a black-box and a white-box manner. The latter can provide insights into the
network behavior and performance when, for example, comparing different DNN architectures or learning
algorithms.

Statistical

learning

model

Active
learning

Computer
Experiment

Design

Time series analysis

testcase generation
Intelligent

System

under test

Simulator

Safety envelope analysis

Property checking

Blackbox and Whitebox

analysis

Figure 3. SYSAI architecture

In general, the interface between SYSAI and the SuT is designed to be very small and generic, so that
systems implemented in various languages such as C/C++, R, Matlab, Java, or Python can be connected
easily. For the representation and construction of the statistical model, SYSAI uses Dynamic Regression
Trees (DynaTrees) [55, 56], a dynamic Gaussian process model based upon Particle Filters. DynaTrees
are regression and classification learning models with complicated response surfaces in on-line application
settings. DynaTrees create a sequential tree model whose state changes over time with the accumulation of
new data, and provide particle learning algorithms that allow for the efficient on-line posterior filtering of
tree-states. A major advantage of DynaTrees is that they allow for the use of simple models within each
partition. The models also facilitate a natural division in sequential particle-based inference: tree dynamics
are defined through a few potential changes that are local to each newly arrived observation, while global
uncertainty is captured by the ensemble of particles.

This surrogate model is initialized with available training data and incrementally refined using candidate
data points that are produced by an active learning module (see [57] for details). It evaluates the current sur-
rogate model using a customized active-learning heuristics and suggests candidate data points that provide
most information for model refinement. For these candidate points, the ground truth is obtained by executing
the SuT.

A.2.2 SYSAI Capabilities

SYSAI provides support for V&V around the tasks of finding safety regions, characterizing system per-
formance for ConOps, analyzing system behavior in failure modes, and performing statistical analyses on
the training and testing data sets. A detailed description of the SYSAI framework and its capabilities are
described in [58], and summarized in brief next:

35

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Safety Envelope Analysis SYSAI can perform an automated analysis of safety envelopes to discriminate
between safe and unsafe operational conditions of system behavior. Safety envelopes are not usually
rectangular; SYSAI can model geometric shapes to identify and characterize regions of similar behav-
ior, describing those regions in simple geometric terms using typical shapes (e.g., spheres, ellipsoids,
cylinders, cubes, etc.)

ConOps and Failure Mode Analysis Safety-critical systems must continue to operate safely under numer-
ous failure conditions. SYSAI can be used to identify regions in the state space where a failure has
substantial impact on system performance. Similarly, SYSAI can explore environmental conditions
to evaluate the system’s performance under those conditions. Examples include location, time-of-the-
day, visibility, weather, or dirt spots on the camera in a vision-based system.

Statistical Analysis of Training and Test Data All guidelines for V&V and certification of AI/ML sys-
tems put a strong focus on the tasks around collection and acquisition of data, as well as their quality
analysis and data management. SYSAI can perform detailed statistical analysis on training and testing
data, both for high-dimensional visual data (e.g., camera images) as well as time-series data.

Property Checking SYSAI supports the automatic checking and analysis of safety and performance re-
quirements. SYSAI can effectively find regions and their boundaries where certain safety properties
(e.g., the maximum error is always less than 40ft) are violated.

Time-series analysis SYSAI can perform advanced time-series analysis in a high-dimensional parameter
and state space. This analysis provides a deeper understanding of the system behavior and its dynam-
ics. The tool also supports event prediction.

White-box Analysis SYSAI can perform analysis on the AI component in isolation. This allows us to
carry out analyses on internal calculations within the AI component, comparison between different
AI components, and learning.

A.2.3 Process Integration

SYSAI can support many elements of an ML Lifecycle (Section 2.2) as shown in Table 5.

Table 5. ML lifecycle elements supported by SYSAI

ML Lifecycle Element SYSAI Results SYSAI Support

Requirements
development

Feedback to designer Property checking at an early stage on system and
component level; Safety boundary analysis

Data Management Feedback for data
acquisition

Statistical analysis of training and test data
providing coverage analysis, time series analysis,
and rare event handling

Model Training Model evaluation White-box analysis of ML component with
capability of model comparison

Model verification Model evaluation White-box analysis, Uncertainty quantification,
Out-of-distribution analysis

36

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

(a) Data distribution (b) Data coverage

Figure 4. Analysis of training and test data

Table 5. ML lifecycle elements supported by SYSAI (Continued)

ML Lifecycle Element SYSAI Results SYSAI Support

System-level validation Requirements
analysis

System-level, high dimensional analysis for
verification of safety regions, performance
boundaries, and verification of system-level and
component-level requirements

Statistical Analysis of Training and Test Data The probability distributions of training and test data can
be obtained with SYSAI, e.g., Figure 4 shows poor coverage of the given training data: in Figure 4a,
training data do not exist for areas toward the end of the runway if the aircraft is not close to the
runway.

