iswe

Introduction to
Software Engineering

ISWE Public

Introductions and Logistics -

* Logistics
-Sign-in sheet: Be sure to initial sheet everyday
—Location of bathrooms, kitchen area

—Exit in case of fire, etc.
—Class evaluation process

e Introductions of instructors |

iswe

Course Action Plan Slides

. ISWE |

Training alone won’t change performance

Without monitoring, support and reinforcement,
there’s a chance that only a fraction of training is
applied back on the job:

10% - 34%

(Brinkerhoff, 2006; Saks & Belacourt, 2006)

Developing new habits takes time.

Conventional Wisdom:
21 days

Research shows:
18-254 days; Average = 66 days

To change our behavior we need a system...

Sources:

Brinkerhoff, R. O. (2006). Telling training’s story. San Francisco, CA: Berrett-Koehler.

Lally, P. Van Jaarsveld, C. H. M., Potts, H. W. W., & Ardle, J. (2010). How habits are formed: Modelling . .

habit formation in the real world. European Journal of Social Psychology, 45, pp. 998-1009. vee I | ke a n Actlo n Pla n

Saks, A. M. & Belacourt, M. (2006). An investigation of training activities and transfer of training in
organizations. Human Resource Management, 45(4), 629-648

Action Plans help you apply what you learn
In order to Improve performance

Before the Course During the Course After the Course

 Download the Action * Create/refine your Print and place your
Plan template and Action Plan as you learn Action Planin a
example things you can apply conspicuous place

(you will be given a

e Seek input from your : : Inform an
) chance to do this during
project/task/branch accountability partner
the course) _
manager about your Action Plan
e Draft preliminary Action * Track your progress

Plan based on your
expectations of what
you will learn

* Refine your Action Plan
as needed

Introduction of Students |

Current Job
Assignment

What you want to
get out of this class

. ISWE |

Course High Level Objectives

* To provide an introduction to NASA software engineering skills

— Not intended to be low level or “technical”

* To help non software engineers, system engineers and project
managers understand the software development processes and
considerations

* To help NASA engineers make better software related decisions by
knowing where to get information and guidance

Introduction to Software Engineering (APPEL-ISWE)

.\a

Key Course Objectives

APPEL - Introduction to
Software Engineering

Upon completion of this course participants will be able to:

Explain software's role in and importance to NASA programs. 1.
Properly interpret and apply NASA software engineering policies
requirements templates tools checklists and guidelines. 2.
Recognize and respond to early warning signs from software
measurement data analysis and use results for effective decision 3.
making. 4,

Formulate pertinent software measurements and reporting for
senior management.

Explain the relationship between software development lifecycle
phases and the project development lifecycle.

Identify the requirements for and the best practices of each
phase in the software development lifecycle.

Describe methods to build good software products.

Describe the importance of software engineering support
activities such as software configuration management software
assurance software independent Verification and Validation
software cost estimations software risks and software
acquisition.

. ISWE |

Upon completion of this course participants will be able to:

Properly interpret and apply NASA software engineering policies
requirements templates tools checklists and guidelines.

Explain the relationship between software development lifecycle
phases and the project development lifecycle.

Describe methods to build good software products.

Describe the importance of software engineering support
activities such as software configuration management software
assurance software independent Verification and Validation
software cost estimations software risks and software
acquisition.

Evaluation Pilot Courses Critical Behaviors -

Course Name Key Course Objectives Critical Behaviors

Upon completion of this course participants will be able to: When they return to their jobs course attendees will:

1. Properly interpret and apply NASA software 1. Accurately interpret reported pertinent software
engineering policies requirements templates tools measurements
checklists and guidelines. 2. Determine whether or not the software organization

2. Explain the relationship between software on their project is using the proper software
development lifecycle phases and the project requirements, and following the best practices of each
development lifecycle. phase in the software development lifecycle.

;An::::t;ction to 3. Describe methods to build good software products. 3. Determine if a software product is adequate
4. Describe the importance of software engineering 4. Assess if the tailoring options used on the software

Software
support activities such as software configuration requirements is correct for the project risk level

management software assurance software
independent Verification and Validation software cost
estimations software risks and software acquisition.

Engineering

Class Plan

Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources
Software Planning Requirements and Considerations

Software Documentation Software IV&V
Software Costing Software Classifications
Software Processes Software Reuse and Internal Sharing
Software Assurance Software Cybersecurity
Software Safety-Critical Software Lifecycles and Reviews

Software Life-cycle Requirements
Software Requirements Software Coding
Software Architecture Software Testing
Software Design Software Maintenance

Software Development Supporting Requirements Why do we

Software Configuration Management Software Defect Management do these
Software Risks Software Bi-Directional Traceability things?

Software Peer Reviews Software License Management Software
Software Measurements Software Acquisition Failures

iswe

Software's Role and Importance
IN NASA Missions

Class Questions

Can you name any examples of how
software has affected your life (good
or bad examples)?

Do you think we can fulfill NASA’s
mission without software
involvement?

Why do you think software is
important on NASA Missions?

Software's Role and Importance in NASA Missions _ ISWE |

* The importance of software to NASA missions has grown
steadily since NASA was formed. string SINPUC

At ilength, 1M
. hle dblTemp;
- w‘ -again = true;

* The first spacecraft launched by the United States in 1958 had - o
no software at all, while the Mars Science Laboratory (MSL) ileLE:

launched in 2011 with well over 3 million lines of code. 2 giii?n24§§ﬁje;xnput>; -
5| Lo
* Contemporary NASA spacecraft have basically become flying ;;ez%t';n_;_
computers. i

» Software has become important on all NASA missions.

* Software percentage of a mission’s budget ranges from 2% to
20%, with all missions needing high reliability software

delivered on time and on budget. The result is that NASA is

s - Flight software is typically the only item that can be changed or Currently one Of the 100 IargESt
modified after launch developers and procurers of
* Late or unreliable software threatens the entire mission, software in the world.

potentially causing launch delays and even mission failure.

NASA Software Workforce Trends :

demand is high

* OPM series is reporting less than are working software as reported by
centers, and is trending down, against the need

* This is due to software becoming more ubiquitous

* More people are working software in 2021 than in previous years — I

Software Engineering Trends -

* Space missions are increasingly dependent on correctly I
functioning software |
Artemis Phase 1: To the Lunar Surface by 2024 &
* Software applications are growing in size and complexity _
\fmv P
- Rapidly increasing code size for all mission software \ (/f N\ s i e Fet sz P—
- An increasing reliance on multi-threaded code / N\ r-m‘.‘n_mez‘as,cen‘m;y . Popusin 52 oty and urar surtace
- A gradual move from simpler to more complex languages A S
- Increased reliance on COTS o) |) -
* This brings two conflicting trends: i v s i
- A growing importance of safe and reliable software PR - it
Lo . LUNAR SOUTH POLE TARGET SITE
- A shrinking ability to thoroughly test software 2019
* This also leads to consistent underestimation of software
— development and assurance costs
The increased demands placed on mission systems to implement NASA future mission portfolio
will undoubtedly be answered in large part through functionality provided by software.

Software Engineering Capabilities Needed _ ISWE |
for Future Missions

Future missions will require more software
development and increased autonomous behavior
in the software functions.

* More efficient and effective development and

assurance practices required to meet the rapid
increase in software size and complexity.

* Improved software acquisition practices (Make-Buy-

REUSE). NASA’s Strategic Plan for
Lunar Exploration

FORWARD TO THE MOON:

* Maintaining a capable and well-trained workforce.
Update I

 Advancement in the design, development, verification . e
and validation of autonomous behaviors

* Increased simulation capabilities
* Improved system design and requirements

* Determining metrics of software development effort EARTH ORBIT
and software product quality '

=) LUNARORBIT = LUNAR SURFACE =) MARS & BEYOND

What do you see as needed software
capabilities for future launch systems?

Softwa re
Is Never Done

Refactoring the Acquisition Code
for Competitive Advantage

Defense Innovation Board
May 3,2019

L
“Software is different than I
hardware (and not all software is
the same). Hardware can be
developed, procured, and maintained
In a linear fashion. Software Is an
enduring capability that must be

supported and continuously
Improved throughout its life cycle.”

. ISWE

|

Software Is the easiest to
change but Iin change, It Is
the easiest to compromise.”

The "Bug" Heard 'Round the
World by John R. “Jack™
Garman October 1981

The Three Elements of Project Success [

Processes and Requirements:
a defined method involving steps or operations

Technology:

People: 4
Skills, Training, Application domains, tools,
- Management languages, information,

environments
Improved Process + Competent Workforce + Appropriate Technology

Reduced Risk, Higher Productivity, and Better Quality

Catching Software Faults Early Saves Money [

ISWE |

Faults accounts for 30-50% percent of total software project costs

Software Development Lifecycle

Where Faults are Introduced

¥* 70% * 20% #* 10%
: = opm.‘u‘
Engireering o Davalopmant
Where Faults are Found o
3.5% 16% 50.5% 9% 20.5%
Nominal Cost Per Fault
for Fault Removal
&l @] W B o), EEE), ey, ey, T,), o), & @EIZIT
— =L T] y = = = T 2 R
= =) e, Cen), e, oen), e, D), Ce) jy,, Sy),
o), O) =2 = =l = = e = = =
o, @, W, e, w5, w5, 0,), w5,
Cl), Ca), 8 =y, e e Ce, Ce0), C, Ce
o),), @),)), e, 5,),), [

Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies

Cost Per Fault for Fault Removal 300-1000x

E‘ Software Engineering Institute I Carnegie Mellon University

=

Building Secure Software for Mission Critical Systems
November 18, 2015

© 2015 Camegie Mellon University

Distribution Statement A- Approved for Public Release;
Distribution Is Uniimited

13

What Is Software Engineering?

Software Engineering is not
programming!

“a systematic, disciplined, quantifiable approach to the
development, operation and maintenance of software;

that is, the application of engineering to software” IEEE

The term was coined by Margaret Hamilton in 1963-
1964, director of the Software Engineering Division of
the MIT Instrumentation Laboratory, which developed
on-board flight software for NASA's Apollo program.

|
“It was a memorable day when one of the most respected hardware gurus
explained to everyone in a meeting that he agreed with me that the process of
building software should also be considered an engineering discipline, just like

with hardware.” Margaret Hamilton

: Do -
¢ T R i g
{ ; : ; Ay
J 3 PRI 4

NASA’s Software Definition (From IEEE) | ISWE |

Software is defined as:

(1) computer programs, procedures and possibly associated documentation and data pertaining to the operation of a
computer system

(2) all or a part of the programs, procedures, rules, and associated documentation of an information processing system
(3) program or set of programs used to run a computer

(4) all or part of the programs which process or support the processing of digital information

(5) part of a product that is the computer program or the set of computer programs

This definition applies to:

» Software developed by NASA, * Embedded software,
» Software developed for NASA, * The software executed on processors
» Software maintained by or for NASA, embedded in programmable logic devices
 Commercial off-the-shelf (COTS) (see NASA-HDBK-4008, Programmable
software, Logic Devices (PLD) Handbook),
* Government off-the-shelf (GOTS) * Legacy software,
- software, * Heritage software,
* Modified off-the-shelf (MOTS) software, * Application software,
* Reused software, * Open-source software components,
* Auto-generated code, * Configuration Data

Software Is Not All the Same |

flight software ;é Non-flight software
engineering software # general purpose software

safety critical software ;& non-safety critical software

... and it shouldn ‘t be treated the

same!

NASA flight software systems have grown as -
measured by SLOC I

Software System Growth Over Time (1984-2014) by Mission Type

S0

i
MEL Normafized

-
&
x

[Missicn Type
B Deep Space
N Earth Moon

:

o B In S
%
= SS0K
"
o
g .
~ 300K MER
2
= >
/s

g 250K - S/
w Spitzer ./ J/
5 S - ’
B ko >
£ 200K oA A
= - g * Phoanix v
3 De One - - Mave
: s S T A Ter v

Loeas -~ ~~ - 0C0 sMap
; - EO1 Deap Impact AT -

= - o i SLROGPM Core
2 100K --_J_.Caﬁlm --______-- K.gur—~_ Songy—®
* Hubble Space Telescope _ Mars Pathlinder — —=" 2 * e
~ N 2 el -
.y . @_-guamn 8u~¢yo_v_o___---' oM . GLAST GOESR
" Pt i ——~ - '
2a R S Stardust Caenesis TDR;KJL
"l @ Galieo ® Nars Obaserver
oK GRO

1634 1986 1838 1960 1552 19684 1696 19658 2000 2002 2004 2006 2008 2090 2012 209& 2016
Launch year

How Big is a Million Lines of Code?

~2.5 Million Lines of Code in the KSC
GSDO program

~3.5 Million Lines of Code in the
GSFC/Raytheon JPSS Core Ground System

A million-line program has ~20M characters
(1M lines x ~20 characters/line), or about 40 novels

Source:

Les Hatton, University of
Kent, Encyclopedia of
Software Engineering,
John Marciniak, editor in
chief

‘ﬁ-ﬁnwmmm"““"m“’éﬂ e A Increasing Complexity of Software
GCS7 R ey e S

KSLOCS

Apollo 40

- \'\ﬁiyi “l”ﬁ] i)ﬁf/ '": |

Shuttle

SLS

EGS

= S (SIS | Orion

What happened to
the switches?

26

Intensive Facilities and
Operations

|
Other Types of Software |

Spaceport Command and Control Systems

S R e R s s (Command & Control) """""""""""""""""""""" N

Vehicle Gateway

- Operations

Control
Support /_ Room

=N

‘.iIV

Bl N, T
- L

e ——
y, oy

GSE Gateway

Control
Workstations
; Industrial
: Controller
Message Bus
: i {, _____________ \\ i m l/ —————————— \| E é
1 | S I) 'y
| : \[Advisory Workstations]/ : \I GSE Simulator]/ ;
' grETTTmoTenes MET Vi
; 1 I3 |)i
|l *| Monitor W/S (eg. OMR) |7 ! M Veh Simulator | |

'*CAdvisory / Monitor Only Support Facilities) N— (Simulation Support)" e iisadaaaay (Pad/ML)’ """""""""""""""

Space-Ground Network Systems

* Major components of a space-ground network
system include:

— Antenna subsystem
— Data processing equipment
* Demodulates or modulates user data

* Performs initial processing (synchronization, error detection
and correction) and delivery to other Ground System Elements

— Status/Scheduling subsystem
* Provides means/mechanism to enable customer missions to

schedule network services I >
| * Provides data quality and accounting information to customers ,ﬂ,i. R
* Not to be confused with mission planning and scheduling ’.E. e ,:,.r%'.j
systems to control observatory operations and support science
planning. D

Mission Operations Centers

* Major components of a MOC include:
— Real-time Telemetry and Command (RT T&C)
subsystem
— Mission Planning subsystem

— Flight Dynamics subsystem/Attitude Ground
subsystem

- Trending subsystem
— Automation/Alert subsystem
— Data Storage and Distribution subsystem

Science Data Systems -

» Science Data System Functionality/Architectures * Functionality optionally included in Science Data
are generally unique from mission to mission, and Support Systems include:
heavily dependent upon the science objectives to — Science/Instrument Operations Centers

be satisfied for the mission * Plan and schedule instrument operations,

Support Systems include: observations/operations, assess health/safety
- Data Ingest: Receipt of raw instrument data of the instruments.

from the mission or other data suppliers

- Generation of Science products: Mission
unique depending upon the type of science
being performed.

* Location of Science Data System architectural
components very much unique from mission to mission

- Data Archive/Distribution: Includes both % R — <o SR ;
Active Archives (To serve data products to e [EE Nl | POE o [t T G
Science community, other interested users) I—— L L o L | L2
and Deep Archives (To preserve a copy of the i yeesmee 3 U T3 OO0 G 0 G0 230 GO S
science products beyond the nominal .00 ety
mission Iifetime). L2 Rader__ and Life of Mission Storage A scncs
- Provide other features required by S Pl fon [fuse fur s i ;gggr;;ance;\‘ PrjetandSciane
- science/user community, including: a2 e
* Data mining FanSin Reia ci e |l || o (Testbed) Teu e
* Modeling

SPS - Science Production Software

* Visualization/animation tools

The SMAP Science Data System (SDS) converts telemetry downloaded from the SMAP
observatory into Science Data Products provided to the science community for research and applications.

https://smap-archive.jpl.nasa.gov/science/dataproducts/

Software's Role and Importance on
NASA Missions

Software engineering and software Artemis: Landing Humans On the Moon
assurance is a core capability and a key

Lunar Reconnaissance
enabling technology for NASA's missions xﬁ Curoes o ndin
site investigation

and supporting infrastructure. & : %
All NASA missions have software &

H I t Artemis I: First Artemis II: First humans Gateway begins science operations Artemis lll-V: Deep space crew missions;
I nVO Ve m e n human spacecraft to orbit the Moon and with launch of Power and Propulsion cislunar buildup and initial crew

to the Moon in the rendezvous in deep space Element and Habitation and demonstration landing with Human
21st century in the 21st Century Logistics Outpost Landing System

NASA’s success in increasingly dependent Y 5 .,
on software functions and capabilities. ol =g ~

Demonstration

NASA must become more efficient and ﬁ,fg
effective in developing and validating SO~

Vi n - 21st Century
Science and technology payloads delivered by First mobility-enhanced lunar volatiles survey First crew expedition to the lunar surface
Commercial Lunar Payload Services providers

quality software.
LUNAR SOUTH POLE TARGET SITE

Future State
NASA missions will have more software, more complexity and more autonomous operations

We will need to invest in the software workforce to be able to support the NASA missions

iswe

NASA Engineering and Software
Policies, including key NASA
software standards

NPD 1000.0 Strategic Management & Governance Handbook

NPD 1000.3 The NASA Organization
NPD 1000.5 Policy for NASA Acquisition

Governing Documents NPD 7120 4 NPD 8700.1 NPD 8900.5A

SIEREEIE 4 NASA Policy for NASA Health & Medical Policy

Program/Project) X
Management Policy Safetsyijfcl\e/gzsmn for Space Exploration

NPR 7123 NPR 7150.2 NPR 7120.5 OSMA NPRs
System Engineering Software Engineering NASA Space Flight Incl. NPR 8705.2
Requirements Requirements Program and Human-Rating
(and Other (and Other Project Requirements for
Engineering NPRs) Engineering NPRs) Management Space Systems
Requirements
Health & MSO
. . 0.7 Info NPR 0.8 =] SMA . .
Englneer|ngt | fTech & 5 R&/‘II; _ P:gjgerc?tml\jlgmt Requirements Medical Functional
equirements nfrastructure rogram/Project ; : i i
Program/Project Megmagemejnt Requirements Requirements Requirements
Management
A 4 A 4 v !
1 ,
Mission Directorate Center Engineering & Management
- Programmatic Requirements Policies and Practices
g

NASA Standards Program Plans
and NASA Handbooks Project Plans

Current NASA Software Documentation Tree |

(with a few related non-software documents in gray)

Policy

Procedural
Requirements

Standards

Handbooks &
Guidebooks

Center Level
Directives

NPR 7150.2D
NASA Software

Engineering
Requirements,
2022, OCE

invokes

NASA-STD-8739.8B
Software Assurance and
Software Safety Standard

NPD 7120.4
NASA Engr. &
Prog./Proj. Mgt.
Policy
parent of parent of
NPR 7123.1 NPR 7120.8
gzliazszelc?f L NASA Systems NASA Research &
NASA Engr, Process NPR 7120.7
& Requirements NASA IT & Infra.
Software
NPR 7120.5
NASA Space
is supported by FIight_Prog./Proj.
\l/ Requirements

is supported by

NASA-STD-7009
Standard for
Models &
Simulations

NASA-HDBK-2203
NASA Software
Engineering and
Software Assurance

Handbook

Center Level Software
Directives
(Ames, DFRC, GRC,
GSFC, JPL, JSC, KSC,
LaRC, MSFC, & SSC)

v Y

NASA-HDBK-8739.23 | NASA-HDBK-4008
Complex Electronics Programmable
HDBK for Assurance Logic Device HDBK
Professionals

Purpose of the NASA Software Engineering -
Requirements, NPR 7150.2
& s

e Software engineering is a core '

Subject: NASA Software Engineering Requirements

ca pa bility for NASA'S miSSionS and Responsible Office: Office of the Chief Engineer
supporting infrastructure.

3.5 Software Non-conformance or Defect Management

NPR 7150.2 History

Chapter 6. R d Software D ion Contents

Table of Contents 6.1 Software Engineering Products

e Support the implementation of e
P.1 Purpose) .
P2 Applicability Listof Appendues_ i
P 3 Authority Appendix A_ Definitions

V4 . o @ P.4 Agplicable Documents and Forms Appendix B. Acronyms) _
OV -_ r 191 n a P 5 Measurement Verification Appendix C. Requirements Mapping Matrix
P6 Cancellation Appendix D. Software Classifications

Appendix E. References

Chapter 1. Introduction
N OV 2 O O 9 - R e V A 1.1 Overview List of Figures
1.2 Hieraschy of NASA Software-Related Engineering and Figure 1. NASA Software Classification Structure
1.3 Document Structure
List of Tables

N oV 2 O 1 4 —_ R ev B Chapter 2. Roles, Responsibilities, and Principles Relat Table | Bi directionsl traceability by software classification
2.1 Roles and Responsibilities

18 Table 2. Requirements Mapping Matrix
2.2 Principles Related to Tailoring of the Requirements

A u 2 O 1 9 — R e V C Chapter 3. Software Management Requirements
3.1 Software Life Cycle Planning

3

328 e
3.3 Software Schedules
Mar 2022 —Rev D e
3.5 Software Classification Assessments
3.6 Software Assurance and Software Independent Verific:
3.7 Safety-Critical Software
3.8 Automatic Generation of Software Source Code

3.9 Software Development Processes and Practices
3.10 Software Reuse

= ° Support NASA programs and HES .

Chapter 4. Software Engineering (Life Cycle) Requiren
° ° ° ° ° 4.1 Software Reguirements
4.2 Software Architecture
rojects in accomplishing their
4.4 Software Implementation
4.5 Software Testing
4.6 Software Operations, Maintenance, and Retirement

planned goals e —

5.1 Software Configuration Management
5.2 Software Risk Management

* Provide a minimal set of
requirements

3.3 Software Peer Reviews/Inspections
3.4 Software Measurements

About NASA’s Software Engineering
Requirements (NPR 7150.2)

The NASA Office of the Chief Engineer is responsible
for the NPR

The NPR shall be applied to all software
development, maintenance, operations,
management, acquisition, and assurance activities

Includes engineering and assurance requirements

Requirements are levied on Center organizations as
well as projects

* Applicability of requirements is determined through
the use of a NASA-wide definition of software classes

To find the document online go to NASA Online
Directives Information System (NODIS)

* http://nodis3.gsfc.nasa.gov/main lib.html
 Look for NPR 7150.2

OCE

ISWE

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

Welcome to the NODIS Library

Directives: 1000s | 2000s | 3000s | 4000s | 5000s | 6000s | 7000s | 8000s
9000-3799 | 9800-9999 | Library | Search |

+ NASA Internal Access

HOME

Directive ID
MPD 7010.1L
MPD 7100.10F
MPR 7100.1B
MPD 7100.8F

MPR 7120104

MPR 7120.11A
MPD 7120.4E
MPR 7120.5F
MPD 7120.6A
MPR 7120.7A
MPR 7120.8A

MPR 7123.1C
MPR 7150.2C
MPD 71701
MPD 733011

NPD 7410.1H

MPD 750010
MPR 7500.2
MPD 762011
MPR 7900.3D
MPD 790040

Processing Legislative Proposals

Curation of Institutional Scientific Collections (Revalidated wiChange 1)
Protection of Human Research Subjects

Protection of Human Research Subjects

Technical Standards for NASA Programs and Projects

MASA Health and Medical Technical Authority (HMTA) Implementation

MASA Engineering and Program/Project Management Policy

MASA Space Flight Program and Project Management Requirements
Knowledge Policy for Programs and Projects

MASA Information Technology Program and Project Management Requirements
MASA Research and Technology Program and Project Management Requirements

(Updated w/Chage 2)

MASA Systemms Engineering Processes and Requirements (w/iChange 2)

MASA Software Engineering Requirements

Use of Human Research Genetic Testing

Approval Authorities for Facility Projects (Revalidated w/Change 1 on September 23,

2021)

Management of Contract and Grant Support Services Obtained from External Sources
(Revalidated 8/14/2018)

Program and Project Life-Cycle Logistics Support Policy

MNASA Technology Transfer Requirements

Official Mames for Major NASA Projects (Revalidated w/Change 2)

Aircraft Operations Management

MASA Aircraft Operations Management, Updated with Change 1, March 10, 2015

Expiration Date
January 29, 2023
May 26, 2026
February 15, 2024
April 29, 2024
July 21, 2022
September 8, 2025
June 26, 2022
August 3, 2028
December 16, 2024
August 17, 2025
September 14, 2023

February 14, 2025
August 2, 2024
February 22, 2023
January 6, 2026

August 27, 2023

June 2, 2022
July 19, 2022
February 14, 2025
May 1, 2023
December 7, 2022

http://nodis3.gsfc.nasa.gov/main_lib.html

Recent update made to NPR 7150.2 for [

NPR 7150.2D

Update sources used:

* Inputs from across the Agency and
NASA HQ

* Impacts on future missions

 OCE and OSMA surveys and audits

 Feedback from Projects

* Questions asked in the
implementation of the NPR 7150
requirements

* Management Feedback

* Industry software standards

* Discussions with other engineering
disciplines

* Program directions

e Studies of software

What is the progressive
software engineering community
doing today that will address
the needs of the Agency

Management

Model and
simulations 5

\

Early Progressive Slow Entrenched

Efficiencies

Adopters Users Adopters Resisters

Themes and Targeted Change Areas for
NASA Software Engineering Requirements

Updated applicable documents and forms

Added SWE requirements for SMA

— Converted from “will” to “shall”

Updated Tech authority wording

Clarifications on Licensing and IP rights

Addition of 100% code coverage for safety-critical software
Addition of cyclomatic complexity for safety-critical software
Adaptation of cybersecurity requirements

Number of editorial fixes

NASA
Procedural
Requirements

Responsible Office: Office of the Chief Engineer

Table of Contents

Preface
P.1 Purpose

P2 Applicabiity

.3 Autherity

P 4 Applicable Documents and Forms
P.5 Measurement Verification

P.6 Cancellation

Chapter 1. Introduction
1.1 Overview

1.2 Hierarchy of NASA Software-Related Engineering and
1.3 Document Structure

Chapter 2. Rales, Responsibilities, and Principles Relat
2.1 Roles and Responsibilities
2.2 Principles Related to Tailoring of the Requisements

Chapter 3. Software Management Requirements

raining
Classification Assessments

urance and Software Independent Verific:
X 1 Software

3.8 Automatic Generaticn of Software Source Code

3.9 Software Development Processes and Practices

3.10 Software Reuse

3.11 Software Cybersecurity

3.12 Software Bi Directional Traceability

Chapter 4. Software Engineering (Life Cycle) Requiren
<

4 S0
45 8o Testing

4.6 Software Operations, Maintenance, and Retirement
Chapter 5. Supporting Software Life Cycle Requiremer
5.1 Software Configuration Management

5.2 Software Risk Management

5.3 Software Peer Reviews/Inspections

5.4 Software Measurements

NPR 7150.2D
Effective Date: TBD
Expiration Date: TBD

Subject: NASA Software Engineering Requirements

3.3 Software N or Defect

Chapter 6. R ded Software ion Contents
6.1 Software Engineering Products
6.2 Software Engineering Product Content

List of Appendices
Appendix A. Definitions

Appendix B. Acronyms

Appendix C. Requirements Mapping Matrix
Appendix D. Software Classifications
Appendix E. References

List of Figures
Figure 1. NASA Software Classification Structure

List of Tables
Table 1. Bi-directional traceability by software classification
Table 2. Requirements Mapping Matrix

Software Engineering Handboo

NASA Software Engineering Handbook > Admin pages > Book 8 7150 Reguirements Guidance

Introduction

Book B. 7|

4 This sectil
below to li

Chapter|
Requirem

Chapter 2

7150 Requirements Guidance | Topics
. TS

{ NAS)
SoﬁwareEng/neer/ngHandbook

Contérit Based oh NPR7150.2C

“['sW Engineering|

Handbook vercl I,/ |

SoﬁwareEngmeermgHandbaok

Pages / Book A.

Content baséd'on"NPR7150: ZD : i 7LE \
; C. Project S« I 1878 48 2% % Jo% fa. " B LN i -
iy | A iroduction W' 5. nsttutional [c. Project Software [D. Topics . Tools, References, F. SPAN
a0 Requirements Requirements and Terms (NASA Only)

@ PROJECT
Dashboard / Book A. Introduction «

This section ¢
inChapters 3 g, Project Software Requirements

@ PROJECT SOFTWARE REQUIREMENTS (CHAPTERS 3, 4, & 5)

This section contains guidance, rationale, and lists of useful resources and tools related to each and every one of the requirements in NPR 7150.2D in
Chapter 3 f Chapters 3, 4, and 5. You can use the table below to link to the full text of all requirements and to the guidance on each.

2.1 Software | Topic 7.16 - Appendix C. Requi ing and Compliance Matrix contains downloadable spreadsheets for each dass of software based
SWeoss.a | oM NPR7150.2C. (An pdated Requirements Mapping and Compliance Matrixfor NPR 71502.D is under developmen)

A | Topic 815 - SA Tasking Checklist Tool contains the Software Assurance Tasking Checklist Tool to assist in the planning, execution, and monitoring of
SWE-013-S | the Software Assurance tasks provided in NASA-STD-8739.8 mapped to the NPR-7150.2 Software Engineering Requirements. (An updated SA Tasking
SWE-024-P | Checkist Tool for NPR 71502.D is under development)

SWE-034 - A

SWE-036-§

EWENISEIN Chapter 3. Software Management Chapter 4. Software Engineering Life Chapter 5. Supporting Software Life
Requirements Cycle Requirements Cycle Requirements
3.1 Software Life Cycle Planning 4.1 Software Requirements 5.1 Software Configuration
SWE-D33 - Acquisition vs. Development SWE-050 - Software Requirements Management (SCM)

Assessment SWE-051 - Software Requirements Analysis SWE-079 - Develop CM Plan

SWE-013 - Software Plans SWE-184 - Software-related Constraints and SWE-080 - Track and Evaluate Changes
SWE-024 - Plan Tracking Assumptions SWE-081 - Identify Software CM Items
SWE-034 - Acceptance Criteria SWE-053 - Manage Requirements Changes SWE-082 - Authorizing Changes
SWE-036 - Software Process Determination SWE-054 - Corrective Action for SWE-083 - Status Accounting
SWE-037 - Software Milestones Inconsistencies SWE-084 - Configuration Audits
SWE-039 - Software Supplier Insight SWE-055 - Requirements Validation SWE-085 - Release Management
SWE-040 - Access to Software Products SWE-045 - Project Participation in Audits

SWE-042 - Source Code Flectronic Access 4.2 Software Architecture

SWE-139 - Shall Statements SWE-057 - Software Architecture 52 Software Risk Management

NPR 7150.2A

NPR 7150.2B

SoftwareEngineér!

NPR 7150.2C

ISWE

e Guidance material to help the NASA
workforce implement the software
engineering requirements in NPR 7150.2
and promote best practices across the

Agency in software engineering.

NPR 7150.2D

practice

* Provides guidance for all of the software
engineering requirements contained in

NASA’s NPR 7150.2, plus topics

e Guidance material includes requirement
specific guidance, rationale, examples,

best practices, lessons learned,
references, tools and templates

https://swehb.nasa.gov/

* Addresses topics of interest identified by
the Software Engineering community of

ISWE

Handbook Version Transition Page

SoftwareEngineeringHandbook B 11 ' -1
Content baséed'on' WPR7I50:2D =i EERING NETWORIK
¥ LI ™ ¥ e Y 1 " = " E

) g . T B = L
AL Introduction B. Institutional . Project Software D, Topics E. Tools, References, F. SPAMN
Requirements Requirements and Terms (MASS Only)
Dashboard --- e
Book A. Introduction
1. Welcome 2. SWEHB Introduction 3. Title Material 4. Re=sources 5. Acces=sing Other WYWersicons of SWEHB

The wersion of the handbook that you are wiewing is noted in the header image. Clicking on this image, while on any page of the SWEHBWD, will take wou back to the
Introeduction page for this wersion.

To access other wersions of the Softwware Engineering Handbook use the links belows:

= Click here to go back to the Softwware Engineering Handbook from MPR 7150 248
= Click here to go back to the Softwware Engineering Handbook from MPR 7150 2B
= Click here to go back to the Software Engineering Handbook from NMPR 7150, 2C
= ou are already in the Software Engineering and Software Assurance Handbook from MPR 7150 .20

Four wersions of the NASA Software Engineering and Assurance Handbook, NASA-HDBE-Z2203 are awvailable for use (see Tab S5 to access the wversions of the
handbook)

= The original wver=sion of the handbook - addresses the NASA Software Engineering Reguirements in NPR 7150 .25 NPR 7150.248 had an effective date
of Mowvember 19, 2009, to the expiration date of Howember 1%, 2014,

= Rewvision A - addresses the NASA Software Engineering Reguirements in NPR 7150.28B. NPR 7150.2B had an effective date of Nowvember 19, 2014, to the
expiration date of Augus=st 2, 20159

= Rewizion B - addresses the NASA Software Engineering Reguirements in NPR 7150.2C and the reguirements in the NASA Software Assurance and Software
Safety standard, NASA-STD-87359 .84, MPR 7150.2C had an effective date of August 2, 2019, to the expiration date of August 2, 2024 NASA-STD-8739 .34
272 has an effective date of June 10, 2020.

= Rewvizion C - Addresses the NASA Software Engineering Reguirements in NPR 7150.20, and the reguirements in the NASA Software Assurance and Softeware

- Safety standard, NASA-STD-87359 .84, MPR 715020 had an effective date of 03/08/2022, to the expiration date of 03/08/2027. NASA-STD-8735.85 278 has an

effective date of June 10, 2020,

HPR F150.2D0 is the latest wversion of the NASA Sofbware Engineering Requirements.

HASA-STD-E8F39.8A is the latest version of the MNASA Soffware Assurance and Software Safety Standard

5.1 SWE History

The SWE History Summary includes all SWE numbers and their history of use in all wversions of the Software Enginesering Handbook.

