
Type-safe Generic Programming in
Fortran

Tom Clune
Global Modeling and Assimilation Office

NASA Goddard Space Flight Center

• Introduction
• Perspective
• Brief history of Fortran
• Existing features that support generic programming
• Proposed features and syntax
• Current status
• Future extensions

Outline

2024-06-05 PASC24 - Zurich 3

1. The release date of the next Fortran revision is not certain. Probably 2028 or 2029
• Internal name is “F202y”

2. The feature set for F202y is not yet frozen (but nearly so)
3. In particular, the syntax for generic programming is still going through approval process
4. Suggestions for changes are still welcome, but ...

• Any nontrivial changes may prevent inclusion of generic programming in F202y
5. Interesting examples of generic algorithms are generally a bit large for PPT format.

• Hand-waving, pseudocode and trivial examples must suffice.

Caveats

2024-06-05 PASC24 - Zurich 4

What is generic programming?

Generic Algorithm
{T,U, …}

T1,U1,... Concrete
1

T2,U2,…

Instantiate

Tn,Un,…

Concrete
2

Concrete
n

(Or generic data structure)

A generic algorithm (or data structure) is parameterized
by types that are deferred (specified later/elsewhere).

• For Fortran we extend this to “… parameterized by
types, kinds, or ranks that are deferred …”

• Most approaches also allow for parameterization by
operations (i.e., procedures) that are deferred.

Instantiation associates actual types for the deferred
parameters to produce concrete implementations.

2024-06-05 PASC24 - Zurich 5

Allows reusability and efficiency

Multidimensional Arrays
• Data structure that holds elements of some type (special case of “container”)
• Optimized interface for random access

Supported generic algorithms on arrays:
• Reference/assignment to individual element or slice
• Allocation/deallocation
• Elemental operations
• Various intrinsics: SIZE(), SHAPE(), RANK(), RESHAPE(), PACK(), SPREAD(), …

“Rank-agnostic” features (new in F2023)
• Permit writing algorithm that is parameterized by rank
• Declaraton

• REAL, BOUNDS(0*SHAPE(X):SHAPE(X)+1) :: x_with_guard_cells
• REAL, ALLOCATABLE, RANK(N) :: tmp ! N is integer constant

• Allocation
• ALLOCATE(tmp(v1:v2)) ! v1 and v2 are1D integer arrays of the same size

• Element/slices
• A(@[1,5]) = B(@v) ! v is a 1D integer array of size 2
• C(@v1,:,@v2) ! V1, v2 are 1D integer arrays

Existing Support for Generic Programming

2024-06-05 PASC24 - Zurich 6

Miscellaneous:
• Various intrinsics restricted to numeric types: MINLOC, MAXLOC, SUM, …
• Parameterized derived types (parameterized by deferred “type-parameters”)
• INCLUDE statement
• Intrinsics

• STORAGE_SIZE(), MERGE(), TRANSFER(), …

• SELECT RANK(…) (F2018)
• TYPEOF(), CLASSOF() (F2023)

• Generic procedures (expected in F202y)
• Automatic overload for a specified set of types & kinds (not deferred)

Existing Support (GP - ish)

2024-06-05 PASC24 - Zurich 7

• Swap: Provide a procedure that can swap the
 contents of 2 variables of deferred type T

• Generalized intrinsic procedures: E.g., FINDLOC()
• Most require an additional operation (e.g., “==”)

• Containers: Objects that store a collection of objects of deferred type T
• Specialized/optimized accessors
• Examples

• Fortran arrays
• vector, stack, queue,…
• set, map, tree
• sparse arrays

Motivating Use Cases

X Y

2024-06-05 PASC24 - Zurich 8

Linear algebra:
• Operations

• Matrix-matrix multiplication
• Solution of linear systems
• …

• Reuse for
• Block-matrices
• Sparse arrays
• Tropical semirings (”+”=min, “*”=+)

Motivating Use Cases

Ibeid, Huda & Olson, Luke & Gropp,
William. (2018). FFT, FMM, and
Multigrid on the Road to Exascale:
performance challenges and
opportunities.