Safety Boundary Analysis for ML requirements SYSAI can perform automatic analysis of safety bound-
aries for an autonomous centerline tracking (ACT) example with a deep convolutional neural network.
Figure 5b shows a projection of the safety-envelope. The surface shows estimated maximal cross track
error (CTE) values during a run over initial values of CTE and heading error (HE) values. The safety
envelope at a given threshold (here 40 feet) is shown as a red line. Usually, the safety envelope is not
rectangular. Therefore, SYSAI can perform geometric shape modeling to not only identify but also
characterize regions with similar behavior and describes those regions in easy to understand geomet-
rical terms.

Determining Requirements Thresholds Figure 5b shows the compliance rate for the requirement, Aircraft
shall diverge no more than X feet from the runway centerline over a range of thresholds. Smaller
thresholds (narrow runway) lead to a low compliance rate.

Operational Requirements Analysis SYSAI can explore environmental conditions to evaluate the sys-
tem’s performance. Figure 6 shows ACT performance for different times of the day. The performance
is dropping dramatically for times after around 2PM, the reason being different lighting and shadow
conditions. In our example, the DNN has only been trained with images taken at 9AM.

System Validation through Failure Mode Analysis SYSAI can be used to identify regions in the state
space where a failure has substantial impact on system performance. For the ACT system, a clear

37

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

CTE

he

C
T

E

C
T

E

m
a
x

m
a
x

(a) Safety region: Red line corresponds to a threshold of 40
feet

(b) Compliance over threshold

(c) Heat map of sensitive areas of a DNN relative to camera
failure (location of a dark spot on an image) Brighter colors
correspond to higher sensitivity

(d) Sensitive areas overlaid on a camera image. The black
square represents a typical injected failure

Figure 5. Analysis of requirements thresholds and safety envelope boundaries

camera image of the runway is important. In practice, however, a partial obstruction of the image,
e.g., caused by a piece of dirt on the camera lens, can occur. Figure 5c shows the results of a SYSAI
analysis, which investigated how the location of an obstruction (modeled as a black rectangle) influ-
ences the ACT system behavior. Regions highlighted in red are particularly sensitive: as expected
areas near the center of the runway toward the horizon, but surprisingly also an area close to the AC
front wheel. If the obstruction occurs in these areas, the performance of ACT is very diminished and
can cause the AC to leave the runway.

Black Box and White Box Analysis of ML Models SYSAI is capable of analyzing the entire system un-
der test. However, SYSAI can be used to specifically analyze an ML component (e.g., a deep neural
network) in isolation. The framework supports black-box and white-box analysis (in the latter case,
e.g., weights or internal calculations of the DNN are available to SYSAI), and can perform compar-
isons.

Figure 7 shows the probability distribution of the actual DNN output cte versus the ground truth
ctegt. Two different deep neural network (DNN) architectures that have been trained for ACT have
been considered in this case. The ideal DNN should have sharp peaks along the diagonal (shown in
red). Whereas DNN 1 has an overall good behavior but a small bias for negative values of cte, DNN 2
behaves better in that area but has substantial deviations for larger positive values. These results
are based upon the DNN only analysis. Incorporated into the ACT system, both DNNs perform
satisfactory, due to robustness of the controller. Here, SYSAI caused the execution of an entire run

38

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

(a) Success rate (in %) for different times of the day.
Threshold for CTE is 40 feet

(b) Camera image from a taxiing run (in simulation) at
8AM

(c) Camera image from a taxiing run (in simulation) at
11AM

(d) Camera image from a taxiing run (in simulation) at
3PM

Figure 6. Operational Requirements Analysis with SYSAI

down the runway with a random initial cte.

Figure 7. Performance analysis of two different DNN architectures

A.2.4 Support for Assurance Considerations

SYSAI can provide evidence to support and address the considerations elaborated in Section 3.1

Generalizability Analysis SYSAI can efficiently explore high-dimensional parameter spaces enabling gen-
eralizability analyses. At an MLC level that includes the characterization of regions with low con-
fidence during generalization, DNN performance analysis, calculation of ROC curves for different
ranges of thresholds, and characterizing the behavior of false alarms/false negatives. Impact analysis
of generalizability requirements on the system behavior explores, as shown in Figure 6, a charac-
terization of (large) variations in performance of an MLC (here, the ACT example) under different

39

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

environmental conditions (here different times of the day). This can be directly attributed to poor
generalization behavior of the trained deep neural network.

Analysis of Robustness SYSAI can perform system-level robustness analysis by analyzing the system per-
formance in the presence of failures or environmental conditions (e.g., light, fog, wind). Figure 5c
indicates sensitive regions, i.e., regions where ACT is not robust with respect to camera failures. SY-
SAI provides several ways of exploring different failure modes and presentation of results as evidence
for robustness or lack of robustness (see Figures 5c and 8b). SYSAI can also perform a robustness
analysis of ML components in a white box fashion. Here, robustness of changes in the image (e.g.,
fog induced diffusion, brightness, or dirt on camera lens) to the output of the DNN is explored using
heat maps (Figure 8a).