Click SWWE History to wiews.

Software Handbook —Project Requirements

NASA) OU TOOTC i & e 2T N e

SoffwareEngmeerfﬁg andbook’ Fo 18 NASA -
Content baséd‘pﬁWER?I 50.2D

| ENGINEERING NETWORK

[T T e] ®iy i » 5t 3 kR A
A Introduction BE. Institutional C. Project Software D. Topics E. Tools, References, F. SPARM
Requirements Requirements and Terms (MASA Only)
Dashboard / Book A, Introduction - -

C. Project Software Requirements

z=. (HO-EADIIFERCT] Tim Apr O

]
(]
(=]
[l
]

& PROJECT SOFTWARE REQUIREMEMNTS (CHAPTERS 3, 4, & 5)

This section contains guidance, rationale, and lists of useful resources and tools related to each and ewvery one of the requirements in MNPR 7150.2D in
Chapters 3, 4, and 5. You can use the table below to link to the full text of all requirements and to the guidance on each.

Topic 7.16 - Appendix C. Requirements Mapping and Compliance Matrix contains downloadable spreadsheets for each class of software based
on MPR 7150.2C. (An updated Requirements Mapping and Compliance Matrix for MPR 71502.D is under dewvelopment)

Topic 8.15 - SA Tasking Checklist Tool contains the Software Assurance Tasking Checklist Tool to assist in the planning. execution, and monitoring of
the Software Assurance tasks provided in NASA-STD-8739.8 mapped to the NPR-7150.2 Software Engineering Requirements. (An updated SA Tasking
Checklist Tool for MPR 71502.D is under dewvelopment)

Chapter 3. Software Management Chapter 4. Software Engineering Life Chapter 5. Supporting Software Life
Requirements Cycle Requirements Cycle Requirements
3.1 Software Life Cycle Planning 4.1 Software Requirements 5.1 Software Configuration
SWE-033 - Acquisition ws. Dewvelopment SWE-050 - Software Requirements Management (SCM)
Assessment SWE-051 - Software Requirements Analysis SWE-O7T9 - Develop Chi Plan

- SWE-013 - Software Plans SWE-184 - Software-related Constraints and SWE-080 - Track and Ewvaluate Changes
SWE-024 - Plan Tracking Assumptions SWE-081 - ldentify Software Ch Items
SWE-034 - Acceptance Criteria SWE-053 - Manage Requirements Changes SWE-082 - Authorizing Changes
SWE-036 - Software Process Determination SWE-054 - Corrective Action for SWE-083 - Status Accounting
SWE-037 - Software Milestones Inconsistencies SWE-084 - Configuration Audits
SWE-039 - Software Supplier Insight SWE-055 - Requirements Validation SWE-085 - Release Management
SWE-040 - Access to Software Products SWE-045 - Project Participation in Audits

4.2 Software Architecture

SWE-042 - Source Code Electronic Access
SWE-139 - Shall Statements SWE-0O57 - Software Architecture

5.2 Software Risk Management

. ISWE |

Remember...

* NPRs and Standards (including NPR 7150.2) are not intended to be “one
size fits all documents”

* They have built-in tailoring
* Software Classification (Class A, B, C, D, E, or F)
* Tailoring of the Software Classification requirements

* There is a level of compliance and rigor specified that is associated with the class
of the software to be built or acquired

* Part of your job as is to carefully consider what tailoring is necessary and build
time into your schedule to complete it

* There are tailoring procedures via Center and HQ Engineering Technical
Authority (ETA)

Use good software engineering and software assurance judgement on which requirements
should be implemented by your project

Summary

* The NPR provides a minimal set of requirements for software
acquisition, development, maintenance, retirement, operations, and
management

* The updated directive supports NASA programs and projects in
accomplishing their planned goals (e.g., mission success, safety,
schedule, and budget) while satisfying their specified requirements.

* The directive provides increased flexibility and tailoring options for
software requirements for projects based on risk

Look at the software requirements and determine what you need
to do for your project

iswe

Software Engineering
Handbook Demo

|
https://swehb.nasa.qov/ |

https://swehb.nasa.gov/

iswe

Visual Overview of NPR 7150.2

30 “Institutional” Requirements (Chapter2) | ISWE

Appllcable to AII CIaSS|f|cat|ons

Lead Software
Assurance and Safety
Initiative

Benchmark Center’s
SWA and SW Safety
Capabilities

Review Center’s
Mapping Matrices

Authorize Appriasals
against requirements

Provide Software
Assurance Training

Makes Decisions on
Tailoring IVV Rgmt

Center Director/Delegate(s)

Staff and advance Measure for Maintains contributor
software engineering Improvement list
capability

Establish and execute Establish and maintain Ensure Proper transfer
software processes software cost repo of software

Comply with NPR per Contribute to Agency Contract Officer:
Classification in PAL (Process Asset

Appendix C Library)
Report project status Define content of SW Tech Authority:
documentation

Maintain list of Ensure Government OCE, SMA, OCIO:
projects rights to Software

Establish and maintain Ensure reuse software | J)= a\/ELETE
software Metrics conforms to policies

100 NPR Requirements™ - Applicable Based on Classification ISWE

Software Management (Chapter 3)

Lifecycle (Chapter 4)

Lifecycle Support-Ch5

Track Changes

Identify CM Items

Establish CM
Procedures

Maintain CM
Records

Perform CM
Audits

Develop Release
Procedures

Participate in
Audits

Determine,
Manage Risk

*Note SWE-220 Cyclomatic Complexity has 2 shalls, counted as 1 here

Peer Review
Rgmts, Plans,
Code, Test
Plan CM
Review Process

Follow Basic Peer

Record Peer

Review Results

Measure
Software

Analyze Software
Measurements

House
Measurement
Data
Compare
Measured vs.
Expected
Measure
Software
Volatility
Track Defects

Determine
Severity Levels

Assess reuse,
COTS defects

Assess Process
Defects

)
tS
W

510

Class F Requirement Applicability (OCIO Authority)

Class Plan

Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources
Software Planning Requirements and Considerations

Software Documentation Software IV&V
Software Costing Software Classifications
Software Processes Software Reuse and Internal Sharing
Software Assurance Software Cybersecurity
Software Safety-Critical Software Lifecycles and Reviews

Software Life-cycle Requirements
Software Requirements Software Coding
Software Architecture Software Testing
Software Design Software Maintenance

Software Development Supporting Requirements Why do we

Software Configuration Management Software Defect Management do these
Software Risks Software Bi-Directional Traceability things?

Software Peer Reviews Software License Management Software
Software Measurements Software Acquisition Failures

iswe

Software Engineering
Documentation

. ISWE |

Key NPR requirements for documentation

* The project manager shall develop, maintain, and execute software plans, including security plans, that
cover the entire software life cycle and, as a minimum, address the requirements of this directive with
approved tailoring. [SWE-013]

* The project manager shall establish and maintain the software processes, software documentation plans,
list of developed electronic products, deliverables, and list of tasks for the software development that are
required for the project’s software developers, as well as the action required (e.g., approval, review) of the
Government upon receipt of each of the deliverables. [SWE-036]

* Where approved, the project manager shall document and reflect the tailored requirement in the plans or
procedures controlling the development, acquisition, and deployment of the affected software. [SWE-121]

* The project manager shall transform the requirements for the software into a recorded software
architecture. [SWE-057]

* The project manager shall develop, record, and maintain a software design based on the software
architectural design that describes the lower-level units so that they can be coded, compiled, and tested.
[SWE-058]

— * The project manager shall establish and maintain: [SWE-065]
- a. Software test plan(s).
- b. Software test procedure(s).
- . Software test(s), including any code specifically written to perform test procedures.
- d. Software test report(s).

Software Documentation Considerations

When deciding how to prepare any of these
items, consider the users of the information first.

Reviewing and understanding the requirements,
needs, and background of users and stakeholders
are essential to applying the recommendations
for content of software records

Specific content within these records may not be
applicable for every project.

Use of NASA Center and contractor formats in
document deliverables is acceptable if necessary
content (as defined by the project) is addressed.

Product records should be reviewed and updated
as necessary.

Chapter 6: Recommended Software Records Content

6.1 It 13 possible to prepare a plan, associated procedures, and reports, as well as numerous
records, requests, descriptions, and specifications for each software development life-cycle
process. When deciding how to prepare any of these items, consider the users of the information
first. Reviewing and understanding the requirements, needs, and background of users and
stakehelders are essential to applying the recommendations for the content of software records
defined in NASA HDBK-2203. Specific content within these records may not apply to every
project. Use of NASA Center and contractor formats in document deliverables iz acceptable if the
required content (a3 defined by the project) i3 addressed. Product records i
nodated. as necessary. Tvpical software engineering products or electronic data include:

a. Software Development Plan/Software Management Plan.

b. Software Schedule.

c. Software Cost Estimate.

d. Software Configuration Management Plan.

e. Software Change Reports.

f. Software Test Plans.

g. Software Test Procedures.

h. Software Test Reports.

1. Software Version Description Reports.

j- Software Maintenance Plan.

k. Software Assurance Plan(z).

L Software Safety Plan.

m. Software Requirements Specification.

n. Software Data Dictionary.

o. Software and Interface Design Description (Architectural Dezign).

p- Software Design Description.

q. Software User's Manual.

1. Records of Continuous Risk Management for Sofhware.

Software Documentation

Typical software engineering products or electronic data include:

Plans:

Software Development Plan/Software Management Plan.
Software Configuration Management Plan.

Software Test Plans.

Software Maintenance Plan.

Software Assurance Plan.

Software Safety Plan, if safety-critical software.

Products:

Software Schedule.
Software Cost Estimate.
Software Requirements Specification.

Software Data Dictionary.
Software Design Description.

Software and Interface Design Description (Architectural
Design).

Software Change Reports.

Software Test Procedures.

Software Test Reports.

Software Version Description Reports.
Software Acceptance Criteria and Conditions.
Software User's Manual.
Programmer's/Developer's Manual.

Analysis products:

* Records of Continuous Risk Management for Software.
* Software Measurement Analysis Results.

* Software product analysis results

* Record of Software Engineering Trade-off Criteria &
Assessments (make/buy decision).

* Software Status Reports.

* Software Reuse Report.

The recommendations for content of software records
are defined in NASA-HDBK-2203.

The Software Engineering handbook also provides
guidance regarding when these records should be
drafted, baselined, and updated.

Examples and templates for these records and/or data
sets are on the Software Process Across NASA (SPAN)
Web site, accessible at https://span.nasa.gov/.

https://span.nasa.gov/

Software Life Cycle Planning

ISWE

7.18 - Documentation Guidance

Haigh, Fred Douglas. (HO-KADO[PERCT] hay 16, 2019
1. Purpose 2. Resources 3. Lessons Leamed

1. Purpose

This topic provides a set of minimum content guidance for software project plans, reports, a
Handbook associated with NFR 7150 24, which contained requirements for software docum
incorporated into the guidance provided in this Handbook topic.

1.1 Introduction

Guidance for each document is provided via the linked pages below. Software documentatid
pages.

The tab labels are abbreviated as follows:

* CR-FR - Software Change Request - Froblem Report
*+ CSIP - Center Software Improvement Plan
+ DD - Interface Design Description
* Inspect - Software Inspection, Peer Reviews, Inspections
* Maint - Software Maintenance Plan
+ Metrics - Software Metrics Report
+ Safety - Software Safety Plan
+ SAP - Software Assurance Plan
+ SCMP - Software Configuration Management Flan
- + SDD - Software Data Dictionary
+ SDP-SMP - Software Development - Management Plan
+ SRS - Software Reguirements Specification
+ STF - Software Test Flan
+ STR - Software Test Report
+ SUM - Software User Manual
+ 3SVD - Software Version Description

+ SwDD - Software Design Description

1. Minimum Recommended Content = 2. Rationale 3. Guidance 4. Small Projects 5. Resources 6. Lessons Leaned

1. Minimum Recommended Content

a. Project organizational structure showing autharity and responsibility of each organizational unit, including extemnal organizations (e.g., Safety and Mission
Assurance, Independent Verification and Validation (IV&V), Technical Authority, NASA Engineering and Safety Center, NASA Safety Center).
b. The safety criticality and classification of each of the systems and subsystems containing software.
¢. Tailoring compliance matrix for approval by the designated Engineering Technical Authority, if the project has any waivers or deviations to this NPR.
d. Engineering environment (for development, operation, or maintenance, as applicable), including test environment, library, equipment, facilities, standards,
procedures, and tools.
g. Work breakdown structure of the life-cycle processes and activities, including the software products, software services, non-deliverable items to be
performed, budgets, staffing, acquisition approach, physical resources, software size, and schedules associated with the tasks.
f. Management of the quality characteristics of the software products or services.
0. Management of safety, security, privacy, and other critical requirements of the software products or services.
h. Subcontractor management, including subcontractor selection and invalvement between the subcontractor and the acquirer, if any.
i. Verification:
i. Identification of selected software verification methods and criteria across the life cycle (e.g., software peer review/inspections procedures, re-
reviewsfinspection criteria, testing proceduras).
ii. ldentification of selected work products fo be verified.
jii. Description of software verification environments that are to be established for the project (e.q., software testing environment, system tesfing
environment, regression festing environment).
iv. Identification of where actual software verification records and analysis of the results will be documented (e.q., fest records, software peer
reviewfinspection records) and where software verification corrective action will be documented.
j. Validation
i. Identification of selected software validation methods and criteria across the life cycle (e.q., prototyping, user groups, simulation, analysis,
acceptance testing, operational demonsirations).
ii. ldentification of selected work products fo be validated.
jii. Description of software validation environments that are to be established for the project (e.q., simulators for operational environment).
iv. Identification of where actual sofiware validation records and analysis of the results will be documented (.g., user group records, prototyping
records, and acceptance testing records) and where software validation corrective action will be documented.

+ Test - Software Test Procedures
+ Train - Software Training Plan

iswe

Software Cost Estimation

NPR 7150.2D Requirements on Software . ISWE |

Cost Estimation i

* 3.2.1 To better estimate the cost of development, the project manager shall establish, document, and maintain: [SWE-
015]

a. Two cost estimate models and associated cost parameters for all Class A and B software projects that have an estimated project cost of $2 million or
more.

b. One software cost estimate model and associated cost parameter(s) for all Class A and Class B software projects that have an estimated project cost
of less than $2 million.

c. One software cost estimate model and associated cost parameter(s) for all C and D software projects.

d. One software cost estimate model and associated cost parameter(s) for all Class F software projects.

* 3.2.2 The project manager’s software cost estimate(s) shall satisfy the following conditions: [SWE-151]

a. Covers the entire software life-cycle.

b. Is based on selected project attributes (e.g., programmatic assumptions/constraints, assessment of the size, functionality, complexity, criticality, reuse
code, modified code, and risk of the software processes and products).

c. Is based on the cost implications of the technology to be used and the required maturation of that technology.
d. Incorporates risk and uncertainty, including end state risk and threat assessments for cybersecurity.
e. Includes the cost of the required software assurance support.

f. Includes other direct costs.

* 3.2.3 The project manager shall submit software planning parameters, including size and effort estimates, milestones,
and characteristics, to the Center measurement repository at the conclusion of major milestones. [SWE-174]

Let’s do a Cost Estimate! |

* You want to build your dream home!

- 4000 ft2
— Two Story Brick Veneer
— 4 Bedrooms

— Living Room, Dining Room, Den, Rec Room, e
Office, Laundry, etc. m—

' ?
— 3 Baths (Master w/Separate Tub, Walk in How Much Wil .It Co?t.
Shower, and WC) Assume that the land is provided

— High-End Kitchen with Professional Appliances

The Quality of an Estimate is Directly Affected by Experience,
Time Available, the Detail/Maturity of the Technical Definition,

and the Quantity and Relevance of Historical Data

The Cost Estimating Universe -

Million$ Billion$

Payload Operations

Basic Research & Technology Development Technology Development Missions = E

Grants, Data Analysis, Space Act Agreements
Small Optics and Components Payloads & Large Components
Big Satellites Large Observatories

Sounding Rocket & Balloon Experiments
Human Spaceflight

— Small Satellites
f Launch Vehicles

Focus of this Class™*

*However the Principles Apply to Any Estimate!

ISWE |

Why Costing, Sizing, Progress Tracking? [

* This section introduces you to some of the topics necessary to
manage your project well

* In the current atmosphere of budget reductions, its critical to be
able to make good software cost estimates

— And to be able to track progress so projects finish on-time/within budget!

* NASA requires for software activities:

- doing at least one software cost estimate for your project, two are required
for Class A and B projects $2M and over

= - planning the project
— tracking progress against the plan

Cost Estimating Methods [

* Grass Roots/Bottoms-Up

* Ana |Ogy Requirement Effort
* EXpert Opl n Ion/Delphl d{r:i:ﬁu?:rts estisrﬁfatrrc?r:epgggéss Duration
Approach
Other cost

e Factors/Rules of Thumb drivers Loading

e Parametric

The Available Detail and Maturity of the Technical Content, Plus

the Estimate Scope, Requirements, and Purpose will Determine
the Best Estimating Method(s

Software Cost Estimation Issues

Know the Purpose of a Cost Estimate
Know How to Do a Cost Estimate
Know if Your Cost Estimate is Any Good

Budget ‘bogies’ get set very early in lifecycle.
Sometimes based on casual conversations.

* You will typically get held to this number!!

Current proposal and planning process
encourages/ demands under-estimating in
early stages of lifecycle

Software estimation is fundamentally an
uncertain business under the best of
conditions

. ISWE |

Less vague
Cost ok (and modified)
clri vers requirements recuirements
Other cos
Trll Effort
Software cost |
estimation process Duration
Financ_ia i
Constraints constraints acding
Other
resource ninoenc
onstraints gency
i Tentat v WEBS
Risk factors
; Less fuzzy
Cther Fuzzy architectur archilechiie
inputs
Software pocess

. ISWE |

Steps In Performing a Cost Estimate

1. Identify the Content of the Estimate (Spacecraft Bus, Subsystem,
Component, Test, Analysis, Software components, etc.)

2. Determine the Work Required to Perform the Content

* Design

* Build

* Integrate
* Test

* Etc.

3. Estimate the Resources Required to Perform the Work
4. Determine the Amount of Uncertainty and Risk in the Estimate
5. Validate and Document the Results

65

Estimating Software Size Using -
Source Lines of Code (SLOC) |

» Software ‘size’ is simply a measure of code ‘bigness’

* The most common way to estimate size is through Source
Lines of Code (SLOC)

Lines of Code estimation

* Includes any code delivered as a software release

- Many definitions and standards: Source lines of code (SLOCQ) is a software metric
* Raw physical: SLOC are the total number of linesin a used £o SRS the: =iz ot & 'com'puter
file program by counting the number of lines in the
text of the program's source code.
SLOC is typically used to predict the amount of
effort that will be required to develop a
program, as well as to estimate programming
productivity or maintainability once the
— e and many others software is produced.

* Physical: SLOC are the total number of non-blank,
non-comment lines

* Logical: SLOC captures size using language-specific
rules.

e SLOC is easy to capture using common counting utilities

Parametric Software Cost Estimation

* Model-based estimates are estimates made using
parametric cost models

e SEER-SEM and COCOMO are the two primary
software cost models used with NASA

* Model-based estimates can be used

* As a primary estimate early in life cycle

* As a secondary backup estimate for
validation

* To help you “reason about the cost and
schedule implications of software decisions
= you may need to make”

* Cost risk methodology using parametric models
has been applied on many projects across NASA

COCOMO Conclusions

= COCOMO is the most popular software
cost estimation method

= Easy to do, small estimates can be done

by hand

» USC has a free graphical version available

for download

= Many different commercial version based
on COCOMO - they supply support and
more data, but at a price

Inputs

Personnel

Outputs
Effort

// ost

S

Environment — SEER-SEM

L Schedule

Coemplexity

Constraints

\\‘ Maintenance

Reliability

Software Cost Parameters

Required Software Reliability:
Database Size:
Product Complexity

Developed for Reusability:

Documentation Match to Life-Cycle Needs:

Execution Time Constraint:
Analyst Capability:
Programmer Capability:
Personnel Continuity:
Applications Experience:
Platform Experience:
Language and Tool Experience:

Multisite Development:

Required Development Schedule:
Development Flexibility:

Architecture / Risk Resolution

e Team Cohesion

Process Maturity:

. ISWE |

Main Storage Constraint:

Platform Volatility:
Use of Software Tools:

Precedentedness:

Table 1. COCOMO II Personnel Factors [23:47-49]
Productivity
Personnel Factors VL L N H VH Range

Analyst Capability 1421 119| 1.00| 085| 0.71 2.00
Programmer Capability 1341 115 100| 088| 0.76 1.76
Personnel Continuity 129 112 100] 090| 0.81 1.51
Applications Experience 122 110| 100| 088 | 0.81 1.51
Platform Experience 1191 109] 100 091| 085 1.40
Language and Tool Experience 1200 109 1.00] 091 | 0.84 1.43

Example Model Output

100% 1

90% 1

80% 1

Y

Cost Probabilit

20% 1

10% 7

0%

/0% 1

60% 1

50% 1

40% 1

30% 1

Softw are Development Cost Cumulative Distribution

Function

Recommended Budget with Reserves => 70%

Recommended Minimum without
Reserves => 50%

500 1000

Cost ($K) Recommend between

\)1500

$1.2-1.4M

2000

e For tasks with 10% level
of reserves or less
recommend a range of
50% to 70% probability

e For tasks with 20% or
greater reserves
recommend 40-70%

Documenting the Estimate [-

v What am | Estimating?

v Why am | doing the Estimate?
v What Information did | Use for the Estimate?

v How did | do the Estimate?
! v How much Uncertainty and Risk is in the Estimate?

v How did | Validate the Results?

1 All of this Information becomes Part

of Your Basis of Estimate (BOE)

Key Points i
 Use at least two estimates Q
« Document the basis of estimate Rf
(BOE) HE/{&ER
« Update estimate at significant TN
milestones

« Keep your history —

* Incorporate Uncertainty

Software Cost Data

EFFORT% o PIa.ns andt
Transition (SWAR- equirements
SAR) (LCCR-PRR)
10% 5%

Integration and
Test (UTC-SWAR)

15%
Detailed
Design (PDR-CDR)
25%
|
Code and
Unit Test (CDR-
uUTC)
30%

ISWE

Plans and L
(V)
SCHEDULE% Transition Requirements
(SWAR-SAR) (LCCR-PRR)
10% 10%

Integration
and Test (UTC-
SWAR)
20%
Programming (PDR-UTC)...
Table 4. Waterfall Phase Distribution Percentages

Phase (end points) Effort% Schedule%

Plans and Requirements
7(2-1 16-24 (2-
(LCCR-PRR) (2-15) 6-24 (2-30)
Product Design (PRR-PDR) 17 24-28
Programming (PDR-UTC) 64-52 56-40
Detailed Design
27-2
(PDR-CDR) 3
Code and Unit Test
37-29

(CDR-UTC)
Integration and Test (UTC-
SWAR) 19-31 20-32
Transition (SWAR-SAR) 12 (0-20) 12.5 (0-20)

Software Cost Data

Table 4b Overall phase distribution profile

Phase |Plan&Req. | Design Code Test Trans.
Min 1.82% 0.62% 0.99% |[4.24% | 0.06%
Max 35% 50.35%]92.84% |50.54% [36.45%

Median | 15.94% 1421% 136.36% |19.88% [4.51%

Mean 16.14% 14.88% [40.36% |21.57% [7.06%

Stdev 8.62% 8.91%]116.82% |[11.04% |7.06%

SOFTWARE PHASE DISTRIBUTION

Transition Plan and
7% Requirements

16%

Design
15%

Code
40%

Summary for Software Cost Estimation

C

* Cost Estimation is Indispensable to I

Good Decision Making and Good
Program/Project Management

What do you need
for

* Expect a Credible, Supportable, a SUCCESSfUI
Defendable Basis of Estimate

software

« Affordability Requires Awareness of development
the Cost to Perform the Work effort?

* Beware of the Optimism Bias — It will
Cost More than You Think!

Software Processes

Process Questions

B

* The challenge for leaders is to examine every area of I

their organization and identify the processes that are
in place.

* Ask: Sl=]
N
- Does the right process or procedure exist? ﬁ%
— Is the process effective? How do you know?

. WE
— Do staff bers k the out fth dure?
o staff members know the outcome of the procedure E&%

— Does everyone know the “why” of the process?

- How and when is the process evaluated?

— Does everyone know how they fit into the process and what
to do?

- Are staff members held accountable to the process?
— What is the process to fix an ineffective process?

Your process should not look like this

NASA’s Software Engineering Capability as
measured by CMMI Rating Level

e What is CMMI?

— The Capability Maturity Model Integration
(CMMI)® is a proven set of global best
practices that drives business performance
through building and benchmarking key
capabilities.

— Is recognized worldwide as benchmark for
software engineering capability

— Consist of 5 well defined levels

https://cmmiinstitute.com/cmmi/intro

Originally created for
the U.S. Department of
Defense to assess the
quality and capability of
their software
contractors.

https://cmmiinstitute.com/cmmi/intro

. ISWE |

Why Are We Addressing CMMI® in This
Course?

CMMI® has been shown by industry to have many benefits

When followed it can lead to better cost, schedule, and

quality control, and...

It is required by NASA Directives for Class A and B software:

3.9.3 The project manager shall acquire, develop, and maintain software from an organization
with a non-expired CMMI-DEV rating as measured by a CMMI Institute Certified Lead Appraiser as

follows: [SWE-032]

e a. For Class A software: CMMI-DEV Maturity Level 3 Rating or higher for software.

* b. For Class B software (except Class B software on NASA Class D payloads, as defined in NPR
8705.4): CMMI-DEV Maturity Level 2 Rating or higher for software.

The CMMI model use at NASA | ISWE

 The CMMI model is an industry-accepted model of software development practices.

* Itis utilized to assess how well NASA projects are supported by software
development organization(s) having the necessary skills, practices, and processes in
place to produce reliable products within cost and schedule estimates. The CMMI
model provides NASA with a methodology to:

- Measure software development organizations against an industry-wide set of best practices that
address software development and maintenance activities applied to products and services.

- Measure and compare the maturity of an organization's product development and acquisition
processes with the industry state of the practice.

— Measure and ensure compliance with the intent of the directive’s process related requirements
using an industry standard approach.

— Assess internal and external software development organization’s processes and practices.

- Identify potential risk areas within a given organization's software development processes and
practices.

L
WHY USE THE CMMI MODEL? I

CAPABILITY
Our Potential

BUSINESS

STRATEGY PERFORMANCE
RESOURCES Our direction Our Results
(What we and scope (business level)

have
TECHNOLOGY

What we use /"

PROCESS
PERFORMANCE

Our Results
(how well we did it)

PROCESSES
How we do it

PRACTICES
What we do

& cMMI Institute |

CMMI CAPABILITY AREAS

+ Ensuring Quality
+ Engineering and
Developing Products
+ Delivering and
Managing Services
+ Selecting and
Managing Suppliers

IMPROVING MANAGING

+ Improving + Planning and
Performance Managing Work
+ Building and * Managing Business
Sustaining Resilience
Capability + Managing the
Workforce

ENABLING

* Supporting
Implementation

* Managing Safety

* Managing Security

CMMIO02VE & 2018 CMMI Institute

@ CMMTI Institute |

CMMI V2.0 MODEL
CORE PRACTICE AREA
PRACTICE GROUP LEVELS

Estimating
E Planning
m Monitor & Control

Causal Analysis & Resolution
P
|‘L Decision Analysis & Resolution
DAR =
] —
E Configuration Management
[l1% —

‘ Managing Performance & Measurement

ISWE |

wwww-mmm;

e

Process Quality Assurance

2D verification & validation

Governance

Implementation Infrastructure

CMMIDBE2VZ © 2018 CVMMI Irstituie

NNNNNNNNNNNNNNNNNNN?

B R R Rp R (e | R R R R R R R| R LR

Wl Wl W W w w w w wl w| w

ST

Why has NASA Management directed the use [ISWE

of CMMI® standards?

The CMMI requirement is a qualifying requirement. The requirement is included to
make sure NASA projects are supported by software development organization(s)
having the necessary skills and processes in place to produce reliable products
within cost and schedule estimates.

It is a benchmarking tool widely used by industry and government, both in the US

and abroad NASA
It acts as a roadmap for process improvement SQ' | V VAR -

It provides criteria for reviews and appraisals omn \4 -
p pp ve Ca\£E0 %v

It provides a reference point to establish present state of processes ' '
p f p p fp %YV 6e)

It can help the government compare the maturity of one offerer (or supplier) to
another

It addresses practices that are the framework for process improvement

It is not prescriptive; it does not tell an organization how to improve

Rigorous Software Processes Are _ ISWE |

Producing Superior Results

Flight Software Key Process and Product Metrics
. Defect Density
Effort Growth l?roduct1v1ty (Defects/
Process Performance (Lines of Code/)
from PDR Thousand Lines of
Work Month)

Code)
Robust Process 39% 150 4.3
Low to Moderate 116% 106 59
Process Performance

+ In 2011 our data clearly showed the impact of the use of
rigorous development processes (PPl >80%), when
compared to JPL tasks with less rigorous processes (PPI N e ———

— <70%)

+ lower cost growth

2014 JPL State of Mission Software Report:
An Overview

+ higher productivity kst e o st
+ lower defect rates

PPI — Process Performance Indicators

Quantitative Results | ISWE |

L
Case Study: Defense Industry I
High CMMI Maturity Reduces Costs for Repair

200

182.4

I Maturity Level 3

[Maturity Level 5 57.7% Fewer
Hours Overall
L B0
(3=}
=
b=3]
j=1
R
XK
5 100 88.6 fewer Saves 105.3
2 hours in Testing ! hours per defect
£
&
©
L
= 50 . .
Potential Cost Savings From
| $1.9 million to $2.3 million
per average-sized program
0
Requiremnents Code & UT Testing Post Delivery Total Hours
& Design

Benefits of CMMI |

B
REDUCTIONS IN: I

* Reducing risk of software failure - Increasing mission safety,

* Improving the accuracy of schedule and cost estimates by requiring the use
of historical data and repeatable methods

: Rework
* Helping NASA become a smarter buyer of contracted out software, ¢ e
* Increasing quality by finding and removing more defects earlier, Dafects

* Improving the potential for reuse of tools and products across multiple Dolivery Bmon
projects, Cost

* Increasing ability to meet the challenges of evolving software technology,
* Improving Software development planning across the Agency,

Risk

)) . INCREASES IN:
* Improving NASA contractor community with respect to software
engineering, Customer satisfaction
* Lowering the software development cost, improves productivity 4 S——
= Improving employee morale,

Decision=making ability

* Improving customer satisfaction,
* Improving NASA and Contractor community knowledge and skills,

* Providing NASA a solid foundation and structure for developing software in
a disciplined manner.

ACcuracy

Competitive advantage

. ISWE |

Summary -

« CMMI° is an integrated framework for maturity models and associated products I

e CMMI° combines

- A set of best practices
- A model for organizational improvement
- A community developed guide

- A common-sense application of process management and quality improvement
concepts

* Successful projects require

- Focus on customer satisfaction
- — Dynamic project planning
— Compliance with NASA project requirements and plans
- Use of appropriate methodologies and tools
— Control of project financial and business issues

Software Assurance

Policy

Procedural
Requirements

Standards

Handbooks &
Guidebooks

Center Level
Directives

Current NASA Software Documentation Tree |

(with a few related non-software documents in gray)

NPR 7150.2D
NASA Software
Engineering
Requirements,
2022, OCE

NASA-STD-8739.8B
Software Assurance and
Software Safety Standard

NPD 7120.4
NASA Engr. &
Prog./Proj. Mgt.
Policy
parent of parent of
NPR 7123.1 NPR 7120.8
gzliazszelc?f L NASA Systems NASA Research &
NASA Engr, Process NPR 7120.7
& Requirements NASA IT & Infra.
Software
NPR 7120.5
NASA Space
is supported by FIight_Prog./Proj.
\l/ Requirements

is supported by

NASA-STD-7009
Standard for
Models &
Simulations

NASA-HDBK-2203
NASA Software
Engineering and
Software Assurance

Handbook

Center Level Software
Directives
(Ames, DFRC, GRC,
GSFC, JPL, JSC, KSC,
LaRC, MSFC, & SSC)

|

ASA-HDBK-4008
rogrammable
ogic Device HDBK

NASA-HDBK-8739.23
Complex Electronics
HDBK for Assurance
Professionals

Documents:

. ISWE |

Links to the current releases of our software assurance documents are provided below. When
new documents are created, or existing documents are updated, the list of links will be revised
accordingly.

NASA Software Assurance Standard (NASA-STD-8739.8)

Complex Electronics Handbook for Assurance Professionals (NASA-HDBK-8739.23)

https://swehb.nasa.gov/

https://sma.nasa.gov/sma-disciplines/software-assurance-and-software-safety

https://standards.nasa.gov/safety-quality-reliability-maintainability

https://swehb.nasa.gov/
https://standards.nasa.gov/safety-quality-reliability-maintainability
https://standards.nasa.gov/safety-quality-reliability-maintainability

a.

The objectives or value of the Software Assurance and Software Safety include the following:

Basics of Software Assurance

Ensuring that the processes, procedures, and products used to produce and sustain the
software conform to all specified requirements and standards that govern those
processes, procedures, and products.

@ A set of activities that assess adherence to, and the adequacy of the software
processes used to develop and modify software products.

(b) A set of activities that define and assess the adequacy of software processes to
provide evidence that establishes confidence that the software processes are
appropriate for and produce software products of suitable quality for their
intended purposes.

Determining the degree of software quality obtained by the software products.

Ensuring that the software systems are safe and that the software safety-critical
requirements are followed.

The Software

Assurance activities
provide a level of
confidence that software is
free from vulnerabilities,
either intentionally
designed into the software
or accidentally inserted at
any time during its life
cycle, that the software
functions in an intended
manner, and that the
software does not function
in an unintended manner.

Ensuring that the software systems are secure.

Employing rigorous analysis and testing methodologies to identify objective evidence

and conclusions to provide an independent assessment of critical products and processes
throughout the life cycle.