• Multigrid methods

2024-06-05 PASC24 - Zurich 9

General
approach by
subgroup

• Strong reliance on committee-approved use cases
• Deference to advice from outside consultant (M. Haveraaen)
• Conservative: much easier to relax a constraint in the future than to add one later.

2024-06-05 PASC24 - Zurich 10

Magne
Haveraaen

Brad
Richardson

Damian
Rouson

Ondrej
Certik

Goal: Enable simple implementation of generics while avoiding problems found in other languages.

1. A generics facility needs to be typesafe, for both developers and users of generic code. (C++)

• Library developers: type system rejects code that relies on features not specified in the generic interface
• Library users: type system rejects instantiation with parameters that do not satisfy the interface.
• Early detection of errors: definition vs instantiation vs link time
• Avoid obscure error messages

2. Both intrinsic and user-defined types and procedures need to be treated uniformly
• Any disparity will cause problems for code reuse down the line. (JAVA)
• Generic mechanism should allow operations as parameters

3. A generics facility needs to allow generic parameter lists to be extended/nested.
• Some constructs will require additional parameters.
• E.g., Operations on sparse matrices require additional operations:

• Minimum element: MIN
• Sum of all elements: OPERATOR(+)

Guidance from M. Haveraaen et al

2024-06-05 PASC24 - Zurich 11

2024-06-05 PASC24 - Zurich 12

Why type safety matters

TEMPLATE A{T}

TEMPLATE B{T,U}

INSTANTIATE B{T, REAL}

TYPE(T) :: x
TYPE(U) :: y
…
y = y + FLOOR(x)

Library developer tests with:

INSTANTIATE A{REAL} ! OK

INSTANTIATE A{REAL(KIND(1.D0))} ! OK

Error: 'a' argument of 'floor' intrinsic at (1) must be REAL

Clever user comes along:

INSTANTIATE A{COMPLEX} ! INVALID

User: “What?”

2024-06-05 PASC24 - Zurich 13

Why type safety matters (2)

TEMPLATE A{T}

TEMPLATE B{T,U}

INSTANTIATE B{T, REAL}

TYPE(T) :: x
TYPE(U) :: y
…
CALL reduce(x, y) ! implicit

Library developer tests with:

INSTANTIATE A{REAL} ! OK

INSTANTIATE A{REAL(KIND(1.D0))} ! OK

Undefined symbols for architecture x86_64:
 "_reduce_", referenced from:
 _MAIN__ in ccTaPCui.o
ld: symbol(s) not found for architecture x86_64
collect2: error: ld returned 1 exit status

Clever user comes along:

INSTANTIATE A{INTEGER} ! INVALID

Consider a package that aims to deliver a variety of generic data structures and algorithms to
support linear algebra applications:

2024-06-05 PASC24 - Zurich 14

Nested Templates & Extending Parameters

Matrix multiplication: 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 + ∑𝑘𝑘 𝐴𝐴𝑖𝑖𝑘𝑘 ∗ 𝐵𝐵𝑘𝑘𝑖𝑖
• 4 type parameters

• T (type of A)
• U (type of B)
• V (type of C)
• W (type of A*B)

• 2 operations
• Multiply (T * U W)
• Add (V + W V)

Linear solvers: 𝐴𝐴 𝑥𝑥 = 𝑏𝑏
• Needs 6 parameters above and …
• 2 additional operations:

• Divide (T / T W)
• Minus (V - W V)

Some users may only want matrix multiplication.

Design options:

1. Force such users to invent “-” and “/” operations
2. Provide two separate templates

• Combinatorial explosion for realistic package
3. Provide solvers as an inner template

• Only users wanting to use inner template provide
additional operations

Summary: Type and/or kind of procedure dummy argument is inferred from call site.