Table 6. Methods for generalization improvement during training and post-training, Analyses for in-distribution
versus and out-of-distribution generalization.

Generalizability
Techniques

In-distribution Out of Distribution

Training Augmentations Data Augmentation,
Regularization

Domain adaptation,
Distributionally Robust
Optimization

Post-training analysis
methods

Rademacher Complexity, VC
Dimension, Probably
approximately correct (PAC)
Bayesian

Agreement on the Line, Average
Thresholded Confidence,
Detection of OOD Inputs

Out of Distribution Performance Analysis There are a number of different techniques for the analysis of
out of distribution generalizability as shown Table 6. Data augmentation can be done through the
acquisition of additional (real) data or by generating sufficient data according to the requirements
of the domain and application. Because acquiring real data is a costly and time-consuming process,
the generation of synthetic data is becoming increasingly important. A major tasks, which can be
supported by SYSAI is their rigorous statistical analysis and measurements how the distribution of the
newly generated data align to the required distribution of the real data. Figure 9 shows a comparison
of errors in OOD prediction using different metrics.

Model Development SYSAI can perform analysis over hyper-parameters of learning algorithms and model
parameters. Therefore, SYSAI can provide evidence regarding performance and possible flaws of
learning algorithms and models.

Explainability During its operation, SYSAI produces a statistical surrogate model of the system or the AI
component. These models are usually of a relatively small size and therefore are more amenable to
human analysis and explanation than large unstructured DNNs. SYSAI can also create such surro-
gate models for the entire system (helpful for explaining system behavior) as well as for the AI/ML
component.

40

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

(a) Heat map for robustness of a DNN for autonomous
centerline tracking relative to image contrast (X-axis) and
brightness/exposure (Y-axis). Areas of high robustness are
in dark blue

(b) System-level robustness: Dots denote the endpoint of a
successful (green) or failed (red) taxiing run. The diagonal
line denotes the runway centerline

Figure 8. Robustness analysis with SYSAI

Figure 9. Different metrics for OOD accuracy measurement and prediction

41

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Figure 10. High Level Application of Ogma

A.3 Runtime Monitoring with Ogma and Copilot

Two kinds of tools to introduce runtime monitoring into larger systems are described: those tools that seek
full integration of runtime verification (RV) and runtime assurance (RTA) solutions into larger systems, and
specific RV languages.

Ogma Ogma is a tool a tool to generate monitoring applications from high-level languages. The goal of
Ogma is to simplify the process of generating runtime monitors for safety-critical applications (Figure 10).

Ogma is able to produce not just the implementation of the code that monitors a given set of properties,
but also additional code that facilitates using the monitors in a target platform. By doing so, Ogma makes
it possible to generate monitoring applications that are ready to run, with no changes needed after the
generation, or as properties are updated or new properties are added to the monitoring system.

In the context of assurance of ML for flight software, Ogma could simplify the process of producing
assured flight software, by automating the process of going from high-level property or requirement de-
scriptions into runtime monitors that are ready to fly. More specifically, Ogma can convert ML system
properties or requirements written in several languages, such as Copilot, SMV, different forms of temporal
logic, and the output formulas produced by FRET, and generate runtime monitoring applications that can
be incorporated in some of the most frequent flight software stacks such as NASA’s Core Flight System, F’,
and the robotics framework ROS. Under the hood, Ogma leverages existing runtime monitoring languages
to implement the core code of monitors such as Copilot (described below) and R2U2 (see Appendix A.4).

Ogma eliminates a large source of potential errors in the application generation process, as both writ-
ing the property in a monitoring language and connecting the monitors to the rest of the system happen
automatically.

Copilot Copilot is an open-source, real-time programming language that has been historically used for
runtime monitoring of aircraft and robots. Copilot’s designed is similar to the languages used in digital signal
processing that have been historically used in aerospace. Monitors are translated into MISRA-compliant
C99 code with predictable memory requirements and real-time guarantees. Additional Copilot libraries
extend the core language with higher-level constructs, Boyer-Moore majority voting, and temporal logic and
statistics. Users can write their own Copilot libraries, so the language is fully extensible to accommodate
for other kinds of properties. Specifically for the purposes of monitoring runtime properties of ML systems,
Copilot can be used to write both discrete properties and probabilistic properties. The handlers of potential
violations can access data synthesized by such properties. For example, they may execute some correction
mechanism, but also know the degree of deviation from the norm based on a system property that has been
specified in Copilot or in any of the high level languages supported by Ogma. Apart from generating hard-
realtime code, Copilot also generates a formal proof of correctness of such code that establishes that the
C code that implements the actual monitors follows the denotational semantics of the language. In other
words: it is a formal proof that the C code behaves as it should.

