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ABSTRACT
Clouds play a key role in regulating the hydrological cycle and Earth's radiative budget. However, global climate models (GCMs) with horizontal gridspacings of ~100 km cannot represent the subgrid-scale cloud dynamics on the order of 
kilometers, which can introduce uncertainties in cloud radiative feedback on a global scale. In our study, we will use a Deep Machine Learning (DML) method for physical parameterizations to duplicate the subgrid-scale cloud physical 
processes. We investigate the volumetric cloud fraction (VCF), which is the frequency of occurrence on a grid volume accumulated in the horizontal and vertical directions obtained from the NASA CALIPSO-CloudSat-CERES-MODIS (CCCM) 
satellite data and 3-D MERRA-2 meteorological data (i.e., Wind, Relative Humidity, Temperature), and we are able to recover their complicated relationships with the Sequence-to-Sequence DML method on a day-to-day-based analysis. Our 
preliminary results show that the DML model can learn the cloud physical processes and represent well their relationships based on the statistical, horizontal and vertical distribution results. 

Parameterization of Vertical Cloud Distribution from C3M and MERRA Data Using ML Method

Figure 1. Schematic of LSTM 
Sequence-to-Sequence Model.

Figure 2. Distribution of Inputs: 3-D winds, temperature and relative humidity.

Conclusion: Sequence-to-Sequence ML model can learn the cloud dynamics and correctly represent cloud cover at different altitude, longitude, and latitude in different large-scale dynamic conditions. We also tried feedforward neural network, 

from which model, the training could not succeed. Selecting a correct ML model that can learn and memorize the beneath physical processes is the first key for ML studies. From this study, we can see relative humidity (RH) is the most important meteorological 
parameter. Our future work includes adding small or larger neighboring meteorological profiles to see how advection impacts the parameterization.  We will also use the trained relationships to parameterize clouds in global climate model and see how it can 
improve the global climate model simulation.

Figure 4. Geographical distributions of cloud cover of low (top row), middle (middle row) and high (bottom row) clouds calculated 
from CCCM, ML Predictions and MERRA-2 simulations.
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Table 1. List of ML training inputs and outputs.
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Table 2. List of data sample for training, validation and testing.
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Figure 6. One-month of statistical cloud 
cover profiles from CCCM (black), ML 
Predictions (red) and MERRA simulations 
(blue).

Figure 5. Example of Vertical Cloud Mask from CCCM observation (top), ML 
prediction (middle) and MERRA simulations (bottom) on May 3rd, 2008. 

Figure 7. Seasonal variations of cloud cover against latitude (top row) and altitude (bottom row) from CCCM, ML Predictions and 
MERRA simulations.

Figure 8. Principal component analysis of cloud cover for CCCM, ML Predictions 
and MERRA simulations. 

6-D Loss Functions:
1. Min mean (Pred minus Ground Truth)
2. Min standard deviation  (Pred minus Ground Truth)
3. Max correlation between (pred and Ground Truth)
4. Min of (Pred max – Ground Truth max)
5. Min of (Pred min – Ground Truth min)
6. Weighted mean (Pred minus Ground Truth)

q Merge into climate Foundation Model 
or GCM to  estimate the improvement 
of radiative forcing due to the 
improvement of CF

q Merge into satellite Vision Foundation 
model or Radiative Transfer simulations 
to reconstruct lidar signal

q Continue to parameterize the vertical 
liquid and  ice cloud fraction, drizzle 
fraction as well as cloud microphysics  
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Figure 3. Vertical distributions of cloud cover against latitude (left raw) and longitude (right raw) from CCCM, 
ML Predictions and MERRA simulations. 
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