 TEMPLATE SUBROUTINE s(x, y, r, z)
 TYPE(*) :: x, y, z
 REAL(*):: r
 z = x * y – y*r
 END
 . . .
 COMPLEX :: a, c
 INTEGER :: i
 REAL(kind=kind(1.d0)) :: d
 CALL s(a, i, d, c) ! Instantiates s

• Pros:
• Relatively easy to specify and implement
• Succinct

• Cons:
• Not type-safe (bad for library developers and users)
• Does not support generic data structures (e.g., containers)
• Does not support more complex use cases with “intermediate types”
• Likely obscure error messages

Proposed mechanisms: “template procedures”

2024-06-05 PASC24 - Zurich 15

Challenges for intrinsic types
• Not extensible; e.g., CLASS(INTEGER)
• A few special cases cannot appear in ”variable definition context”; e.g., EVENT_TYPE
• Intrinsic operators on intrinsic types are not usually implemented as functions (inline)

• Burden on implementors

Intrinsic procedures
• Some intrinsics are “magic” (technical term)
• Restrictions on overloading intrinsic operators on intrinsic types.

2024-06-05 PASC24 - Zurich 16

Uniform treatment of intrinsics in Fortran

Summary: Powerful language-aware preprocessor
 DEFINE MACRO :: iterator(count,operation)
 MACRO DO i=1,count
 EXPAND operation(i)
 MACRO END DO
 END MACRO
 DEFINE MACRO :: process_element(j)
 READ *,a(j)
 result(j) = process(a(j))
 IF (j>1) PRINT *,’difference =’,result(j)-result(j-1)
 END MACRO
 EXPAND iterator(17,process_element)! expands into 17 sets of 3 statements
• Pros:

• Significant prior work; ready-to-roll
• Supports generic algorithms and generic data structures
• Supports compile-time conditionals and loops
• Recursive

• Cons:
• Yet another preprocessor …
• Type-checking only at instantiation
• Recursive

Proposed mechanisms: “intelligent macros”

2024-06-05 PASC24 - Zurich 17

Summary: Overload a procedure for a specified set of types and kinds.
 Technically not generic programming

 GENERIC FUNCTION has_nan(x) RESULT(ans)
 REAL(REAL32,REAL64,REAL128), RANK(0), INTENT(IN) :: x
 LOGICAL :: ans
 ans = ieee_is_nan(x)
 END FUNCTION has_nan

• Pros:
• Supports a very common use case: Overload legacy library for multiple real kinds.
• Complementary to templates

• Cons:
• Overload types must be specified in advance

Proposed mechanisms: generic procedures

2024-06-05 PASC24 - Zurich 18

Summary: Type-safe built-in language construct which can contain generic algorithms and/or data
structures

Pros:
• Implementation can be verified independently of instantiation
• Enables high-quality (clear) error messages for invalid instantiations.

• Cons:
• Nontrivial specification
• Nontrivial implementation (compiler)

Proposed mechanisms: templates

2024-06-05 PASC24 - Zurich 19

New terminology and syntax
Pardon the circularity

2024-06-05 PASC24 - Zurich 20

Deferred arguments are used to parameterize templates (and requirements)
• Analogs of dummy arguments for procedures
• Associated with instantiation arguments specified in an INSTANTIATE statement

Supported forms:
• Deferred types:

 TYPE, DEFERRED :: T

• Deferred constants: Logical, Integer, or assumed-length character
 LOGICAL, CONSTANT :: FLAG
 INTEGER, CONSTANT :: COEFFICIENTS(:,:), TENSOR(..)

• Deferred procedures:
• Interface can be in terms of other deferred arguments
• Must have explicit interface
• No new syntax for declaration

Deferred Arguments

2024-06-05 PASC24 - Zurich 21

TEMPLATE: “module-like” construct that is parameterized by deferred arguments
• Template elements:

• Name and list of deferred arguments
• Specification part
• Subprogram part (i.e, CONTAINS section)

• Important constraints and caveats
• A template can only reference intrinsic procedures, procedures with explicit interfaces, and operators.