42

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

D
at

a
fr

o
m

 s
y

st
em

pre−
proc

P

Runtime
Monitor

M

S

d
at

a
ex

te
rn

al

component
AI

RTA

Switch

to
 s

y
st

em

Fallback

Assured

C

Figure 11. Typical RTA Architecture, inspired by [59], with an AI component or an MLC (C), signal processing (P),
runtime monitor (M), and RTA switch (S) to enable fallback components. Verified signals are in green, others in red.
Compared to the architecture in [59], this configuration permits the monitor to use unverified signals (in red), e.g.,
signals from C.

A.4 Realizable Responsive Unobtrusive Unit (R2U2)

R2U2 (Realizable Responsive Unobtrusive Unit) is a runtime monitor that combines observers for past and
future time metric logic, an efficient prognostics engine, and Bayesian reasoners. Versions of R2U2 have
been developed to run as FPGA configurations, on parallel co-processors, and as a small, memory-efficient
software component. R2U2 is typically used for system and software health management, detection of cy-
bersecurity attacks, and to monitor autonomous operations on uncrewed aircraft. With respect to monitoring
of ML components, the following capabilities of R2U2 are of particular interest:
Past-time and Future-time Temporal Observers Many properties that need to be checked for an ML/AI

component or a system with such component have temporal aspects. R2U2 is using efficient ring-
buffers to keep memory and computational overhead low. Besides past-time monitors, R2U2 also
provides synchronous future-time observers that, at each point in time, can provide a verdict of true,
false, or maybe.

R2U2 within a Runtime Assurance Architecture R2U2 can be used as the runtime monitor within an
RTA architecture as discussed above. Using temporal logic and properties, R2U2 can monitor a mul-
titude of signals that are processed and discretized using R2U2’s signal processing unit. Probabilistic
properties and properties about (failure) rates can easily be expressed. Thus R2U2 can define a maxi-
mum rate of failure occurrences or a maximum interval for a persistent failure, before switching will
occur, to reduce the number of false alarms.

Monitoring of Formalized Requirements stated in FRET R2U2 can work on requirements as captured
by FRET (Section A.1). This enables a smooth integration of R2U2 monitors in processes where
FRET is used.

R2U2 Property Groups For monitoring systems with MLCs, R2U2 use different classes of (temporal)
properties. Table 7 shows the major classes, and an example for each class, taken from the ACT case
study. Note that in this architecture, both verified and unverified signals are monitored. This allows
R2U2 to analyze important “internal” states and calculations in a white-box fashion.

The R2U2 engine produces a verdict for each property at each discrete point in time. Usual update rates
for R2U2 are 0.1s or 1s. Verdicts can either be Booleans or probabilistic values. With that information, an
RTA switch can be triggered (see Figure 11) or can be stored as a time series for later analysis. Typically,
these data are only available after system deployment.

43

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Table 7. Types of R2U2 properties to be checked. Examples are shown in informal natural language.

Property Class Description and Example

SS System Safety: Properties to ensure safe operation of the system

Example: When the aircraft is near the right border of the runway, the AC
shall not move further to the right (he > 0) for an extended time

SC Component Safety: Safety properties concerning the component

Example: The DNN output values shall be reasonably limited

PS System Performance: Properties concerning performance (e.g., progress of
mission)

Example: The aircraft shall reach the end of the runway within T seconds

PC Component Performance: Properties concerning performance of the ML
component

Example: The DNN outputs should not fluctuate

ES Properties concerning environmental (e.g., weather, visibility) or opera-
tional (e.g., operational hours) conditions

Example: ACT shall only operate between 9AM and 2:30PM local

FS Properties for system regarding failure modes

Example: A camera obstruction (no signal in certain area of image sensor)
shall not show up for an extended time

FC Properties on failures of ML components

Example: If DNN1 is active and a camera obstruction occurs in a sensitive
area, DNN2 shall be activated

Contribution to Verification and Validation

Table 8 gives an overview of the elements of an ML lifecycle where R2U2 and an R2U2-based runtime
assurance architecture (see Figure 11) can be employed. Although the typical use of R2U2 focuses on post-
deployment monitoring and assurance, R2U2 can also be used during traditional model development and
V&V. During model development, R2U2 can be used to monitor the behavior of an MLC during validation
and testing. The capability to access internal component data makes R2U2 a powerful and convenient tool
to quickly and reliably check numerous properties during one run. Its use avoids coding of test conditions
and allows a quick check of requirements formalized using FRET. During traditional V&V, R2U2 can be
used to automatically check numerous properties during a single test run. This can help reduce the number
of test runs and minimize the effort to set up test filters and evaluators.

44

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

Table 8. Applicability of R2U2 and R2U2-based RTA during ML development and certification process

ML Lifecycle Element R2U2 R2U2-RTA Description

Operating Context Definition - - R2U2 is not directly applicable; FRET require-
ments can be translated into R2U2 properties for
later checking

Data Management - - Not applicable

Model Development ✓ - R2U2 can support by monitoring model behav-
ior during model development and validation

Pre-deployment V&V ✓ - R2U2 supports efficient component and system
testing with complicated test conditions

Post-deployment V&V ✓ ✓ Monitoring of system and/or AI/ML compo-
nents during runtime

Table 9. Suitability of R2U2 and R2U2-based RTA for Model Properties

Model Property R2U2 R2U2-RTA Description

Generalizability ✓ ✓ R2U2 can monitor situations with an excessive generaliza-
tion gap, based upon external signals and (unverified) con-
fidence signals produced by an MLC component (if avail-
able). Properties and parameters are to be defined during
static V&V.

