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Harris, C. E. et al., NASA TM 211664, 2002. 3

Carbon Nanotubes
Image credits:  NASA



Motivation

Mass Ratio* Cost per pound*

Low Earth Orbit 20 $4,000

Earth to Moon 200 $40,000

To Moon, Return to Earth 500 $100,000

Earth to Mars 500 $100,000

To Mars, Return to Earth 5000 $1,000,000

*Gordon, G. D., AIAA SPACE 2007, paper 6278.

Summary of the Problem

Ø Cost increases in proportion to the mass ratio.
Ø Mass ratio increases linearly with the dry mass and exponentially with ∆u.
Ø Costs for exploration escalate beyond low Earth orbit. 
Ø Reducing structural mass reduces mission cost at constant payload or increases mission 

capability at constant cost. 
4



Outcomes
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Lessons Learned
Ø Analogous to very short chopped 

fiber composites
Ø Limited by material supply and 

quality 
Ø Very low volume fraction (< 5%)
Ø Limited improvement over matrix 

mechanical properties
Ø Payoffs noted in 

electrical/multifunctional 
properties

Ø Output:  Papers, presentations, 
patents

Ø Structural applications envisioned 
did not materialize

Lightly Doped CNT Composites

Representative data point from Siochi, E. J. et al., MRS Bulletin, 40, 829-835, 2015.



Setting Goals Using Systems Analysis

Ø A 2x to 3x improvement in specific mechanical properties will permit substantial mass reduction in 
structural and non-structural components.
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McMillan, M., White Paper, March, 2013. 6



State-of-the-Art Lightweight Structural Material

7

Image Credit: NASA

6 ft x 10 ft PETI-5/IM7 Skin Stringer Panel from High-Speed Research (HSR) Program



Nano to Macro Challenge
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Project Objective (2012)

CNT Sheet (2012)

CNT Sheet Composite (2012)

CNT Sheet Composite (2013)

CNT Yarn (2012)

CNT Yarn Composite (2012)

CNT Yarn Composite (2014)
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Lightly Doped CNT Composites

Aluminum

CT* Image of Fully Optimized Carbon Fiber Reinforced Polymer Composite

CT* Image of Unoptimized CNT Composite

Outcomes for Early CNT Fibers

Measurable Advancements
Ø Improvement in mechanical 

properties
Ø Systems level guided, goal 

focused research
Ø Project objective provided basis 

for objective decisions
Ø Increase in Manufacturing Readiness 

Level
Ø Volume – material available in 

spool lengths of hundreds of 
meters

Ø Consistency – materials met A-
basis allowable of at least 20 N 
breaking force

9
Image Credit: NASA
* Computerized Tomography



Experimental Validation of Simulation Results

10Jensen, B. D., et al., Carbon, 156, 538-548, 2020.

(a)

5 nm
(c)

10 nm

5 nm(d)

(b)

(a)

5 nm
(c)

10 nm

5 nm(d)

(b)

Axial Response

Transverse Response

*

* Spark Plasma Sintering
Image Credits: NASA



Transverse Mechanical Performance
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6 μm

Resin rich

Resin rich
Resin rich

Resin rich

Void

Failure Mode of Unidirectional 
CNT Yarn Composite

Stretch & 
Densify

Transverse 
Tensile Test

Image Credits: NASA

CNT Composite

CNT Composite 
Specimens

Applied Strain

Resin
Randomly 

Aligned CNT 
Roving

Aligned & 
Densified CNT 

Yarn

Kim, J-W., et al., Composites Part A, 167, 107449, 2023.
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Challenge:  Poor CNT Yarn/Resin Interface

Kim, J-W., et al., Carbon, 173, 857-869, 2021.

Representative Failure 
Surfaces
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Pristine CNT yarns

Pre-infiltrated 
Polymer/CNT 
composite fibers

Resin

Improving Resin Infiltration

Randomly 
Aligned CNT

CNT Composite 
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Single Fiber 
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Image Credits: NASA
Kim, J-W., et al., Carbon, 173, 857-869, 2021.



Resin

Multiscale Hierarchical CNT Composite Fabrication

Randomly 
Aligned CNT

CNT Composite 
Fiber
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CNT Composite 
Fiber/Brick and Mortar 
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Transverse Tensile Test Results

Image Credits: NASA

Kim, J-W., et al., Composites Part A, 167, 107449, 2023.
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CNT Composite DCB Samples

Fracture Toughness Data

CNT Composite Fracture Toughness

Based on ASTM D5528
Double Cantilever Beam (DCB) Test
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Kim, J-W., et al., Composites Part A, 167, 107449, 2023.

Image used with permission from US-COMP STRI



GCD FY20 Annual Review

SBIR/STTR
• Nanocomp
• Cornerstone Research Group
• Minnesota Wire & Cable
• Applied Composites

NASA 
Centers
• LaRC
• MSFC

Public/Private 
Partnerships

• Northrup Grumman
• University of Dayton 

Research Institute/State 
of Ohio

OGA Leveraging
• AFOSR
• AFRL – ManTech 

Program
• DoD
• DoE - ARPA-E
• DoE – Idaho National 

Lab
• DoE – Oak Ridge 

National Lab

• Michigan Tech
• U of Utah
• U of Colorado
• Johns Hopkins 
• U of Minnesota
• Nanocomp

• Florida State U
• MIT
• VCU
• Ga Tech
• Penn State U
• FL A&M U
• Solvay

STRISmall 
Business

• Textum, Inc.

Incentivize multidisciplinary partnerships to accelerate maturation of an emerging material ecosystem.
16

Systems Defined Goal Provides Common Objective

16Image Credit: NASA



Use Driven Technology Maturation
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Commercial 
CNT Sheets

Early CNT 
Powders Technology Maturation

Image Credit: NASA

Used with permission from 
Nanocomp



Summary

Ø Advances in structural CNT development
Ø CNT material is available in formats and quantities that permit their evaluation as 

structural materials.
Ø CNT composite mechanical properties presented included axial tensile, transverse 

tensile, and fracture toughness.
Ø CNT microstructure is different from carbon fiber.

Ø Hierarchical structures in CNTs present resin infiltration challenges that require a 
different approach for composite fabrication.

Ø CNT/matrix interface needs to be improved for further enhancements in mechanical 
properties.
Ø Modeling guided CNT composite processing helps to accelerate optimization of 

CNT composite fabrication method.
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Summary – Role of NASA
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NASA mission needs serve as technology pull to guide accelerated maturation of emerging technologies. 



Thank You

Maturing Emerging Technologies . . .
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For Societal Benefits on Earth . . . And Beyond

Image Credit:  NASA