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Types of Software Defects Across NASA Projects

. Requwements

Missing Required Functionality
Poorly articulated requirements and traceabilityissues
Security controls assessment

High level use-case based requirements don’t always fully encapsulate

user expectations

« |nadequate verification approach
Depth and breadth of unit tests not adequate (based on requirements,
not how code written)

Testing needed in development labs or simulated environments as well as hardware-

in-the-loop environments

Limited ability to test in full up system integrated modeuntil System

Integration Test

 Coding Errors

Data type differences; Memory Leaks; Race conditions;

Timing/synchronization issues

« Software Design

Incorrect design to meetrequirements
Interface definition not complete or missing

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Examples of NASA software issues seen during operations

Coding errors _—
- Timing Discrepancies (of different varieties: between processes, ——
between in-house builtand COTS code);
- Misunderstood requirements;
- Changes during maintenance or updates that negate
other software, have unintended consequences, or leave
dead code behind
Incomplete/Incorrect Requirements
Incomplete ICD/Undocumented interface features
Testing error
- Incomplete Regression Testing
- Incomplete set of test cases during development
- Inadequate hardware in the loop testing
Use of software in an unknown/unplanned configuration or scenario
General areas that introduced errors
- Not enough insight into contractor activities
- Inadequate risk management
- Inadequate peer reviews

SMA Technical Excellence Program

BES T EP

NEFR 7150.2C
Effective Date: TED
Expiration Date: TED

NASA
FProcedural
Requirements

Subject: NASA Software Engineering Requirements
Responsible Office: Office of the Chief Engineer

Chapter 3: Software Management Requirements
3.1 Software Life-Cycle Planning

3.1.1 Software life cycle planning covers the software aspects of a project from inception through
retirement. The software life cycle planning cycle is an organizing process that considers the
software as a whole and provides the planning activities required to ensure a coordinated, well-
engineered process for defining and implementing project activities. These processes, plans, and
activities are coordinated within the project. At project conception, software needs for the project
are analyzed, including acquisition, supply, development, operation, maintenance, retirement,
decommissioning, and supporting activities and processes. The software effort is scoped. the
development processes defined, measurements defined, and activities are documented in software
planning documents.

3.1.2 The project manager shall assess options for software acquisition versus development.
[SWE-033]

Note: The assessment can include risk, cost, and benefits criteria for each of the options listed
below:

a. Acquire an off-the-shelf software product that satisfies the requirement.

b. Develop a software product or obtain the software service internally.

c. Develop the software product or obtain the software service through contract.

d. Enhance an existing software prodiuct or service

e. Reuse an existing software product or service.

[Source code available external to NASA.

See the NASA Software Engineering Handbook for additional detail.

3.1.3 The project manager shall develop, maintain, and execute software plans that cover the entire
software life cycle and, as a minimum, address the requirements of this directive with approved
tailoring. [SWE-013]

Note: The recommended practices and guidelines for the content of different tvpes of software
plarming activities (whether stand-alone or condensed into one or more project level or
include or reference in the software development plans procedures for coordinating the
software development and the design and the system or project development life cycle.

Basics of Software Assurance

NASA-STD-8739.8A Standard Approach

NASA-STD-8739.8A

2020-06-10

Table 1. Software Assurance and Software Safety Requirements Mapping Matrix

The project manager shall define and document

o

NPR SWE | NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

7150.2 #

Section

3 Software Management Requirements

3.1 Software Life-Cycle Planning

3.1.2 033 | The project manager shall assess options for 1. Confirm that the options for software acquisition

software acquisition versus development. versus development have been evaluated.

2. Confirm the flow down of applicable software
engineering, software assurance, and software safety
requirements on all acquisition activities. (NPR.
7150.2 and NASA-STD-8739.8).
3. Assess any risks with acquisition versus
development decision(s).

013 | The project manager shall develop, maintain, and | 1. Confirm that all plans are in place, and have
execute software plans that cover the entire expected content for the life-cycle events, with
software life-cycle and, as a minimum, address proper tailoring for the classification of the software.
the requirements of this directive with approved | 2. Develop a Software Assurance Plan following the
tailoring. content defined in NASA-HDBEK-2203 for a software

assurance plan, including software safety.

314 024 | The project manager shall track the actual results | 1. Assess plans for compliance with NPR 7150.2
and performance of software activities against the | requirements, NASA-STD-8739.8, including changes
software plans. to commitments.
a. Corrective actions are taken, recorded, and 2. Confirm that closure of corrective actions
managed to closure. associated with the performance of software activities
b. Including changes to commitments (e.g., against the software plans, including closure
software plans) that have been agreed to by the rationale.
affected groups and individuals.

315 034

1. Confirm software acceptance criteria are defined
PR) :

the accepta

+ Performance-based requirements
* Closely tied to Engineering
Requirements in NPR 7150.2C

ISWE

Software Handbook — Requirements Example

SoftwareEngineeringHandbook
Content basédon' WNPR7I50:2D
» * L3 ;|

2T L 2 § » o = » g
A. Introduction B. Institutional C. Project Software D. Topics E. Tools, References, F. SPAN
Requirements Requirements and Terms (NASA Only)
Dashboard / Book A. Introduction / SWE Pages - o

SWE-013 - Software Plans

I\
10

I\
[

('8}

1. The Reguirement 2. Raticnale 3. Guidance 4. Small Projectis S. Resources S. Lessons Learned 7. Software Assurance

1. Requirements

3.1.3 The project manager shall develop, maintain, and execute software plans, including security plans, that cover the entire software life cycle and, as a minimum,
address the requirements of this directive with approved tailoring.

1.1 Notes

The recommended practices and guidelines for the content of different types of software planning activities (whether stand-alone or condensed into one or more
project level or software documents or electronic files) are defined in NASA-HDBK-2203. The project should include or reference in the software development plans
procedures for coordinating the software develcpment and the design and the system or project develcpment life cycle.

1.2 History

Click here to view the history of this reguirement: SWE-013 History

1.3 Applicability Across Classes
Class A B C D E
Applicable? D D 9 D 9 9

Key: o - Applicable | o - Not Applicable
A & B = Always Safety Critical;, C & D = Sometimes Safety Critical; E - F = Never Safety Critical.

Basics of Software Assurance

SoftwareEng/neerlngHandbodk
Content basféd‘bﬁWPRYISO 2D

. . .. NASA
Software e =
A. Introduction B. Institutional C. Project Software D. Topics E. Tools, References, F. SPAN

Requirements Requirements and Terms (NASA Only)

Dashboard / Book A. Introduction

Engineering D. Topics

0 This section contains special features and topics which contain material that is broader than any one Software Engineering requirement. Many

and Software
Assurance
Handbook

Topics

take the form of how-to's and tutorials for those wishing to learn about the state of software engineering within NASA.

For Frequently Asked Questions see the page: FAQ - Engineering, Assurance, and Safety

7.x Engineering Topics 8.x Assurance and Safety Topics Software Design Principles 6.x Programming Checklists

8.1 - Off Nominal Testing - Guidance focusing on out of bounds parameters,
failure scenarios, unexpected conditions, and capabilities that are typically
considered as "must not work” functions.

8.3 - Organizational Goals of Software Assurance Metrics - Derivation of SA
Metrics from the Goal Statements using the Goal, Question, Metric method.

8.5 - SW Failure Modes and Effects Analysis - A "bottoms up” structured
analysis method to help determine potential failures or hazards in the software
design with guidance and forms

8.7 - Software Fault Tree Analysis - A top-down analysis method to help identify
the causes of presupposed hazards.

8.9 - Software Safety Analysis - Software Safety Analysis (SSA) is a term that is
used to describe a wide range of analyses. This article provides guidance on
performing an SSA to satisfy the NASA-STD-8739.8 requirement associated with

ADD 74E0n 7 CWE 2NK

8.2 - Software Reliability - The goal of SW reliability and maintainability is to
assure that SW performs consistently as desired, when operating within specified
conditions. This topic covers additional basic information on software reliability.

8.4 - Additional Requirements Considerations for Use with Safety-Critical
Software - requirements to be considered when you have safety-critical software
on a program/project/facility.

8.6 - IV&V Requirements and Surveillance - This guidance will establish the
rationale behind the creation of an IV&V Requirements and Surveillance activities

8.8 - COTS Software Safety Considerations - A discussion on the use of COTS
in safety critical systems

8.10 - Facility Software Safety Considerations - Facility software system safety
exists to ensure the safe and continuous operation of software associated with
ground-based facilities

Key Software Assurance and Software Safety Activities

Software Assurance Planning

1 Implementation of the NASA-STD-8739.8 requirements

2 Software assurance\safety requirements mapping
matrix, review any tailored requirements

3 Software assurance\safety approach, plan and resource
allocations

4 Software assurance\safety requirements flow down into
contracts

Software Assurance Analysis
Software requirements analysis

Software safety analysis

5

6

7 Software test analysis

8 Software hazard analysis
9

Software source code quality analysis
10 Peer reviews

11

12

13
14

15
16
17
18

19

20
21

22

Basics of Software Assurance

Static Analysis Tools Assessments

Audits

Software engineering requirements flow down and
implementation
Software process audits
Software test witnessing

Communication
Software assurance and software safety planned activities
Metric and status reporting by software assurance\safety
IV&V plan and communication (if required)
Software risks, findings or known issues

Product reviews
Major Milestone product reviews
Software development product reviews
Software metric data reviews

Defect Tracking and Management
Root causes analysis

i_é_ %ﬂﬂFuEmE Basics of Software Assurance

SA Tasking Checklist Tool Software Assurance Planning activities

« Checklist tool that gives Software Assurance and Software Safety analysts the ability to tailor the software
assurance and software safety tasks in NASA-STD-8739.8 and generate a tailored checklist for the tasks
required on a project's software classification and safety criticality.

SA Tasking Checklist
Project: Project : Safety Critical: Yes : | Export to Excel l
Project Manager: Project Manager Software Classification: A =
Project POC: Project POC 3 Milestone(s): SWRR, PDR, CDR, TRR, SAR " Export to CSV |
SA Analyst: SA Analyst B | Export to XML |
SA Tech Authority: h SA Tech Authority Approval Date:)
Checklist
.)) .) NASA-STD-8739.84) .) . Date
Milestone SWE # - NPR 7150.2 Requirement - SA Tasking -Tailored - SWE Handbook Link - Analysis Type - Status Plannec
SwRE 33 The project manager shall assess options for seftware acquisition versus 1. Confirm that the options for software acquisition versus development https://swehb nasa gov/display/SWEHBVC/SWE-033+- Confirm Not Started
development have been evaluated. +Acquisition+vs.tDevelopment+Assessment
SwRE 33 The project manager shall assess options for software acquisition versus 2. Confirm the flow down of applicable software engineering, software https:/swehb.nasa gov/display/SWEHBVC/SWE-033+- Confirm Not Started
development assurance, and software safety requirements on all acquisition activities +Acquisition+vs +Development+Assessment
(NPR 71302 and NASA-STD-8730.8)
SwRE 33 The project manager shall assess options for seftware acquisition versus 3. Assess any risks with acquisition versus development decision(s). https:/swehb nasa gov/display/SWEHBVC/SWE-033+- Assess Not Started
development +Acquisition+vs.+Development+Assessment
SwRR 13 The project manager shall develop, maintain, and execute software plans 1. Confirm that all plans are in place, and have expected content for the life- |https:/'swehb nasa gov/display/ SWEHBVC/SWE-013+- Confirm Not Started
that cover the entire software life-cycle and, as a minimum, address the cyecle events, with proper tailoring for the classification of the software +Boftware+Plans
requirements of this directive with approved tailoring.
SwRER 13 The project manager shall develop, maintain, and execute software plans 2. Develop a Software Assurance Plan following the content defined in https://swehb.nasa gov/display/ SWEHBVC/SWE-013+ Develop Not Started
that cover the entire software life-cycle and, as a minimum, address the NASA-HDEEK-2203 for a software assurance plan, including software +Boftware+Flans
requirements of this directive with approved tailoring. safety.
SwRE 24 The project manager shall track the actual results and performance of 1. Assess plans for compliance with NPR. 71502 requirements, NASA-STD- |https:/swehb.nasa gov/display/ SWEHBVC/SWE-124+- Assess Not Started
software activities against the software plans 8735 8, including changes to commitments +Plar+Tracking
a. Corrective actions are taken, recorded, and managed to closure
b. Including changes to commitments (e.g.. software plans) that have been
Asn e tho offacead i dizidnnat

actions associated with the https:/swehb nasa gov/display/SWEHBVC/SWE-024+- Confirm Not Started

https://swehb.nasa.gov/display/SWEHBVD/8.15+- pans the scftac s incding | 1Fan Tecing
+SA+Tasking+Checklist+Tool

pria are defined and assess the criteria |hitps:/'swehb.nasa zov/display/ SWEHEVC/SWE-034+- Confirm Not Started
[the software. based on guidance i the NASA Software Engineering Handbook, NASA- [+Acceptance+Criteria
HDBE-2203.
SwRR 36 The project manager shall establish and maintain the software processes, 1. Confirm the following are approved, implemented, and updated per hitps://swehb nasa gov/display/SWEHBVC/SWE-036+- Confirm Not Started
software documentation plans, list of developed electronic products, requirements +3oftware+Process+Determination
deliverahles and list aftasks for the software develonment that are reanired |3 Softwars nrocesses inchiding software assurances software safatv and

https://swehb.nasa.gov/display/SWEHBVD/8.15+-+SA+Tasking+Checklist+Tool
https://swehb.nasa.gov/display/SWEHBVD/8.15+-+SA+Tasking+Checklist+Tool
https://swehb.nasa.gov/display/SWEHBVD/8.15+-+SA+Tasking+Checklist+Tool

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Software Assurance Analyses
activities
» Software Assurance Plan - Describes Software Assurance Plan content as well as sub-plans for Safety and Security

Primary Software Assurance and Software Safety work products

* V&V Program Execution Plan - This is produced by the IV&V team, if software IV&V is required on a project.

« Software Requirements Analysis - This section focuses on analysis techniques for assuring and improving requirements

« Software Safety and Hazard Analysis - (Only applicable for safety critical projects) - Under Construction —
« Software Design Analysis — Section focuses on analysis techniques for improving the design.

« Source Code Quality Analysis - Section focuses on analysis techniques for determining and improving source code quality.

« Testing Analysis - Discusses considerations for developing and evaluating test products (test plans, test procedures and test
results)

« Software Assurance Status Reports - Contains recommended content for SA status reporting, including reporting details for
analysis, assessments and audits.

« Audit Reports - Discusses required audits and provides information and resources for performing audits

« Objective Evidence - This topic provides a definition with some examples of "objective evidence" and contains a listing of all
the tasks in NPR-8739.8 278 where "objective evidence" may be the only product.

* Hazard inputs
» Findings, issues, defects, problem reports, and identified software risks
https://swehb.nasa.gov/display/SWEHBVD/8.16+-+SA+Products

https://swehb.nasa.gov/display/SWEHBVD/Software+Assurance+Plan
https://swehb.nasa.gov/pages/viewpage.action?pageId=102695746
https://swehb.nasa.gov/display/SWEHBVD/Software+Requirements+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Software+Safety+and+Hazard+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Software+Design+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Source+Code+Quality+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Testing+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Software+Assurance+Status+Reports
https://swehb.nasa.gov/display/SWEHBVD/Audit+Reports
https://swehb.nasa.gov/display/SWEHBVD/Objective+Evidence
https://swehb.nasa.gov/display/SWEHBVD/8.16+-+SA+Products#_tabs-4
https://swehb.nasa.gov/display/SWEHBVD/8.16+-+SA+Products

SMA Technical Excellence Program

STEPRP

Software source code quality analysis

Code Risk

©)

Drilling down a level — and particularly for mission-
and safety-critical systems, the code itself entails
risks. For example, consider the risk that a code
base is:

= Hard to test thoroughly

= Prone to critical failures / crashes

» Unmaintainable over its expected lifecycle
= Tough to extend for new capabilities

= Exploitable to cyber attacks

= Difficult to harvest for reuse

= Plagued with a multitude of latent defects

» Hard to change without adding new defects

Basics of Software Assurance

Poor Software Quality Costs
the United States How Much??

January 27, 2021 at 2:00pm ET/ 11:00am PT

This webinar will introduce The Cost of Poor Software
Quality in the US: A 2020 Report published in January by
CISQ. The report estimates that poor softiware quality
cost the United States economy over $2 trillion in 2020
due to operational software failures, poor quality legacy
systems, and unsuccessful projects. Compared to the
country’'s projected Gross Domestic Product (GDP) of
$20.66 trillion, or the $1._4 trillion spent on employing
IT/software professionals in 2020, it represents a
staggering amount of wasted resources.

Is there a way to characterize these types of risk for a given code base?

SMA Technical Excellence Program

—_S—I— E I:) Basics of Software Assurance

Software source code quality analysis

The goal: Considering just the source
code, estimate its degree of risk.

Assessing Code Risk

* *
M

CODE QUALITY

* * *

FALILT

on
ASPECT

TOLERANCE
Modularity Shylistic Wik Checking Linit
A Dependency Criticality Comements Error Mandlirg General Hegression
= Patteins Efror LOgging N T plhasiny
3‘1 H Crantity [ES TR TY] LA T D‘::ET:T
Firil S Health Manitering :h-::'u:n
Wamings
Clarity Traceabdity
Cowrink Bricy
Code risk assessment process: Comtants CERT Our target is:
-« Employ a set of code-centric questions “;f"'l‘f‘_:':” — * Structural code
. - LAY B i
specific to the 6 aspects and 31 foci Canditionak Priority quality - the guality of
shown here. the code itsalf.
« Apply static analysis lmlg: to help the Reussbility Rather ﬂ'!an:
analysl answer the questions. + Functional code
- Score the answers to arrive at a risk level e quality — how well the
1 HIE an Cl ol
in [1.0, 5.0] for each focus, aspect, and Complication code fulfils mission
cAaerall. Duplicazian reguiremsnts.
| o ST R T ST TRl T e i il ot il wlic HHK ESamaaleam W orbcs fszed B

BPD P bkl I Dl

Basics of Software Assurance

Software source code quality analysis

We can use the Code Risk
Estimation Worksheet to
Improve code assessments,
enhancing:

 Thoroughness
* Objectivity

« Consistency

« Traceabillity

 Standards adherence

Code Risk Estimation Worksheet

va.00 USAGE KEY

Project: SystemX Aspect: The six (6) aspects of code guality being assessed for risk.
Revision: 1.5 Focus: Sub-aspects that are rated via the nine (9] details tabs.
Analyst(s): Marchetti, Reimer, Kostial Mitigation: Statement of positive code quality mitigation(s) for a focus.
Review Date: 04/29/21 Change: Optional analyst's noted change in a rating from
Language(s): C the assessment of a prior code drop (input [+/- delta]).
Analyst: Optional assigned analyst for an aspect (input [text]).
Motes: Optional additional analyst's notes (input [text]).
Ratings: Rolled-up risks from the nine (9) details tabs that the
mitigation statements are NOT true.
J

1.0 3.0 5.0
(Lowv Risk) (High Risk)
Software Engineering Institute - @2021 Carnegie Mellon University
CODE RISK ESTIMATION WORKSHEET: SystemX
ASPECT RISK ASPECT /[Focus MITIGATION CHANGE ANALYST NOTES
2.4 ARCHITECTURE / Marchetti
2.2 Modularity High level of code modularity and module cohesiveness
3.5 Dependency Low level of dependencies, especially cyclic (DSM, dependency graphs, etc)

1.6 Patterns High level of adherence to a known architectural pattern (layered, client-server, etc)
2.6 STANDARDS /

1.6 Stylistic High level of adherence to a chosen internal or published stylistic coding standard
3.5 Criticality High level of adherence to critical-system coding guidelines (MISRA, CERT, etc)
2.7 MAINTAINABILITY / Marchetti
Comments 1.2 Quantity High level of commenting excluding boilerplates

19 Quality High quality of commenting that clarifies the code's intent

» Risk Results Inputs Tools Architecture MaintainabilityComments MaintainabilityClarity

MaintainabilityReusability FaultTole

The resulting estimates provide customers with an easy to understand snapshot of the risk level
inherent within their code base.

Software test witnessing

Guidance for software assurance personnel performing test
witnessing.

« Software assurance will review the test procedures and
either review test results or witness the tests being run
to confirm the test coverage of the requirements.

* In projects with safety-critical code, software assurance
will perform extra rigor to ensure that all safety-related
features are thoroughly tested.

« Tests for safety features should include testing in
operational scenarios, nominal scenarios, off-nominal
conditions, stress conditions, and error conditions that
require bringing the system to a safe mode.

* Projects should do regression for any changes made to
the software during the test process, following the
project’s change management process.

Basics of Software Assurance

Softwa

e : NASA |
Content baséd'on'NPR7150.2D | ENGINEERING NETWORK
Wi AL LN FOUYIRE YWF Y O8N (¥ i e

A. Introduction B. Institutional C. Project Software D. Topics E. Tools, References, F. SPAN
Reguirements Reguirements and Terms (NASA COnly) _

A

Dashboard / Book A. Introduction / Topics Pages o

8.13 - Test Witnessing

1. Preparation for Test Witnessing 2. Acfivities during Test Execution 3. Activifies Following Test Execution 4. Resources 5. Lessons Learned

2. Activities During and After Test Execution

2.1 During Test Execution

« Enszure that the correct version(s) of software is under test.
» Ifnot. record any differences. If the versions don't mafch, terminate the test.
Verify that the test environment is either the operational envirenment or a high-fidelity test envirenment (e.g., software simulator)
« Record any differences in the test environment or test set-up, including scripts, data files, and configurations.
« Capture any exceptions to test-as-you-fly/operate and the rationale for those exceptions (2.g., HW not available for testing). Test environment elements
(simulators, emulators, etc) could be areas where defects could go undetected.

« Verify that the inputs for the test are the ones listed in the test procedures.
« Record any differences. Any changes made during the test must at least be red-lined and approved (signed off) by the appropriate authority, according o
the procedures for conducting testing
Observe that the operator's actions maich those planned in the test procedures
« Mote any differences; any deviations made during the test must at least be red-lined and approved (signed off) by the appropriate authority
» When failures occur, record a full description of the anomalous behavior and the conditions under which it occurred, including the sequence of events, the
environment characteristics (e.g., platform, O/S and version, activity type), when the failure occurred, and user actions that preceded the failure.

« Assure that all unintended failures or anomalous behavior are recorded in the project defect tracking system, along with all the descriptive details. Assure
that enough details are captured for a developer to identify the possible area of the code that caused the failure.

» Capture a description of the conseguence of the failure or anomalous behavior — Does it prevent the software from continuing to execute? Does the
software go into a fault protection mode or a safe state? (If so, was this the fault protection mode or safe state specified in the requirements?) Does the
software continue to execute, but preduces incorrect results, or unpredictable behavior?

» (Observe the operator's interactions with the user interface (Ul). Mote: There are multiple ways to interface with software. The Ul could be hardware
(switches/buttons) or software (command line, graphical Ul, or input script)
« |s the user interface easy to understand?
» Are the controls the operator needs to use clearly identified?

» |5 there a separation between primary operator conirol mechanisms (butfons, switches, items fo choose, eic.), so there is little likelihood of the operator

hitbinn bha rmanm akains b meinbaloan

https://swehb.nasa.gov/display/SWEHBVD/8.13+-+Test+Witnessing

i-é_ %ﬂﬁFmEmE Basics of Software Assurance

Static Code Analysis Static Analysis Tools Assessments Examples of some SCA Tools used across NASA
CodeSonar
« SWE-135 in NPR 7150.2 requires the use of static Cppcheck
analyzer tools during development and testing. HPFortify
* Modern static code analysis tools can identify a variety Klocwork
of issues and problems, including but not limited to SonarQube
dead code, non-compliances with coding standards, Understand
security vulnerabilities, race conditions, memory leaks, coverity
and redundant code. FindBugs/SpotBugs
» Software peer reviews/inspections of code items can IKOS
include reviewing the results from static code analysis JPL CAE SRUB
tools. lgtm
* One issue with static code analyzers is they may OCLint
generate a number of false positives that will need to be Parasoft C++
resolved and can be very time consuming. Polyspace
« Static code analyzers are not available for all platforms PRQA
or languages. RIPS
» For critical code, it is essential to use sound and semmle

complete static analyzers. VI Analyzer (LabVIEW)

https://swehb.nasa.gov/display/SWEHBVD/SWE-135+-+Static+Analysis

Requirements Analysis Software

 Manual requirements review is an
unreliable process.

 There are simply too many
elements to confirm against
Industry standards and best
practices (as well as internal best
practices) for these manual
checks to be fully accurate.

« Poor requirements analysis can
lead to costly corrections in later
development phases that would
otherwise be easier and less
expensive to correct when
requirements are first written.

Basics of Software Assurance

Quality Score Summary

scoes s or esa PERCENTAGE WHAT SHOUALD | DOY

= 1 12% Very High Risk

0o 0% R —
3 8% Medium Risk
0 0% = LowRik

e N =D 4 50% Very Low Risk

& avscribe

Overall Score:

Quality Warr

Show Al

Similarity

5 OF LANLAS REQUISENENTY

1

Unit Consistency

. OF Ty

2

Term Consistency

Agency wide tool
Hosted by the NSC

Software Assurance Auditing Function Audits

Audits provide management with information about the project team, the project
processes and help identify best practices and areas of improvement.
Audits are useful to assess:

» Adequacy of project plans, processes, systems

» Compliance with those plans, processes, systems

» Effectiveness of those plans, processes, systems, and internal project

controls on those processes

» Product fitness for use/compliance to specifications

» Areas for improvement
The results of audits allow project management to make adjustments and
corrections to ensure high-quality products are being produced and delivered
and that the team is functioning efficiently and effectively.
Trending audit results over time allows management to identify systemic issues
and areas of risk while monitoring the effect of process and product
improvements.

Ensuring that the processes, procedures, and products
used to produce and sustain the software conform to
all specified requirements and standards that govern
those processes, procedures, and products.

https://swehb.nasa.qov/display/SWEHBVD/8.12+-
+Basics+of+Software+Auditing

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Principle

Auditors are qualified

An audit is against agreed-to
requirements/criteria

Conclusions are based on the evidence

The audit focuses on the project records, not
the personnel

Description

Auditors need to have knowledge of or
experience with audit processes and necessary
backgrounds in the audit subject matter, such
as software engineering or software assurance.
Qualification can be through training, on-the-
job experience, a mentor-mentee relationship,
or simply by including a variety of these skills
on the audit team.

To get the best objective results, define the
audit criteria before the project starts (i.e., the
process requirements, standards, development
plans, etc. to be used for the audit). The team
being audited knows they are expected to
follow these criteria so the audit team simply
looks for evidence of that compliance.

Audit results are based on and backed up by
the collected evidence only.

An audit is designed to assess compliance, not
personalities or behavior; therefore, the
auditors focus on the records, the interviews,
and observations to determine the results.

https://swehb.nasa.gov/display/SWEHBVD/8.12+-+Basics+of+Software+Auditing
https://swehb.nasa.gov/display/SWEHBVD/8.12+-+Basics+of+Software+Auditing

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Maturity of software assurance and software safety products at milestone reviews Communication

Software Assurance and Software Safety MCR SRR MDR SDR FDR CDR SIR TRR SAR ORR A Legends
Maturity Types
Anslysis showing software reguirement and hazard control D P B u u u u
— F =Final. D =0Draft, P =Preliminary, B = Baseling, U = Updated/Updated as required, X = assume complete (final), not explicit in NFRs
CONETagE
Cost estimats for the project’s SA suppot. O P L L B u
Review Types
MEN FProgect Execution Plan {IPEP) E i) i) i) u u u u U
MCR = Mizsion Concept Review, SRR = System Requirements Review | MDR = Mission Definition Review
Prelimi ¢ Haz, Anahysi soffware cont L
- '11|-nar', _l_ ard Analysis and sofw genirols and F J J J B 4 SDR = System Definition Review PDR = Prefiminary Design Review CDR = Critical Design Review
mitigations (FHA / Hazard Reports [Hazard Analysis Tracking
Index} SIR = Systam Integration Review TRR = Test Readiness Review SAR = System Acceptance Review
Requiremsants mapping table for the SA requiremeanis. P B u u u ORR = Operational Readiness Review
54 analysis showing uncovered software code percentage F u u u u
SA sudi 3nd s1Stus repons u U U U u u u u U
e . - https://swehb.nasa.gov/display/SWEHBVD/7.8+
SA Froduct Acceptance Criteria and Conditions P E p = = = q p v :
e T I R +Maturity+of+Life+Cycle+Products+at+Milestone+Reviews
Software Assurance and Software Safety Plan(s) P P P B u
Software Process Root csuse analysis results L u u u u U
Software Safety Analysis P i) i) B u

T e S e S I L https://swehb.nasa.gov/display/SWEHBVD/7.9+-
+Entrance+and+Exit+Criteria

The list of all software safety-critical components that hawe P U U U E u

been identified by the system hazard anslysis.

The results of SA in
cybersecurnty wvulne

ndent static cods analysis resulis for P E
ies and weaknesses.

The results of 54 independent static cods analysis, on the P E

he source cods follows the defined

source code, show th
securz coding practices.

The software training records for 5A personnel on a project. P i) i) B u

https://swehb.nasa.gov/display/SWEHBVD/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews
https://swehb.nasa.gov/display/SWEHBVD/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews
https://swehb.nasa.gov/display/SWEHBVD/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews
https://swehb.nasa.gov/display/SWEHBVD/7.9+-+Entrance+and+Exit+Criteria
https://swehb.nasa.gov/display/SWEHBVD/7.9+-+Entrance+and+Exit+Criteria

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Entrance and Exit Criteria Product reviews

« Defines the responsibilities of the software . dl ;;e'q";;:;;;";'l C:;;J;;;;c;jffel BT I E-To;;;:;:;nces:I(N;ijg:y]
assurance community throughout the project life
cycle reviews.

* Includes reviews and products which are the
primary responsibility of the software assurance
community as well as software engineering Critical Design Review (CDR)
community contributions 1o system activities and e s B L e R e

prOdUCtS, SUCh aS the PrOJeCt Plan. :-:tg::z;d:rgg;dcostandscheduleconstraints. Progress against management plans, budget, and schedule, as well as risk assessments are presented.
* Note that different mission types (e.g., robotic vs. :

Dashboard / Book A. Introduction / Topics Pages -

7.9 - Entrance and Exit Criteria

SRR SwRR MDR SDR PDR CDR PRR SIR TRR SAR ORR FRR

Jump to: Entrance Criteria - General | Entrance Criteria - Plans | Entrance Criteria - Requirements | Entrance Criteria - Design | Entrance Criteria - Analysis | Entrance

human) Can have dlﬁerent Iife CyCIeS and’ Criteria - Other | ltems Reviewed | Exit/Success Criteria
therefore, different sets of life cycle reviews that

apply.

CDR Entrance Criteria - General

Successful completion of the previous review (typically PDR) and responses made to all Requests for Actions (RFAs) and Review Item Discrepancies (RIDs). ora
timely closure plan exists for those remaining open

Final agenda, success criteria, and charge to the board have been agreed to by the technical team, project manager, and review chair

Technical products for this review made available to participants prior to COR

Baselined documents updated, as reguired

Peer reviews for software and rework accomplished, as defined in the s/w and/or project plans

» NPR 7150.2 compliance matrix baselined

Lessons Learned captured from software areas of the project (indicate the problem or success that generated the LL, what the LL was, and its applicability to
future projects)

Software Assurance:

» Confirm NPR 7150.2 compliance matrix iz approved and baselined

« Confirm that any lessons learned to date have been added fo the LL database
» Attend or review any software peer reviews of design material

« Confirm that all RFAS/RIDs from PDR have been successfully completed

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Communication
SOftW are AS S u ran C e Su q q eStEd M et r i CS Metrics Type Measurements Plan Reqt Des Imp Test Del Associated

SWE Reqt
#

o Th e re a re m u Iti p I e . M et r i C S Ty p eS 2 y F'eer_Review - # of peer reviews performed vs. # of peer reviews planned X X X X X SWE-016
and each type includes optional
“Meas u rements,’ by |ife_CyC|e phase . # of Mon-Conformances identified in each peer review X X X X X SWE-087

SWE-089

11 3
fo r th e ASSOCI ated SWE - # of Non-Conformances identified by software assurance during each X X X X X SWE-087

peer review

Requirements”.

SWE-089

® P rOj eCtS S h Ou Id Ch Oose a Set Of - Total # of peer review Mon-Conformances (Open, Closed) X X X X X SWE-087

measurements to provide information
On the project being implemented. - _I.Preparationtime each review participant spent preparing for the X X X X X SWE-088

review
SWE-089

 The measurements do not have to be S S — x x| x [x| sweer
implemented as written. e
) The metrICS Should be modlfled to - #of peer review participants vs. total # invited X X X X X SWE-088

SWE-089

beSt fit the Ch araCte riStiCS Of the - # of peer review Non-Conformances per work product vs. # of peer X X X X X SWE-088

reviewers

project.

Peer Review Audit - # of audit Non-Conformances per peer review audit X X X X X SWE-088

SWE-087

Medric

of Peer Review Audits planned vs. # of Peer Review Audits X X X X X SWE-016

https://swehb.nasa.gov/display/SWEHBVD/8.18+-
+SA+Suqgested+Metrics

https://swehb.nasa.gov/display/SWEHBVD/8.18+-+SA+Suggested+Metrics
https://swehb.nasa.gov/display/SWEHBVD/8.18+-+SA+Suggested+Metrics
https://swehb.nasa.gov/display/SWEHBVD/8.18+-+SA+Suggested+Metrics

Root Cause Analysis

« To reduce defects from occurring, we have to understand Definions About Root Cause
Analysis Cause (Causal Factor)
why the defect or software non-conformance occurred.
* Root Cause Analysis is a structured evaluation method
that identifies the root causes of an undesired outcome

Proximate Cause(s)

and the actions adequate to prevent a recurrence. Root Causefs

» Software Assurance should use a method like, Root
Cause Analysis as a technique to help the projects oot Cause Analyse (RCA
identifies the root causes of an undesired outcome

* Root cause analysis can be decomposed into four steps: Event

» |dentify and describe clearly the problem.

= Establish a timeline from the normal situation up to
the time the problem occurred. organzstons

= Distinguish between the root cause and other causal Facios
factors (e.g., using event correlation).

= Establish a causal graph between the root cause and
the problem.

Condition

Contributing Factor

Barrier

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Defect Tracking and Management

An event or condition that results in an effect. Anything that shapes or influences the outcome.