Robustness ✓ ✓ R2U2 can perform fault detection and diagnosis for the an
MLC and other system components. Model-based reason-
ing enables R2U2 to determine if a given situation affects
robustness properties of the MLC and then R2U2-RTA can
switch over to more robust components when appropriate.

OOD Performance ✓ ✓ R2U2’s capability to process signals from different system
components. Combined with Bayesian reasoning R2U2
can help to detect and protect against OOD inputs via
R2U2-RTA

45

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

A.5 SafeDNN

The SafeDNN (Safety of Deep Neural Networks) effort explores techniques and tools for design-time ana-
lysis of trained Deep Neural Network (DNN) models and systems that use these models. Research directions
being pursuing in this project include: symbolic execution for DNN analysis, parallel and compositional ap-
proaches to improve formal verification of DNNs, property inference and automated program repair for
DNNs, probabilistic reasoning and compositional verification for DNNs and systems that use DNNs (par-
ticularly for vision tasks). In the following we highlight some of the research advances from SafeDNN and
how they address the three questions above.

A.5.1 Verification and Validation of the Learnt Model

Checking that a set of inputs cannot produce an erroneous output is paramount to using the learnt model
in safety-critical settings. Techniques addressing this include testing and formal verification. Testing may
be insufficient for proving that faulty behaviors do not exist within the continuous DNNs while formal
verification can provide assurance gurantees. Properties to consider include: robustness (to adversarial or
natural perturbations) and safety properties (as in the case of ACAS-Xu).

Robustness It has been observed that state-of-the-art networks used in image classification are vulnerable
to adversarial perturbations: given a correctly-classified input x, it is possible to find a new input x′ that
is very similar to x but is assigned a different label [60]. Typically these perturbations correspond to small
changes imperceptible to the human eye. More recent works have shown that such perturbations can severly
impact the accuracy of not just image classifiers but also regression models as well as those processing other
types of input such as text data. The vulnerability of neural networks to adversarial perturbations is thus
a major safety and security concern, and it is essential to explore systematic methods for evaluating and
improving the robustness of neural networks against such perturbations.

Local Robustness with respect to Lp norms Local robustness of a model indicates consistent behavior
(absence of adversarial perturbations) within local regions surrounding validly classified inputs. SMT
solvers such as Reluplex [61] have been used to formally verify local robustness of a model. Given
an input x, the solver is used to check if there is another point x′ within a close distance δ to x
(∥x − x′∥ < δ) for which the network assigns a different label.The distance between the points in
the input space is typically measured wrt Lp norms, such as Euclidean distance (the L2 norm) or the
Manhattan distance (L1 norm). For points x1 = ⟨x11, . . . , x1n⟩ and x2 = ⟨x21, . . . , x2n⟩ these are defined
as:

∥x1 − x2∥L1 =

n∑
i=1

|x1i − x2i | ; ∥x1 − x2∥L2 =

√√√√ n∑
i=1

(x1i − x2i)
2

The absence of a solution is a proof for local robustness of the model at the given input. Our tools such
as Prophecy [30], and DeepCheck [31] employ SMT-based solvers such as Reluplex and symbolic
execution to provide local robustness guarantees for neural networks. Local robustness can be viewed
as local properties of a model which can act as building blocks to reason about its robustness towards
more complex domain-specific perturbations.

Local Robustness to Natural Perturbations In [32] we introduce DeepCert, a tool-supported method for
verifying the robustness of deep neural network (DNN) image classifiers to contextually relevant per-
turbations such as blur, haze, and changes in image contrast. While the robustness of DNN classifiers
has been the subject of intense research in recent years, the solutions delivered by this research focus
on verifying DNN robustness to small perturbations in the images being classified, with perturbation
magnitude measured using established Lp norms. This is useful for identifying potential adversarial

46

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

attacks on DNN image classifiers, but cannot verify DNN robustness to contextually relevant image
perturbations, which are typically not small when expressed with Lp norms. DeepCert addresses this
under-explored verification problem by supporting:

• the encoding of real-world image perturbations;
• the systematic evaluation of contextually relevant DNN robustness, using both testing and formal

verification;
• the generation of contextually relevant counterexamples; and, through these,
• the selection of DNN image classifiers suitable for the operational context:

– envisaged when a potentially safety-critical system is designed, or
– observed by a deployed system.

The effectiveness of DeepCert is demonstrated on checking the robustness of DNN image classifiers
built for two benchmark datasets (‘German Traffic Sign’ and ‘CIFAR-10’) to multiple contextually
relevant perturbations.

