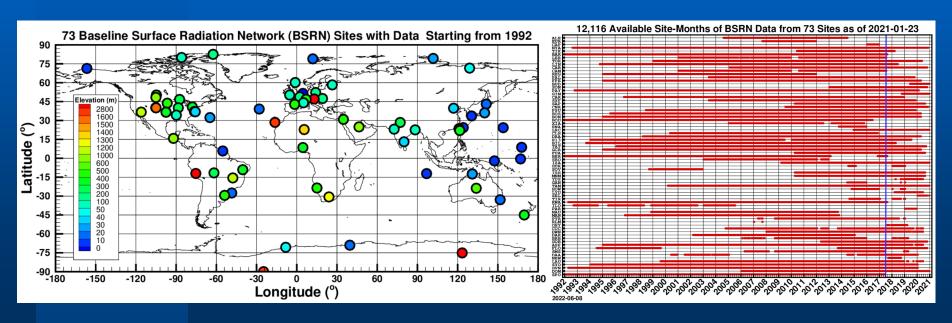
The Use of the BSRN Data as A Benchmark for the POWER Hourly DHI and DNI and in Validating Derived Hourly GTI

Taiping Zhang¹, Paul W. Stackhouse, Jr.², Falguni Patadia, Jr.², Bradley Macpherson³, J. Colleen Mikovitz¹

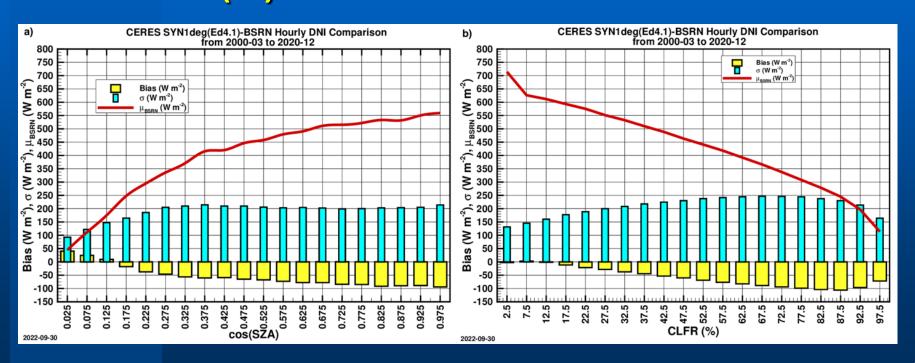
1. AMA / NASA Langley Research Center
Hampton, Virginia, USA
2. NASA Langley Research Center
Hampton, Virginia, USA
3. Booz Allen Hamilton/NASA Langley Research
Center, Hampton, Virginia

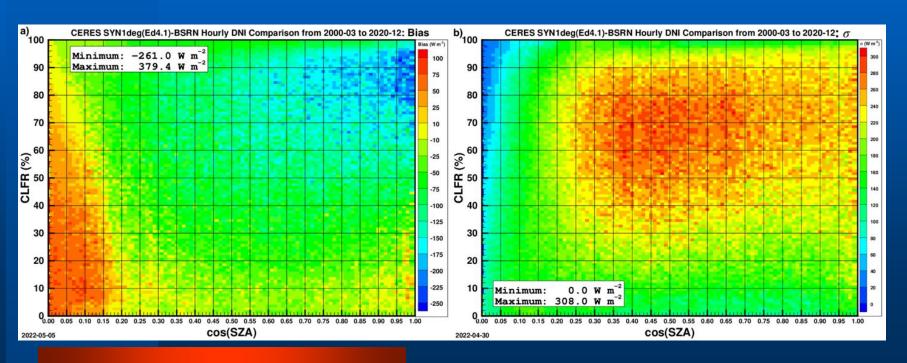


Sthe 18th BSRN Scientific Review and Workshop 01-05 July, 2024 Minato City, Tokyo, Japan

Outline of the Presentation ...