The event(s) that occurred, including any condition(s) that existed immediately before the undesired outcome, directly resulted
in its occurrence and, if eliminated or modified, would have prevented the undesired outcome. Also known as the direct
cause(s).

One of the multiple factors (events. conditions, or organizational factors) that contributed fo or created the proximate cause and
subseguent undesired outcome, if eliminated or modified, would have prevented the undesired outcome. Typically multiple root
causes confribute to an undesired outcome.

A siruciured evaluafion method that identifies the root causes of an undesired cutcome and the actions adequate to prevent a
recurrence. Root cause analysis should continue until organizational factors have been identified, or unfil data are exhausted.

A real-ime occurrence describes one discrete action, typically an error, failure, or malfunction. Examples: pipe broke, power
lost, lightning struck, the person opened a valve, efc..

Any as-found state, whether or not resulting from an event, that may have safety, health. quality, security, operational, or
environmental implications.

Any operational or management structural entity that exerts control over the system at any stage in itz life cycle, including but
not limited to the system's concept development, design, fabrication, test, maintenance, operation, and disposal.

Examples: resource management (budget, staff, training); policy (content, implementation, verification); and management
decisions.

An event or condition that may have contributed to the occurrence of an undesired outcome but, if eliminated or modified, would
not by itself have prevented the occurrence.

A physical device or administrative control is used to reduce the risk of the undesired outcome to an acceptable level. Barriers
can provide physical intervention (e.g., a guardrail) or procedural separation in time and space (e.g., lock-out-tag-out
procedure).

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Software Hazard Causes 2. Table of Software Causes Software hazard analysis

Potential Software Causes to Consider When Identifying Software Causes in Hazard Analysis

* When a device or system can lead to injury, death, the destruction or
loss of vital equipment, or damage to the environment, system safety Software Cause Areas to Consider Potential Software Causes
is paramount. The system safety discipline focuses on “hazards” and
the prevention of hazardous situations.

Data errors 1. Asynchronous communications
2. Single or double event upset/bit flip or hardware-induced error
* Ahazard is the presence of a potential risk situation that can result in
or contribute to a mishap. To ensure the system being developed is as
safe as possible, it is important to begin identifying potential hazards

3. Communicafion toffrom an unexpected system on the network

4 An out-of-range input value, a valug above or below the range

as early as possible in the development. Thus, the software and 5. Start-up or hardware initiation data errors
system safety personnel generally look at the hazardous events that 6. Data from an antenna gets corrupted
could happen and what could potentially cause them. 7. Failure of software interface to memory
. Every hazard has at least one cause, which in turn can lead to several 8. Failure of flight software to suppress outputs from a failed component
effects (e.g., damage, illness, failure). 9. Failure of software to monitor bus controller rates to ensure communication with all remote terminals on the bus

schedule’s avionics buses

* A hazard cause may be a defect in hardware or software, a human
operator error, or an unexpected input or event which results in a

hazard. The table below provides several potential software causes to —
consider in the project when developing the list of hazards and their https://swehb.nasa.gov/display/SWEHBVD/8.21+-

potential causes. +Software+Hazard+Causes
« Hazard_control is a method for preventing the hazard, reducing the T TTETOrT
likelihood of the hazard occurring, or the reduction of the impact of
that hazard. Hazard controls use software (e.g. detection of the stuck
valve and automatic response to open secondary valve), hardware
(e.g. pressure relief valve), operator procedures, or a combination of
methods to avert the hazard. For every hazard cause, there must be Commanding errors 1. Command buffer error or overflow
at least one control method, usually a design feature (hardware and/or 2. Corrupted software load
software) or a procedural step.

10. Ground or onboard database error

e

5. Excessive network traffic/babbling node - keeps the network so busy it inhibits communication from other nodes

—

6. Sensors or actuators stuck at some value

—

7. Wrong sofiware state for the input

https://swehb.nasa.gov/display/SWEHBVD/8.21+-+Software+Hazard+Causes
https://swehb.nasa.gov/display/SWEHBVD/8.21+-+Software+Hazard+Causes

iswe

Software Safety-Critical

i-é_ %ﬂﬁFmEmE Basics of Software Assurance

Software Safety Analysis and Hazard Analysis

Software is classified as safety-critical if the software is determined by and traceable to a hazard
analysis. Software is classified as safety-critical if it meets at least one of the following criteria:

a. Causes or contributes to a system hazardous condition/event,
b. Controls functions identified in a system hazard,

c. Provides mitigation for a system hazardous condition/event,
d. Mitigates damage if a hazardous condition/event occurs,

e. Detects, reports, and takes corrective action if the system
reaches a potentially hazardous state.

The Cartwheel galaxy and its companion galaxies
NASA, ESA, CSA, STScl, Webb ERO Production Team

SMA Technical Excellence Program

Primary Safety-Critical Software
Requirements

If a project has safety-critical software, the project
manager shall implement the safety-critical software
requirements contained in NASA-STD-8739.8. [SWE-
023]

Safety-critical software requirements contained in
NASA-STD-8739.8.

Confirm that the NPR 7150.2 requirement items
"a" through "I" are documented in the detailed
software requirements.

Assessment that the source code satisfies the
conditions in the NPR 7150.2 requirement "a"

through "I" for safety-critical software.

ST E I:, Basics of Software Assurance o

If a project has safety-critical software or mission-critical software,
the project manager shall implement the following items in the
software:

a. The software is initialized, at first start and restarts, to a known
safe state.

b. The software safely transitions between all predefined known
states.

c. Termination performed by software of functions is performed to
a known safe state.

d. Operator overrides of software functions require at least two
independent actions by an operator.

e. Software rejects commands received out of sequence when
execution of those commands out of sequence can cause a
hazard.

f. The software detects inadvertent memory modification and
recovers to a known safe state.

g. The software performs integrity checks on inputs and outputs
to/from the software system.

h. The software performs prerequisite checks prior to the
execution of safety-critical software commands.

I. No single software event or action is allowed to initiate an
identified hazard.

J. The software responds to an off-nominal condition within the
time needed to prevent a hazardous event.

k. The software provides error handling.

|. The software can place the system into a safe state.

115

i_é_ %ﬂﬂFmEmE Basics of Software Assurance

Primary Safety-Critical Software Requirements Find Untested

Test / code

Coverage —— Understand why
Confirm 100% code test coverage has been any untested code

achieved or addressed for all identified exist
software critical components

Tect Number of Lines of Code Called by Test Suite

e e, X [00%

Govarsge: = Total Number of Relevant Lines of Code

Confirm that all identified software safety-

. i Reliability
critical components have a cyclomatic

T

complexity value of 15 or lower. Complexity

Safety-Critical Software Requirements

Include software related safety constraints,
controls, mitigations and assumptions between Hazards
the hardware, operator, and software in the
software requirements documentation.

Verify through test the software requirements
that trace to a hazardous event, cause, or
mitigation technique.

The project manager shall perform, record, and
maintain bi-directional traceability between the
following software elements: [SWE-052]

Software requirements to the system hazards

Software
Requirements

Software code

Software Test
Procedures

iswe

NASA Software Independent

Verification and Validation
(IV&V) Activities

NASA’s Independent Verification and [
Validation (IV&V) Program

* Fairmont, WV

* http://www.nasa.gov/centers/ivv/home/index.html

http://www.nasa.gov/centers/ivv/home/index.html

. ISWE |

Introduction to IV&V

* Software Verification and Validation (V&YV) is a systems engineering
discipline.

- V&V is more than testing, just like development is more than coding!

* The purpose is to help the development organization build quality
into the software during the software life cycle.

— Some objectives of performing V&V:
* Facilitate early detection and correction of software errors
* Enhance management insight into process and product risk

» Support the software life cycle processes to ensure compliance with program
performance, schedule, and budget requirements

N * As part of Software Assurance at NASA, and utilizing IEEE standards,
IV&YV is differentiated from V&V because it is managerially,
technically, and financially separated from developers.

Generic Look at IV&V

ISWE

Simplified development
lifecycle

Simplified IV&V lifecycle

Needs Analysis &
Concept Phase

Requirements
Specification

Concept Analysis

{validate selected solution, validate s/w reuse strategy, verify sys. architecture is complete, ensure security threats &
risks are known}

Requirements Analysis

{ensure the requirements are high quality (correct, consistent, complete, accurate, unambiguous, and verifiable) and
adequately meet the needs of the system and user}

Design Analysis

{ensure the design is a correct, accurate, and complete transformation of the requirements that will meet the
operational need under nominal and off-nominal conditions and that no unintended features are introduced}

Implementation

Integration &
Test

Ops &
Maintenance

v

Code Analysis

{ensure the implementation is correct, accurate, and complete, relative to requirements, operational need under
nominal and off-nominal conditions, and introduces no unintended features }

Test Analysis

{ensure testing will serve as a sufficient means to verify and validate that the implementation meets the requirements
and operational need under nominal and off-nominal conditions}

Operational & Maintenance Analysis

{ensure operating procedures are correct and usable, new constraints & changes are understood and appropriately
addressed, and ensure anomalies are understood and appropriately addressed}

Criticality Analysis {identify most critical areas of the system}

Determining the Amount of IV&V

B
* V&V is conducted across the entire life cycle, BUT NOT on the entire I
system

- IV&V can be focused or target just certain development phases, too

 The IV&V Program “scopes” the system to determine areas that warrant
analysis

— The process is called “Portfolio Based Risk Assessment” (PBRA)
— Results in a risk score for each capability/subsystem for a particular project that
enables informed decisions to be made:
e What parts of the system should IV&V work on

* How much analytical rigor should we apply (e.g., dynamic analysis should be conducted to
thoroughly test the implementation of the protocol used for communications)

 Same approach utilized by organizations to determine which projects
within their portfolio of projects warrant additional assurance

Products to Expect from IV&V

* Analyses that provides value added evidence into
whether the requirements reflect/capture the
user’s needs, whether the implementation is
reliable, safe, & secure and reflective of these
user’s needs and whether the testing of the
system was adequate

* Confidence & Insight in terms of:

- Cogfidence that the system will do what it is supposed
to do

- Confidence that the system will not do what it is not
supposed to do

- Confidence in terms of what/how the system will
act/react to/under adverse conditions

* Independent Testing that provides exhaustive
execution of hazard domain, failure scenarios,
security breaches, duration testing, boundary
testing, off nominal testing

* |V&V Project Execution Plans (IPEPs)

- Documents/guides & communicates IV&V approach to
our customers/stakeholders

Software Risks Identification

- ldentified by IV&V; represent areas of
concern/potential for negative consequence(s) for
the development Project;

Technical Issue Memorandums (TIMs)

— Documents specific instances of problems resulting
from analytical efforts

Technical Analysis Reports

— Formally documents results of IV&V analysis
activities and results; typical reports include
requirement validation report(s), test validation
report(s), build analysis report(s), implementation
analysis report(s) including design and code
analysis reports

Lifecycle Review Presentations/Safety and
Mission Success Review (SMSR) Presentations

— Provides necessary information for key decisions to
be made regarding the technical maturity of
S\]ést_erkr; software (e.g. 3 questions including areas
of ris

Which Projects Recelve IV&V?

[SWE-141] For projects reaching KDP A after the effective date of this
directive’s revision, the program manager shall ensure that software
IV&YV is performed on the following categories of projects:

a) Category 1 projects as defined in NPR 7120.5.

b) Category 2 projects as defined in NPR 7120.5 that have Class A or
Class B payload risk classification per NPR 8705.4.

c) Projects selected explicitly by the Mission Directorate Associate
Administrator (MDAA) to have software IV&V

IV&V Facility

Follow Twedts

NASA's IV&V Dec A
NASA’s Independent Verification and Program
Validation (IV&V) Facility, home of @NASAIVV
More Social Media NASA's IV&V Program. NASA IV&Y The results from the #WVFLL State
efforts have contributed to NASA's Tﬁurnﬁamei": } i
improved safety record since the r h
program's inception. :
Home NASA's IV&V 5 Dec
= Vic : T K s Program
About NASA's V&V Program : . Jirector's Bio P
Coming up at 1pm today -- official v

round matches in gym 1 of
Education

Doing Business

IV&V Services . g 8 Education

ISTAR A8 B Uiy ‘ . ’ ; NASA's education programs inspire
interest in science, technology,
engineering and mathematics (STEM)
among America’s youth and have a
positive impact on the number of
students who are proficient in STEM
= ’ v B and choose to pursue careers in STEM
Beseard) InSight Mars Lander Space Launch System) ; : fields. NASA increases the pool of
‘ . future STEM workers, thus
contributing to the workforce of the
future by attracting and retaining
students in STEM disciplines. With

News & Events

Dynamic Analysis Mars Mission Team
Addressing Vacuum Leak
on Key Science Instrument

Progress Continues on
Test Version of SLS

IV&V Annual Workshop Connection Hardware

these efforts in STEM education,

IV&V Management System ' NASA helps the United States remain
A . . - . globally competitive and sustain a
For V&V Employees) /R n " S Imu |atIO n - 4 strong national economy.

SAS Procurement / ‘ TO

% Flight e

ent Onnorhinities

http://www.nasa.gov/centers/ivv/home/index.html

SFT Procurement

ISWE

http://www.nasa.gov/centers/ivv/home/index.html

Software Classifications

NASA-wide software classification structure [ISWE |

These definitions are based on: NASA-Wide Software Classifications
(1) usage of the software with or within a NASA system, Class A Human-Rated Space Software Systems

Class B Non-Human Space-Rated Software Systems or
(2) criticality of the system to NASA’s major programs and projects, Large-Scale Aeronautics Vehicles

Class C Mission Support Software or Aeronautic Vehicles,

. Major Engineering/R h Facility Softw
(3) extent to which humans depend upon the system, or Major Engincering/Research Taclity Software

Class D Basic Science/Engineering Design and Research and
. . Technology Software
(4) dEVEIOpmental and operatlonal Comp|EXIty, and Class E Design Concept, Research, Technology and General

Purpose Software

(5) extent Of the Agency’s inveStment' Class F General Purpose Computing, Business and IT
Software

NOte.' It iS not uncommon for a pI’Oject to Contain mUIt/ple Separate Notes: It is not uncommon for a project to contain multiple systems and

systems and subsystems having different software classes. subsystems having different software classes.

Software Classification vs. Tailoring | ISWE |

e Software classification is the first level of tailoring! i

— Classify software based on the definitions on the previous slide NOT the amount
of project schedule, funding, manpower, or other resources available.

* Engineering and SMA provide dual Technical Authority chains for resolving
classification issues. The NASA Chief Engineer is the ultimate Technical Authority for

software classification disputes concerning definitions in this NPR.

- Engineering evaluates the project characteristics and generates the initial
software classification.

— Software assurance can perform an independent software classification, or
software assurance can concur with engineering’s software classification decision.
Software engineering and software assurance technical authorities must agree on
the classification of each system and subsystem containing software.

- » After classifying the software, software engineering tailors the applicable 7150.2D
requirements based on project characteristics.

. ISWE |

Tailoring Approach for NPR 7150.2D

Table 2. Requirements Mapping Matrix

Section | SWE Requirement ClassA-E | A | B | C | D | E Class F F
Text Authority Authority
3.0 Software Management Requirements
3.1 Software Life Cycle Planning
3.1.2 033 | The project manager shall assess options for software acquisition versus Center X X|X|X|X CIO X
development.
3.13 013 | The project manager shall develop, maintain, and execute software plans, Center XIX|IX|X X CIO X

including security plans, that cover the entire software life cycle and, as a
minimum, address the requirements of this directive with approved tailoring.
3.14 024 | The project manager shall track the actual results and performance of Center XIX|X|X CIO X
software activities against the software plans.

a. Corrective actions are taken, recorded, and managed to closure.

b. Changes to commitments (e.g., software plans) that have been agreed to
by the affected groups and individuals are taken, recorded, and managed.

3.1.5 034 | The project manager shall define and document the acceptance criteria for Center X | XXX CIO X
the software.
3.1.6 036 | The project manager shall establish and maintain the software processes, Center X | XXX CIO X

software documentation plans, list of developed electronic products,
deliverables, and list of tasks for the software development that are required
for the project’s software developers, as well as the action required (e.g.,
approval, review) of the Government upon receipt of each of the
deliverables.

"the project manager shall..." means the roles and responsibilities of the project manager may be further delegated
within the organization to the scope and scale of the system.

iswe

Software Reuse and Internal
Sharing

Summary of New Requirements on Internal NASA
Software Sharing or Reuse

e Clear rights in the software [SWE-215]

* Keep a list of all contributors to the software product.
[SWE-217]

* Conforms to NASA software engineering policy and
requirements. [SWE-216]

* Ensure that the software product contains appropriate
disclaimer and indemnification provisions [SWE-217]

* Perform the following actions for each type of internal
= NASA software transfer or reuse: [SWE-214]

a. A NASA civil servant to a NASA civil servant S h a ri ng h as
b. A NASA civil servant to a NASA contractor

c. A NASA civil servant to a foreign person or foreign entity Md ny Iega I dS peCtS

131

iswe

Software Cybersecurity

3.11 Software Cybersecurity _ISWE |

B
3.11.1 Software defects are a central and critical aspect of computer security vulnerabilities. Software defects with I
cybersecurity ramifications include implementation bugs such as buffer overflows and design flaws such as inconsistent
error handling.

Note: Software security relies on high-quality code development and testing practices (clean code, modular structure,
well-defined interfaces) — anything that reduces error rates and opportunities misinterpretation or error; considers both
the development and deployment/operational context for the software; has the ability to rapidly assess, triage, correct,
and deploy security-related updates while the software is in deployment/operations.

3.11.2 The project manager shall perform a software cybersecurity assessment on the software components per the
Agency security policies and the project requirements, including risks posed by the use of COTS, GOTS, MOTS, OSS, or
reused software components. [SWE-156]

3.11.3 The project manager shall identify cybersecurity risks, along with their mitigations, in flight and ground software
systems and plan the mitigations for these systems. [SWE-154]

Note: Space Asset or Enterprise Protection Plans are a source of requirements to identify cybersecurity risks, along with
their mitigations, in-flight and ground software systems. Space Asset or Enterprise Protection Plans describe the
program's approach for planning and implementing the requirements for information, physical, personnel, industrial,
and counterintelligence/counterterrorism security, and for security awareness/education requirements in accordance
with NPR 1600.1, NPD 1600.2, NPD 2810.1, and NPR 2810.1.

3.11 Software Cybersecurity _ISWE |

B
3.11.5 The project manager shall test the software and record test results for the required software cybersecurity I
mitigation implementations identified from the security vulnerabilities and security weaknesses analysis. [SWE-159]

Note: Include assessments for security vulnerabilities during Peer Review/Inspections of software requirements and
design. Utilize automated security static analysis as well as coding standard static analyses of software code to find
potential security vulnerabilities.

3.11.6 The project manager shall identify, record, and implement secure coding practices. [SWE-207]

3.11.7 The project manager shall verify that the software code meets the project’s secure coding standard by using
the results from static analysis tool(s). [SWE-185]

3.11.8 The project manager shall identify software requirements for the collection, reporting, and storage of data
relating to the detection of adversarial actions. [SWE-210]

3.11.4 The project manager shall implement protections for software systems with communications capabilities
against unauthorized access per the requirements contained in the NASA-STD-1006, Space System Protection
Standard. [SWE-157]

NASA-STD-1006, Space System Protection -
Standard Requirements |

Command Stack Protection

- [SSPR 1] Programs/projects shall protect the command stack with encryption that meets or exceeds the Federal Information Processing Standard (FIPS)
140, Security Requirements for Cryptographic Modules, Level 1

* Backup Command Link Protection

- [SSPR 2] If a project uses an encrypted primary command link, any backup command link shall, at a minimum, use authentication.

* Command Link Critical Program/Project Information (CPI)

- [SSPR 3] The program/project shall protect the confidentiality of command link CPI as controlled unclassified information (CUI) to prevent inadvertent
disclosure to unauthorized parties.

* Ensure Positioning, Navigation, and Timing (PNT) Resilience

- [SSPR 4] If project-external PNT services are required, projects shall ensure that systems are resilient to the complete loss of, or temporary interference
with, external PNT services.

] * Interference Reporting

- [SSPR 5] Projects/Spectrum Managers/Operations Centers shall report unexplained interference to MRPP or to other designated notifying organizations.

* Interference Reporting Training

- [SSPR 6] Projects/Spectrum Managers/Operations Centers shall conduct proficiency training for reporting unexplained interference.

ISWE |

Project Protection Plan (PPP) Requirement [

* NPR 7120.5E requires all flight programs/projects
develop Threat Summaries and Project Protection
Plans (PPP)

— Develop program Threat Summary to address classified
threat information (TS/SCI)

— Develop PPP to recommend potential mitigations
(SECRET)

— Baseline by PDR

Current Space Asset Protection Policy

 Updated direction for PPPs established in Office

of Chief Engineer (OCE) memo

* Memo and appendices define PPP

Supersedes NPR 7120.5E requirement for Project

Protection Plans (PPPs)

Memos expected annually until NPR 7120.5 is

updated (schedule TBD)

Establishes approval authority
Defines key elements of PPPs

Lists projects requiring PPPs; based on Agency
Mission Program/Project List (AMPL)

e Candidate Protection Strategies (CPS) and PPP

template

Posted on SAPP Community of Practice website
PPPs archived in classified web-portal

https://nen.nasa.gov/web/sap

National and Space Admir
Headquarters
Washington, DC 20546-0001 g

May 30, 2018
Rty to A ot Office of the Chief Engineer
TO: Distribution
FROM: NASA Chief Engineer

SUBJECT: Space Asset Protection Requirements

The intent of this memorandum is to provide updated direction on Project Protection Plans
(PPPs). This guidance supersedes the Space Asset Protection Program (SAPP) and threat
summary requirements in NPR 7120.5E, NASA Space Flight Program and Project Management
Requirements, It is important that this memorandum is disseminated to Programs/Projects and
necessary action entities to ensure and if Yy ¢ i

In accordance with the National Space Policies Presidential Program Directives (PPD 4 and 21)
and the National Aeronautics and Space Act, NASA is required to identify and protect its critical
space assets, data, and supporting infrastructure. To partially help satisfy these requirements,
PPPs will be impl d for desi, d projects in d with the process and
prioritization criteria detailed in the updated Protection Plan Development and Approval Process
(Enclosure 1). The list of projects requiring a PPP was approved by the NASA Chief Engineer
on May 19, 2018, and is included as Protection Plan Prioritization and Impl i
Requirements List (Enclosure 2). These updated SAPP requirements will be formally integrated
into NPR 7120.5 during its next revision cycle.

Addi pp g d ion, such as a PPP template can be found on the NASA
Engineering Network C ity of Practice for SAPP or through your organization’s SAPP
working group member. If there are any additional questions, please contact

Mr. Stephen J, Kapurch at 202-358-2376 or skapurch@nasa.gov.

1y

Ralph R. Roe, Jr.

2 Enclosures:
Protection Plan Development and Approval Process
Protection Plan Prioritization and Implementation Requirements List

OCE Memo - May 2018

https://nen.nasa.gov/web/sap

Candidate Protection Strategies (CPS)

* Serve as a starting point Main CPS Categories
for mission protection
planning 1. Engineering Focused Strategies —

. _ . Space Segment (3)
* Linked to consistent high
threat and risk issues 2. Engineering Focused Strategies —

. Ground Segment (2)
* Protection plans

incorporate results of 3. Engineering Focused — All
J the CPS analysis, Segments (2)
including any requisite
requirement tailoring 4. ConOps Focused Strategies (6)

5. Cybersecurity Strategies

iswe

Software Engineering Lifecycles

Software Life Cycle Planning

Software life cycle planning covers the software aspects of
a project from inception through retirement.

The software life cycle planning cycle is an organizing
process that considers the software as a whole and
provides the planning activities required to ensure a
coordinated, well-engineered process for defining and
implementing project activities.

These processes, plans, and activities are coordinated
within the project. At project conception, software needs
for the project are analyzed, including acquisition, supply,
development, operation, maintenance, retirement, and
supporting activities and processes.

The software effort is scoped and the processes,
measurements, and activities are documented in software
plan(s).

NASA Software Engineering NPR makes no
recommendation for a specific software life-cycle model
(i.e., it allows agile, incremental, spiral, etc., life-cycle
models). However, expectations from the system project
life- cycle models need to be adequately addressed in the
software plan(s).

. ISWE

3.1.3 The project manager shall develop, maintain, and execute
software plans that cover the entire software life cycle and, as a
minimum, address the requirements of this directive with approved
tailoring. [SWE-013]

Note: The recommended practices and guidelines for the content of
different types of software planning activities (whether stand-alone or
condensed into one or more project level or software documents or
electronic files) are defined in NASA-HDBK-2203. The project should
include or reference in the software development plans procedures for
coordinating the software development and the design and the system
or project development life cycle.

3.1.4 The project manager shall track the actual results and
performance of software activities against the software plans. [SWE-
024]

a. Corrective actions are taken, recorded, and managed to closure.

b. Including changes to commitments (e.g., software plans) that have
been agreed to by the affected groups and individuals.

http://swehb.nasa.gov/

Project Life Cycle

ISWE

HASA Life : FORMULATION IMPLEMENTATION
Cycle Phases ! S Sl ; SR
Pre-Systems y Acquisition Systems Acquisition Operations Decommmissioning
L
Project Pre-Phase A: : Phase A: Phase B: Phase C: Phase D: Phase E: Phase F:
Life Cycle Concept I Concept & Technology | _Preliminary Design & Final Design & System Assembly, Operations Closeout
Phases Studies ! Development Technology Completion Fabrication Int & Test, Launch & Sustainment
Project KDP & KDPB §7 xbpc§7 mo§7 KDPE Y7 KDPF -
Lo el FAD thach BrdofMicsidn of Data
Gates & Dratt Project Prelimi Baceline 4
Major Events bt Project Pl / Project Plu? ‘7 K? V § /
“°°"°” L &
Reviews ASPS
e JANSERVAVAN AN VAN ANSVANIN| VAWAN JAN
Flight Project
R.,‘?,m.” R SRR SOR POR COR! SIR ORR FRR PLAR CERR? Bnd of DR
(P (NAR) PRRZ hspecums nd
Reflights & imm — ¥
Re-exters appropriate 1k fycle phase f < f:
Robotic modifications are needed bitwrean flightst PFAR
it A AA Al A [A DA A VAN
Reviews' S oy
r FRR 3 DR
k:‘::jc:e“ MOR SRR(;A’I{):R' :::R) (’3’22_‘{ SIR ORR - LR:IERR
i i
Reviews AS). FRR V)
: views, Subsy , Subsy . '
Supporting Peer|Reviews, Subsysiem PDRs, Subsysiem CDRs, and System Reviews
Reviews T
FOOTHOTES ACROHYMS
1. Flexibility & allowed in the timing, number, and content of reviews aslong as the | ASP—Fcquisition Strategy Planning Meeting 5 : . .
equivalent information & provided at each KOP and the approach is fully ASh—Acquisition Strategy Meeting gg:_mu.; '.'::g:_;' g:;::g;:;vm
documented in the Project Plan. These reviews are conducted by the project for COR—Critical Design Review . OF AR ot Flcks’ Acokesrriart Rt
the independent SRB. See Section 2.5 and Table 2-6. CERR—Critical BEvents Readiness Review PLAR. -Fost: I.zgnch poninz m""'m'e?"ew
2. PRR needed for multiple (24) system copies. Timing is notional, DR—Decommissioning Review PNAR—Preliminary Non-Advooate Review
3. CERRs are established at the disoretion of Program Offices. FAD—Formutation Asthorization Document i ey e
4. For robotic missions, the SRR andthe MOR may be combined. FRR—Flight Readiness Review SAR-Soman Acsaptancs Rk
5. The ASP and ASM are Agency reviews, not life-cycle reviews. KDP—Key Decision Point SDR—System Defintion Review
8. Includes recertification, 3s required. LRR—Launch Readiness Review SIR—-System itegrition Riaview
T Project Plans are baselined 3t KOP C and are reviewed and updated as mggjﬁ:g: gzmﬂz‘xz’ SMSR—Safety an% Msslor St ass Reviaw
: : ; . =
required, to ensure project content, cost, and budget remain consistent. v g s SRR—System Requirements Review

From NPR 7150.2

“This NPR makes no recommendation for a specific software life-cycle
model. Each has its strengths and weaknesses, and no one model is
best for every situation. Whether using the spiral model, the iterative
model, waterfall, or any other development life-cycle model, each has
steps of requirements, design, implementation, testing, release to
operations, maintenance, and retirement...”

Frequently Discussed Lifecycles

Waterfall

Incremental
Development

Spiral Development

Package-Based
Development

Agile Development

Legacy System
Maintenance

ISWE

Systems Development Life Cycle (SDLC)
Life-Cycle Phases

ﬁ
Hystem Concepd

v

Indciatism

Irevelnpmenit

Drefines the
w=LE

boumndary of

Begins when

0 sponsor wenoiibes the concep.
a meed ar an Tiscluddes Svseems
CpETIAnITY, BEoundary
Concept Proposal — Document,
s created. Cosl Hemelin
Annlyees, Risk
Blonagemseni
Plan ansl

Feasibalery Susdy.

PMlaminkng

Dhevelops &
Progsct
Mlanagemeei
Flan

angd sher
planming
documenis
Provides

ihe bazsis for
noquinng the
resources
needed

nchesve o

solulemn

Requirensenis

Analysis

Analyees wser
needds and develops
UsEl requireinents
Cremes o detalbed
Fuscisnisl
Requiremnents

DRaciimmien.

Iivtegr ntbom

andl “Tese

Ieve e me]

I'ransfonms

detnibed
requircimenis

o cemplene,
detnibed Sysrem
Dresign Docwmesni
Foocuses on how
o dzliver the
required

funcismliny.

Conwverns a design
Il & complens

(L BT gy] PR B

Inchides aoguinng
amil installing sysiems
ERYAMEEENL, Cresling
and testing databases
OrCpanng Tosi coss
procedures; [aning
nest flles: coding,
comapkling, refiming
TETANEE, Perteameng

Aest rendiness review

Diensdissiranes

il the developed
syslean conlorms

Ak Pelarens=nls

as apecilied m the
Functicnal
Bequirements
Document. Condocied
bty ualiny Assurance
atafl arsd

users. Progsces

Test Analysis Repons,

aml procursmenl activities

% @ Uperatbons amd

lmpleimentntian

Inclades
implenenlation
pircararicn,
implensenianion
af the sysiem
il & prodsction

Y ITHETRETL

and resolucion
ol pra lens
idemtalicd i ke
Imtegration and

Test Phase.

Mainiemane

Digscrnbes tasks
1o opserase an
MELINLain

T P gy R T
Fyslems

1k & prodisciian
=0 YaranEEl

i liches Posr-
Imgileremnnon
and In-Frocess

Reviews,

IHispasktion

Drescmibes end-
=S WS DL
SAIVIRIES.
cnphasis s given
1o pHCqier
preservaiEnn of

dlara

“Agile” Based Incremental Software
Development Approach

Incremental Development Activities

199fo.d

3
o
5
3
5
«

(Requirement)

/ Bi-Directional *
Traceability |

Safety & Mission Assurance

R 2-4 WEEKS '

Execute

Informal/
Formal
Testing

S
|

Bupsay
alemyo
0} 9sed|2

SMBINGY ~ SOUIRIN ~ Juswabeuep ¥s1y ~ WD

All Project Lifecycles are “Punctuated” with Formal | ISWE |
Technical Reviews

e Evaluations of the project, or element thereof, by a
knowledgeable group for the purposes of:

* Assessing the status of and progress toward accomplishing

the planned activities Formal Technical Reviews
* Validating the technical tradeoffs explored and design
solutions proposed

* ldentifying technical weaknesses or marginal design and

¢ Conducted by software engineers

e Primary objective is to find errors during the process so
that they do not become defects after release of software

— Uncover errors in function, logic design, or

potential problems (risks), and recommending improvements Otri]mp'ime?_tation i
H H o €r objectives Include:
and corrective actions , — ItEr?rIy diic?ver_y Otfh errors so they do not propagate to
H H HYH H : - € hext step In the process
* Making judgments on the activities readiness for the follow _ Ensure that the sofware hAtREER RIS
on events to improve the likelihood of a successful outcome according to predefined standards
. . . — To achieve software that is developed in a uniform
* Making assessments and recommendations to the project manner
team, Center, and Agency management ~ Make projects more manageable
I — Groom new resources
* Providing a historical record of decisions that were made ~ Provide backup and continuity

- during these formal reviews for future reference
* Assessing the technical risk status and current risk profile

Software Life cycle products and their maturity level at the various software
project life cycle reviews (Part 1 of 2)

This chart summarizes current
guidance approved by the NASA
Office of the Chief Engineer
(OCE) for software

engineering life cycle products
and their maturity level at the
various software project life
cycle reviews.

This chart serves as guidance
only and NASA Center
procedures should take
precedence for projects at
those Centers.

F = Final,

D = Draft,

P = Preliminary,
B = Baseline,

U = Updated/Updated as
required,

X = assume complete (final),
not explicit in NPRs

7150.2 Software Life-Cycle Products

Software Development Plan (SDP) / Software Management

Plan (SMF)

Software Schedule

Software Cost Estimate

Software Configuration Management Plan (SCMP)
Software Test Plans

Software Test Procadures

Software Test Reports

Software Maintenance Plan

Software Requirements Specification (SRS)
Requirements on OTS siw

Software Data Dictionary

Software Design Description (Architectual Design)
Software Design Description (Detailed Design)
Interface Design Description

Software User's Manual (SUM)

Records of Continuous Risk Management

Measurement Analysis Resulis

Operational Concepts (part of "Mission Operations Concept”

or separate)

Record of trade-off criteria & assessment (make / buy

decision)

Acceptance Criteria and Conditions

MCR SRR MDR

p P
D p U
D p u
p P
]
p
P u U
p u

SDR

PDR

CDR

SIR

TRR

SAR

ORR l

https://swehb.nasa.gov/display/7150/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews

Software Life cycle products and their maturity level at the various software
project life cycle reviews (Part 2 of 2)

This chart summarizes current
guidance approved by the NASA
Office of the Chief Engineer
(OCE) for software

engineering life cycle products
and their maturity level at the
various software project life
cycle reviews.

This chart serves as guidance
only and NASA Center
procedures should take
precedence for projects at
those Centers.