In [62] we consider the related problem of assuring the robustness of deep neural networks against
real-world distribution shifts, such as change in weather conditions in perception tasks. We have
studied real-world perturbations such as variation in snow; also brightness, fog, scale, contrast, and
Gaussian blur.

To do so, we bridge the gap between hand-crafted specifications and realistic deployment settings
by considering a neural-symbolic verification framework in which generative models are trained to
learn perturbations from data and specifications are defined with respect to the output of these learned
models.

Global Robustness Local robustness provides limited guarantees since it is limited to checking robustness
around a few individual points, giving no indication about the overall robustness of the network for
all inputs (termed as global robustness). In principle, one can apply the local check to a set of inputs
that are drawn from some random distribution thought to represent the input space. However, this
would require coming up with minimally acceptable distance δ values for all these checks, which can
vary greatly across different input points. Furthermore, the check will likely fail (and produce invalid
adversarial examples) for the input points that are close to the legitimate boundaries between different
labels.

In DeepSafe [33], we decompose global robustness requirements into a set of local robustness checks
for regions in the input space. Each region encompassing groups of valid inputs that are similar to
each other and share the same label. We then utilize verification techniques (such as Marabou) to
confirm that these regions are safe or to provide counter-examples showing that they are not safe.

Safety Properties Safety properties refer to conditions for the safe operation of the system, typically
provided by domain experts. Effectively these can be encoded in requirements allocated to an MLC against
which implementation correctness needs to be shown.

Consider the ACAS-Xu (Airborne Collision Avoidance System for Unmanned Aircraft) system, which
consists of a set of 45 DNNs, taking in sensory inputs and predicting horizontal advisories. A set of ten
input-output properties of the networks have been specified by domain experts [63], catering to safety con-
siderations such as avoiding unnecessary advisories, uniformity and consistency of alerts, and so on. An
example is shown,

(range > 55947.691) ∧ (−3.14 ≤ θ ≤ 3.14) ∧ (−3.14 ≤ ψ ≤ 3.14)∧
(1145 ≤ vown ≤ 12000) ∧ (0 ≤ vint ≤ 60) ⇒ Clear of Conflict (COC) Advisory

47

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

In neural networks processing raw data such as images or sound or text, it is a challenge to specify such
input-output properties of the model, since it is not possible to express the pre-condition on the inputs in
terms of raw data such as pixels. In such cases, the property is typically expressed only in terms of the model
outputs such as in the case of TaxiNet, a system for autonomous center line tracking using neural networks.
The regression model takes in images of the runway as inputs and generates two outputs; cross-track error
(y0), and heading error (y1). The expert-provided safety properties specify conditions for the safe operation
of the plane in terms of runway dimensions: |y0| ≤ 10.0m, |y1| ≤ 90 degrees.

An image classification model on the MNIST dataset could have a requirement that the classification
label 9 (the functionality of identifying an image of digit 9) is accurate and is generalizable (applicable to
all images of digit 9). In order to verify this requirement, the post-condition or output property to check
is that the classifier model assigns the highest score to class 9 versus the remaining classes. However, the
pre-condition cannot be expressed in terms of input pixels. It is not possible to define mathematically over
pixel values what “all images of digit 9” means. It is therefore a challenge to corroborate the generalizability
of the functionality of a model beyond the inputs in the training and test data.

Considering this example, Prophecy [30] looks into the inner layers of the model to capture neuron-
patterns that are commonly satisfied by many images of digit 9. Each neuron-pattern potentially captures
high-level features (such as “curve”, “loop” so on) which should be present in the digit in the image to
classify it as a 9. The rules have a simple mathematical form and can be checked using existing solvers, if
proved they become properties of the network.

In the ACAS-Xu system, Prophecy was also used to simplify proofs [30] for the expert provided prop-
erties which are very expensive when checked on the full network. Our work used the mined neuron-pattern
based rules to decompose the proof into parts that could be solved separately and in parallel. Prophecy was
also used to aid in the verification of th safety properties on the regression model of the TaxiNet system [64].
The Marabou solver was employed to check constraints of the form pre ⇒ post, where the post was the
safety property, and pre was neuron-pattern (conditions on the neurons of the network).

These neuron patterns were mined by Prophecy and characterized sequences of valid images where the
model outputs satisfied the safety property. The proofs provide guarantees of safe behavior and also generate
counter-examples that represent cases where the aircraft could potentially steer off the runway.

Probabilistic Analysis Formal verification of neural networks using tools like Reluplex [63] or Marabou
is challenging due to network sizes that are gigantic.

Further, properties often do not hold due to the approximate nature of neural networks (with counterex-
amples showing noise). Statistical techniques are often used to check properties of neural networks, such as
robustness to noise and inaccurate inputs or the fairness of their decisions. While scalable, statistical meth-
ods may underestimate the impact of low probability inputs that lead to undesired behavior of the network.