- The CERES SYN1deg(Ed4.1) hourly, GHI, DNI, DHI and the BSRN data
- Bias correction of the hourly DNI and DHI
- Derivation of hourly GTI and GTrl
- Comparison of DNI, DHI, GTI and GTrI with the BSRN
- Calculation of daily and monthly means
- Comparison and evaluation of two monthly-meanbased models
- Summary and conclusions

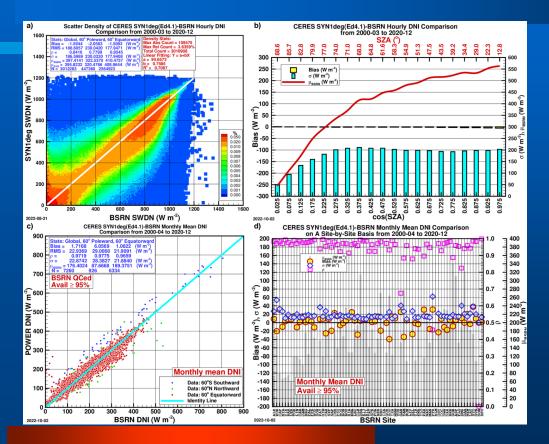

The 73 BSRN Sites and 12,116 Available Site-Months as of 2021-01-23


The CERES SYN1deg (Ed4.1) Hourly GHI, DHI and DNI in Comparison with the BSRN Data

All-Sky Hourly	Bias	RMS	ρ	σ	μ _{DATA}	N			
Original CERES SYN1deg(Ed4.1) and Derived DNI									
GHI	-2.90	83.46	0.9566	83.41	341.49	3,347,216			
DHI	30.54	85.83	0.8314	80.00	168.04	3,452,616			
DirHI	-37.07	122.25	0.8882	116.49	192.59	3,023,551			
DNI, or DirHI/cos(Z)	-54.29	203.22	0.8233	195.83	343.24	3,010,908			
DirIndex Model Derived DNI from CERES SYN1deg(Ed4.1) Hourly GHI									
DNI, from DirIndex	8.54	228.21	0.7580	228.65	444.91	2,195,000			

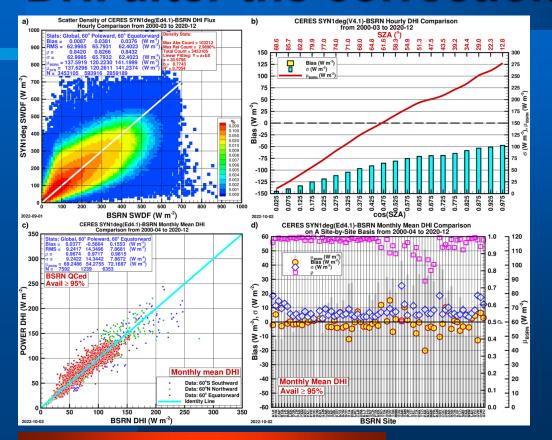
The CERES SYN1deg (Ed4.1) Hourly DNI [DirHI/cos(SZA)] bias as functions of cos(SZA) and CLFR (%)

The CERES SYN1deg (Ed4.1) Hourly DNI [DirHI/cos(SZA)] bias in the cos(SZA)-CLFR phase space



The Bias Correction

The Earth is first divided into 5 latitudinal zones whose latitudinal ranges are, respectively, [-90°, -60°), [-60°, -20°), [-20°, 20°), [20°, 60°) and [60°, 90°]; in each zone, the bias is calculated as percentage of the mean CERES SYN1deg(Ed4.1) DNI in the phase space of cos(SZA) and CLFR. The relative bias, R_{bias} , forms a 3D lookup table. The R_{bias} for each individual hourly DNI is first determined according to its latitudinal zone, cos(SZA) and CLFR, and the correction is done simply by multiplying the DNI by the factor $(1-R_{bias})$.

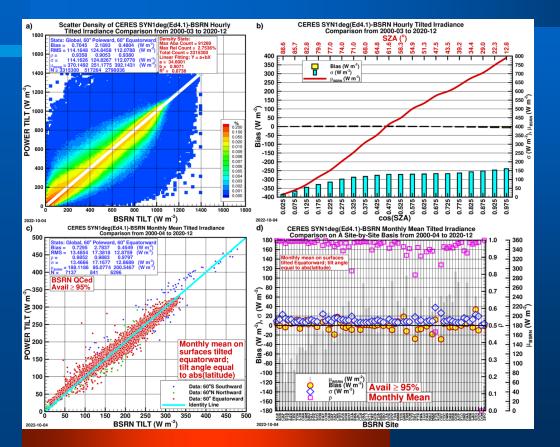

The same method is applied to the correction of the hourly DHI.