F = Final,

D = Draft,

P = Preliminary,

B = Baseline,

U = Updated/Updated as
required,

X = assume complete (final),
not explicit in NPRs

ISWE

Software Assurance and Software Safety

Software Assurance and Software Plan(s)

Software Process Root cause analysis results

SA analysis showing uncovered software code percentage
SA audit and status reports

SA schedule

Requirements mapping table for the SA requirements.
Cost estimate for the project's SA support.

Analysis showing software requirement and hazard control
coverage

SA Product Acceptance Criteria and Conditions

The defined SA processes for the SA aclivities on the project
per the requirements in the Software Assurance and Safety
standard

The software training records for SA personnel on a project.

The list of all software safety-critical components that have
been identified by the system hazard analysis.

The results of SA independent static code assessment results
for cybersecurity vulnerabilities and weaknesses.

The results of SA independent static code assessment, on
the source code, showing that the source code follows the
defined secure coding practices.

SA metric analysis procedures

MCR SRR

MDR

SDR

PDR

CDR

SIR

TRR

SAR

u

ORR

https://swehb.nasa.gov/display/7150/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews

Benefits -
* Help increase probability of mission success Reviews I
MCR
* Help ensure that all tasks and deliverables are managed SRR
and achieved
SWRR
* |ssues presented or discovered during these activities MDR
are communicated to appropriate personnel SDR
PDR
* The tracking of these issues to closure ensures that CDR
errors and shortcomings in the requirements, PRR
architecture, design and/or build of the software are
corrected and prevented from reoccurring. ?ILTR
* Keep project stakeholders informed SAR

ORR
FRR

NASA-HDBK-2203, Topic 7.9

Introduction MCR SRR SwRR MDR SDR PDR CDR PRR SIR TRR SAR ORR FRR

Entrance and Exit Criteria

Background
This guidance provides the maxmum set of life cycle review entrance and exit criteria for software projects and should be tailored forthe project class.

The licens e could not be verified: Licens e Certificate has epired!” onclig="sorallTe

This guidance is a summarized collection of material from the following core documents: NPR 7123.1, Appendix G

[00)"=082-T73, The licens e could not be werified: License Certificate has ired! " onclic="5 oroll To{ 0 0)">082
' “NPR 71205 —

and Center Procedures.

This guidance includes three types of information for each review:

3>
1. Entrance criteria - Activities and products that are to be completed before the review can begin.

2. U Materials for the Review - ltems to be reviewed during review and used to confirm exit criteria; this information is typically available a couple of weeks prior to
the review.

3. [E Exit criteria — Decisions and actions to be completed before the review is considered complete.

This guidance is focused on the responsibiliies of the software engineering community throughout the project life cycle reviews. Therefore, the guidance includes
reviews and products which are the primary responsibility of the software engineering community as well as software engineering community contributions to system
activiies and products, such as the Project Plan.

Mote that different mission types (e.g., robotic vs. human) can have different life cycles and, therefore, different sets of life cycle reviews which apply.

This material considers a software projectto be a system of systems as well as a single subsystem within the larger project. "System of systems” refers to a software
project that includes software subsystems that perform functions allocated to them. Justas a project allocates requirements to hardware, software, external

components, etc., software projects allocate software requirements to software subsystems.

o This material has been reviewed by the Software Working Group and the Office of the Chief Engineer.

ISWE

For each review

point

examples of:

1. Entrance
Criteria

2. Items
Reviewed

3. Exit Criteria

What does the Systems NPR 7123 state for
Software

NPR 7123.1B -- AppendixG

The PDR demonstrates that the preliminary design meets all system requirements with acceptable

Verity Current version befor use at:
http://nodis3 gsfe nasa. gov/

risk and within the cost and schedule constraints and establishes the basis for proceeding with
detailed design.

Table G-6 - PDR Entrance and Success Criteria

Page _112 of 157

Preliminary Desi

on Review

Entrance Criteria

Success Criteria

1. The Project has successfully completed the

previous planned milestone reviews, and
responses have been made to all RFAs and
RIDs, or a timely closure plan exists for those
remaining open.

2. A preliminary PDR agenda, success criteria,

and instructions to the review board have been
agreed to by the technical team, project
manager, and review chair prior to the PDR.

Palckage. i
s. Software criteria and products, per
NASA-HDBK-2203, NASA Software

1. The top-level
requirementsAg¢ ?"including mission
success criteria, TPMs, and any
sponsor-imposed constraintsA¢ ?"are
agreed upon, finalized, stated clearly,
and consistent with the preliminary
design.

2. The flow down of verifiable requirements
is complete and proper or, if not, an

‘included in design.
18. Software components meet the exit
criteria defined in NASA-HDBK-2203,

Engineering Handbook.

NASA Software Engineering Handbook.

¥ MNaendrrnt 0 v vrramnd Fae cmencrasmao fravasnnto carxrasad laes NTDT) 71N & TF thaen 0 Adca cemnsaa maat

Summary for Lifecycles and Reviews

* Know the requirements of NPR
7150.2 and how they apply to
your project

* Select a lifecycle that is
appropriate to your schedule and
the nature of the software
system that you are building

* Make sure that you understand

 What lifecycle you are using and the risks
associated with the lifecycle selection

 What should be done or reviewed during
N each stage of the lifecycle

. ISWE |

Systems Development Life Cycle (SDLC)
Life-Cycle Phases

Waterfall * Agile Development
Incremental Development ¢ Legacy System Maintenance
Spiral Development

Package-Based
Development

Class Plan

Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources
Software Planning Requirements and Considerations

Software Documentation Software IV&V
Software Costing Software Classifications
Software Processes Software Reuse and Internal Sharing
Software Assurance Software Cybersecurity
Software Safety-Critical Software Lifecycles and Reviews

Software Life-cycle Requirements
Software Requirements Software Coding
Software Architecture Software Testing
Software Design Software Maintenance

Software Development Supporting Requirements Why do we

Software Configuration Management Software Defect Management do these
Software Risks Software Bi-Directional Traceability things?

Software Peer Reviews Software License Management Software
Software Measurements Software Acquisition Failures

152

Software Requirements

“Walking on water and developing software from
a specification are easy if both are frozen.”
- Edward V Berard

153

Requirement Development __ISWE |

[don t think your boss
understands the concept
of requirements. He's
going to upset the client.

Yeah, I used to love correcting
him but then I realized I loved
my job even more.

. ISWE |

NPR 7150.2D Requirements on Software
Requirements

 4.1.2 The project manager shall establish, capture, record, approve, and
maintain software requirements, including requirements for COTS, GOTS,
MOTS, OSS or reused software components, as part of the technical
specification. [SWE-050]

* 4.1.3 The project manager shall perform software requirements analysis based
on flowed-down and derived requirements from the top-level systems
engineering requirements, safety and reliability analyses, and the hardware
specifications and design. [SWE-051]

 4.1.4 The project manager shall include software related safety constraints,
controls, mitigations and assumptions between the hardware, operator, and
software in the software requirements documentation. [SWE-184]

NPR 7150.2D Requirements on Software -
Requirements |

 4.1.5 The project manager shall track and manage changes to the software
requirements. [SWE-053]

* 4.1.6 The project manager shall identify, initiate corrective actions, and track until
closure inconsistencies among requirements, project plans, and software
products. [SWE-054]

 4.1.7 The project manager shall perform requirements validation to ensure that
the software will perform as intended in the customer environment. [SWE-055]

* 5.4.6 The project manager shall collect, track, and report software requirements
volatility metrics. [SWE-200]

Note: Software requirements volatility metrics are the total number of
requirements compared to requirement changes over time. It may include
additions, changes, and reduction of requirements.

Software Requirements

e Software Requirements is a field
within software engineering that deals with
establishing the needs of stakeholders that are
to be solved by software.

 What requirements do you need to develop a
component of software?

* What is the system requirement vs hardware
requirement vs operational requirement vs
software requirement split?

Customer

Flow Down of Requirements

ISWE

Mission
Authority

v

Mission
Objectives

v

Mission
Requirements

Programmatics:
= Cost
= Schedule

= Constraints

= Mission Classification

Implementing
Organizations

System
Functional
Requirements

Environmental
and Other Design
Requirements
and Guidelines

Institutional

Constraints

System
> Performance <€
Requirements

Assumptions

v

Subsystem A
Functional and
Performance
Requirements

4

v

Allocated
Requirements

Derived
Requirements

I

v

Subsystem X
Functional and
Performance
Requirements

L 4

Allocated
Requirements

Derived

Requirements

I

Software Requirement Sources

Other Software Requirement Sources

System
Hardware specifications C
Computer\Processor\Programmable Logic Device specifications Req uirements
Hardware interfaces
Operating system requirements and board support packages
Data\File definitions and interfaces
Communication interfaces including bus communications Software
interfaces
Derived from Domain Analysis
Fault Detection, Isolation and Recovery requirements Software Requirements
Models
Commercial Software interfaces and functional requirements
Software Security Requirements
User Interface Requirements
Algorithms
Legacy or Reuse software requirements
Derived from Operational Analysis
Prototyping activities
Interviews
Surveys
Questionnaires
Brainstorming
Observation
Software Test Requirements
Software Fault Management Requirements
Hazard Analysis

Guidelines for the Software Requirements | ISWE |

Specification Content

The Software Requirements Specification shall contain:
a) System overview.
b) CSCI requirements:
- (1) Functional requirements.
- (2) Required states and modes.
— (3) External interface requirements.
— (4) Internal interface requirements.
— (5) Internal data requirements.

- (6) Adaptation requirements (data used to adapt a
program to a given installation site or to given conditions
in its operational environment).

- (7) Safety requirements.

— (8) Performance and timing requirements.
— (9) Security and privacy requirements.

- (10) Environment requirements.

- (11) Computer resource requirements:

e (a) Computer hardware resource requirements,
including utilization requirements.

* (b) Computer software requirements.
* (c) Computer communications requirements.
(12) Software quality characteristics.
(13) Design and implementation constraints.
(14) Personnel-related requirements.
(15) Training-related requirements.
(16) Logistics-related requirements.
(17) Packaging requirements.
(18) Precedence and criticality of requirements.

Qualification provisions (e.g., demonstration, test, analysis,
inspection).

Bidirectional requirements traceability.

Requirements partitioning for phased delivery.

Testing requirements that drive software design decisions
(e.g., special system level timing requirements/checkpoint
restart).

Supporting requirements rationale.

Guidelines for the Software Data Dictionary Content

Software Data Dictionary shall include: [SWE-110]

a)

Channelization data (e.g., bus mapping, vehicle
wiring mapping, hardware channelization).

Input/Output (I/0) variables.

Rate group data.

Raw and calibrated sensor data.
Telemetry format/layout and data.
Data recorder format/layout and data.

Command definition (e.g., onboard, ground, test
specific).

Effecter command information.

Operational limits (e.g., maximum/minimum
values, launch commit criteria information).

Example from Integrated Measurement And Command System

. ISWE

HardwarelD
HardwareEngineeringName
HardwareOpName
HardwareDescription
SignalType
HardwareType
HardwareCategory
InstrumentationType
RefDes
LowStateDefinition
HighStateDefinition
PositiveAccuracy
NegativeAccuracy
AccuracyUnits
Precision

SampleRate
LaunchCommitCriteria
FlightCritical
Criticality
CriticalityRationale
AbortDetermination
CautionWarningDetection
CoordinateX
CoordinateY
CoordinateZ
ApproxXStation

Radius

ClockAngle

InternalExternal

HardwareComments

HardwarePOC
HardwareControllingDocument
HardwareChangeAuthorization
SignalRouting

Card

Channel

ExcitationConnector

ExcitationPinPositive

ExcitationPinNegative

SignalConnector

SignalPinPositive

SignalPinNegative
HardwareConnectivityComments
HardwareConnectivityPOC
HardwareConnectivityControllingDocument
HardwareConnectivityChangeAuthorization
PrimitiveCUI
HardwarePrimitivelndexComments
HardwarePrimitivelndexPOC
HardwarePrimitivelndexControllingDocument
HardwarePrimitivelndexChangeAuthorization

Requirements Maturity [

Examples of maturing requirements: Verified Software

* Fault Management,

e Command Details,
e Hardware fixes in software

Requirements Maturity

Detailed Hardware Interfaces,

Validated Software

Tested Software (removing defects)

Developed Software

Design (Detailed detail)

Architecture and Design (Preliminary detail)

Derived Requirements (influenced by design)

Requirements (what is required?)

SRR PDR CDR TRR ORR

—

Change
Impacts

When Requirements Development Is Not _ISWE

Done Well...

* Unstated requirements or poorly stated BA Fundamentals: Writing Good
requirements lead to confusion among Reguirements
* Clearly stated requirements are listed as one
Staff and customers. of the top reasons a project is successful.

* Design, implementation, and test work s o e
products inconsistently interpret the fequiretents

reqUiremEI‘ItS- * Good Requirements are one of the key

determinants of project “success”.

* It takes an inordinately long time to get
agreement on product design.

BA = Business Analysis
UBC Sauder, School of Business

* There is an increased potential for higher University of British Columbia

costs to meet customer expectations.

Requirements Management Metrics [

B
New/Added Requirements I
RM is a lifecycle activity

 Modified Requirements

H Requirements A"AIY.SB Modeling Simulation Coding Testing
o D e I ete d Re q u I re m e n tS Ef\;mg &‘Il'f:sl‘fn Tools Tools Tools A'I‘oolsb
AN o
L VLt (VL L VLL VL]
X 7 —7 T — e
+ Requirements Traceability Percent i i ey Tos”
equirements Iraceabllity rercentage ., », Requirements Management & Traceability Tools

Documentation Tools

* Number of derived requirements

Project Management Tools

* Requirements Volatility

Configuration/Change Management Tools

* HW and SW Interface requirement maturit

Metrics Tools

- * Updated cost estimates

Comparison Chart for SLOC/ ISWE
Requirements Ratios

Ratio of SLOCs to Requirements
350
MSFC, JSC, GSFC, ARC
300 Sample Software Projects
1995- 2018 timeframe
250 A
200 (\
150
Avg 92 SLOCs/Requirement
%
$\®

100
’ 111111
axnnnnnflnill
&Q} .~' Q,}.-' & b (\’b Q O ..' z&

S S < < & \s
3 3 S & @ @ 3
P F Y S EE S R FE TS F YOS E S
J (’OK (JO(Q Q}’b Q}\ O &@ %OK & QQ} ‘_)OK c)OK $6 &.\ (’\\,\ 'bé‘\ c)& & 6)05\ J\OQ (;0(\ 59 (_}S\\’ vg—," (_)OK N
\ & RN & o7 17 & & & & <O Q N N &
> X Q & e ; & < o 9 @) N
L \@0 Q AN S & Qf\& & & S e S «"@ @ o & F ¥ o N ¢§} 6\& &
¥ & & & & & ¥ & NS EE ¢ T S & & @ & SN
S & & S ¢ e (e G N o F > & & F ¢ &
& ~ N & & & & N 2 2 > & Q © N § 3 &
| > S & S ~ > o <& & NN & < UIRC LIS & R
§<>/ 8 Q\L) . \(\‘(/ 6@6 c)(z\e oqé Q\(‘) @ \A (2] QQ*QJ ‘?‘/\’b Qﬁo bc"o 8}?} \0 C 'b{“ &’bv‘
N © o L @ < X 2 9 e & o S & N & o S
© N 0 S < Q X o C & J & & & S oS
S /\\}:\, §e é(é(\ (‘}‘Q’Q . \6‘{& & &c)\\ & o O(\% s v"%@ oqcﬁ S 8
M oY & NG 8 @ @ N N © O
>\ . © 2 S 9 <
\\'& Q’b& Q}\é\ \Q\(}\ O&b CS‘%Q v’bob 6‘\9 & \OQO &
¢ N K O o S & ?}QQ

Requirements Management

Purpose
Manage requirements of the project’s products

and product components and to ensure
alignment between those requirements and
the project’s plans and work products.

We need to
change Z!

From system design processes

Expectations and
Requirements to Be
Managed

From project and Technical
Assessment Process

Requirements Change
Requests

From Technical
Assessment Process

TPM Estimation/
Evaluation Results

From Product Verification
and Product Validation
Processes

Product Verification and

Prepare to conduct
requirements management

v

Requirements Management Process

To Configuration
Management Process

Conduct requirements
management

v

Requirements
Documents

.

Conduct expectations and
requirements traceability

Approved Changes to
Requirements Baselines

\/

Manage expectations
and requirements changes

Capture work products from
requirements management
activities

Product Validation Results

I —

To Technical Data
Management Process

Requirements
Management Work
Products

. ISWE |

When Requirements Management Is Not
Done Well...

* Requirements are accepted by staff from any source they deem to
be authoritative.

* The project experiences a high level of requirements changes.
* There are high levels of rework throughout the project.

* There is an inability to prove that the product meets the approved
requirements.

* Lack of requirements traceability often results in incomplete or
incorrect testing of the product.

Common Software Requirements Problems [ISWE |

Defining and documenting requirements is not a simple task, common
problems that occur during or because of this activity and which are to be
avoided, include:

* Not enough detail in the software requirements Common problems with
software projects

* Fault management requirements for hardware and software _
= Lack of quality standards and measures

= Lack of measurable milestones

= Difficult to make the progress visible

= Poor communications

= Poor documentation

= Frequent changes of requirements

= Over budget and late delivery of software

* Failing to define needed requirements, including safety requirements.
* Writing requirements ambiguously.
* Using inexperienced personnel to define the requirements.

* Incorrect understanding of underlying assumptions or constraints.

Software Project Management 21

* Including unneeded features or capabilities.
* No clear method for allocating requirements to software subsystems.

* Failing to spend enough time or resources on requirements definition.

* Pointing to other sources for the requirement information

How Would You Design and Code These [ISWE].

Software Requirements? |

* The XXXX software shall neither generate inaccurate data nor
inaccurately display data which could potentially cause Range Safety

to incorrectly conclude that a safe for launch or safe flight condition
exists.

* All GN&C functions shall implement deterministic behavior in the
presence of detectable numerical errors.

iswe

Software Architecture

ISWE |

NPR 7150.2D Requirements on Software [
Architectures

* 4.2.3 The project manager shall transform the requirements for the
software into a recorded software architecture. [SWE-057]

* 4.2.4 The project manager shall perform a software architecture
review on the following categories of projects: [SWE-143]

— a. Category 1 Projects as defined in NPR 7120.5.

— b. Category 2 Projects as defined in NPR 7120.5 that have Class A or Class B payload risk
classification per NPR 8705.4.

Questions

* Would you build a house without an architecture plan?

 What are some of the architectural features that you would want in
your house?

E MASTER BEDRM.
174" x 164

&
g

o

-
o on -
< N
™ e
BEDRM. 3 wieo BEDRM. 2
1223120 1272 x 120"
BATH
—

I

|
| MSTR BATH
| teexiss GUEST BEDRM
J - 104" x 154"
S
O
Wi SMWR
—
W..CLO.) o
150 82 —p— TZxw
| N {
al L
SSED PCTURE NIC-ES {
. E
sopep sioee

5 BONUSROOM
124 192

What is Architecture? | ISWE |

* Architecture is an essential software engineering

responsibility, T
TCPIP B%W\Q \ 1
* Architecture addresses the structure, not only of the /O Software: . =
software, but also of its functions, the environment s — Architectural Patterns ...
within which it will work, and the process by which it TN o Tl = [
will be built and operated i N\ 1

* Just as importantly, however, architecture also deals ’ S —
with the principles guiding the design and evolution of ==
a software program ’ '

e T -
I I 7 vl rnai)
P ol Ty

— Complexity, uncertainty, and ambiguity in the
design of complicated systems may be reduced to P
workable concepts e

- In the best practice of architecture, this aspect of i st~ F
architecture must not be understated or neglected e I

Two Aspects of “Architecture”

C
e architecture — What gets built I

— Describes components and interfaces
- Specifies details of assembly and integration

e Architecture — Why it gets built the way it does
— |dentifies properties of interest beyond just the requirements, and from all
essential points of view

— Defines workable abstractions and other patterns of design that give the
design its shape and reflect fundamental concepts of the domain

— Guides design and maintains principles throughout the development
lifecycle

— Builds on a body of experience and refines concepts as necessary
Architecture is about managing complexity

Source: Bob Rasmussen, JPL

System Architecture vs. Software Architecture |

System

Architecture

Outward-looking:

Mission scenarios
Functional decomposition
System analysis
Performance requirements
Resource allocations

Command and telemetry
dictionaries

Flight rules and constraints
Control laws
Failure modes analysis

Fault protection

Test procedures

influences ,

owns

A

Software
Architect

Software
Architecture

Inward-looking:

Patterns, abstractions, algorithms
Monitoring and control

Data representation and data
management

Concurrent threads, processes,
memory management

Real-time execution, throughput
Synchronization
Inter-process communication

Languages, libraries, operating
systems

Verification and validation

Software Architect Essential Activities |

* Understand what a system must do

e Define a system concept that will accomplish this

* Render that concept in a form that allows the work to be shared
 Communicate the resulting architecture to others

* Ensure throughout development, implementation, and testing that the
design follows the concepts and comes together as envisioned

* Refine ideas and carry them forward to the next generation of systems

Source: Bob Rasmussen, JPL

Software Architecture Documentation |

The actual format for recording and describing the architectural concept is left to the
software project team. As a minimum, include the following:

 An assessment of architectural alternatives.

A description of the chosen architecture.

* Adequate description of the subsystem decomposition.

* Definition of the dependencies between the decomposed subsystems.
 Methods to measure and verify architectural conformance.

e Characterization of risks inherent to the chosen architecture.

 Documented rationale for architectural changes(if made).

* Evaluation and impact of proposed changes.

Summary for Software Architectures [

B
Architecture is not just high-level design I
- It includes quality attributes, rationale, and principles

Architecture is not a one-time effort
— Make software architecture a driving force throughout the lifecycle
— Good architectures don’t step aside once development starts

Embrace well-architected software as a response to system complexity
— Weak architecture ...
o Can’t be analyzed or validated for correct behavior, except case by case
o Can’t be changed with confidence, even to correct errors
o Can’t be operated with confidence, other than the way it was tested
o Can’t be reused easily or inherited from

Conduct software architecture reviews to ...

- Inspect quality attributes, principles of design, verifiability, and operability
- Give team members a clearer understanding of the project

iswe

Software Design

NPR 7150.2D Requirements on Software -
Design I

* 4.3.2 The project manager shall develop, record, and maintain a
software design based on the software architectural design that

describes the lower-level units so that they can be coded, compiled,
and tested. [SWE-058]

Architecture versus Design

B
All architecture is design, but not I

all design is architectural

Non-functional drive

R > Architecture
requirements
drive Functional

requirements

7 %

.
Architects intentionally limit their focus and avoid Downstream engineers are expected to respect
the details of how elements do what they do. the architecture to ensure properties promised
Detailed designs and implementation details are by the architect are present in the product.

left to downstream engineers/experts.

What is the Design?

C
* Software design - activities that fit between requirements and I
implementation or coding

e Starts with the architectural design and describes the lower-level
components and interfaces so they can be coded

Far P
;f.):\) > It
eds It'sa . . i Wall! I's r
“ Spear! i 4 3 29 a O
o e“s@ e N W gy b""d

o8 e -, o oo

N ao® : Gl ’3! 2 g

hgoo RO ,’ o o /4
It's 28,
Stk 'l('rz:!

Transforms the “What” to “How”

Activities During Design

* Typically design is divided into 2 stages:

— Preliminary Design: External design describes the real-world
design; Architectural design deposes the requirements into
software subsystems and defines high level interfaces

- Detailed Design: Further descriptions of the subsystems;
Decomposition of subsystems into components; Describes the
internal interfaces

* Formal reviews PDR, CDR are held after each step. Design is
baselined at CDR.

Bi-directional Traceability

Bidirectional traceability S
is defined as a traceability Requirements
chain that can be traced
in both the forward and
backward directions

Software

Software Design Problem/Change
Request

Software

Software Test
Procedures

Software Design Considerations (1 of 2)

Many things need to be considered during design (for example: “ilities”):

e Compatibility: how will it work with other software?

* Extensibility: Can it be changed easily for new capabilities?

 Fault-Tolerance: Can software recover from failures?

* Maintainability: How easily can functional modifications or bug fixes be made?

 Modularity: Are components easy to implement or test in isolation?

» Reliability: Can software perform its required functions over a specified period

- of time?

Software Design Considerations (2 of 2)

* Reusability: Can software be used in multiple applications with little or no
modification?

* Robustness: Can software operate under stress or tolerate
unpredictable/invalid input?

e Security: Is it able to withstand hostile acts?

* Usability: Is the software convenient to use?

* Performance: Does the software perform within specified time limits?
» Scalability: Does the software adapt to increases in data or users?

» Safety: Have the safety aspects of the system been considered?

ISWE |

A Design Strategy [

* Determine which design decisions are the most difficult to make or
most likely to change

e Use information hiding to design each hard decision into a
component specification

— Make the decisions affecting the largest portion of the system first
— Place the decisions “most likely to change” in modules first
— Then place other hard decisions and decisions likely to change into modules

e Continue process until all design decisions are hidden in a
component and provide low-level implementation assignments

Rules of Software Design

Make sure design is clearly stated (avoids

misinterpretation!)

- All design criteria, requirements, and constraints

should be listed in design

Document design decisions

Check design for consistency (Avoids issues with
separately developed modules that don’t fit together)

Always design for extension and contraction (Changes

are inevitable!)

Do not connect independent concerns

Design external functionality before internal

functionality

View solution as a black box and decide how it
will interact with its environment—Then design
the inner organization of the “box”

. ISWE |

Choose reused software carefully

- Exercise caution if reusing only part of a reusable
component;

— Check that it meets requirements;
Keep design as simple as possible

- Minimize dependencies —Desigh components so they
know about as few other components as possible

- Use as few parameters as possible
- Minimize number of calls between components
Prototype when applicable

When possible, use proven patterns to solve design
problems

For flight software, consult Software Design Principles

When crossing between paradigms, build an interface
layer that separates the two

Take Advantage of the Software Engineering Design

Principles in Developing Your Software Designs

* Design principles in the following topic areas:

Resource Margins

Dead Code Exclusion
Initialization/Safe Mode
Input Data Errors

https://swehb.nasa.gov/ -> D. Topics-> (Tab) Software Design Principles

10 Failures Toggle Commands Example
Resource Oversubscription

Incorrect Memory Use/Access 1. Principle

Thread Safety

Design both internal and external commanding to place

Resource Usage Measurement
g the system into an explicitly specified state.

Invalid Data Handling
FSW Modification

Data Interface Integrity
Command Receipt Acknowledgement Making assumptions about the system state can lead to
Toggle Commands malfunctions

Coding Standards
Fault Protection

2. Rationale

* Discussion of cross-cutting issues of software safety (NPR 1750.2 SWE-134) and how the design principles support
implementation of the NPR

https://swehb.nasa.gov/

Software Design Metrics :

* Number of components designed

software requirements
 Number of units designed
* Number of CSCI designed
* Estimated SLOC count
X * Updated software cost estimate

* UML metrics

* Traceability percentage between the software design and |

ISWE |

Summary For Software Design [

* A good design follows a few key principles:

— Separate the interface from the implementation

— Determine what is common and what is variable with an interface and an
implementation

- Allow substitution of variable implementations through a common interface

— Determining what should be common vs. variable should depend on the
goals, nothing extra

* There are many modeling languages, both graphical and textual,
(UML) that can help describe your design and its behavior

e BUT—Good design still requires a thorough understanding of the
requirements and a lot of careful thought and planning!

iswe

Software Implementation or
Coding

. ISWE |

NPR 7150.2D Requirements During Implementation i

* 4.4.2 The project manager shall implement the software design into software
code. [SWE-060]

4.4.3 The project manager shall select, define, and adhere to software coding
methods, standards, and criteria. [SWE-061]

4.4.4 The project manager shall use static analysis tools to analyze the code
during the development and testing phases to, at a minimum, detect defects,
software security, code coverage, and software complexity. [SWE-135]

4.4.5 The project manager shall unit test the software code. [SWE-062]

4.4.6 The project manager shall assure that the unit test results are repeatable.
[SWE-186]

. ISWE

|

NPR 7150.2D Requirements During Implementation

4.4.7 The project manager shall provide a software version description for
each software release. [SWE-063]

4.4.8 The project manager shall validate and accredit the software tool(s)
required to develop or maintain software. [SWE-136]

3.11.8 The project manager shall identify, record, and implement secure
coding practices. [SWE-207]

3.11.9 The project manager shall verify that the software code meets the

project’s secure coding standard by using the results from static analysis
tool(s). [SWE-185]

ISWE |

Implementation [

L ||

What do you
mean —there’s
more than

Finally, we
get to build
something!

s b

Software Implementation —More Than Coding!

* Software implementation consists of implementing the requirements and design into code, data, and I
documentation

» Software implementation also consists of following coding methods and standards
* Unit testing is also a part of software implementation.
* Other implementation activities:

- Peer-reviews, code walkthroughs

- Use of static analyzers

— Building test drivers and simulators

- Development of build procedures

- Documentation, may include unit development folders, build test plans and results, software version
description, users guide, operations manual, maintenance manual

- Following coding standards

- Maintaining software configuration control

- Reporting metrics

- Generating / Maintaining traceability information

- Responding to changes!

- Other possibilities: prototyping, user training, build testing

Top 15+ Best Practices for Writing Super -
Readable Code |

* Commenting & Documentation
* Consistent Indentation
- Keep your indentation style consistent.
* Avoid Obvious Comments
* Code Grouping

- More often than not, certain tasks require a few lines of code. It is a good idea to keep these tasks within
separate blocks of code, with some spaces between them.

* Consistent Naming Scheme
* DRY Principle
- DRY stands for Don't Repeat Yourself. Also known as DIE: Duplication is Evil.
- The principle states:
* "Every piece of knowledge must have a single, unambiguous, authoritative representation within a system."
- The same piece of code should not be repeated over and over again.
* Avoid Deep Nesting

. Top 15+ Best Practices for Writing Super Readable Code
- Too many levels of nesting can make code harder to read and follow. by Burak Guzel

http://tutsplus.com/authors/burak-guzel

Top 15+ Best Practices for Writing Super -
Readable Code |

Limit Line Length

— Our eyes are more comfortable when reading tall and narrow columns of text. This is precisely the
reason why newspaper articles look like they do.

File and Folder Organization

— Technically, you could write an entire application code within a single file. But that would prove to
be a nightmare to read and maintain.

Consistent Temporary Names
Capitalize SQL Special Words

— Database interaction is a big part of most web applications. If you are writing raw SQL queries, it is a
good idea to keep them readable as well.

Separation of Code and Data

- This is another principle that applies to almost all programming languages in all environments

Top 15+ Best Practices for Writing Super Readable Code
by Burak Guzel

199

http://tutsplus.com/authors/burak-guzel

Top 15+ Best Practices for Writing Super -
Readable Code |

* Object Oriented vs. Procedural

— Object oriented programming can help you create well structured code. But that does not
mean you need to abandon procedural programming completely.

 Read Open Source Code

— Open Source projects are built with the input of many developers. These projects need to
maintain a high level of code readability so that the team can work together as efficiently as
possible. Therefore, it is a good idea to browse through the source code of these projects to
observe what these developers are doing.

* Code Refactoring

B - When you "refactor,”" you make changes to the code without changing any of its
functionality. You can think of it like a "clean up," for the sake of improving readability and
quality.

Top 15+ Best Practices for Writing Super Readable Code
by Burak Guzel

http://tutsplus.com/authors/burak-guzel

Software Builds/Releases

* A software build is: A portion of the system that satisfies an
identified subset of the total software requirements

e A software release is: a build that is delivered to a customer for
formal testing

* Why do we need builds?

Enables early testing of the software system

Allows early delivery of capabilities needed for testing other items (like
hardware)

Enables feedback on usability features
Allows us to workaround uncertain requirements, long lead items

Enables better progress tracking and schedule estimation

Software Build Guidelines |

Keep the first build simple-especially if new application, computer, etc.

ISWE |

Each build should contain complete testable functions of the system and add to the
capabilities of the previous build

Work around long lead times (Hardware deliveries, operational computers, etc.)
Plan capabilities critical to operational use of software early

Don’t postpone “hard stuff” (high risk requirements, complex capabilities)

Delay capabilities where requirements are incomplete or unstable until later builds
Plan requirements critical for usability, stability, performance for net to last build
Plan for a “clean-up” build

Don’t plan a build with a long duration (longer than 8-9 months)

Other Implementation Topics [

L
Static analyzer tools —allow the analysis of the software without | ‘
actually running it

s 3 (N

— Different analyzers focus on different types of errors: violations of 1.
coding standards, input/output flaws, security vulnerabilities, T i
coding errors such as memory leaks, unreachable code, etc. ... |

a

Prototyping may be necessary for some parts of the systems, e.g., to
verify that performance req. can be met, or test interface
requirements

Peer reviews/walkthroughs —Should be done on safety critical code,
code performing critical functions, complex functions

Considerations for COTS:

— Verify that COTS meets your requirements

— Make sure you are using COTS as intended
- Make arrangements for maintenance of COTS components

Many other activities performed during implementation are covered
in other areas of the class

el

— ;’W’% N ENGINEERING
i PN " NETWORK

| Software Security

OCE~ LESSONS LEARNED COMMUNITIES ~

WORKING GROUPS ~

This community maintains awareness of the state of the discipline in software security and cyber security issues
and provides guidance/advice on how to address these issues within our processes/projects.

Scott Tashakkor Daniel Hoffpauir
Lead Facilitator

MANAGE MY SETTINGS Q

| Community Navigation

SITE SUPPORT @

TOOLS & RESOURCES~ SUPPORT

| News

ecure Coding Community of Practice Site

SUBMIT NEWS STORY ©

. Protecting Space Systems from Cyber Attack

Library

Find risks, attacks, threats, weaknesses,
vulnerabilities, and best practices.

Discussion

Ask questions, share news, or carry on relevant
conversations.

Standards and Best Practices

A list of best practices for the Secure Coding
community

Contacts

Browse contact information and bios of
community members from across the agency

Document Repository

View documents from the community

Software Assurance Providers...

Track for Software Assurance Providers

Tools

Find tools for the community

Tutorials

Browse tutorials suggested for the Secure Coding
community

Resources

Find resources such as policy, lessons learned,
interesting reading, tools, tutorials and more.