In [65], we investigate the use of symbolic execution and constraint solution space quantification to pre-
cisely quantify probabilistic properties in neural networks. We collect symbolic constraints corresponding
to the network’s response to concrete inputs, while efficiently rejecting inputs whose responses have been
seen before. We further propose a quantification procedure for the collected constraints, producing tight,
sound interval bounds on the estimated probabilities. The proposed approach is an anytime algorithm, in-
creasing in precision with more paths explored. We implemented our approach in the SpaceScanner tool,
and demonstrate its potential in analyzing fairness, robustness, and sensitivity properties of neural networks.
This tool has also been employed to provide quantified estimates of the local robustness of the ACAS-Xu
model. This highlighted exactly input points where the model was particularly vulnerable to adversaries and
specifically to which target labels. A related tool, QuantifyML [40], applies model counting to assess the
learnability, safety, and robustness of machine learning models.

Testing Formal verification is often infeasible in real-sized DNN models, therefore a statistical validation
of models via testing is often the most practical method for validation. However, it is essential to ensure

48

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

that the tests cover all the possible behaviors of the model, including corner cases. Coverage metrics can be
used to measure the adequacy of testing. Code coverage metrics have been typically used to measure the
adequacy of testing of traditional software programs. A number of coverage metrics have been proposed for
DNN testing as well.

In [66], we focussed on structural coverage criteria for DNNs, due to their popularity, wide use, and
similarity to established metrics for general-purpose software. There are also other, non-structural proposals
for measuring the adequacy of testing DNNs, e.g., safety coverage [67], and surprise adequacy [68]. We
proposed a tool which can measure the coverage of structural entities of a neural network by the tests in a
give test-suite.

Neuron Coverage (NC) NC can be seen as a statement coverage variant for DNNs. A neuron nl,i is said to
be covered, if its neuron activation value (al,i) is larger than 0 (or some specified threshold) for at least
one test in the suite. Thus, the set of test conditions to be met for NC can be formulated as follows,
where L is the number of layers.

{al,i > 0|1 < l < L}

Neuron Boundary Coverage (NBC) NBC extends NC by considering the neuron activations at the maxi-
mum and minimum boundary cases. Assuming highl,i and lowl,i are respectively the estimated upper
and lower bounds on the neuron activation value al,i, we can formulate the set of test conditions for
NBC as follows.

{al,i > highl,i, al,i < lowl,i|1 < l < L}

The estimation of the bounds is typically done via profiling with the training dataset. Intuitively, for
new test inputs, the output of the neurons may fall outside the interval [lowl,i, highl,i] prescribed by
the training set, indicating testing of new network behaviour.

Strong Neuron Activation Coverage (SNAC) SNAC focuses on test conditions on corner cases with re-
spect to the upper boundary value.

{al,i > highl,i|1 < l < L}

K-Multisection Neuron Coverage (KMNC) KMNC divides a neuron’s activation range between highl,i
and lowl,i into K equivalent sections, each denoted by rangel,i,k, and test conditions in KMNC are
defined as the coverage of these activation sections.

{al,i ∈ rangel,i,k|1 < l < L, 1 ≤ k ≤ K}

Top-K Neuron Coverage (TKNC) Given a test input x, a neuron is TKNC covered if its neuron activation
value is one of the most active K neurons at its layer, denoted by al,i ∈ topK(l, x). Here topK(l, x)
denotes the neurons that have the largestK activation values at layer l on input x. The rationale for this
criterion is that top active neurons (at different layers) may be good indicators for major functionality
in the network. The test conditions are as follows.

{al,i ∈ topK(l, x)|1 < l < L}

Modified Condition/Decision Coverage (MC/DC) Different from the coverage criteria above, MC/DC
takes into account the relation between neuron activations at two adjacent layers, such that its test
conditions require that any neuron activation at layer l+1 (decision) must be independently impacted
by each neuron at layer l (condition).

49

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

{∀i, j, h, change(al,i) ∧ change(al+1,j) ∧ ¬change(al,h)|1 < l < L− 1}

A Sign (S) change function and a Value (V) change function are defined in [69] for depicting how a
neuron activation changes when the input changes from a test to another. As a result, there is a family
of four variants of MC/DC for DNNs, including SS coverage (SS), SV coverage (SV), VS coverage
(VS) and VV coverage (VV).

The structure and implementation of DNN models is very different from traditional software, therefore
it is unclear if covering different structural entities of a DNN, translates to adequate testing of different
functionalities, coverage of important input features, corner cases, and also misbehavior.

Furthermore, the automated generation of the ground truth for test inputs is an open, less studied prob-
lem, as current techniques use manual labelling, which is very costly, or metamorphic testing, which limits
the functionality that can be effectively tested.

A.5.2 Verification in Deployment and Integration

System-level, Closed-loop Analysis We have also developed techniques for requirements-based verifica-
tion of the learnt model when integrated into the containing system. Simulations and in-field testing are
typically used but they are very expensive and provide no formal guarantees. Formal verification is desir-
able but very challenging due to the complexity of the learnt models (DNNs with millions of neurons), the
sensors (e.g., cameras capturing images), and the environment conditions.