DNI after the correction

- a) Hourly mean scatter plot;
- b) Bias and σ variation with cos(SZA);
- c) Monthly mean scatter plot;
- d) Monthly mean on a site-by-site basis.

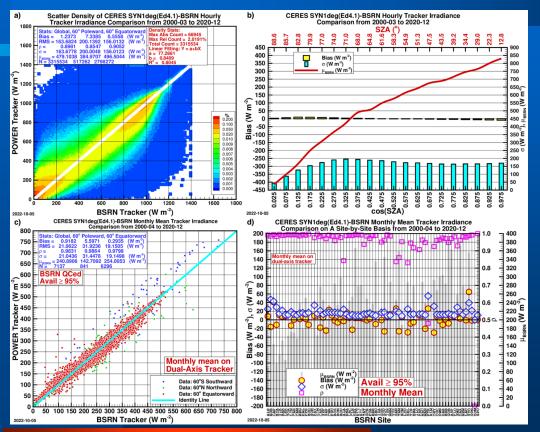
DHI after the correction

- a) Hourly mean scatter plot;
- b) Bias and σ variation with cos(SZA);
- c) Monthly mean scatter plot;
- d) Monthly mean on a site-by-site basis.


DNI Comparison Statistics after the Correction

Time Scale	Bias	RMS	ρ	σ	μ _{DATA}	N			
DNI (Direct Normal Irradiance)									
Hourly	-1.59	186.60	0.8416	186.59	395.82	3,012,283			
Daily	1.84	56.56	0.9290	56.53	179.99	273,873			
Monthly	1.71	22.93	0.9719	22.87	178.11	7,260			

DHI Comparison Statistics after the Correction

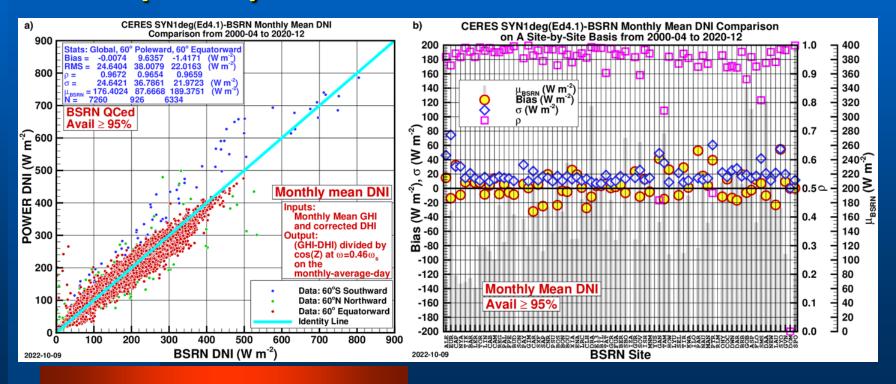

Time Scale	Bias	RMS	ρ	σ	μ _{DATA}	N			
DHI (Diffuse Horizontal Irradiance)									
Hourly	0.01	62.99	0.8420	62.99	137.62	3,453,105			
Daily	-0.07	19.49	0.9070	19.49	70.58	277,630			
Monthly	0.03	9.24	0.9674	9.24	69.28	7,592			

GTI after the correction

- a) Hourly mean scatter plot;
- b) Bias and σ variation with cos(SZA);
- c) Monthly mean scatter plot;
- d) Monthly mean on a site-by-site basis.

GTrl after the correction

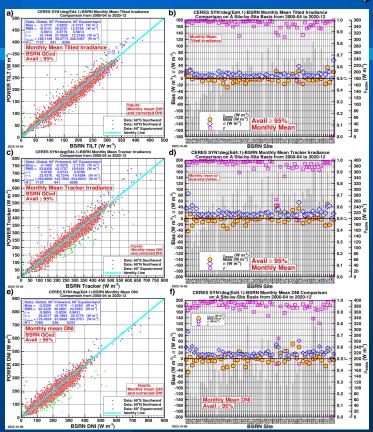
- a) Hourly mean scatter plot;
- b) Bias and σ variation with cos(SZA);
- c) Monthly mean scatter plot;
- d) Monthly mean on a site-by-site basis.