• A.K.A. “strong concepts”
• Note that intrinsic assignment is always permitted

• Many Fortran constructs are not permitted within a template
• Mostly because they would not make sense

• Templates can be nested
• An “inner” template can access the deferred arguments of the outer component
• Very useful when only some subset of a package requires additional parameters
• E.g., Mat-Mat multiply requires procedures for addition and multiplication. But matrix solve requires additional

operators for subtraction and division.

TEMPLATE construct

2024-06-05 PASC24 - Zurich 22

 TEMPLATE swap_tmpl{T}
 TYPE, DEFERRED :: T
 CONTAINS

 SUBROUTINE swap(x, y)
 TYPE(T), INTENT(INOUT) :: x, y
 TYPE(T) :: tmp

 tmp = x
 x = y
 y = x
 END SUBROUTINE

 END TEMPLATE

Minimal Template Example: swap

2024-06-05 PASC24 - Zurich 23

• Templates can be nested
• An “inner” template can access the deferred arguments of the outer component
• Natural mechanism to extend a package with procedures that require additional parameters

• Example: Consider a linear algebra package that provides for abstract matrix-matrix multiplication
and solving a linear system.

• Matrix multiplication only requires “addition” and “multiplication”
• Solving requires additional operations: “subtraction” and “division”

• A user wishing to perform matrix multiplication on their derived type might be forced to invent
suitable operations for subtraction and division.

Inner Templates

2024-06-05 PASC24 - Zurich 24

• Encapsulates relationships among deferred parameters
• Parameterized by deferred arguments, just as with templates
• Declaration of deferred arguments within a REQUIREMENT construct induce

REQUIREMENT Construct

REQUIREMENT simple_binop{op, T}
 TYPE, DEFERRED :: T
 INTERFACE
 FUNCTION op(x, y) RESULT(z)
 TYPE(T), INTENT(IN) :: x, y
 TYPE(T) :: z
 END FUNCTION
 END INTERFACE
END REQUIREMENT

REQUIREMENT binop{op, T, U, V}
 TYPE, DEFERRED :: T, U, V
 INTERFACE
 FUNCTION op(x, y) RESULT(z)
 TYPE(T), INTENT(IN) :: x
 TYPE(U), INTENT(IN) :: y
 TYPE(V) :: z
 END FUNCTION
 END INTERFACE
END REQUIREMENT

2024-06-05 PASC24 - Zurich 25

• The REQUIRES statement applies a named REQUIREMENT to its arguments.

TEMPLATE my_templ(T, U, plus, times)
 REQUIRES binop{plus, T, U, U} ! Real+complex -> complex
 REQUIRES binop{times, T, U, U} ! Real*complex -> complex

…
END TEMPLATE

INSTANTIATE my_tmpl{REAL, REAL, operator(+), operator(*)} ! Ok
INSTANTIATE my_tmpl{REAL, LOGICAL, operator(+), operator(*)} ! invalid

REQUIRES Statement

2024-06-05 PASC24 - Zurich 26

• The INSTANTIATE statement specifies an instance of a template construct
• By default, brings all public entities of the template instance into the current scope.
• Can use ONLY clause for greater control and renaming; just as with module USE statement

• Instantiation args become associated with the deferred args of template
• Supports keyword association just as with procedure references.

