
ISWE

Introduction to
Software Engineering

ISWE

1

ISWE
Introductions and Logistics

• Introductions of instructors

• Logistics

−Sign-in sheet: Be sure to initial sheet everyday
−Location of bathrooms, kitchen area
−Exit in case of fire, etc.
−Class evaluation process

2

ISWE

Course Action Plan Slides

3

ISWE
Training alone won’t change performance

Without monitoring, support and reinforcement,
there’s a chance that only a fraction of training is
applied back on the job:

10% - 34%
(Brinkerhoff, 2006; Saks & Belacourt, 2006)

Developing new habits takes time.

Conventional Wisdom:
21 days

Research shows:
18-254 days; Average = 66 days

To change our behavior we need a system...

…like an Action Plan

Sources:
Brinkerhoff, R. O. (2006). Telling training’s story. San Francisco, CA: Berrett-Koehler.

Lally, P. Van Jaarsveld, C. H. M., Potts, H. W. W., & Ardle, J. (2010). How habits are formed: Modelling
habit formation in the real world. European Journal of Social Psychology, 45, pp. 998-1009.

Saks, A. M. & Belacourt, M. (2006). An investigation of training activities and transfer of training in
organizations. Human Resource Management, 45(4), 629-648

4

ISWE
Action Plans help you apply what you learn

in order to improve performance

Before the Course During the Course After the Course

• Download the Action
Plan template and
example

• Seek input from your
project/task/branch
manager

• Draft preliminary Action
Plan based on your
expectations of what
you will learn

• Create/refine your
Action Plan as you learn
things you can apply
(you will be given a
chance to do this during
the course)

• Print and place your
Action Plan in a
conspicuous place

• Inform an
“accountability partner”
about your Action Plan

• Track your progress

• Refine your Action Plan
as needed

5

ISWE
Introduction of Students

Name

Current Job
Assignment

What you want to
get out of this class

6

ISWE
Course High Level Objectives

• To provide an introduction to NASA software engineering skills

− Not intended to be low level or “technical”

• To help non software engineers, system engineers and project
managers understand the software development processes and
considerations

• To help NASA engineers make better software related decisions by
knowing where to get information and guidance

7

ISWE
Key Course Objectives

Course Name All Course Objectives Key Course Objectives

APPEL - Introduction to

Software Engineering

Upon completion of this course participants will be able to:

1. Explain software's role in and importance to NASA programs.

2. Properly interpret and apply NASA software engineering policies

requirements templates tools checklists and guidelines.

3. Recognize and respond to early warning signs from software

measurement data analysis and use results for effective decision

making.

4. Formulate pertinent software measurements and reporting for

senior management.

5. Explain the relationship between software development lifecycle

phases and the project development lifecycle.

6. Identify the requirements for and the best practices of each

phase in the software development lifecycle.

7. Describe methods to build good software products.

8. Describe the importance of software engineering support

activities such as software configuration management software

assurance software independent Verification and Validation

software cost estimations software risks and software

acquisition.

Upon completion of this course participants will be able to:

1. Properly interpret and apply NASA software engineering policies

requirements templates tools checklists and guidelines.

2. Explain the relationship between software development lifecycle

phases and the project development lifecycle.

3. Describe methods to build good software products.

4. Describe the importance of software engineering support

activities such as software configuration management software

assurance software independent Verification and Validation

software cost estimations software risks and software

acquisition.

8

ISWE
Evaluation Pilot Courses Critical Behaviors

Course Name Key Course Objectives Critical Behaviors

APPEL -

Introduction to

Software

Engineering

Upon completion of this course participants will be able to:

1. Properly interpret and apply NASA software

engineering policies requirements templates tools

checklists and guidelines.

2. Explain the relationship between software

development lifecycle phases and the project

development lifecycle.

3. Describe methods to build good software products.

4. Describe the importance of software engineering

support activities such as software configuration

management software assurance software

independent Verification and Validation software cost

estimations software risks and software acquisition.

When they return to their jobs course attendees will:

1. Accurately interpret reported pertinent software

measurements

2. Determine whether or not the software organization

on their project is using the proper software

requirements, and following the best practices of each

phase in the software development lifecycle.