Suggestions

Have a suggestion for the community? We'd like to
hear it!

https://nen.nasa.gov/web/coding
204

Scott Tashakkor 3 v Q
< Commi

ISWE

And Then There’s Documentation!

Software Version Description (VDD)

* |dentification of system

* Executable software

» Software life cycle data

e Archive and release data

* Instructions for building software
e Data integrity checks

* Open problem reports, including
workarounds

* Change requests implemented in
current software version since last VDD

User’s Manual

Software summary

Access to software (initiating a
session, running software, etc.)

Processing reference guide
(capabilities, back-up, recovery,
messages, etc.)

Assumptions, limitations, safety
concerns

Information that is unique for
version of the software

Measures In Implementation [

B
* Implementation progress: I
— planned vs. actual schedule
— # modules coded/unit tested vs. # modules planned
— SLOC Developed vs Planned
* Functionality:
— # modules delivered in build/release vs. planned #
* Volatility:
— # of requirements changes vs. time
* Quality:
— # of errors found in peer reviews vs. expected #
— — # of peer reviews planned vs. # completed
- Coding standard errors found per module
* Management:
— staffing vs. planned staffing

i
|
Most people think implementation is “the fun part!”

iswe

Software Testing

ISWE |

Software Testing Requirements NPR 7150.2D [-

a) Software test plan(s).
b) Software test procedure(s).
c) Software test(s), including any code specifically written to perform test procedures.
d) Software test report(s).
 4.5.3 The project manager shall test the software against its requirements. [SWE-066]

— Note: A best practice for Class A, B, and C software projects is to have formal software
testing planned, conducted, witnessed, and approved by an independent organization
outside of the development team.

 4.5.4 The project manager shall place software items under configuration management prior
to testing. [SWE-187]

— Note: This includes the software components being tested and the software components
being used to test the software, including components like support software, models,
simulations, ground support software, COTS and MOTS.

 4.5.2 The project manager shall establish and maintain: [SWE-065] I

ISWE |

Software Testing Requirements NPR 7150.2D [

 4.5.5The project manager shall evaluate test results and record the evaluation. [SWE-068]

 4.5.6 The project manager shall use validated and accredited software models, simulations, and
analysis tools required to perform qualification of flight software or flight equipment. [SWE-070]

- Note: Information regarding specific verification, validation and credibility techniques and the
analysis of models and simulations can be found in NASA-STD-7009 and NASA-HDBK-7009.

 4.5.7 The project manager shall update software test and verification plan(s) and procedure(s) to
be consistent with software requirements. [SWE-071]

 4.5.8 The project manager shall validate the software system on the targeted platform or high-
fidelity simulation. [SWE-073]

— Note: Typically, a high-fidelity simulation has the exact processor, processor performance,
o timing, memory size, and interfaces as the target system.

* 4.5.9The project manager shall ensure that the code coverage measurements for the software
are selected, implemented, tracked, recorded and reported. [SWE-189]

ISWE |

Software Testing Requirements NPR 7150.2D [

4.5.10 The project manager shall verify code coverage is measured by analysis of the results of
the execution of tests. [SWE-190]

- Note: If it can be justified that the required percentage cannot be achieved by test
execution, the analysis, inspection or review of design can be applied to the non-covered
code. The goal of the complementary analysis is to assess that the non-covered code
behavior is as expected.

* 4.5.11 The project manager shall plan and conduct software regression testing to demonstrate
that defects have not been introduced into previously integrated or tested software and have
not produced a security vulnerability. [SWE-191]

* 4.5.12 The project manager shall verify through test the software requirements that trace to a
hazardous event, cause or mitigation technique. [SWE-192]

 4.5.13 The project manager shall develop acceptance tests for loaded or uplinked data, rules,
and code that affects software and software system behavior. [SWE-193]

— Note: These acceptance tests should validate and verify the data, rules, and code for
nominal and off-nominal scenarios.

ISWE |

Software Testing Requirements NPR 7150.2D [-

MOTS, OSS, or reused software components to the same level
required to accept a custom developed software component for its
intended use. [SWE-211]

* 4.5.14 The project manager shall test embedded COTS, GOTS, |

What Is a Testing? :

Testing

The execution of an Object Under Test (OUT) under specific preconditions with specific
stimuli so that its actual behavior can be compared with its expected or required behavior

« Preconditions: pretest mode, states, stored data, or external conditions
« Stimuli:
- Calls, commands, and messages (control flows)
- Data inputs (data flows)
- Trigger events such as state changes and temporal events
+ Actual Behavior:
- During Test:
—Calls, commands, and messages (control flows)
—Data outputs (data flows)
- Postconditions: post-test mode, states, stored data, or external conditions

.) . P] A Taxonomy of Testing Types
Software Engineering Institute | Carnegie Mellon University SEI Webinar

©2015 Camegie Mellon University

Question :

[Project-internal Software Testers

[Independent Software Testers

0 Independent Verification and Validation Testers
0 Software Developers

[0 System Engineers

0 Software Quality Assurance Engineers

1 Others

Who performs testing on your projects? Check all that apply. I

Test Planning

* Plan before testing begins

— Plan as soon as relevant stage complete
— System test planning can start when requirements document is complete
— Allows for acquisition/allocation of test resources

* Focus testing on components most likely to have issues (high risk,
complex, many interfaces, demanding timing constraints, etc.)

* Involve the right people: quality engineers, software engineers,
systems engineers, etc.

* Include coverage of user documentation

e Capture planning in a software test or software verification plan

Test Case Design / Test Procedures [:

* Include tests to: I
— Confirm software does what it is supposed to do

— Confirm software does not do what it should not do

— Confirm software behaves in an expected manner under
adverse or off-nominal conditions

— Cover range of allowable inputs, boundary conditions, false or invalid inputs, load
tests, stress tests, interrupt execution and processing, etc.

— Evaluate performance
* Do not guess at how the software works

- If requirements not clear enough to write test procedures, ask questions of
appropriate project team members

* Do not assume tester understands intricacies of the software design
— Test procedures must be easy to follow

Software Test Procedure Guidelines |

* The project should establish test cases, in terms of inputs, expected results, and evaluation
criteria,

ISWE |

» Software test procedures, should cover the software requirements and design, including: as a
minimum:

the correct execution of all interfaces (including between software units),
statements and branches;

all error and exception handling;

all software unit interfaces including limits and boundary conditions;
end-to-end functional capabilities,

performance testing,

operational input and output data rates and timing and accuracy requirements,
stress testing,

worst case scenario(s),

fault detection, isolation and recovery handling,

resource utilization,

hazard mitigations,

start-up, termination, and restart (when applicable); and all algorithms.

Software Test Procedure Guidelines [:

* Legacy reuse software should be tested for: I
— all modified reuse software,
— for all reuse software units where the track record indicates potential problems and

— all critical reuse software components even if the reuse software component has
not been modified.

* All software testing should be in accordance with the defined test cases and
procedures.

* Based on the results of the software testing, the developer should make all necessary
revisions to the software, perform all necessary retesting, update the SDFs and other
software products as needed.

* Regression testing should be performed after any modification to previously test
software.

- 4.5.11 The project manager shall plan and conduct software regression testing to
demonstrate that defects have not been introduced into previously integrated or
tested software. [SWE-191]

Comparison Of Types

Static Testing

Static Analysis

Reviews
Tools

Peer Reviews

Informal
REVES

Formal
Reviews

Walkthroughs

Dynamic Testing

| |

Specification

Based (Black
Box)

Structured Based
(White Box)

Equivalence Statement
Partitioning Testing

Boundary Value

Analysis Decision Testing

Condition

Decision Table e

State Transition

Use Case Testing

Experience
Based
IEIHHHIHHHHHHH%I

Exploratory
Testing

Independence in Software Item Testing -

* The person(s) responsible for software testing of a given software
item should not be the persons who performed detailed design,
implementation or unit testing of the software item.

* This does not preclude persons who performed detailed design,
implementation or unit testing of the software item from
contributing to the process, for example by contributing test cases
that rely on knowledge of the software items internal
implementation.

* For Class A, B and Safety critical class C software: I

. ISWE |

Software Assurance Witnessing

* The software test procedure developer should dry run the software
item test cases and procedures to ensure that they are complete and
accurate and that the software is ready for witnessed testing.

* The developer should record the results of this activity in the
appropriated software Development folders (SDFs) and should
update the software test cases and procedures as appropriate.

* Formal and acceptance software testing are witnessed by
software assurance personnel to verify satisfactory
~ completion and outcome.

» Software assurance is required witness or review/audit
of software testing and demonstration.

* Software testing should be performed using the
target hardware.

* The target hardware used for software
qgualification testing should be as close as
possible to the operational target hardware and
should be in a configuration as close as possible
to the operational configuration.

* Typically, a high-fidelity simulation has the exact
processor, processor performance, timing,
memory size, and interfaces as the target system.

SWE-073, “The project manager shall validate
the software system on the targeted platform
or high-fidelity simulation.”

* Flight Software Qualification Line
» 3 Core Stage Engineering Development
Unit Flight Computers

. ISWE

Capturing Results

e Capture outcome of tests used to verify requirements, functionality, safety, etc.
e Capture decisions based on outcome of tests

* Provide evidence of thoroughness of testing

— Differences in test environment and operational environment and any effects
those differences had on test results

— Test anomalies and disposition of related corrective actions or problem reports

— Details of test results (e.g., test case identifications, test version, completion
status, etc., along with associated item tested)

— Location of original test results (output from tests, screen shots, error
messages, etc., as captured during actual testing)

Analyzing Results [-

Analyze results to: I

Evaluate quality of tested products and effectiveness of testing processes
* |dentify and isolate source of errors found in software

e Verify testing was completed as planned

* Verify requirements have been satisfied

» Verify safety-critical elements were properly tested

» Verify all identified software hazards eliminated or controlled to acceptable
level of risk

* Report safety-critical findings used to update hazard reports

Analyzing Results

N
Compare actual to expected results I

Identify discrepancies or mismatches in specification or behavior
Document discrepancies individually for ease of tracking through the resolution process

Determine cause of issue, including problems with testing methods, criteria, or
environment

Identify changes required to address discrepancies
Evaluate and record impact of changes needed to correct issues/discrepancies
Plan for any repeat of testing effort

Obtain and record approval for changes to be made versus those to be addressed at
different time

Measure and predict quality of the software based on the testing results (typically, a
software assurance activity)

ISWE |

Accredited software models, simulations, and analysis |

tools

* The project manager shall use validated and accredited software models, simulations, and analysis tools
required to perform qualification of flight software or fli

S Accredited- officially
e recognized or authorized.

Why do we need to test the models and tools?

: i =
= = = = o
= = = = = ==
= = = = .
= = = = =
z T b = = —
z = o = 5 =
,,,,, = = = = = ==
= : = = = =
z = == = =
= == == = o=
= _, = = =
z i~ o =
— = = "
£

Flight Software Testing Life-Cycle

ISWE

On-Orbit
Verification

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
P
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 So 1 1 1 1 1
System 1 Se 1 1 1 1 1 1
Requirements SDyst_em : ‘:~ - : : : : :
Analysis esign 1 LS. . . . X !
; Software ~~.Software CSCI Development ' '
i Requirements RN 1 1 1 1
! Analysis RN ! ! ! !
1 T 1 So 1 1 1 1
: : Preliminary : \\lh : : :
1 1 De5|gn 1 1 S~ <~ 1 1 1
1 1 T S 1 1 1
1 1 1 Detailed S 1 1 1
! ! ! Design St ! !
1 1 1 ~Jd 1 |
1 1 1 1] 1S o 1 I
1 1 1 1 Coding and [1 1
! ! ! ! CSU Testing ! S ‘_). !
1 1 1 1 1 ~. 1
1 1 1 1 1 CSsC @ @ 1
1 1 1 1 1 . 1
| | | | | Integration | |
1 1 1 1 1 and Testin 1 1
1 1 1 1 1 r 9 1 End-ltem 1 Sta_ge
1 1 1 1 1 1 CSCl P| Integration and Integration and
' ' ' ' ' ! Testing ' Verification)| Verification
: : : : : Test Procedures : :
. Development . .
1 1 1 1 and Dry Run - 1 1
1 1 1 1 Detailed P 1 1
! ! ! ! Test Design - ! !
1 1 1 J; FQT \I 1
1 1 1 Fremy 1 - I >l 1
. X . Prehmm{:\ry | _-7 Scope 1 1
1 1 1 Test Design | _-" 1 1 1
1 1 1 P 1 1 1
1 1 Test 1.7 1 1 1
1 1 Requirements _-1 1 1 1
! Analysis - 1 1 1 1
! Test - ! ! ! !
= : Planning - -r ! ! : :
! ! HPta Software Test Preparation ! !
<> -
1 I 1 _ € t t t t >
_--" Allocated Development Configuration Product
| Baseline Baseline
Functional Revi . .
Baseline eviews Major test cycles applicable

SRR - System Requirements Review TRR - Test Readiness Review
SDR - System Design Review

SSR - Software Specification Review
PDR - Preliminary Design Review
CDR - Critical Design Review

FCA - Functional Configuration Audit
PCA - Physical Configuration Audit
FQR - Formal Qualification Review
CoFR - Certificate of Flight Readiness

throughout software
development

Sample Software Test Metrics

* Defects or problem reports found e mm——
Complexity Intro&ﬂu‘éed

e Static code analysis metrics

* Code coverage

e Test schedule metrics

* Test Procedure Development Status

Operation Operation
* Software Release/Build Status = .
 Number of tested requirements " Foundby Repo,‘te;

Users

* Traceability — Software Requirements to Test Procedures

* Defects or problem reports open and closed, trending for closure

Summary -

* Key points

- Requirements drive
testing
e Detail in the requirements

* Derived requirements

— Testing approach and
coverage

— Testing completeness

— Data (metrics and
measurements)

Software Maintenance

Software Maintenance

ALL MODERN DIGITAL
INFRASTRUCTURE

ﬁgﬁ
i

|

A PROTELT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003

Software Operations, Maintenance, and :
Retirement Requirements |

4.6.2 The project manager shall plan and implement software operations, maintenance, and retirement
activities. [SWE-075]

4.6.3 The project manager shall complete and deliver the software product to the customer with
appropriate records, including as-built records, to support the operations and maintenance phase of the
software’s life cycle. [SWE-077]

4.6.4 The project manager shall complete, prior to delivery, verification that all software requirements
identified for this delivery have been met or dispositioned, that all approved changes have been
implemented, and that all defects designated for resolution prior to delivery have been resolved. [SWE-
194]

4.6.5 The project manager shall maintain the software using standards and processes per the applicable
software classification throughout the maintenance phase. [SWE-195]

4.6.6 The project manager shall identify the records and software tools to be archived, the location of the
archive, and procedures for access to the products for software retirement or disposal. [SWE-196]

. ISWE |

Software Maintenance

* The Software Maintenance phase of the software life cycle begins
after successful completion of formal test and delivery of the
software product to the customer.

* The Software Operation phase spans the time from execution of the
software product in the target environment to software retirement.

* The Software Maintenance phase overlaps the Software Operation
phase and continues until software retirement or discontinuation of
software support

* The results of planning for operations, maintenance and retirement
of software are captured in the Software Maintenance Plan for
implementation.

Software Delivery -

Delivery includes, as applicable, Software User's Manual, source files, executable software, procedures for creating I
executable software, procedures for modifying the software, and a Software Version Description. Open source software
licenses are reviewed by the Center’s Chief of Patent/Intellectual Property Counsel before being accepted into software
development projects.

Other documentation considered for delivery includes:

a) Summary and status of all accepted Change Requests to the baselined Software Requirements Specifications.

b) Summary and status of all major software capability changes since baselining of the Software Design Documents
c) Summary and status of all major software tests (including development, verification, and performance testing).
d) Summary and status of all Problem Reports written against the software.

e) Summary and status of all software requirements deviations and waivers.

f) Summary and status of all software user notes.

g) Summary and status of all quality measures historically and for this software.

h) Definition of open work, if any.

i) Software configuration records defining the verified and validated software, including requirements verification data
(e.g., requirements verification matrix).

j) Final version of the software documentation, including the final Software Version Description document(s).
k) Summary and status of any open software-related risks.

ISWE |

Operations Support [

* Software team support of operations, including help desk activities, as
applicable.

 Documentation required for operations support (e.g., as-built documentation,
user's manual, source code, operations notes).

* Tools required for operations support (e.g., email systems, servers).

* Availability of problem reporting and corrective action (PRACA) system during
operations.

* Participation in mission debriefs, as appropriate.
e Capturing of lessons learned during operations.

] e Software assurance, including software safety, monitoring activities.

e Operational backups (e.g., hot backups for critical systems), including
identification and planning of approach.

Software Maintenance Support

* Modification of software after delivery.

* Updates to system and software documentation to align with/reflect these modifications.

* Availability and use of a configuration management system for documenting, reviewing,
analyzing modifications to code, documentation, and hardware test configurations.

* Tools required for maintenance activities (e.g., issue tracking systems, analysis tools,
configuration control systems, compilers).

* Other resources required to perform maintenance activities such as documentation,
development environment, test environment.

* Testing of modifications (including pre- and post-delivery).

* Delivery and installation of modifications, including generation of associated
documentation such as version description documents (VDDs).

» Capture of maintenance metrics.
* Maintenance transition plan.

» Software assurance and software safety activities for updates.

. ISWE |

Software Retirement Support

* Archival of software products, including capture in a configuration
management (CM) system.

e Retention period for retired software products.
* Tools needed to complete retirement activities (e.g., CM system).

* Security measures for access to and use of retired software
products.

* Transition plans for functionality and data if software being retired is
m being replaced by another software product.

Measures for Maintenance |

B
Quality and Progress: I

and severity of software errors,

errors opened, assigned, coded, tested, completed (corrections in operational
version)

of change requests open, approved, assigned, coded, tested, complete

average # of staff hours to complete (large, medium, small) error correction or
change request

of staff hours available for maintenance

of errors by error type (requirements, operator, coding, interfaces, etc.)

Class Plan

Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources
Software Planning Requirements and Considerations

Software Documentation Software IV&V
Software Costing Software Classifications
Software Processes Software Reuse and Internal Sharing
Software Assurance Software Cybersecurity
Software Safety-Critical Software Lifecycles and Reviews

Software Life-cycle Requirements
Software Requirements Software Coding
Software Architecture Software Testing
Software Design Software Maintenance

Software Development Supporting Requirements Why do we

Software Peer Reviews Software Defect Management do these
Software Configuration Management Software Bi-Directional Traceability things?
Software Risks Software License Management Software

Software Measurements Software Acquisition Failures

239

Peer Reviews/Inspections

KEEP IN MIND THAT T™M
SELF-TRUGHT, S50 MY CODE
MAY BE A LITTLE. MESSY,

LEMTE SEE-
T'M SURE
ITS FNE.

l\

Inspection Approaches

.- \WJOL,

|
THIS 15 LIKE. BEING IN
A HOVSE BUILT BY A
CHILD USING NOTHING
BUT A HATCHET AND A
PICTURE OF A HOUSE,

(

IT'S LIKE A SALAD RECIPE
WJRITTEN BY A CORPORATE
LAWYER USING A PHONE
AUTOCORKECT THAT ONLY
KNEW EXCEL FORMULAS,

(

ITS LIKE. SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED \WNTHOUT ERRORS.
K 0Ky TLL REFD
ﬁsrﬂjam

. ISWE |

Peer Reviews/Inspection Requirements :

 5.3.2 The project manager shall perform and report the results of software peer reviews or software I
inspections for: [SWE-087]

- a. Software requirements.
- b. Software plans, including cybersecurity.

- c. Any design items that the project identified for software peer review or software inspections according to the software
development plans.

- d. Software code as defined in the software and or project plans.
- e. Software test procedures.

 5.3.3 The project manager shall, for each planned software peer review or software inspection: [SWE-
088]

- a. Use a checklist or formal reading technique (e.g., perspective based reading) to evaluate the work products.
- b. Use established readiness and completion criteria.

- — c. Track actions identified in the reviews until they are resolved.
— d. Identify the required participants.

* 5.3.4 The project manager shall, for each planned software peer review or software inspection, record
necessary measurements. [SWE-089]

L inus's Law

. ISWE |

Linus's Law is a claim about software development, named in honor of Linus
Torvalds and formulated by Eric S. Raymond in his essay and book The Cathedral
and the Bazaar (1999).

The law states that "given enough eyeballs, all bugs are shallow"; or more
formally: "Given a large enough beta-tester and co-developer base, almost
every problem will be characterized quickly and the fix will be obvious to
someone."

Presenting the code to multiple developers with the purpose of reaching
consensus about its acceptance is a simple form of software reviewing.

Researchers and practitioners have repeatedly shown the effectiveness of
various types of reviewing process in finding bugs and security issues, and also
that code reviews may be more efficient than testing.

Defect Removal Efficiency

Table 4: Software Defect Rlemowval Efficiency Flanges

Defect Femoval Activaty

Eanges of Dlefect

Femoval

L

Formal requirerment inspections S0%0 to 20%0

Formal design mmspections 45%0 to B5%0
We inspections A45%0 to B5%0

Static analvsis (automated) 25%0 to 0%

Tt test 15%% to S0%4

(rnanual)

TTrut test {autormated) 20%0 to &0%G

MWew function 20%0 to 25%0

test

Fegression 15% to 20%0

test

Integration 25%0 to 40%0

test

FPerformance 20%0 to 40%0

test

Zwstem 25%0 to S5%0

test

Scceptance test (1 client) 25%0 to 25%0

Low-vwolume Beta test (= 10 chents) 25%0 to 40%0

Crrerall cumulative ranges T to 99%0

Caper Jones DACS Software Tech News March 2010

244

Products for Peer Reviews

 NPR 7150.2 requires certain products to be inspected/peer reviewed

* Required software products depend on the classification of the
project.

Software Class

Software

Documentation A C D
Software Requirements X X
Software Plans X X
Software Design

Identified in Plans X X
Software Code

identified in Plans X X

Test Procedures X X

ISWE

Benefits

Among the most effective verification and validation practices
for software

Simple to understand

Can result in very efficient method of identifying defects early
in the product’s life cycle

Use a straight-forward, organized approach for evaluating a

work product

- To detect potential defects in a product

- To methodically evaluate each defect to identify solutions
and track incorporation of these solutions into the
product

Add value and reduce risk through expert knowledge,
infusion, confirmation of approach, identification of defects,
and specific suggestions for product improvements — NPR
7123.1 (G.19)

. ISWE |

Useful for many types of products: documentation,
requirements, designs, code

Provide a way for sharing/learning of good product
development techniques

Serve to bring together human judgment and analysis from
diverse stakeholders in a constructive way

Can impact budgets: defects found and fixed early (rather than
allowed to slip into later phases) cost less and require less
rework

One of the few V&YV approaches that can be applied in the early
stages of software development (before there is any code that
can be run and tested)

Process

* Effective peer reviews/inspections

Are concerned with only the technical integrity
and quality of the product

Are simple and informal

Concentrate on review of the documentation
and minimize presentations

Use a round-table format rather than a stand-
up presentation

Give a full technical picture of items being
reviewed

Are planned, use checklists, include readiness
and completion criteria

Capture action items, monitor defects, results,
effort

B
* Team Reviews I

Team of 5-7 people
Material reviewed in advance of meeting
Author leads review meeting

Solutions discussed and attempt made to
choose best one

No follow-up on identified issues
Effectiveness measures collected

* Walkthroughs

Author prepares review material

Good for educating others on the
material

Solutions often discussed as part of
the review

No follow-up on identified issues
No effectiveness measures

Process -
 Best Practices — Process I

- Defects found during inspections never used to evaluate author — goal is to
improve product

- Use checklists relevant to inspector’s perspective
- Use readiness and completion criteria

— Limit inspection meeting to 2 hours

— Track action items until resolved

— Collect and use inspection data

Effort, number of participants, areas of expertise

Defects - list, total, type

Inspection outcome (pass/fail)

Item being inspection and type (requirements, code, etc.)
Date and time

Meeting length, preparation time of participants

Software Peer Review Base Metrics

. ISWE |

Size planned

ECN

_ Size Actual

Time Meeting

Planning

Meeting time

Rework

Major Defects found
Minor Defect found
Major Defects Corrected
Minor Defects Corrected

Number of Inspectors
Product Appraisal

Derived Data Peer Review Defects

B
Lines of code or document pages that you planned to inspection I

Lines of code or documents pages that were actually inspected or peer
reviewed

Time required to complete the inspection, if done over several meetings then
add up the total time required

Total number of hours spend planning and preparation for the review

Total number of hours spent in the inspection meeting (multiply Time meeting
by number of participates

%I"otg_l number of hours spend by the author making improvements based on the
indings.

Number of Major defects found during the review

Number of Minor defects found during the review

Number of major defect corrected during rework

Number of minor defect corrected during rework

Number of people, not counting observers, who participated in the review

Review teams assessment of the work product (accepted, accepted
conditionally, review again following rework, review not complete, etc.)

The Peer Review Defect metric measures the average number of defects per
peer review to determine defect density over time.

Number of defects found per Peer Review = [Total number of defects] / [To
number of Peer Reviews]

249

ISWE |

Summary for Ensuring Quality in Your Project |

Remember ... it’s cheaper to build quality products than to go back
and fix the problems

* Make sure your team understands the processes and implements
them as defined

* Include quality activities in your plan and track their progress

* Have objective evaluators assess the Team’s adherence to
documented process and product standards

iswe

Software Configuration
Management

NPR 7150 Software Configuration [:
Management Requirements |

5.1.2 The project manager shall develop a software configuration management plan that describes
the functions, responsibilities, and authority for the implementation of software configuration
management for the project. [SWE-079]

5.1.3 The project manager shall track and evaluate changes to software products. [SWE-080]

5.1.4 The project manager shall identify the software configuration items (e.g., software records,
code, data, tools, models, scripts) and their versions to be controlled for the project. [SWE-081]

Note: The items to be controlled include tools, items, or settings used to develop the software, which
could impact the software. Examples of such items include compiler/assembler versions, makefiles,
batch files, and specific environment settings.

NPR 7150 Software Configuration [
Management Requirements

5.1.5 The project manager shall establish and implement procedures to: [SWE-082]

a. Designate the levels of control through which each identified software configuration item is
required to pass.

b. Identify the persons or groups with authority to authorize changes.

c. Identify the persons or groups to make changes at each level.

5.1.6 The project manager shall prepare and maintain records of the configuration status of software
configuration items. [SWE-083]

NPR 7150 Software Configuration -
Management Requirements |

5.1.7 The project manager shall perform software configuration audits to determine the correct
version of the software configuration items and verify that they conform to the records that define
them. [SWE-084]

5.1.8 The project manager shall establish and implement procedures for the storage, handling,
delivery, release, and maintenance of deliverable software products. [SWE-085]

5.1.9 The project manager shall participate in any joint NASA/developer audits. [SWE-045]

4.5.4 The project manager shall place software items under configuration management prior to
testing. [SWE-187]

Note: This includes the software components being tested and the software components being used to
test the software, including components like support software, models, simulations, ground support
software, COTS, GOTS, MOTS, OSS, or reused software components.

SAE/EIA-649B Configuration Management [-
Standard |

* SAE/EIA-649B Configuration Management Standard is the NASA CM standard

* A companion standard (EIA-649-2) to "SAE/EIA-649B Configuration Management Standard,"
provides a resource that standardizes Configuration Management (CM) requirements specific to
National Aeronautics and Space Administration (NASA) agreements and design activities.

* This provides a template of CM requirements and user guidance for tailoring the requirements
for each unique use case.

3.3.5 Software Change Control

For software, the customer controls the CSCI requirements (design specifications) and release to
include all associated software documentation (i.e., Version Description Document (VDD),
manuals, guides) and products (i.e., code, databases, PLDs). The suppliers have the responsibility
to establish hardware and software integrated control authorities (control boards) to ensure the
evaluation of all changes affecting the software within an integrated CI/CSCI product structure.

Both hardware and software deliverables are released using the same baseline definitions and
functions described in this Standard.

(1) The Supplier shall prepare a VDD as specified in the agreement DRD-STD-VDD.
(2) The Supplier shall comply with NPR 7150.23@=

Should be Section 5.1

Software Configuration Management [

B
* Software Configuration Management is the process of applying I
configuration management throughout the software life cycle to ensure
the completeness and correctness of software configuration items.

 SCM applies technical and administrative direction and surveillance to:
- identify and record the functional and physical characteristics of software
configuration items,
— control changes to those characteristics,
- record and report change processing and implementation status,
- verify compliance with specified requirements.

* SCM establishes and maintains the integrity of the products of a software
= project throughout the software life cycle.

e Use of standard Center or organizational SCM processes and procedures is
encouraged where applicable.

Configuration Items

B
Deliverable and non-deliverable software development products I

Documentation (plans, standards)
Object code
Data

Development and test environments

Flow charts, UML, input to code generators
Build procedures

Metrics

Requirements

Interface documents

Training materials

Specifications

Presentations

Source code
Executable

Development and test tools (operating systems, compilers,
etc.)

Test cases/scenarios, data, scripts, reports
COTS software

Defect lists, change requests

Software assurance records

Simulators, models, test suites

Databases

Baselines and identification of their contents

Traceability matrices

Release notes

Change Control -

- May differ by item type (e.g., documentation, code)

* Persons or groups with authority to authorize changes and to make
changes at each level

— Change control boards

— Change authorization boards

- Engineering change boards
—~ — Peer review teams

— Project managers

* Levels of control configuration items must pass through |

Audits _ISWE

* Provide checks to ensure that the planned product is the developed

product... determine correct version of configuration items and verify
they conform to documents and requirements that define them

e Performed

At time product released

Prior to delivery (assure products are complete, contain proper versions and
revisions, and all discrepancies, open work, deviations and waivers properly
documented and approved)

At end of a life cycle phase
Prior to release of new or revised baseline
As project progresses (prevent finding major issues at end when more costly to fix)

Incrementally for very large, complex systems focusing on specific functional areas
with a summary audit to address status of identified action items

iswe

Software RisK
ldentification and Management

Software Risk Requirement in NPR 7150.2 [-

Software Risk Requirement |

* 5.2.1 The project manager shall record, analyze, plan, track, control,
and communicate all of the software risks and mitigation plans.
[SWE-086]

Remember to Plan for Risk Management [-

* Risk Management means: I
- Identifying risks that threaten success of the project |

— Analyzing the risks to gain understanding and develop possible mitigations
— Tracking the risks as conditions change
— Communicating risk status to management

* Why should you do this?

— Because surprises are usually unpleasant and this minimizes surprises

— Because the earlier a potential problem is acknowledged and the more you
— know about it, the better you can deal with it

- Because it’s also an Agency requirement!

. ISWE |

Software Risk Requirement Rationale

* The purpose of risk management is to identify potential problems
before they occur so that risk handling activities can be planned and
invoked as needed across the life of the product or project.

* Risk handling activities are intended to mitigate adverse impacts on
achieving the project's objectives.

* "Generically, risk management is a set of activities aimed at
achieving success by proactively risk-informing the selection of
decision alternatives and then managing the implementation risks
associated with the selected alternative."

= |dentification and management of risks provide a basis for
systematically examining changing situations over time to uncover
and correct circumstances that impact the ability of the project to
meet its objectives.

Use a Checklist to Help Identify Software Risk ltems

7

ISWE

Project Development Phase:

RISK ACTIO

Yes/INo | N

[Partial | Accept/
Work

Software Design Phase

ACTION

Is the Software Management Plan being followed?
Does it need updating?

System Requirements Phase

Is the Requirements flow down well understood?

Standards and guidelines sufficient to produce clear, consistent design
and code?

Are system level requirements documented?
To what level?
Avre they clear, unambiguous, verifiable ?

Will there be, has there been, a major loss of personnel (or loss of
critical personnel)?

Is there a project wide method for dealing with future requirements
changes?

Communication between systems and other groups (avionics, fluids,
operations, ground software, testing, QA, etc.) and Software working
well both directions?

Have software requirements been clearly delineated/allocated?

Have these system level software requirements been reviewed,
inspected with systems, hardware and the users to insure clarity and
completeness?

Has Firmware and Software been differentiated, who is in charge of
what and is there good coordination if H/W is doing “F/W”?

Avre the effects on command latency and its ramifications on
controllability known?

Can the Bus bandwidth support projected data packet transfers?

Are requirements defined for loss of power?
System reaction known or planned for?
UPS (Uninteruptable Power Supplies) planned for critical
components?

Requirements
Have they been baselined & are they configuration managed?
Is it known who is in charge of them?

Is there a clear, traced, managed way to implement changes to
the requirements? (i.e. is there a mechanism for in-putting new
requirements, or altering old, established and working)?

Is there sufficient communication between those creating &
maintaining requirements and those designing to them ?

Is there a traceability matrix between requirements and
design?

Does that traceability matrix show the link from requirements
to design and then to the appropriate test procedures?

Is an impact analysis conducted for all changes to baseline
requirements

Has System Safety assessed Software?
Any software involved hazard reports?
Does software have the S/W subsystem hazard analysis?
Does software personnel known how to address safety critical
functions, how to design to mitigate safety risk?
Are there Fault Detection, Isolation and Recovery (FDIR)
technigues designed for critical software functions?

Has software reliability been designed for?
What level of fault tolerance has been built in to various
portions /functions of software?

https://nen.nasa.gov/web/software/wiki/-/wiki/SPAN/Risk+Management

Need to create Simulators to test software?
Were these simulators planned for in the schedule?
Is there sufficient resources to create, verify and run these?
How heavily does software completion rely on simulators?
How valid (close to the flight) are the simulators?

https://nen.nasa.gov/web/software/wiki/-/wiki/SPAN/Risk+Management

Identifying Risks

C
* Risks have two main parts: a condition, and a consequence I

— Condition: the event that might happen
- Consequence: the effect on the project if it does
- Often phrased as: “If condition, then consequence”

* Examples:

- If the simulator doesn't arrive on time, then the start of testing will be
delayed

- We were promised staff coming off project x, but project x has been delayed.
If we don’t get the promised staff, then our development effort may not be
- able to meet its schedule commitments

* Classify each risk after it is identified

ISWE |

Software Risk Identification Steps [

 When identifying software risks, consider the following insights and
suggestions:

— Identify risks before they become problems.

— Communication is the center of the Risk Management paradigm (see NPR
8000.4, Agency Risk Management Procedures and Guidelines).