In [36] we present a case study applying formal probabilistic analysis techniques to an experimental
autonomous system that guides airplanes on taxiways using a perception DNN. We replaced the camera
and the network with a compact probabilistic abstraction built from the confusion matrices computed for
the DNN on a representative image data set. The resulting system can then be modeled and analyzed using
standard verification techniques (we used PRISM [37] in our case study). The probabilities in the abstraction
are estimated based on empirical data, so they are subject to error. We explore the use of confidence intervals
in addition to point estimates for these probabilities and thereby strengthen the soundness of the analysis.

While the above technique produces probabilistic guarantees for system-level properties expressed in
pCTL, in [70] we present an assume-guarantee style compositional approach for the formal verification
of system-level properties that provides strong, i.e., non-probabilistic, guarantees at the system level. The
analysis employs a form of abductive reasoning and is performed in the absence of the DNN components; it
automatically synthesizes assumptions on the DNN behavior that guarantee the satisfaction of the required
safety properties.

The synthesized assumptions are the weakest in the sense that they characterize the output sequences
of all the possible DNNs that, plugged into the autonomous system, guarantee the required properties. The
assumptions can be leveraged as run-time monitors over a deployed DNN to guarantee the safety of the
overall system; they can also be mined to extract local specifications for use during training and testing of
DNNs. The approach is illustrated on a case study taken from the autonomous airplanes domain that uses a
complex DNN for perception.

Runtime Monitoring In [71], we proposed a set of runtime mitigation techniques, embodied by the tool
AntidoteRT, which employs rules in terms of neuron patterns to detect and correct network behavior on
poisoned inputs. We demonstrate that our techniques outperform existing defenses such as NeuralCleanse
and STRIP on popular benchmarks such as MNIST, CIFAR-10, and GTSRB against the popular BadNets
attack and the more complex DFST attack. The techniques presented in [36] and [70] analyze the use of
runtime guards to ensure safe operation for a closed-loop AI system with DNN perception component.

50

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

In [42], we deployed feature-rules as runtime guards to filter inputs and showed that the model accuracy
computed for inputs with “shadow present” and “dark skid”, respectively, is poor, whereas it is high for
inputs with “centerline”. The rules for the centerline feature when deployed as a run-time monitor to either
pass inputs satisfying the rules for “present” or reject those that satisfy the rules for “absent” ensures that
the model operates in the safe zone as defined by the ODD.

A.5.3 Explainability

In [30] and [64], we used techniques including gradient-based attribution to map rules (for correct/incorrect
behavior) in terms of neuron-patterns at internal layers to input images. Example: we showed that when
the TaxiNet model is able to correctly identify the nose of the plane and the center-line of the runway, it
estimates the distance between them correctly.

In [42], we performed a “feature-guided” analysis of the TaxiNet model for autonomous center-line
tracking in airplane runways, to help users understand and debug model behavior. We explain correct and
incorrect behavior in terms of combinations of features such as:

(centerline present) ∧ (shadow absent) ∧ (on position) ⇒ correct

¬(centerline present) ∧ (heading away) ∧ (position right) ⇒ ¬correct

51

Recommendations on Evidence and Process for Certification of Learning-enabled Components in Aerospace Systems

B Acronyms

ACT Autonomous Centerline Tracking

AST Adaptive Stress Testing

ANN Artificial Neural Network

CBMC C Bounded Model Checker

CM Configuration Management

CNF Conjunctive Normal Form

CTE Cross Track Error

DNN Deep Neural Network

FAA Federal Aviation Administration

FHA Functional Hazard Assessment

HE Heading Error

IID Independent and Identically Distributed

MC/DC Modified Condition/Decision Coverage

ML Machine Learning

MLC Machine Learnt Component

MLM Machine Learnt Model

MSE Mean Squared Error

NN Neural Network

ODD Operational Design Domain

OOD Out of Distribution

PSSA Preliminary System Safety Assessment

QA Quality Assurance

RE Requirements Engineering

RTA Runtime Assurance

RV Runtime Verification

SMS Safety Management System

SMT Satisfiability Modulo Theory

SuT System Under Test

V&V Verification and Validation

52

	Introduction
	Purpose and Scope
	Outline

	Background
	Terminology and Concepts
	General Elements of a Machine Learning Lifecycle
	Machine Learning Lifecycle Interactions

	Suggestions and Recommendations
	Assurance Considerations
	Evidence
	Lifecycle Aspects

	Concluding Remarks
	Methods and Tools Supporting Assurance of Machine Learning
	Formal Requirements Elicitation Tool (FRET)
	System Analysis using Statistical AI (SYSAI)
	Runtime Monitoring with Ogma and Copilot
	Realizable Responsive Unobtrusive Unit (R2U2)
	SafeDNN

	Acronyms