GTI Comparison Statistics after the Correction

Time Scale	Bias	RMS	ρ	σ	μ _{DATA}	N			
Tilted Irradiance on Equatorward Tilted Surfaces [tilt angle = abs(latitude)]									
Hourly	0.70	114.16	0.9358	114.16	370.89	3,315,300			
Daily	0.63	32.78	0.9743	32.78	194.17	257,719			
Monthly	0.72	13.48	0.9852	13.46	188.84	7,137			

GTrl Comparison Statistics after the Correction

Time Scale	Bias	RMS	ρ	σ	μ _{DATA}	N		
Total Irradiance on a Dual-Axis Tracking Panel (Tracker)								
Hourly	1.23	163.68	0.8981	163.67	480.71	3,315,543		
Daily	0.91	51.37	0.9457	51.36	250.73	257,719		
Monthly	0.91	21.06	0.9831	21.04	241.80	7137		

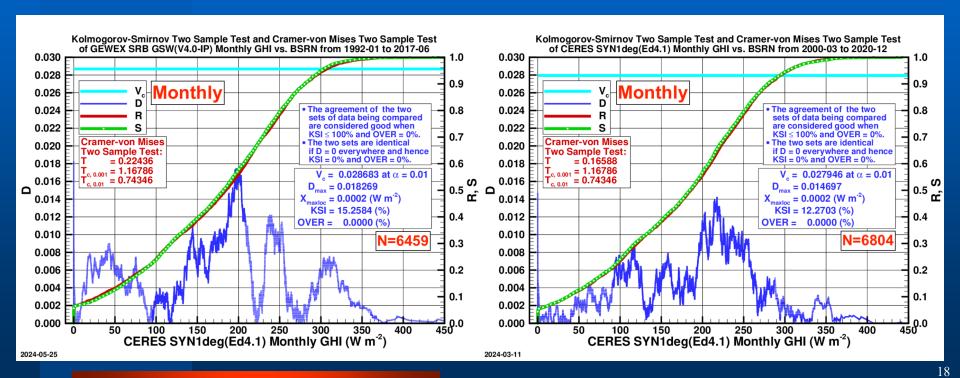

Monthly mean DNI from the POWER SSE (V6.0) Method

The POWER SSE (V6.0) Method Case 4: Whitlock Method II

Case No.	Parameter	Bias	RMS	ρ	σ	μ _{DATA}	N
1	Monthly DHI	-7.11	15.04	0.9328	13.25	62.13	7,592
2	Monthly DNI	24.50	46.20	0.9311	39.17	200.90	7,260
3	Monthly DNI	11.10	28.13	0.9651	25.85	187.50	7,260
4	Monthly DNI	-0.00	24.64	0.9672	24.64	176.39	7,260
5	Monthly DNI	30.61	41.56	0.9669	28.12	207.01	7,260