3. Determine if a software product is adequate

4. Assess if the tailoring options used on the software

requirements is correct for the project risk level

9

ISWEClass Plan
Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources

Software Documentation
Software Costing

Software Processes
Software Assurance

Software Safety-Critical

Software IV&V
Software Classifications

Software Reuse and Internal Sharing
Software Cybersecurity

Software Lifecycles and Reviews

Software Planning Requirements and Considerations

Software Requirements
Software Architecture

Software Design

Software Coding
Software Testing

Software Maintenance

Software Life-cycle Requirements

Software Configuration Management
Software Risks

Software Peer Reviews
Software Measurements

Software Defect Management
Software Bi-Directional Traceability

Software License Management
Software Acquisition

Software Development Supporting Requirements Why do we
do these
things?

Software
Failures

10

ISWE

Software's Role and Importance
in NASA Missions

11

ISWEClass Questions

Can you name any examples of how
software has affected your life (good

or bad examples)?

Do you think we can fulfill NASA’s
mission without software

involvement?

Why do you think software is
important on NASA Missions?

12

ISWESoftware's Role and Importance in NASA Missions

• The importance of software to NASA missions has grown
steadily since NASA was formed.

• The first spacecraft launched by the United States in 1958 had
no software at all, while the Mars Science Laboratory (MSL)
launched in 2011 with well over 3 million lines of code.

• Contemporary NASA spacecraft have basically become flying
computers.

• Software has become important on all NASA missions.

• Software percentage of a mission’s budget ranges from 2% to
20%, with all missions needing high reliability software
delivered on time and on budget.

• Flight software is typically the only item that can be changed or
modified after launch

• Late or unreliable software threatens the entire mission,
potentially causing launch delays and even mission failure.

The result is that NASA is
currently one of the 100 largest
developers and procurers of
software in the world.

13

ISWE
NASA Software Workforce Trends

• More people are working software in 2021 than in previous years –
demand is high

• OPM series is reporting less than are working software as reported by
centers, and is trending down, against the need

• This is due to software becoming more ubiquitous

14

ISWE
Software Engineering Trends

• Space missions are increasingly dependent on correctly
functioning software

• Software applications are growing in size and complexity

− Rapidly increasing code size for all mission software

− An increasing reliance on multi-threaded code

− A gradual move from simpler to more complex languages

− Increased reliance on COTS

• This brings two conflicting trends:

− A growing importance of safe and reliable software

− A shrinking ability to thoroughly test software

• This also leads to consistent underestimation of software
development and assurance costs

The increased demands placed on mission systems to implement NASA future mission portfolio
will undoubtedly be answered in large part through functionality provided by software.

15

ISWESoftware Engineering Capabilities Needed

for Future Missions
Future missions will require more software
development and increased autonomous behavior
in the software functions.
• More efficient and effective development and

assurance practices required to meet the rapid
increase in software size and complexity.

• Improved software acquisition practices (Make-Buy-
Reuse).

• Maintaining a capable and well-trained workforce.

• Advancement in the design, development, verification
and validation of autonomous behaviors

• Increased simulation capabilities

• Improved system design and requirements

• Determining metrics of software development effort
and software product quality

What do you see as needed software
capabilities for future launch systems?

16

ISWE

“Software is different than

hardware (and not all software is

the same). Hardware can be

developed, procured, and maintained

in a linear fashion. Software is an

enduring capability that must be

supported and continuously

improved throughout its life cycle.”

17

ISWE

Software is the easiest to

change but in change, it is

the easiest to compromise.”

The "Bug" Heard 'Round the

World by John R. “Jack”

Garman October 1981

18

ISWE

Improved Process + Competent Workforce + Appropriate Technology
=

Reduced Risk, Higher Productivity, and Better Quality

Processes and Requirements:
a defined method involving steps or operations

People:
Skills, Training,
Management

Technology:
Application domains, tools,
languages, information,

environments

The Three Elements of Project Success

19

ISWE
Catching Software Faults Early Saves Money

Faults accounts for 30-50% percent of total software project costs

20

ISWEWhat Is Software Engineering?

Software Engineering is not
programming!

“a systematic, disciplined, quantifiable approach to the
development, operation and maintenance of software;
that is, the application of engineering to software” IEEE

The term was coined by Margaret Hamilton in 1963-
1964, director of the Software Engineering Division of
the MIT Instrumentation Laboratory, which developed
on-board flight software for NASA's Apollo program.