 INSTANTIATE my_tmpl{T=REAL, n=3, op=OPERATOR(*)}

INSTANTIATION Statement

2024-06-05 PASC24 - Zurich 27

• A simple template procedure – concise syntax for declaring (and instantiating) template that has
a single procedure

Simple Template Procedures

TEMPLATE swap{T}(x, y)
 TYPE, DEFERRED :: T
 TYPE(T), INTENT(INOUT) :: x, y
 TYPE(T) :: tmp

 tmp = x
 x = y
 y = x
END TEMPLATE

REAL :: x, y
LOGICAL :: f1, f2

CALL swap{REAL}(x, y) ! Instantiate for T REAL
CALL swap{MyType}(q1,q2) ! Instantiate for T MyType

2024-06-05 PASC24 - Zurich 28

“LFortran is a modern open-source (BSD licensed) interactive Fortran compiler built on top of
LLVM. It can execute user’s code interactively to allow exploratory work (much like Python,
MATLAB or Julia) as well as compile to binaries with the goal to run user’s code on modern
architectures such as multi-core CPUs and GPUs.”
• LFortran has prototyped many of the generic programming features

LFortran

2024-06-05 PASC24 - Zurich 29

• Subgroup needs to wait to see where the pain points are

• Better support for type-bound procedures
• Long argument lists
• Other types as constants
• Intrinsic requirements?

 REQUIRE (M == N + 1)
 REQUIRE (ANY(K == REAL_KINDS))
 REQUIRE (EXTENDS(T, U))

Future directions

2024-06-05 PASC24 - Zurich 30

• M. Haveraaen, J. Jaarvi, & D. Rouson,“Reflecting on Generics for Fortran”, https://j3-
fortran.org/doc/year/19/19-188.pdf.

• O. Certik, “LFortran - Modern interactive LLVM-based Fortran compiler”, https://lfortran.org.

References

2024-06-05 PASC24 - Zurich 31

https://j3-fortran.org/doc/year/19/19-188.pdf
https://j3-fortran.org/doc/year/19/19-188.pdf
https://lfortran.org/

Supplemental slides
Please do not use for content

2024-06-05 PASC24 - Zurich 32

Brief history

FORTRAN 77
• structured

programming

Fortran 90
• Modules
• Data structures
• Dynamic allocation
• Overloaded interfaces

Fortran 95
• Unknowable features

Fortran 2003
• C interoperability
• Object oriented
• Parameterized types

Fortran 2008
• coarrays

Fortran 2018
• Coarray teams
• Further interoperability

Fortran 2023
• Conditional expressions
• Typeof(), classof()
• Rank agnostic features

Fortran 202y
• Templates
• Generic procedures

Discovery of
lower case letters

6 character
names become
unfashionable

C++ introduces
templates and OO

Before times:
• Multidimensional

arrays

First standardized
language to support
distributed parallelism.

Fortran users realize that
they really wanted C++
templates

First major incident of
C++ feature envy: Fortran
users demand OO

My retirement

Fortran templates
become portable

Formation of
Generics subgroup

2024-06-05 PASC24 - Zurich 33

• Insight A generic mechanism needs to allow types and operations as arguments.
• Insight A generic mechanism needs to treat intrinsics in the same way as user-defined types and operations.
• Insight Generic parameters, code and arguments should be fully typechecked.
• Insight Generics features should be straightforward (careful with overloading and specialisa- tion) enough to allow for

straightforward modular typechecking of generic code.
• Insight A generic mechanism must allow nested parameter lists to match its code structuring mechanisms.
• Insight A generic mechanism must support writing long parameter lists.
• Insight A generic mechanism must support renaming of generic types and operations.
• Insight A generic mechanism must not depend on statically declared inheritance hierarchies.
• Insight This shows that not only types but also operations (functions and subroutines), both user-defined and intrinsic, are

needed as generic arguments2.
• Insight typechecking of generic code ensures type safe expressions, guaranteeing well-formedness properties of the code.
• Insight Long generic argument lists enable expressing fine-grained type safety without having to extend the type system.
• Insight Both types and operations with prototypes are needed as generic arguments.
• Insight Long generic argument lists with types and operation prototypes with full typechecking of generic code enables

proof by testing.
• Insight Long generic argument lists with types and operation prototypes with full typechecking of generic code enables

iterating generic implementations.
• Insight Generic programming may benefit from an axiom based support system for keeping track of properties of generic

constructions.
• Insight A renaming mechanism along with types and operations as generic arguments is sufficient to enable a future

extension of generics with axioms.