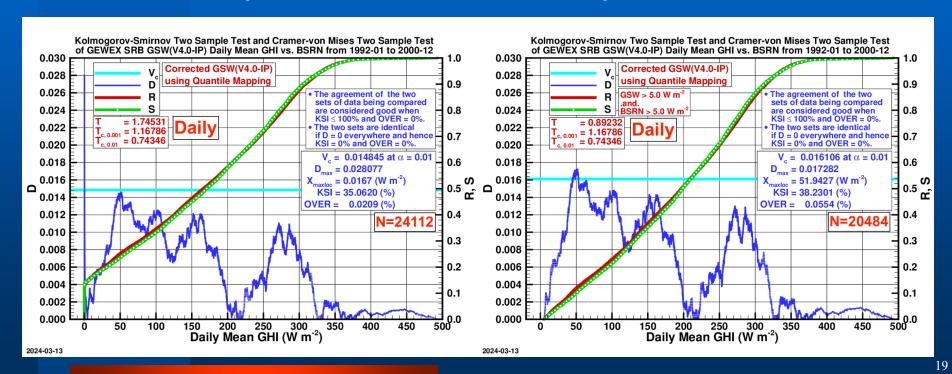
The LJCR Method, as used by RETScreen

a) and b): GTI

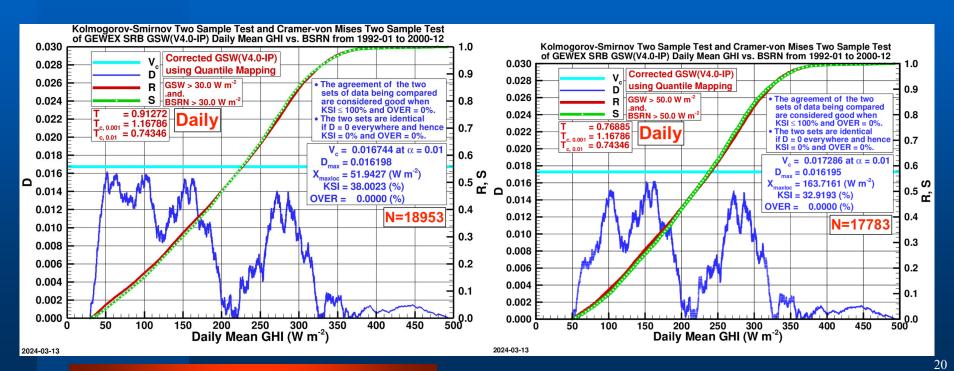

c) and d): GTrl

e) and f): DNI

The LJCR Method Results Comparison Statistics


	Bias	RMS	ρ	σ	μ _{DATA}	N
Monthly Mean	-2.27	15.31	0.9813	15.14	185.84	7,137
Tilted (GTI)						
Monthly Mean	-3.14	23.64	0.9789	23.43	237.74	7,137
Tracker (GTrl)						
Monthly Mean	-2.03	25.33	0.9655	25.25	174.36	7,260
DNI						

Kolmogorov-Smirnov Two Sample Test and Cramer-von Mises Two Sample Test of GEWEX SRB GSW(V4.0-IP) and CERES SYN1deg(Ed4.1) Monthly Mean GHI


Kolmogorov-Smirnov Two Sample Test and Cramer-von Mises Two Sample Test of *Daily* Mean GEWEX SRB GSW(V4.0-IP) GHI Adjusted According to CERES SYN1deg(Ed4.1) Data Using Quantile Mappting:

Case 1.) GHI > 0 W m⁻²; Case 2.) GHI > 5 W m⁻²;

Kolmogorov-Smirnov Two Sample Test and Cramer-von Mises Two Sample Test of Daily Mean GEWEX SRB GSW(V4.0-IP) GHI Adjusted According to CERES SYN1deg(Ed4.1) Data Using Quantile Mappting:

Case 3.) GHI > 30 W m⁻²; Case 4.) GHI > 50 W m⁻²;

Summary and Conclusions (1/3)

- The bias correction of the CERES SYN1deg(Ed4.1) hourly DNI produces a dataset of DNI that is less biased against the BSRN and has a smaller uncertainty than that of the DirIndex model;
- The isotropic model applied to the hourly DNI and DHI produces GTIs that agree well with the BSRN data whose hourly, daily and monthly means are from the near-instantaneous tilted irradiances from the same model;
- In the modified Whitlock method, the bias of the monthly DNI is reduced to practically zero; the bias/ σ (-1.4/21.9) for sites 60° equatorward, where 85% of the BSRN sites are located, is nearly as good as those of the hourly-based results (1.0/21.8); the bias/ σ at sites 60° poleward are somewhat larger, though;

Summary and Conclusions (2/3)

- The monthly mean DNI from the RETScreen method is by and large the same as the modified Whitlock method, though the latter is slightly better;
- The monthly mean GTI and tracker irradiance from the RETScreen method are nearly as good as those of the hourly-based method on the whole; only at sites 60° poleward, the results show noticeably larger standard deviations. Reformulation for higher latitudes may improve its performance in polar regions.
- The POWER SSE (V6.0) method and the LJCR method proved themselves as well as the current dataset.

Summary and Conclusions (3/3)

- The GEWEX SRB GSW(V4.0-IP) and CERES SYN1deg(Ed4.1) *monthly* mean GHI can pass both the K-S two-sample test and Cramer von-Mises two-sample test at α =0.01 significance level with all comparable data points included;
- Their $\frac{daily}{daily}$ mean counterparts fail the tests even at α =0.001 with all comparable data points included; however ...
- The GEWEX SRB GSW(V4.0-IP) daily mean GHI adjusted according to CERES SYN1deg(Ed4.1) using quantile mapping for the years 1992-2000 can pass the tests when the lower limit of GHI is set to 30 W m⁻².

ありがとうございます!

Thank you!

Information about the NASA POWER Project: https://power.larc.nasa.gov

The 18th BSRN Scientific Review and Workshop 01-05 July, 2024 Minato City, Tokyo, Japan

Extras