“It was a memorable day when one of the most respected hardware gurus
explained to everyone in a meeting that he agreed with me that the process of
building software should also be considered an engineering discipline, just like
with hardware.” Margaret Hamilton

21

ISWENASA’s Software Definition (From IEEE)
Software is defined as:

(1) computer programs, procedures and possibly associated documentation and data pertaining to the operation of a
computer system

(2) all or a part of the programs, procedures, rules, and associated documentation of an information processing system

(3) program or set of programs used to run a computer

(4) all or part of the programs which process or support the processing of digital information

(5) part of a product that is the computer program or the set of computer programs

This definition applies to:

• Software developed by NASA,
• Software developed for NASA,
• Software maintained by or for NASA,
• Commercial off-the-shelf (COTS)

software,
• Government off-the-shelf (GOTS)

software,
• Modified off-the-shelf (MOTS) software,
• Reused software,
• Auto-generated code,

• Embedded software,
• The software executed on processors

embedded in programmable logic devices
(see NASA-HDBK-4008, Programmable
Logic Devices (PLD) Handbook),

• Legacy software,
• Heritage software,
• Application software,
• Open-source software components,
• Configuration Data

22

ISWE
Software Is Not All the Same

flight software

engineering software

safety critical software

Non-flight software

general purpose software

non-safety critical software

… and it shouldn‘t be treated the

same!

≠

≠

≠

23

ISWE
NASA flight software systems have grown as

measured by SLOC

24

ISWE
How Big is a Million Lines of Code?

A novel has ~500K characters

(~100K words ~5 characters/word)

A million-line program has ~20M characters

(1M lines ~20 characters/line), or about 40 novels

Source:

Les Hatton, University of

Kent, Encyclopedia of

Software Engineering,

John Marciniak, editor in

chief

~2.5 Million Lines of Code in the KSC
GSDO program

~3.5 Million Lines of Code in the
GSFC/Raytheon JPSS Core Ground System

25

ISWE

Increasing Complexity of Software

KSLOCS

• Apollo 40

• Shuttle 440

• SLS 158

• EGS 1500

• Orion 1000+

What happened to

the switches?
26

ISWE

Other Types of Software
Intensive Facilities and
Operations

27

ISWESpaceport Command and Control Systems

28

ISWE
Space-Ground Network Systems

• Major components of a space-ground network
system include:

− Antenna subsystem

− Data processing equipment
• Demodulates or modulates user data

• Performs initial processing (synchronization, error detection
and correction) and delivery to other Ground System Elements

− Status/Scheduling subsystem
• Provides means/mechanism to enable customer missions to

schedule network services

• Provides data quality and accounting information to customers

• Not to be confused with mission planning and scheduling
systems to control observatory operations and support science
planning.

29

ISWE
Mission Operations Centers

• Major components of a MOC include:

− Real-time Telemetry and Command (RT T&C)
subsystem

− Mission Planning subsystem

− Flight Dynamics subsystem/Attitude Ground
subsystem

− Trending subsystem

− Automation/Alert subsystem

− Data Storage and Distribution subsystem

30

ISWE

• Science Data System Functionality/Architectures
are generally unique from mission to mission, and
heavily dependent upon the science objectives to
be satisfied for the mission

• Functionality generally included in Science Data
Support Systems include:

− Data Ingest: Receipt of raw instrument data
from the mission or other data suppliers

− Generation of Science products: Mission
unique depending upon the type of science
being performed.

− Data Archive/Distribution: Includes both
Active Archives (To serve data products to
Science community, other interested users)
and Deep Archives (To preserve a copy of the
science products beyond the nominal
mission lifetime).

− Provide other features required by
science/user community, including:

• Data mining

• Modeling

• Visualization/animation tools

• Functionality optionally included in Science Data
Support Systems include:

− Science/Instrument Operations Centers

• Plan and schedule instrument operations,
generate commands to control instrument
observations/operations, assess health/safety
of the instruments.

• Location of Science Data System architectural
components very much unique from mission to mission

Science Data Systems

The SMAP Science Data System (SDS) converts telemetry downloaded from the SMAP

observatory into Science Data Products provided to the science community for research and applications.

31

https://smap-archive.jpl.nasa.gov/science/dataproducts/

ISWESoftware's Role and Importance on

NASA Missions
• Software engineering and software

assurance is a core capability and a key
enabling technology for NASA's missions
and supporting infrastructure.

• All NASA missions have software
involvement

• NASA’s success in increasingly dependent
on software functions and capabilities.

• NASA must become more efficient and
effective in developing and validating
quality software.