— Brainstorming is often used to identify project risks.

* People from varying backgrounds and points-of-view see different risks.

* Adiverse team, skilled in communication, will usually find better solutions to the
problems."

— Use a checklist to avoid "missing" risks that have been identified on previous
— projects.

» Use existing reference lists; NASA/SP-2007-6105, NASA Systems Engineering Handbook,
includes a list of example sources of risk.

Software Risk Management Steps — Track, -
Control, Communicate |

 Track software risks

— Risks that are not eliminated need to be tracked throughout the project life
cycle to ensure their mitigation strategies remain effective.

— For low-risk items that are not formally included in the risk management
plan, consider using a watch list so that they are not forgotten and to help
ensure that they do not escalate to a higher level risk later in the project.

- Additionally, conditions that the team has identified as risk triggers are also
monitored and tracked until those situations are no longer risk factors. Risk
status also needs to be tracked and weighed against risk criteria to
determine if corrective action needs to be taken.

. — If a risk management tool is in use for the project, risks need to be added to
and tracked using this tool. A tracking tool could be a simple spreadsheet or
database for a small project, a tool purchased specifically for tracking risks,
or part of an integrated tool used to track multiple aspects of the project.

Software Risk Management Steps — Track, -
Control, Communicate |

e Control software risks

— When a risk occurs, action needs to be taken. Those actions should have
been included in the risk management plan and need to be implemented in
this step. Their effectiveness also needs to be measured so adjustments to

the plan can be made, if necessary.

e Communicate software risk information

— Risk information is communicated to all relevant stakeholders throughout

the project life cycle. Stakeholders include project managers, project
technical personnel, test team members, and anyone else affected by or with

the need to know about risks, their impact, and their mitigations. Project life
cycle reviews are one mechanism for risk communication.

Software Measurements

Why Measure? - 1

Management
without metric
IS just guessing

NPR 7150.2D Requirements on Software [-
Requirements |

 5.4.2 The project manager shall establish, record, maintain, report, and utilize software
management and technical measurements. [SWE-090]

 5.4.3 The project manager shall analyze software measurement data collected using
documented project-specified and Center/organizational analysis procedures. [SWE-093]

* 5.4.4The project manager shall provide access to the software measurement data,
measurement analyses, and software development status as requested to the sponsoring
Mission Directorate, the NASA Chief Engineer, the Center Technical Authorities, HQ SMA, and
other organizations as appropriate. [SWE-094]

 5.4.5The project manager shall monitor measures to ensure the software will meet or
- exceed performance and functionality requirements, including satisfying constraints. [SWE-
199]

 5.4.6 The project manager shall collect, track, and report software requirements volatility
metrics. [SWE-200]

A Thought!

"What gets measured, gets managed."

- Peter Drucker

There is so much power in this quote. If you've never tracked yourself,
you don't even know how much power there is in tracking. | couldn't even
explain it adequately. You wouldn't believe me. You'd think | was
exaggerating. The simple act of paying attention to something will cause
you to make connections you never did before, and you'll improve those
areas - almost without any extra effort.

Why You Should Measure [

* For the benefit of your current project

— Use objective measurement data to plan, track, and correct
project

* For the benefit of your future projects (and the rest of your Center’s
projects, too!)
— Help create a basis for planning future projects

— Help understand what baseline performance is for projects similar
3 to yours

- Provide organizational information to help improve software
activities

Why Do Technical Performance
Measurement?

Cost and schedule performance status is of little value unless the technical
performance is acceptable

We need to track potential risks and verify technical assumptions or estimates behind
the plan, such as

— Our productivity rate projections

— Product size estimates

— Product complexity estimates

— Product performance assumptions

We need to measure acceptability “as we go,”

— Trends in production rates
- Trends in performance

- Interim acceptability

And a Few More Reasons to Measure---

Forces advanced, detailed planning

Helps in making development and management
planning decisions consistent with the project scope and
requirements

Provides an objectivity in assessing progress which is
often difficult during the heat of the battle

Provides status relative to approved scope and
requirements to support management control

Allows corrective action in time to prevent the “crisis” or
to minimize the impact of the crisis

Improves ability to estimate completion costs and
schedule variances by analysis of data and trends

BASIC Software Measurements

Code Size (LSLOC)

- Use a standard counter

- Deliverable Code

- Test Code

- Comments
Release Dates

- Date and Code Sizes
Defect Reports by date

- Cumulative defects for your product

by date of releases

Effort

- Torepair

- To implement a feature

IEEE Software Magazine Jan/Feb
2018

Components of a Measurement Plan [SWE]|
1. Measurement objectives I
2. The measures that will meet the objectives (and don’t forget

measures for the process areas)
3. Descriptions of how the measures will be collected and stored
4. The analysis methods for each of the measures
5. Communication of the measurement results
6. Commitment to the measurement plan from your team and

your management

Candidate Management Indicators That Might Be
Used On A Software Development Project:

* Requirements volatility: total number of requirements and
requirement changes over time.

* Bidirectional traceability: Percentage complete of System level
requirements to Software Requirements, Software Requirements
to Design, Design to Code, Software Requirements to Test
Procedures

* Software size: planned and actual number of units, lines of code,
or other size measurement over time.

* Software staffing: planned and actual staffing levels over time.
* Software complexity: complexity of each software unit.

* Software progress: planned and actual number of software units
designed, implemented, unit tested, and integrated overtime,
code developed.

* Problem/change report status: total number, number closed,
number opened in the current reporting period, age, severity.

* Software test coverage: a measure used to describe the degree to
- which the source code of a project is tested by a particular test
suite

* Build release content: planned and actual number of software
units released in each build.

* Build release volatility: planned and actual number of software
requirements implemented in each build.

. ISWE |

Computer hardware and data resource utilization: planned and actual
use of computer hardware resources over time.

Milestone performance: planned and actual dates of key project
milestones.

Scrap/rework: amount of resources expended to replace or revise
software products after they are placed under any level of
configuration control above the individual author/developer level.

Effect of reuse: a breakout of each of the indicators above for reused
versus new software products.

Cost performance: identifies how efficiently the project team has
turned costs into progress to date.

Budgeted cost of work performed: identifies the cumulative work that
has been delivered to date.

Audit performance: Are you following a defined processes, how many
audits have been completed, audit findings, audit findings open/close
numbers

Risk Mitigation: Number of identified software risks, risk migration
status

Hazard analysis: number of hazard analysis completed, hazards
mitigation steps addressed in software requirements and design,
number of mitigation steps tested

Mapping of Organizational Goals to Metrics [

Mapping of Organizational
Goals to Metrics

ISWE

Goal Statements Goal Question SA Metric
Continuously improve the Quality Software |Are the software requirements Ratio of the number of detailed software requirements to the
quality of software requirements |Requirements detailed enough for development number of SLOC to be developed by the project.
to assure safe and secure and test? Percentage complete of each area of traceability.
products are delivered in Are requirements stable? Software requirements volatility trended after project baseline
support of mission success and (e.g., # of requirements added, deleted, or modified; tbds).
customer objectives. Do the software requirements Percentage complete of traceability to each hazard with software
adequately address the software items. (New)
hazards ?
Assure guality, safe, and secure |Quality Code Is the code secure and has the code |[Number of cybersecurity secure coding violations per number of

code is being delivered.

addressed cybersecurity
requirements?

developed lines of code;

List of types of secure coding violations found.

Is the safety-critical code safe?

Software cyclomatic complexity data for all identified safety-
critical software component;

What is the quality of the code?

Number of defects or issues found in the software after delivery;

Number of defects or non-conformances found in flight code,
ground code, tools, and COTs products used.

Do the requirements adequately
address cybersecurity?

Number and type of identified cybersecurity vulnerabilities and
weaknesses found by project.

Acquisition Considerations: -
Measuring the Contractor’s Work |

* Measurement must be part of deliverables
— Make sure you specify a good set of measures in the RFP -- you can negotiate
minor changes later if necessary
— Amend existing contracts (eventually) to define measures

- Generally should use the same sort of measures as in-house projects, e.g.,
* Contractor earned value reports may cover software progress measures
* Planned and actual delivery dates

* Test results or count of outstanding problems

Acquisition Considerations: [-
Measuring Government Work |

* Should have acquisition process measures for Class A and B projects

- For example, planned and actual effort

* Consider other objectives as well

— Assure that government completes work on time
* How long does contract / amendment take in the procurement office?
* How long does it take to accept deliveries?

— Assure quality of government work
* Are requirements complete and stable?

e Are acquisition processes passing audits?

Repeat The Thought [

"What gets measured, gets managed." - Peter Drucker

There is so much power in this quote. If you've never tracked yourself,
you don't even know how much power there is in tracking. | couldn't even
explain it adequately. You wouldn't believe me. You'd think | was
exaggerating. The simple act of paying attention to something will cause
you to make connections you never did before, and you'll improve those
areas - almost without any extra effort.

Summary for Software Measurements -

* Some of the important features and advantages of metrics are: I

— Motivation - Involving employees in the whole process of goal setting and increasing employee
empowerment. This increases employee job satisfaction and commitment.

— Better communication and coordination — Frequent reviews and interactions between superiors and
subordinates helps to maintain harmonious relationships within the organization and also to solve many
problems.

— Clarity of goals

— Subordinates tend to have a higher commitment to objectives they set for themselves than those imposed
on them by another person.

— Managers can ensure that objectives of the subordinates are linked to the organization's objectives.

— Everybody will be having a common goal for whole organization. That means, it is a directive principle of
management.

* Measure your project performance quantitatively

* Believe the data, especially the trends

* Analyze the causes of trends - and do something about them
* Identify and track key technical performance parameters

* Exercise management judgment - use the data to control your project

Software Non-conformance or
Defect Management

Software Non-conformance or Defect [:
Management |

* 5.5.1 The project manager shall track and maintain o

software non-conformances (including defects in
tools and appropriate ground software). [SWE-201]

e SEVERITY ey e PRIORITY
* 5.5.2 The project manager shall define and f \ r w
implement clear software severity levels for all k e) . e
software non-conformances (including tools, COTS, | , ; .
GOTS, MOTS, 0SS, reused software components, \ AR | \ = /
and applicable ground systems). [SWE-202] , \ , <

MINOR MEDIUM

2+ Note: At a minimum, classes should include loss of
life or loss of vehicle, mission success, visible to the oW oW
user with operational workarounds, and an ‘other’
class that does not meet previous criteria.

Software Non-conformance or Defect

Management

* 5.5.3 The project manager shall
implement mandatory assessments of
reported non-conformances for all COTS,
GOTS, MOTS, 0SS, and/or reused
software components. [SWE-203]

* Note: This includes operating systems,
run-time systems, device drivers, code
generators, compilers, math libraries, and
build and Configuration Management
(CM) tools. It should be performed pre-
flight, with mandatory code audits for
critical defects.

Software Non-conformance or Defect
Management

i
 5.5.4 The project manager shall implement process assessments
for all high-severity software non-conformances (closed loop
process). [SWE-204]

l High-severity
Planning Requirements Testing software

Defect Found

What caused the High-severity software Defect

iswe

Bidirectional Traceability

Bidirectional Traceability

Bidirectional traceability
is defined as a
traceability chain that
can be traced in both the

forward and backward Software
.) Problem/Change
directions

Request

Software
Requirements

Software code

Software Test
Procedures

Bi-directional Traceability Requirement [

3.12.1 The project manager shall perform, record, and maintain bi-
directional traceability between the following software elements:
[SWE-052]

Note: The project manager will maintain bi-directional traceability between the software requirements
and software-related system hazards, including hazardous controls, hazardous mitigations, hazardous
conditions, and hazardous events.

Higher-level requlrements to the software requirements

X X X X X X

Safety-Critical Software Requirements __ISWE |

The project manager shall perform,
record, and maintain bi-directional
traceability between the following
software elements: [SWE-052]

Software
Requirements

Software requirements to the system
hazards

Software code

Software Test
Procedures

Software Requirement Sources

Other Software Requirement Sources

System
Hardware specifications C
Computer\Processor\Programmable Logic Device specifications Req uirements
Hardware interfaces
Operating system requirements and board support packages
Data\File definitions and interfaces
Communication interfaces including bus communications Software
interfaces
Derived from Domain Analysis
Fault Detection, Isolation and Recovery requirements Software Requirements
Models
Commercial Software interfaces and functional requirements
Software Security Requirements
User Interface Requirements
Algorithms
Legacy or Reuse software requirements
Derived from Operational Analysis
Prototyping activities
Interviews
Surveys
Questionnaires
Brainstorming
Observation
Software Test Requirements
Software Fault Management Requirements
Hazard Analysis

Software Licensing

The Problem: Why We Need Software
Licensing Management

No Agency/Enterprise Approach

Limited Insight/Visibility

Inefficiencies in Internal Planning

Cost
Avoidance/Savings

Increased opportunity to reduce
software cost and avoid paying
significantly higher prices
Maximize software investments
without purchasing new products
and support

Decreased costs for new projects
and maintaining existing systems
Cost avoidance on audits, cyber
threats

Benefits of
Knowing Inventory

[Cyber Threat Detection]

Increased awareness of cyber
threats to NASA's data (i.e.,
mission and personnel)

Quick removal oflegacy IT
hardware/software decreases
threat possibility

Identify and mitigate
outdated/unsupported software

ANY software that has deployed within the Agency
regardless of its function injects RISK into NASA's
infrastructure from an IT Securi|ty and software
compliance perspective...

[Audit Prevention]

. Reduced chance of audits, or of
negative outcomes from audits
Compliance with OFPP, GAO
and OMB guidance on Software
license management

ISWE

A

...which has the potential to cost NASA MILLIONS
per year in WASTE, INEFFICIENCY, and NON-
COMPLIANCE FEES

hidden
dangers—
Use only
NASA
A c,-. approved
N Pp

software.
w,
o “
Do your parg‘a\‘., Mana@iﬁg Agency
software is everyone’s responsibility

WV |

b

Using unlicensed software could
cost NASA MILLIONS and/or
introduce security vulnerabilities
into the NASA environment

It is critical to maintain software
patch levels/versions and remove
outdated/unsupported software
from the environment to decrease
the risks of cybersecurity threats to
NASA’s infrastructure

Publisher initiated audit request and Agency
negotiated a multi-year, 334 2M (7 years -
§4.9M/Annually) Enterprise License
Agreement (ELA) in 2005, mitigating Agency
exposure and resolving audit inquiry with

Adobe

In F¥10, Publisher initiated audit inquiry; Agency
negotiated a mulii-year, $1.92M (3yrs) agreement
in FYT, implementing an Agency e-forms
capability upgrade to resolve audit inguiry and
address significant security issues

Oracle

Publisher alleged in FY11 HST exceeded
contractual limitations; asserted the need to
purchase additional licenses to attain
compliance. NASA internal audit investigation
resulted in Oracle recanting allegation

AutoDesk

Publisher initiated an audit inquiry in FY12.
Agency Negotiated a no-cost agreement to
bring NASA's use and license requirements to
a "true-up” compliance position in FY13

Software Publisher Audits

» Historical License Compliance

Solidworks

Agency notified by vendor, Dassault
Systémes, in FY15 of unauthorized software
being used on NASA and MASA guest
networks; coordinated with impacted
Centers to review unauthorized access and
mitigated the situation

IBEM

ISWE

OpenText

Publisher initiated license inguiry of Agency
contractor licenses installed and used on MASA
equipment.. Final outcome pending further
information.

Trimble SketchUp

Publisher initiated inquiry with Agency Software
Manager (ASM) of Agency downloads of trial
software, which is not compliant with the publisher
terms and condition; ASM coordinated agency self-
audit to identify and remove all SketchUp trial
version software '

Publisher initiated audit inquiry with a negotiated
license true-up (Est Value: $10.6M). The Agency secured
a grace period to ensure appropriate alignment to
license terms; findings resulted from misconfigurations
for Servers/ Virtual environments to the license terms

PTC Windchill

Publisher initiated audit ingquiry, Agency completed
license true-up at one Center to resclye initial inquiry
($273K). Secured a 6 month grace period with recent
Agency renewal to allow time for NASA to align with the
compliance terms

Agency Software Lifecycle Management -
Plan Vision, Goals, and Objectives |

Vision
- Effectively manage software across the Agency and optimize software licensing and configurations

e Goals

- Implement an effective Agency-wide Software Lifecycle Management process

- Comply with the Megabyte Act of 2016 and OMB M-16-12 Category Management Policy 16-1: Improving the
Acquisition and Management of Common Information Technology: Software Licensing

— Support the achievement of the 2018-2021 IT Strategic Plan objectives

* Objectives
- Centralized, standardized, streamlined lifecycle processes for managing software that delivers service to the
customer in a timely manner and that is automated to the greatest extent possible
- Greater insight into the software entering and existing in NASA’s environment
- Increased cost savings/cost avoidance through the improved management of NASA’s software
- Improved software related investment decisions
- Reduced risk of security vulnerabilities related to software
- Reduced risk of non-compliance license issues and costly audit findings

Approved Software List (CAP)

https://esd.nasa.gov/now/nav/ui/classic/params/target/u_scan_assessed_cleared_list_list.do%3Fsysparm_userpref_module%3Db3921cf11b62cdd09912c844604bcbd9%26sysparm_clear_stack%3Dtrue

Software License Lifecycle

|
* The software license lifecycle at NASA I
consists of seven stages:

1. Planning

2. Request and Requisition

3. Procurement and Strategic Sourcing

4. Receipt and Deployment

5. Management and Maintenance 7. Retirement/

6. Reassignment and Reuse SR A

7. Retirement and Disposal

* Project Managers have critical responsibilities

related to software licenses and subscriptions

— Details are incorporated into NPR 7150.2D (section
R 2.1, 3.1) and the Applications Program (AP)
Handbook*.

4. Receipt/
Deployment

5. Management/
Maintenance

* https://sharepoint.msfc.nasa.gov/sites/ap/standards/SitePages/Home.aspx

https://sharepoint.msfc.nasa.gov/sites/ap/standards/SitePages/Home.aspx

iswe

NASA Software
Acquisition Considerations

Road Map for an Acquisition [

Key Points in the process

Supplier Agreement{ Management

Idert1(t)|féllj\leed . Make/ Buy | Determine .
y Decision Acquisition Type

Something

Get Contract in Develop Acquisition

Monitor the Contract Place Package

A 4

Accept Products Transition to Use Close Out

Beginning the Acquisition Planning :

* First: What kind of item are we buying?

Hardware, software tools or equipment?
Custom software?
Services from contractors to work with you on your teams?

* Begin working with procurement and management to determine
options for acquisition

Possibilities might be:

Direct purchase (purchase order or credit card purchase)
Existing contract (using task order in place)

New contract (nothing exists to help your acquisition)

Commercial Off The Shelf (COTS) software?
COTS software with modifications?
Part of larger (spacecraft) contract

NPR 7150 Applies to All Software Acquisitions

* NPR 7150 applies to software development, maintenance,
retirement, operations, management, acquisition, and assurance
activities.

* The requirements of NPR 7150 cover all software created, acquired,
or maintained by or for NASA and apply to all of the Agency’s
investment areas containing software systems and subsystems.

 Put NPR 7150 on contracts, NASA project is still responsible either
way

What Are Technical and Software Data Rights? |

ISWE |

The terms “Intellectual Property (IP) rights” or “data rights” refers to the
government’s license rights in data.

IP Rights are sometimes referred to as Rights in Technical Data and/or
Computer Software

As a general rule under government contracts, the contractor/developer
is allowed to retain ownership of the technical data and computer
software it developed.

The government receives only a license to use that technical data and
computer software.

The scope of the license depends on the needs of the agency, source of
funding for development, and the negotiations between the parties.

Can apply to source code, executable code, documentation, test scripts,

tools (including the software development and build environment)

What Are Technical and Software Data Rights? |

* Determines who has the right to:

Use
Modify
Disclose
Distribute

ISWE

Determines how the government can use the technical data and
software produced in an acquisition

Influences the ability of the government to economically sustain
systems

Can influence the ability to interface to other systems

Some commercial licenses are not in compliance with the Federal
Acquisition Regulations (FAR)

» Data rights (or lack of data rights) can have long term impacts

- Use of the data the program office receives on the current program
— Data that is provided to interfacing programs (especially in complex systems efforts)
- Long term maintenance/sustainment of the current system

* [tis always more expensive to try to negotiate data rights after the contract is let

- Itis vitally important to think about what data rights are needed well before the RFP is being

prepared

e |If (Izlata rights are important, ensure they are part of the evaluation criteria in a source
selection

Data Rights Questions

* When writing an RFP:

What software data rights might you need?

What software/ software data might require additional data rights?
Who will need the software related data? And what data will they need?
What is the risk involved in not getting the rights to software data you need?

Will software data rights be used as an evaluation criteria?
How will user licenses be handled?
For commercial software

Data rights is a complex area — be sure to involve
an IP Attorney and Contractor Officer as soon as
possible if you anticipate complex data right needs

* Are data rights provided to the public under the commercial license acceptable?

e Are the commercial licenses in accordance with federal law?
* Does the vendor have long term stability?

* |s escrow a possibility? (Note — this does not totally solve most software rights issues)

For non-commercial software

* Do we have a way to clearly identify what was developed with private or mixed funds?
e Are the standard rights acceptable (unlimited, government purpose, restricted) or do | need

specially negotiated rights?

* Will we have rights to subcontractor provided software?

Marking Examples

0,"' . .
J:r WARNING: Information Subject To Export Control Laws
Y/
"7(‘0 This document containg technical data whose export is restricted by the ARMS EXPORT
CONTAROL ACT (Title 22, USC, Sac 2751 et seq) or the EXPORT ADMINISTRATION
ACT of 1979, as amended, Title 50, USC, App 2401 et seq. Violations of thess export laws
aresubject to sevare criminal penalties.

Agsrojel Proprietary [nformation
Export Controlled Infermation

GA@ THIS DOCUMENT AHD THE DATA DISCLOSED
Op HEFECE OH HERERITH |S 800 10 Be FEFHOGLCED .
0/5), USED OF DISCLOSED In wemLE OR[N FART TO
| AHICRE W1 THOUT ThE PERMISS 10N DF AFROUET

A

Copyright © 2010 The Boeing Company All Rights Reserved
Printout of this document is for information only, and is considered an uncontrolled document.

NG
WAt e
o P

&
(] gatad i caver pad

e fgasgjolior
M’Ved_ Co"’ﬂany
WARNING: [hgpee o DotUM -
(NCLt 1 WRRNING DO g pimgr ey
nf . - ewel H ey i1 I .

1710 Fon ine udeg nore: ! PEPRODUCED PORT Gy a0,

ISWE

l CONTROLLED
UNCLASSIFIED
| NFORMATION

https://www.archives.gov/cui

Pg: R x 1%
Iraffic in apme f'.F. he BIN i onirolled ynme s s DOCAENT)
tlease gr gienpi. o By the U5 n Lneer the [ntgrami;
.-¢£"‘5:v oF disclosyra JDJCH. Sy Lepar tmen s ol &1 ‘niernaliong
i TnSe IS5URE by the oo L, (OTRIGN n0iigng] ca.ci 000, Fxport
Yo the licenge ré.-;"r(:,:éf;' f‘;'?;f Depor iman Dr.gsu_-{'fﬁ on expor |
W oihe eugort gr ,,'t,'g?;f"-‘ﬂiron
PSR A
Y (o BRI e
Q 6 o Wk Export Administration Regulations (EAR) Notice
. " A2V i . L . el . - .
= cV ‘)\s\:’\‘;},‘“ ‘;ga‘,‘c‘% This document contains information within the purview of the Export Administration
W auih ,\‘gﬁéa‘:‘ Vi 3%31“—“_ Regulations (EAR), 15 CFR 730-774, and is export controlled. It may not be
. & -‘f“\:—»{‘f?_ g’f&g‘,‘f&\;“;‘i\\ _,:}?x“* transferred to foreign nationals in the U.S. or abroad without specific approval of a
e‘Dec,%” '-&“’\r&é‘\{g '{;\f:‘_}f_é“;‘?‘ ey knowledgeable NASA export control official, and/or unless an export license/license
/ < Fory, c.;;\‘é_,\yf,)\p- o s F exception is obtained/available from the Bureau of Industry and Security, United
Ayt ek 7 States Department of Commerce. Violations of these regulations are punishable b
Nig, i3 4 -
o "0/1/,9 fine, imprisonment, or both.

NPR 2810.7 Controlled
Unclassified Information

https://www.archives.gov/cui

Data Rights Questions

e Other Things to Consider

Ensure any license terms for COTS products do not conflict with any FAR
provisions

* Many of them do — so you need to check

If applicable, ensure FPGA code is included in the software data rights
purposes

Provide adequate training on data rights for those who will evaluating them
during the source selection

Consider both technical data rights and software data rights as needed

Continue to think about data rights throughout the program execution!

. ISWE |

Electronic Access Requirements

* All software products acquired for NASA projects are to be made available in
electronic format so they can be delivered accurately and used efficiently as
part of the prc()iject. The electronic availability of the software work products,
and associated process information, facilitates post delivery testing that is
necessary for assessing as-built work product quality, and for the porting of
products to the appropriate hosts. Electronic access to software projects
reduces NASA's project costs.

* This access also accommodates the longer-term needs for performing
maintenance, including defect repairs and software component augmentations,
assessing operation or system errors, addressing hardware and software
workarounds, and allowing for the potential reuse of the software on future
NASA projects.

* Electronic access is needed during all phases of the software development life
. cycle. This enables software supplier activities to be monitored to ensure the
software work products are being developed efficiently and that the end
products that are called for in the project and software requirements are
actually produced.

ISWE

What Needs To Be Accessible? [
e Software, executable and e Software documentation,
source code including data presented during

any early design reviews
* Metric data

e Models and simulations
* Programmable Logic Device

logic and software e Software cost data and
* Trade study data, including parameters

software tools used to help * Software database(s)

formulate analysis of alternative . Software development

results if any scenarios need to
be re-run later

* Prototype software, including
prototype architectures/designs

e Data definitions and data sets

environment

e Software Test Scripts and the
results of software testing

e Results of software static
analysis activities

* Software ground products e Bi-directional traceability for
e Software build products the software products
e Build tools e Software analyses and

compliance data

Summary

Plan acquisition activities and identify potential suppliers
Determine acquisition type and prepare acquisition documents

Select suppliers and establish agreements (document all terms and
conditions to be met)

Execute the agreement
Review supplier adherence to selected processes

Report status to higher management

Accept and transition the product

Class Plan

Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources
Software Planning Requirements and Considerations

Software Documentation Software IV&V
Software Costing Software Classifications
Software Processes Software Reuse and Internal Sharing
Software Assurance Software Cybersecurity
Software Safety-Critical Software Lifecycles and Reviews

Software Life-cycle Requirements
Software Requirements Software Coding
Software Architecture Software Testing
Software Design Software Maintenance

Software Development Supporting Requirements Why do we

Software Configuration Management Software Defect Management do these
Software Risks Software Bi-Directional Traceability things?

Software Peer Reviews Software License Management Software
Software Measurements Software Acquisition Failures

310

Software Related Failures —

“The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming became
a mild problem, and now we have gigantic computers, programming has become an equally
gigantic problem.”

Edsger Dijkstra,

311

Why Software Projects Fail?

. Unrealistic or unarticulated project goals

. Inaccurate estimates of needed resources

. Badly defined system requirements

. Poor reporting of the project's status

. Unmanaged risks

. Poor communication: clients, developers, & users
. Use of immature technology

. Inability to handle the project's complexity
. Sloppy development practices

10. Poor project management

11. Stakeholder politics

12. Commercial pressures

Others?

O 00O NO UV B WIN =

Why Is software special?

B
» Software is invisible, intangible, abstract I

» Software alone is useless - its purpose is to configure some
hardware to do something

* Software doesn’t have to obey the laws of physics

* Software is more complex for its “size” than other designed
artifacts

e Software does not wear out

— statistical reliability measures don’t generally apply to
software

- e Software can be replicated perfectly

e Software is designed, not manufactured

- Software can be re-designed after deployment

. ISWE

|

“Software is the easiest to
change but Iin change, It Is
the easiest to compromise.”

The "Bug" Heard 'Round the
World by John R. “Jack™
Garman October 1981

Subsystem Fallure Study Data -

Table 1. Worldwide Subsystem Failures by Decade [4] |n addition to these specific failures, recent

. 2 . .

Subsystem 1980s | 1990s | 2000s analyses of launch vehicle failure trends have

- . 0 200 A0 .
Propulsion 2% | 38% | 4% shown that software and computing systems

— . — —
Guidance and 6% | 16% | 4% have become a much more frequent cause of
navigation . .

= : : failures recently than has occurred in the
Electrical 6% 8% 8%
: : : past.
Operational ordnance 2% 8% 0%
W 395 —H5%— | 0%

Software and 0% 8% 21%
computing

L an i
Pneumafics and A5 2% | 0%
hydraulics
All other subsystems 0% 0% 0%
Unknown 37% 16% 13%

“Analysis of Launch Vehicle Failure Trends,” Futron
Corporation, August 7, 2006.

DEVELOPING SAFETY-CRITICAL SOFTWARE REQUIREMENTS FOR

COMMERCIAL REUSABLE LAUNCH VEHICLES

Daniel P. Murray(1) and Terry L. Hardy(2)

(1)Federal Aviation Administration, Office of Commercial Space Transportation, 800 Independence Avenue, S.W.,
Room 331, Washington, DC, 20591, USA, Daniel.Murray@faa.gov

(2)National Aeronautics and Space Administration Goddard Space Flight Center, Mail Code 302, Greenbelt, MD
20771, USA, Terry.L.Hardy@nasa.gov

NASA/JPL Laboratory
for Reliable Software

Software isn’t any more fail-proof than hardware
iS... (it can and does break occasionally)

60s

70s
80s

90s

00s

Coding
(often statically
detectable)

Design
(Algorithmic)

Memory

Use
(corruption, heap
memory, etc.)

Thread

Use
(race conditions;
synchronization)

Code
ReUse

(not rechecking
assumptions)

Fault

Protection
(over-reliance
on reboot/reset)

1962 Mariner 1
(“missing hyphen”)
1963 Mercury

(period instead of comma)

2000 MPL

(failure to reset variable)

1977- Voyager

(navigation errors)

1993 Clementine
(uncontrolled thruster
firing)

2006 DART

(navigation errors)

1968 Apollo 8

(memory corruption)

1982 Viking 1
(memory corruption
loss of contact)

2004 MER

(memory mngnt error)

2006 Jan MRO

(memory corruption)

1969 Apollo 11
(2t moon landing)

1981 Shuttle
(1t launch)

1997 Pathfinder

(priority inversion)

2006 Feb MRO
(race condition)

1988 Phobos

(command confusion)

1996 Ariane5

(assumptions not
verified)

1999 MCO
(units adaptation
omitted)

2007 Dawn

(code reuse)

1971 Eole 1

(command confusion)

1996 Ariane5
(dual string;
but same sw)

2004 MER

(uncontrolled reboot)

2006 DART

(no backup controls)

2006 MGS

(misdiagnosed fault)

2009 Dawn

(fault protection)

ISWE

Failures
Examples

|
Detailed look at some of the Software Related |

The Main Lesson to be
Learned

* Even with a competent,
trained, hardworking
team, process escapes
can occur.

— DO NOT think this
cannot happen to you.

 “Sometimes, the holes

RROR

Swiss Cheese Model of Accident Causation (Reason 1997)

Intelsat 6

Intelsat 6, a $157 million spacecraft, was stranded
in a useless orbit March 14, 1990 by a malfunction
in its Titan 3 booster.

Martin Marietta has traced the failure to a design
error in the wiring associated with the separation
electronics on its Commercial Titan

When the core vehicle of the Titan’s second stage
shut down after a normal launch from a propulsion
point of view, the vehicle’s computer sent a
spacecraft separation command. But the mismatch
between the software and the wiring resulted in a
signal being sent to the wrong wiring position, and
the satellite stayed locked atop the booster.

The hardware engineers were supposed to go through a formal engineering change
procedure to communicate any hardware changes to software engineers.

“The hardware guys thought they had communicated that change to the software side of the house,” a Martin Marietta official
said. But the communication breakdown occurred because an established change procedure was not used, the official said.

The same communications breakdown was caught and fixed before the next Titan launch.

STS-49 made repairs in space in time for the Intelsat 6 to participate in the broadcast of the 1992 Barcelona Olympics

NASA Mars Climate Orbiter

Incident Date: 9/23/1999 Price Tag: 5125 million

WASHINGTON (AP) -- For nine months, the Mars Climate Orbiter was
speeding through space and speaking to NASA in metric. But the
engineers on the ground were replying in non-metric English.

It was a mathematical mismatch that was not caught until after the
S125-million spacecraft, a key part of NASA's Mars exploration program,
was sent crashing too low and too fast into the Martian atmosphere. The
craft has not been heard from since.

Noel Henners of Lockheed Martin Astronautics, the prime contractor for
the Mars craft, said at a news conference it was up to his company's

engineers to assure the metric systems used in
one computer program were compatible with
the English system used in another program. The
simple conversion check was not done, he said

Root Cause Analysis Case
Study: Mars Climate Orbiter

http://youtu.be/UV3dNiR13CQ

http://youtu.be/UV3dNiR13CQ

ISWE |

The Mars Program Independent Assessment [
Team (MPIAT)

The MPIAT report found common characteristics among both successful and unsuccessful missions:

* Experienced project management or mentoring is essential.

* Project management must be responsible and accountable for all aspects of mission success.
* Unique constraints of deep space missions demand adequate margins.

* Appropriate application of institutional expertise is critical for mission success.

* A thorough test and verification program is essential for mission success.

* Effective risk identification and management are critical to assure successful missions.

* Institutional management must be accountable for policies and procedures that assure a high
level of success.

* Institutional management must assure project implementation consistent with required policies
N and procedures.

* Telemetry coverage of critical events is necessary for analysis and ability to incorporate
information in follow-on projects.

* If not ready, do not launch.

Ariane 5 Explosion

Incident Date: 9/1997 Price Tag: $500 million
Ironic Factor: ****

(By James Gleick) It took the European Space Agency 10 years and 57 billion to
produce Ariane 5, a giant rocket capable of hurling a pair of three-ton
satellites into orbit with each launch and intended to give Europe

.......