What’s so good about type safety?

2024-06-05 PASC24 - Zurich 34

• Insight A generic mechanism needs to allow types and operations as arguments.
• Insight A generic mechanism needs to treat intrinsics in the same way as user-defined types and operations.
• Insight Generic parameters, code and arguments should be fully typechecked.
• Insight Generics features should be straightforward (careful with overloading and specialisa- tion) enough to allow for

straightforward modular typechecking of generic code.
• Insight A generic mechanism must allow nested parameter lists to match its code structuring mechanisms.
• Insight A generic mechanism must support writing long parameter lists.
• Insight A generic mechanism must support renaming of generic types and operations.
• Insight A generic mechanism must not depend on statically declared inheritance hierarchies.
• Insight This shows that not only types but also operations (functions and subroutines), both user-defined and intrinsic, are

needed as generic arguments2.
• Insight typechecking of generic code ensures type safe expressions, guaranteeing well-formedness properties of the code.
• Insight Long generic argument lists enable expressing fine-grained type safety without having to extend the type system.
• Insight Both types and operations with prototypes are needed as generic arguments.
• Insight Long generic argument lists with types and operation prototypes with full typechecking of generic code enables

proof by testing.
• Insight Long generic argument lists with types and operation prototypes with full typechecking of generic code enables

iterating generic implementations.
• Insight Generic programming may benefit from an axiom based support system for keeping track of properties of generic

constructions.
• Insight A renaming mechanism along with types and operations as generic arguments is sufficient to enable a future

extension of generics with axioms.

Miscellaneous

2024-06-05 PASC24 - Zurich 35

TEMPLATE my_template(T, U, C, F)
 TYPE, DEFERRED :: T, U
 INTEGER, CONSTANT :: C
 INTERFACE
 FUNCTION F(x) RESULT(Y)
 TYPE(T) :: x
 TYPE(U) :: y
 END FUNCTION
 END INTERFACE
CONTAINS
 SUBROUTINE do_something(x, y, z)
 TYPE(T) :: x, y
 TYPE(U) :: z
 . . .
 END SUBROUTINE
END TEMPLATE

Proposed Syntax: TEMPLATE

2024-06-05 PASC24 - Zurich 36

REQUIREMENT BINARY_OP(T, op)
 TYPE, DEFERRED :: T
 INTERFACE
 FUNCTION op(x) RESULT(Y)
 TYPE(T), INTENT(IN) :: x
 TYPE(T) :: y
 END FUNCTION
 END INTERFACE
END REQUIREMENT

TEMPLATE tmpl(T, U, f1, f2)
 REQUIRES BINARY_OP(T, f1)
 REQUIRES BINARY_OP(T, f2)
 . . .
END TEMPLATE

Proposed Syntax: TEMPLATE

2024-06-05 PASC24 - Zurich 37

	Type-safe Generic Programming in Fortran
	Outline
	Caveats
	What is generic programming?
	Existing Support for Generic Programming
	Existing Support (GP - ish)
	Motivating Use Cases
	Motivating Use Cases
	General approach by subgroup
	Guidance from M. Haveraaen et al
	Why type safety matters
	Why type safety matters (2)
	Nested Templates & Extending Parameters
	Proposed mechanisms: “template procedures”
	Uniform treatment of intrinsics in Fortran
	Proposed mechanisms: “intelligent macros”
	Proposed mechanisms: generic procedures
	Proposed mechanisms: templates
	New terminology and syntax
	Deferred Arguments
	TEMPLATE construct
	Minimal Template Example: swap
	Inner Templates
	REQUIREMENT Construct
	REQUIRES Statement
	INSTANTIATION Statement
	Simple Template Procedures
	LFortran
	Future directions
	References
	Supplemental slides
	Brief history
	What’s so good about type safety?
	Miscellaneous
	Proposed Syntax: TEMPLATE
	Proposed Syntax: TEMPLATE