All it took to explode that rocket less than a minute into its maiden voyage last
June, scattering fiery rubble across the mangrove swamps of French Guiana,
was a small computer program trying to stuff a 64-bit number into a 16-

ry=-mT57°-17
i Loa Lo

bit space. jspisir

The number was larger than 32,767, the largest integer
storeable in a 16 bit signed integer, and thus the conversion
failed. s

This shutdown occurred 36.7 seconds after launch, when the guidance

system's own computer tried to convert one piece of data -- the sideways
velocity of the rocket -- from a 64-bit format to a 16-bit format.

The number was too big, and an overflow error resulted. When the guidance
system shut down, it passed control to an identical, redundant unit, which was
there to provide backup in case of just such a failure.

But the second unit had failed in the identical manner a few milliseconds
before. And why not? It was running the same software.

ISWE

http://youtu.be/kYUrqdUyEpl

http://youtu.be/kYUrqdUyEpI

Ariane 5 Accident

 Why did this failure occur?

- Why was Platform Alignment still active after
launch?
— SRl Software reused from Ariane-4

— 40 sec delay introduced in case of a hold
between -9s and -5s

* Why was there no exception handler?

— An attempt to reduce processor workload to
below 80%

— Analysis for Ariane-4 indicated the overflow not
physically possible

e Why wasn’t the design modified for Ariane-5?

= — Not considered wise to change software that
worked well on Ariane-4

 Why did the SRIs shut down in response?

. ISWE

- Assumed faults caused by random hardware
errors, hence should switch to backup

 Why was the error not caught in unit testing?

— No trajectory data for Ariane-5 was provided in
the requirements for SRIs

* Why was the error not caught in integration testing?

— Full integration testing considered too
difficult/expensive
- SRIs were considered to be fully certified

- Integration testing used simulations of the SRIs

Why was the error not caught by inspection?

— The implementation assumptions weren’t
documented

Software redundancy doesn’t always work
Software reuse is risky

Mariner 1 Faillure - Homework

Ity Ity

Correct Wrong

Youtube Video:

“How a Tiny Mistake Destroyed America’s First Interplanetary Space Probe”
Scott Manly

Titan 1V B Centaur

. ISWE

Objective: Titan IV B launch vehicle was equipped with a Centaur upper stage intended to
deliver a Milstar satellite into geosynchronous orbit

Problem:

- After the Centaur separated from the Titan IV B, the vehicle began to experience anomalous rolls

* The reaction control system eventually stabilized the vehicle during the transfer orbit coast phase but used 85%
of its hydrazine fuel in the process.

- When the vehicle attempted its second burn, it became unstable again and continued into its third
burn tumbling.

Failure Analysis:

- Failed software development, testing, and quality assurance was ultimately the cause of the failure.

— During development of the Centaur computer software, a decimal point was misplaced while
manually entering the roll rate filter constant in the Inertial Measurement System flight software file.

— This error was detected pre-flight but was not properly recognized or understood.
- Although it was not needed, the software had been kept in for “consistency”

Date: 4/30/1999 Ref: https://ntrs.nasa.gov/citations/20170009844

https://ntrs.nasa.gov/citations/20170009844

DART Falilure [

Demonstration of Autonomous Rendezvous Technology (DART)

What Happened:

When DART began its transfer out of the second staging orbit

to begin proximity operations, ground operators observed that

the spacecraft was using significantly more fuel than expected for

its maneuvers. It became clear that the mission would likely end

prematurely because of exhausted fuel reserves. Because DART

had no means to receive or execute uplinked commands, the

ground crew could not take any action to correct the situation.

During the series of maneuvers designed to evaluate AVGS performance,
DART began to transition its navigational data source from the GPS to AVGS as
planned. Initially, the AVGS supplied only information about MUBLCOM'’s
azimuth (angular distance measured horizontally from the sensor boresight to
MUBLCOM) and elevation relative to DART. However, as DART approached
MUBLCOM, it overshot an important waypoint, or position in space, that
would have triggered the final transition to full AVGS capability. Because it oy ,
missed this critical waypoint and the pre-programmed transition to full N/ : ML/ | s Baneres
AVGS capability did not happen, the AVGS never supplied DART’s navigation | o |
system with accurate measurements of the range to MUBLCOM. _ B .
Consequently, DART was able to steer towards MUBLCOM, but it was not able L 035" Mg P AT
to accurately determine its distance to MUBLCOM. Although DART’s collision o ' :
avoidance system eventually activated 1 minute and 23 seconds before the Veuhiiont 9’""';-775 P s,g,,,,\s’sm;l:::' .
collision, the inaccurate perception of its distance and speed in relation to Syczesu T TR
MUBLCOM prevented DART from taking effective action to avoid a collision.

Fight Competer
’ {1 Pegasss Avicas Secson
T

Multiple Root Causes and Recommendations on DART [ISWE }

B
* High Risk, Low Budget Nature of the Procurement I

- DART was selected by NASA as a high-risk, low-budget technology demonstration under a NASA Research Announcement
(NRA). The government procured only the data, and set broad requirements. Most of the detailed design decisions about
how to meet those requirements were left to the discretion of the contractor.

* Training and Experience

- alack of training and experience led the design team to reject expert advice because of the perceived risks involved in
implementing the recommendations.

* Lessons Learned Analysis

— Even though the DART team lacked training and experience, many of DART’s inadequacies could have been addressed
through review and proper application of mission experience and data (lessons learned) documented from previous NASA
projects.

* Guidance, Navigation and Control (GN&C) Software Development Process

— The MIB determined that one of the root causes of the mishap was an inadequate GN&C software development process.
Changes to the flight code and simulation models were often incorporated without adequate documentation.

* Systems Engineering
— - inadequate, system-level integration process, which failed to reveal a number of design issues contributing to the mishap.
* Schedule Pressure

- Schedule pressure was identified as the cause for the inadequate testing of a late change to the navigation logic’s gain
setting.

Multiple Root Causes and Recommendations on DART [ISWE J

International Traffic in Arms Regulations (ITAR) Restrictions

B
- insufficient technical communication between the project and an international vendor due to perceived restrictions in export
control regulations did not allow for adequate insight.

Technical Surveillance/Insight

- the NASA DART insight team failed to identify issues that led to the mishap because of an inadequate assessment of project
technical risk and insufficiently-defined areas of responsibility.

Risk Posture Management

- the lack of adequate risk management contributed to a zero-fault tolerant design and inadequate testing that resulted in an
insufficient collision avoidance system, among other things.

Expert Utilization

- the DART team failed to fully use the resources of available subject matter experts.

Contractor Review Processes

- internal checks and balances used by DART’s prime contractor failed to uncover issues that led to the mishap, such as the
undersized spherical envelope surrounding the AVGS range transition waypoint.

Failure Modes and Effects Analysis (FMEA)

- analyses to identify possible hardware/software faults failed to consider a sufficient set of conditions that could lead to the
mishap.

The Lewis Spacecraft [ISWE |

The Lewis Spacecraft was procured by NASA via a 1994 contract with TRW, Inc., and launched on
23 August 1997. Contact with the spacecraft was subsequently lost on 26 August 1997. The
spacecraft re-entered the atmosphere and was destroyed on 28 September 1997.

The Lewis Spacecraft Mission Failure Investigation Board found that the loss of the Lewis
spacecraft was the direct result of an implementation of a technically flawed Safe Mode in the
Attitude Control System.

This error was made fatal to the spacecraft by the reliance on that untested Safe Mode by the on
orbit operations team and by the failure to adequately monitor spacecraft health and safety during
the critical initial mission phase.

Other causes cited included requirement changes without adequate resource adjustment, cost
and schedule pressures, a Program Office move, inadequate ground station availability for initial
operations, frequent key personnel changes, and inadequate engineering discipline.

Critical Lessons Overview

REQUIREMENTS
DEVELOPMENT

COST ESTIMATING,
BUDGETING & JCLs

METRICS &
REPORTING

CONTRACTOR
IMPLEMENTATION

+ Maintain current, as-
built system
specifications for
maintenance and
future evolution.

Develop software development
metrics

Establish core SMEs to aid in
SEB cost estimation

Aggregate JCL data from
historical projects and provide
Agency guidelines for future JCL
development and evaluation

* Predictive metrics
should be established
early on

* Metrics tracking needs
to be a deliverable

* Project should actively
participate in metrics
development

Seek references from customers
when assessing past performance
Set requirements’ expectations
during proposal review
Understanding the requirements’
baseline and any changes are
paramount

Solicitinput from the end users

Ensure adequate procurement
schedule to allow more rigorous RFP
development and proposal evaluation
Explore creative contracting methods
Clearly align incentive awards to
project goals

Pursue extended procurement
durations for complex projects
Consider “prior NASA experience”
during proposal evaluations

« Staffing should reflect NASA’'s
growing dependence on
software development

* Reflect on similar project
lessons during formulation

« Improve accessibility and
findability of lessons learned

Project staffing should be managed as
a project risk

Engage end user early on and
throughout project

Employ technical experts capable of
verification

Protests can impact project starts and
should be considered as a risk
Develop software performance
standards

When predictive metrics do not exist,
develop new ones

PROCUREMENT

AGENCY CULTURE

PROJECT MANAGEMENT

Software error doomed Japanese Hitomi [.
spacecraft I

Japan’s flagship astronomical satellite Hitomi, which launched successfully on 17 February, 2016 but
tumbled out of control five weeks later, may have been doomed by a basic engineering error.

* The spacecraft automatically switched into a safe mode and, at about 4:10 a.m., fired thrusters to try
to stop the rotation.

* But because the wrong command had been uploaded, the firing caused the spacecraft to accelerate
further.

* (The improper command had been uploaded to the satellite weeks earlier without proper testing;
JAXA says that it is investigating what happened.)

On 28 April, the Japan Aerospace
Exploration Agency (JAXA) declared the
satellite, on which it had spent ¥31 billion
(USS286 million), lost.

Japanese Ispace company moon lander -
Hakuto-R crash |

* Lander was launched and was attempting to land on moon
* Blame was placed on software issue
* Lander passed over a lunar crater
* Radar altimeter sensed sudden drop of 3 km
» Software was programmed to identify this (sudden change)
as a failure and disqualify the sensor
e Data was correct though
* Now Lander flying without measurement of ground, using
estimation of what it thinks (using gyros/accelerometers)
» Software “landed” on what it thought was surface, but never
got feedback it touched down, so hovered until fuel ran out
* Then dropped ~5km to surface
* Why was this not caught in testing?
* Landing site was changed after all simulations were run and never
done for the new landing site
e April 2023

https://www.youtube.com/watch?v=2JIUnOAiMm4

ESA’s Schiaparelli Failure

3 November 2016New high-resolution images
taken by a NASA orbiter show parts of the
ExoMars Schiaparelli module and its landing site in
color on the Red Planet.

October 2016

B
Schiaparelli was primarily meant to test European I
landing technologies, with science as a secondary

objective. Recording the data during the descent

has already achieved a lot of the mission’s goals

Europe and Russia’s ExoMars lander may have suffered a computer glitch
during its descent to Mars last week, ultimately causing it to crash-land
into the planet’s surface, Nature reports. As the lander fell, the
mysterious software bug may have caused the vehicle to think it was
closer to the ground than it actually was, a lead researcher with the
European Space Agency suggests. That may be why the whole landing
seguence was thrown out of whack.

All this seems to suggest a software error, says Andrea Accomazzo, who
is in charge of ESA's solar and planetary missions. Accomazzo thinks
maybe Schiaparelli had a problem processing all the information it was
getting from its sensors. This led the spacecraft to think it was at a lower
altitude than it was during the fall, causing many of its landing operations
to cut off early.

http://www.nature.com/news/computing-glitch-may-have-doomed-mars-lander-1.20861

Additional Common Problems: | ISWE |

Flight Software Lessons i

An appropriate high fidelity Flight Software test bed is non-negotiable for each flight Computer Processor
Unit (CPU).

Strong Flight Software Requirements Development, Review and Control are mission critical

Flight Software needs to be engineered across all onboard systems

Flight Software requires specialized code that shouldn’t be underestimated in ability to impact mission
viability

Project-level advocacy of flight software lead role across all subsystems is essential

Flight Software Branch should explain and recommend a risk mitigating end-to-end Flight Software
development process to each project.

Flight Software Organizations must voice concerns

Closely question reuse assumptions when developing common software

Use a defined evaluation process when selecting Off The Shelf software components
Performance based contracting

Carefully define deliverables, process, evaluation criteria and tracking metrics when writing Request For
Procedures and contracts.

Summary

* Most Failures have multiple root
causes

* Lessons learned from space vehicle
failures have shown the importance of

developing valid software

requirements and verifying that those
requirements are effective and have

been implemented properly.

» Software and computing systems are

critical to safe launch vehicle
operations and spacecraft.

. ISWE

Questions for Discussion

How does your organization acquire the evidence to
understand that your system software will do what it
is supposed to do, under adverse conditions, and
won’t do what it is not supposed to do (guard against
emergent behaviors)?

How does your organization track configuration
management and evaluate change from a systems
perspective?

If your primary unit failed due to software errors, will
it cause the same failure in your backup? What is
your proper level of redundancy?

Has the risk level of your project decreased, and your
software testing plan increased to drive down risk?
Do you have contingency plans for on-orbit
anomalies? What anomalies have been tested for?
How does your organization verify reused or
modified code?

From:

Critical Software: Good Design Built Right
SYSTEM FAILURE CASE STUDIES

January 2012 Volume 6 Issue 2

iswe

NASA Software Class Summary

Class Plan

Software's Role and Importance in NASA Missions

Software Planning Requirements and Considerations

Software Documentation Software IV&V
Software Costing Software Classifications
Software Processes Software Reuse and Internal Sharing
Software Assurance Software Cybersecurity
Software Safety-Critical Software Lifecycles and Reviews

Software Life-cycle Requirements
Software Requirements Software Coding
Software Architecture Software Testing
Software Design Software Maintenance

Software Development Supporting Requirements Why do we

Software Configuration Management Software Defect Management do these
Software Risks Software Bi-Directional Traceability things?

Software Peer Reviews Software License Management Software
Software Measurements Software Acquisition Failures

337

Course High Level Objectives

* To provide an introduction to NASA software engineering skills

* To help non software engineers, system engineers and project
managers understand the software development processes and
considerations

* To help NASA engineers make better software related decisions by
knowing where to get information and guidance

Class Summary

Focus the standard on
known softwareissues:

Software
Requirements
Software Code
Process assessments
Analyses (including
Hazard Analyses)
Data needed for
reporting

Summary

* The NPR provides a minimal set of requirements for software
acquisition, development, maintenance, retirement, operations, and
management

* The updated directive supports NASA programs and projects in
accomplishing their planned goals (e.g., mission success, safety,
schedule, and budget) while satisfying their specified requirements.

* The directive provides increased flexibility and tailoring options for
software requirements for projects based on risk

Look at the software requirements and determine what
you need to do for your project

Software's Role and Importance on

NASA Missions

Software engineering and software
assurance is a core capability and a key
enabling technology for NASA's missions
and supporting infrastructure.

All NASA missions have software
involvement

NASA’s success in increasingly dependent
on software functions and capabilities.

NASA must become more efficient and
effective in developing and validating
quality software.

Future State

Artemis: Landing Humans On the Moon

»
Lunar Reconnaissance
S . Orbiter: Continued
4 % surface and landing

site investigation

&

Artemis I: First Artemis II: First humans

to orbit the Moon and
rendezvous in deep space
in the 21st Century

Gateway begins science operations
with launch of Power and Propulsion
Element and Habitation and
Logistics Outpost

human spacecraft
to the Moon in the
21st century

B Uncrewed HLS
Demonstration

Early South Pole Robotic Landings Volatiles Investigating Polar Exploration Rover
Science and technology payloads delivered by First mobility-enhanced lunar volatiles survey
Commercial Lunar Payload Services providers

LUNAR SOUTH POLE TARGET SITE

Artemis lll-V: Deep space crew missions;
cislunar buildup and initial crew
demonstration landing with Human
Landing System

—

tk e
et

Humans n - 21st Century

First crew expedition to the lunar surface

NASA missions will have more software, more complexity and more autonomous operations

We will need to invest in the software workforce to be able to support the NASA missions

341

Questions [

B
Additional information can be found at I

https://nen.nasa.gov/web/software

https://swehb.nasa.gov/

https://sma.nasa.gov/sma-disciplines/software-assurance
https://nsc.nasa.gov/SMAToolbox/

https://software.nasa.gov

https://open.nasa.gov

https://developer.nasa.gov

https://nen.nasa.gov/web/software
https://swehb.nasa.gov/
https://sma.nasa.gov/sma-disciplines/software-assurance
https://nsc.nasa.gov/SMAToolbox/
https://software.nasa.gov/
https://open.nasa.gov/
https://developer.nasa.gov/

Acronyms
NPR 7150.2 Appendix B

* Select Acronyms:

CDR — Critical Design Review

EGS — Exploration Ground Systems
FAR — Federal Acquisition Regulations
FPGA — Field Programable Gate Array
FRR — Flight Readiness Review

FSW — Flight Software

FTE — Full Time Employee

I/O — Input/Output

ISWE — Introduction to Software Engineering
MCR — Mission Concept Review

MDR — Mission Definition Review
NDA — Non-disclosure agreement

NEN — Nasa Engineering Network

OPM — Office of Personnel Management

ORR — Operational Readiness Review

PDR — Preliminary Definition Review
PRR — Production Readiness Review
RFP — Request for Proposal

SAR — System Acceptance Review
SDR — System Definition Review

SIR — System Integration Review
SLOC — Source Lines of Code

SLS — Space Launch System

SQL - Structured Query Language
SRR — System Readiness Review
SWE — Software Engineering

SWRR — Software Readiness Review
TDT — Technical Discipline Team
TRR — Test Readiness Review

UML - Unified Modeling Language™
WYE — Work Year Equivalent

https://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002D_&page_name=AppendixB
https://nen.nasa.gov/

	Slide 1: Introduction to Software Engineering
	Slide 2: Introductions and Logistics
	Slide 3: Course Action Plan Slides
	Slide 4: Training alone won’t change performance
	Slide 5: Action Plans help you apply what you learn in order to improve performance
	Slide 6: Introduction of Students
	Slide 7: Course High Level Objectives
	Slide 8: Key Course Objectives
	Slide 9: Evaluation Pilot Courses Critical Behaviors
	Slide 10: Class Plan
	Slide 11: Software's Role and Importance in NASA Missions
	Slide 12: Class Questions
	Slide 13: Software's Role and Importance in NASA Missions
	Slide 14: NASA Software Workforce Trends
	Slide 15: Software Engineering Trends
	Slide 16: Software Engineering Capabilities Needed for Future Missions
	Slide 17: “Software is different than hardware (and not all software is the same). Hardware can be developed, procured, and maintained in a linear fashion. Software is an enduring capability that must be supported and continuously improved throughout its
	Slide 18: Software is the easiest to change but in change, it is the easiest to compromise.” The "Bug" Heard 'Round the World by John R. “Jack” Garman October 1981
	Slide 19: The Three Elements of Project Success
	Slide 20: Catching Software Faults Early Saves Money
	Slide 21: What Is Software Engineering?
	Slide 22: NASA’s Software Definition (From IEEE)
	Slide 23: Software Is Not All the Same
	Slide 24: NASA flight software systems have grown as measured by SLOC
	Slide 25: How Big is a Million Lines of Code?
	Slide 26
	Slide 27: Other Types of Software Intensive Facilities and Operations
	Slide 28: Spaceport Command and Control Systems
	Slide 29: Space-Ground Network Systems
	Slide 30: Mission Operations Centers
	Slide 31: Science Data Systems
	Slide 32: Software's Role and Importance on NASA Missions
	Slide 33: NASA Engineering and Software Policies, including key NASA software standards
	Slide 34: Governing Documents
	Slide 35: Current NASA Software Documentation Tree (with a few related non-software documents in gray)
	Slide 36: Purpose of the NASA Software Engineering Requirements, NPR 7150.2
	Slide 37: About NASA’s Software Engineering Requirements (NPR 7150.2)
	Slide 38: Recent update made to NPR 7150.2 for NPR 7150.2D
	Slide 39: Themes and Targeted Change Areas for NASA Software Engineering Requirements
	Slide 40: Software Engineering Handbook
	Slide 41: Handbook Version Transition Page
	Slide 42: Software Handbook –Project Requirements
	Slide 43: Remember…
	Slide 44: Summary
	Slide 45: Software Engineering Handbook Demo
	Slide 46: https://swehb.nasa.gov/
	Slide 47: Visual Overview of NPR 7150.2
	Slide 48: 30 “Institutional” Requirements (Chapter 2) Applicable to All Classifications
	Slide 49: 100 NPR Requirements* - Applicable Based on Classification
	Slide 50: Class A&B (All 100) Requirements
	Slide 51: Class F Requirement Applicability (OCIO Authority)
	Slide 52: Class Plan
	Slide 53: Software Engineering Documentation
	Slide 54: Key NPR requirements for documentation
	Slide 55: Software Documentation Considerations
	Slide 56: Software Documentation
	Slide 57: Software Life Cycle Planning
	Slide 58: Software Cost Estimation
	Slide 59: NPR 7150.2D Requirements on Software Cost Estimation
	Slide 60: Let’s do a Cost Estimate!
	Slide 61: The Cost Estimating Universe
	Slide 62: Why Costing, Sizing, Progress Tracking?
	Slide 63: Cost Estimating Methods
	Slide 64: Software Cost Estimation Issues
	Slide 65: Steps in Performing a Cost Estimate
	Slide 66: Estimating Software Size Using Source Lines of Code (SLOC)
	Slide 67: Parametric Software Cost Estimation
	Slide 68: Software Cost Parameters
	Slide 69: Example Model Output
	Slide 70: Documenting the Estimate
	Slide 71: Key Points
	Slide 72: Software Cost Data
	Slide 73: Software Cost Data
	Slide 74: Summary for Software Cost Estimation
	Slide 75: Software Processes
	Slide 76: Process Questions
	Slide 77: Your process should not look like this
	Slide 78: NASA’s Software Engineering Capability as measured by CMMI Rating Level
	Slide 79: Why Are We Addressing CMMI® in This Course?
	Slide 80: The CMMI model use at NASA
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Why has NASA Management directed the use of CMMI® standards?
	Slide 85
	Slide 86: Case Study: Defense Industry High CMMI Maturity Reduces Costs for Repair
	Slide 87: Benefits of CMMI
	Slide 88: Summary
	Slide 89: Software Assurance
	Slide 90: Current NASA Software Documentation Tree (with a few related non-software documents in gray)
	Slide 91: Documents:
	Slide 92
	Slide 93: Types of Software Defects Across NASA Projects
	Slide 94: Examples of NASA software issues seen during operations
	Slide 95: NASA-STD-8739.8A Standard Approach
	Slide 96: Software Handbook – Requirements Example
	Slide 97: Software Engineering and Software Assurance Handbook Topics
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Software Safety-Critical
	Slide 114
	Slide 115: Primary Safety-Critical Software Requirements
	Slide 116: Primary Safety-Critical Software Requirements
	Slide 117: Safety-Critical Software Requirements
	Slide 118: NASA Software Independent Verification and Validation (IV&V) Activities
	Slide 119: NASA’s Independent Verification and Validation (IV&V) Program
	Slide 120: Introduction to IV&V
	Slide 121: Generic Look at IV&V
	Slide 122: Determining the Amount of IV&V
	Slide 123: Products to Expect from IV&V
	Slide 124: Which Projects Receive IV&V?
	Slide 125
	Slide 126: Software Classifications
	Slide 127: NASA-wide software classification structure
	Slide 128: Software Classification vs. Tailoring
	Slide 129: Tailoring Approach for NPR 7150.2D
	Slide 130: Software Reuse and Internal Sharing
	Slide 131: Summary of New Requirements on Internal NASA Software Sharing or Reuse
	Slide 132: Software Cybersecurity
	Slide 133: 3.11 Software Cybersecurity
	Slide 134: 3.11 Software Cybersecurity
	Slide 135: NASA-STD-1006, Space System Protection Standard Requirements
	Slide 136: Project Protection Plan (PPP) Requirement
	Slide 137: Current Space Asset Protection Policy
	Slide 138: Candidate Protection Strategies (CPS)
	Slide 139: Software Engineering Lifecycles
	Slide 140: Software Life Cycle Planning
	Slide 141: Project Life Cycle
	Slide 142: From NPR 7150.2
	Slide 143: Frequently Discussed Lifecycles ….
	Slide 144: “Agile” Based Incremental Software Development Approach
	Slide 145: All Project Lifecycles are “Punctuated” with Formal Technical Reviews
	Slide 146: Software Life cycle products and their maturity level at the various software project life cycle reviews (Part 1 of 2)
	Slide 147: Software Life cycle products and their maturity level at the various software project life cycle reviews (Part 2 of 2)
	Slide 148: Benefits
	Slide 149: NASA-HDBK-2203, Topic 7.9
	Slide 150: What does the Systems NPR 7123 state for Software
	Slide 151: Summary for Lifecycles and Reviews
	Slide 152: Class Plan
	Slide 153: Software Requirements
	Slide 154: Requirement Development
	Slide 155: NPR 7150.2D Requirements on Software Requirements
	Slide 156: NPR 7150.2D Requirements on Software Requirements
	Slide 157: Software Requirements
	Slide 158: Flow Down of Requirements
	Slide 159: Software Requirement Sources
	Slide 160: Guidelines for the Software Requirements Specification Content
	Slide 161: Guidelines for the Software Data Dictionary Content
	Slide 162: Requirements Maturity
	Slide 163: When Requirements Development Is Not Done Well…
	Slide 164: Requirements Management Metrics
	Slide 165: Comparison Chart for SLOC / Requirements Ratios
	Slide 166: Requirements Management
	Slide 167: Requirements Management Process
	Slide 168: When Requirements Management Is Not Done Well…
	Slide 169: Common Software Requirements Problems
	Slide 170: How Would You Design and Code These Software Requirements?
	Slide 171: Software Architecture
	Slide 172: NPR 7150.2D Requirements on Software Architectures
	Slide 173: Questions
	Slide 174: What is Architecture?
	Slide 175: Two Aspects of “Architecture”
	Slide 176: System Architecture vs. Software Architecture
	Slide 177: Software Architect Essential Activities
	Slide 178: Software Architecture Documentation
	Slide 179: Summary for Software Architectures
	Slide 180: Software Design
	Slide 181: NPR 7150.2D Requirements on Software Design
	Slide 182: Architecture versus Design
	Slide 183: What is the Design?
	Slide 184: Activities During Design
	Slide 185: Bi-directional Traceability
	Slide 186: Software Design Considerations (1 of 2)
	Slide 187: Software Design Considerations (2 of 2)
	Slide 188: A Design Strategy
	Slide 189: Rules of Software Design
	Slide 190: Take Advantage of the Software Engineering Design Principles in Developing Your Software Designs
	Slide 191: Software Design Metrics
	Slide 192: Summary For Software Design
	Slide 193: Software Implementation or Coding
	Slide 194: NPR 7150.2D Requirements During Implementation
	Slide 195: NPR 7150.2D Requirements During Implementation
	Slide 196: Implementation
	Slide 197: Software Implementation –More Than Coding!
	Slide 198: Top 15+ Best Practices for Writing Super Readable Code
	Slide 199: Top 15+ Best Practices for Writing Super Readable Code
	Slide 200: Top 15+ Best Practices for Writing Super Readable Code
	Slide 201: Software Builds/Releases
	Slide 202: Software Build Guidelines
	Slide 203: Other Implementation Topics
	Slide 204: Secure Coding Community of Practice Site
	Slide 205: And Then There’s Documentation!
	Slide 206: Measures in Implementation
	Slide 207: Even with all this------
	Slide 208: Software Testing
	Slide 209: Software Testing Requirements NPR 7150.2D
	Slide 210: Software Testing Requirements NPR 7150.2D
	Slide 211: Software Testing Requirements NPR 7150.2D
	Slide 212: Software Testing Requirements NPR 7150.2D
	Slide 213: What is a Testing?
	Slide 214: Question
	Slide 215: Test Planning
	Slide 216: Test Case Design / Test Procedures
	Slide 217: Software Test Procedure Guidelines
	Slide 218: Software Test Procedure Guidelines
	Slide 219: Comparison Of Types
	Slide 220: Independence in Software Item Testing
	Slide 221: Software Assurance Witnessing
	Slide 222: Testing on the Target Computer System
	Slide 223: Capturing Results
	Slide 224: Analyzing Results
	Slide 225: Analyzing Results
	Slide 226: Accredited software models, simulations, and analysis tools
	Slide 227: Flight Software Testing Life-Cycle
	Slide 228: Sample Software Test Metrics
	Slide 229: Summary
	Slide 230: Software Maintenance
	Slide 231: Software Maintenance
	Slide 232: Software Operations, Maintenance, and Retirement Requirements
	Slide 233: Software Maintenance
	Slide 234: Software Delivery
	Slide 235: Operations Support
	Slide 236: Software Maintenance Support
	Slide 237: Software Retirement Support
	Slide 238: Measures for Maintenance
	Slide 239: Class Plan
	Slide 240: Peer Reviews/Inspections
	Slide 241: Inspection Approaches
	Slide 242: Peer Reviews/Inspection Requirements
	Slide 243: Linus's Law
	Slide 244: Defect Removal Efficiency
	Slide 245: Products for Peer Reviews
	Slide 246: Benefits
	Slide 247: Process
	Slide 248: Process
	Slide 249: Software Peer Review Base Metrics
	Slide 250: Summary for Ensuring Quality in Your Project
	Slide 251: Software Configuration Management
	Slide 252: NPR 7150 Software Configuration Management Requirements
	Slide 253: NPR 7150 Software Configuration Management Requirements
	Slide 254: NPR 7150 Software Configuration Management Requirements
	Slide 255: SAE/EIA-649B Configuration Management Standard
	Slide 256: Software Configuration Management
	Slide 257: Configuration Items
	Slide 258: Change Control
	Slide 259: Audits
	Slide 260: Software Risk Identification and Management
	Slide 261: Software Risk Requirement in NPR 7150.2
	Slide 262: Remember to Plan for Risk Management
	Slide 263: Software Risk Requirement Rationale
	Slide 264: Use a Checklist to Help Identify Software Risk Items
	Slide 265: Identifying Risks
	Slide 266: Software Risk Identification Steps
	Slide 267: Software Risk Management Steps – Track, Control, Communicate
	Slide 268: Software Risk Management Steps – Track, Control, Communicate
	Slide 269: Software Measurements
	Slide 270: Why Measure? - 1
	Slide 271: NPR 7150.2D Requirements on Software Requirements
	Slide 272: A Thought!
	Slide 273: Why You Should Measure
	Slide 274: Why Do Technical Performance Measurement?
	Slide 275: And a Few More Reasons to Measure---
	Slide 276: Components of a Measurement Plan
	Slide 277: Candidate Management Indicators That Might Be Used On A Software Development Project:
	Slide 278: Mapping of Organizational Goals to Metrics
	Slide 279: Acquisition Considerations: Measuring the Contractor’s Work
	Slide 280: Acquisition Considerations: Measuring Government Work
	Slide 281: Repeat The Thought
	Slide 282: Summary for Software Measurements
	Slide 283: Software Non-conformance or Defect Management
	Slide 284: Software Non-conformance or Defect Management
	Slide 285: Software Non-conformance or Defect Management
	Slide 286: Software Non-conformance or Defect Management
	Slide 287: Bidirectional Traceability
	Slide 288: Bidirectional Traceability
	Slide 289: Bi-directional Traceability Requirement
	Slide 290: Safety-Critical Software Requirements
	Slide 291: Software Requirement Sources
	Slide 292: Software Licensing
	Slide 293: The Problem: Why We Need Software Licensing Management
	Slide 294: Avoid Hidden Dangers – Do Your Part!
	Slide 295: Software Publisher Audits
	Slide 296: Agency Software Lifecycle Management Plan Vision, Goals, and Objectives
	Slide 297: Software License Lifecycle
	Slide 298: NASA Software Acquisition Considerations
	Slide 299: Road Map for an Acquisition
	Slide 300: Beginning the Acquisition Planning
	Slide 301: NPR 7150 Applies to All Software Acquisitions
	Slide 302: What Are Technical and Software Data Rights?
	Slide 303: What Are Technical and Software Data Rights?
	Slide 304: Data Rights Questions
	Slide 305: Marking Examples
	Slide 306: Data Rights Questions
	Slide 307: Electronic Access Requirements
	Slide 308: What Needs To Be Accessible?
	Slide 309: Summary
	Slide 310: Class Plan
	Slide 311: Software Related Failures “The major cause of the software crisis is that the machines have become several orders of magnitude more powerful! To put it quite bluntly: as long as there were no machines, programming was no problem at all; when w
	Slide 312: Why Software Projects Fail?
	Slide 313: Why is software special?
	Slide 314: “Software is the easiest to change but in change, it is the easiest to compromise.” The "Bug" Heard 'Round the World by John R. “Jack” Garman October 1981
	Slide 315: Subsystem Failure Study Data
	Slide 316: Software isn’t any more fail-proof than hardware is… (it can and does break occasionally)
	Slide 317: Detailed look at some of the Software Related Failures Examples
	Slide 318: The Main Lesson to be Learned
	Slide 319: Intelsat 6
	Slide 320: NASA Mars Climate Orbiter
	Slide 321: The Mars Program Independent Assessment Team (MPIAT)
	Slide 322: Ariane 5 Explosion
	Slide 323: Ariane 5 Accident
	Slide 324: Mariner 1 Failure - Homework
	Slide 325: Titan IV B Centaur
	Slide 326: DART Failure
	Slide 327: Multiple Root Causes and Recommendations on DART
	Slide 328: Multiple Root Causes and Recommendations on DART
	Slide 329: The Lewis Spacecraft
	Slide 330: Critical Lessons Overview
	Slide 331: Software error doomed Japanese Hitomi spacecraft
	Slide 332: Japanese ispace company moon lander Hakuto-R crash
	Slide 333: ESA’s Schiaparelli Failure
	Slide 334: Additional Common Problems: Flight Software Lessons
	Slide 335: Summary
	Slide 336: NASA Software Class Summary
	Slide 337: Class Plan
	Slide 338: Course High Level Objectives
	Slide 339: Class Summary
	Slide 340: Summary
	Slide 341: Software's Role and Importance on NASA Missions
	Slide 342: Questions
	Slide 343: Acronyms NPR 7150.2 Appendix B