Future State

NASA missions will have more software, more complexity and more autonomous operations

We will need to invest in the software workforce to be able to support the NASA missions

32

ISWE

NASA Engineering and Software
Policies, including key NASA
software standards

33

ISWE

Program/

Project Mgmt.

Requirements

NPR 7120.5

NASA Space Flight

Program and

Project

Management

Requirements

NPR 7150.2

Software Engineering

Requirements

(and Other

Engineering NPRs)

NPD 1000.0 Strategic Management & Governance Handbook

NPD 1000.3 The NASA Organization

NPD 1000.5 Policy for NASA Acquisition

NPD 7120.4
Engineering &

Program/Project
Management Policy

NPD 8700.1

NASA Policy for

Safety & Mission

Success

OSMA NPRs

Incl. NPR 8705.2

Human-Rating

Requirements for

Space Systems

Mission Support

Office NPDs

Support Org NPRs

Engineering

Requirements

SMA

Requirements

MSO

Functional

Requirements

Center Engineering & Management

Policies and Practices

Program Plans

Project Plans

Mission Directorate

Programmatic Requirements

NPD 8900.5A

NASA Health & Medical Policy

for Space Exploration

NID 1240-41

and OCHMO NPRs

Health &

Medical

Requirements

NPR 7120.7 Info
Tech &

Infrastructure
Program/Project

Management

NPR 7120.8
R&T

Program/Project
Management

Governing Documents

NASA Standards

and NASA Handbooks

NPR 7123

System Engineering

Requirements

(and Other

Engineering NPRs)

34

ISWECurrent NASA Software Documentation Tree
(with a few related non-software documents in gray)

NPD 7120.4

NASA Engr. &

Prog./Proj. Mgt.

Policy

NPR 7150.2D

NASA Software

Engineering

Requirements,

2022, OCE

NPR 2210.1

Release of

NASA

Software

Policy

Procedural

Requirements

Standards

Handbooks &

Guidebooks

Center Level

Directives

NASA-STD-8739.8B

Software Assurance and

Software Safety Standard

NASA-STD-7009

Standard for

Models &

Simulations

invokes

parent of parent of

NASA-HDBK-8739.23

Complex Electronics

HDBK for Assurance

Professionals

NASA-HDBK-2203
NASA Software
Engineering and

Software Assurance
Handbook

is supported by

is supported by

NASA-HDBK-4008

Programmable

Logic Device HDBK

NPR 7120.8

NASA Research &

Tech. Prog./Proj.

Requirements

2012, JUL

NPR 7120.7

NASA IT & Infra.

Prog./Proj.

Requirements

2012, JUL

NPR 7120.5

NASA Space

Flight Prog./Proj.

Requirements

NPR 7123.1

NASA Systems

Engr, Process

& Requirements

Center Level Software

Directives

(Ames, DFRC, GRC,

GSFC, JPL, JSC, KSC,

LaRC, MSFC, & SSC)

35

ISWE
Purpose of the NASA Software Engineering

Requirements, NPR 7150.2

• Software engineering is a core
capability for NASA's missions and
supporting infrastructure.

• Support the implementation of
NASA’s policies

• Provide a minimal set of
requirements

• Support NASA programs and
projects in accomplishing their
planned goals

NPR 7150.2 History

Nov 2004 – Original
Nov 2009 – Rev A
Nov 2014 – Rev B
Aug 2019 – Rev C
Mar 2022 – Rev D

36

ISWEAbout NASA’s Software Engineering

Requirements (NPR 7150.2)
• The NASA Office of the Chief Engineer is responsible

for the NPR

• The NPR shall be applied to all software
development, maintenance, operations,
management, acquisition, and assurance activities

• Includes engineering and assurance requirements

• Requirements are levied on Center organizations as
well as projects

• Applicability of requirements is determined through
the use of a NASA-wide definition of software classes

• To find the document online go to NASA Online
Directives Information System (NODIS)

• http://nodis3.gsfc.nasa.gov/main_lib.html

• Look for NPR 7150.2

37

http://nodis3.gsfc.nasa.gov/main_lib.html

ISWE
Recent update made to NPR 7150.2 for

NPR 7150.2D
Update sources used:
• Inputs from across the Agency and

NASA HQ
• Impacts on future missions
• OCE and OSMA surveys and audits
• Feedback from Projects
• Questions asked in the

implementation of the NPR 7150
requirements

• Management Feedback
• Industry software standards
• Discussions with other engineering

disciplines
• Program directions
• Studies of software

38

ISWEThemes and Targeted Change Areas for

NASA Software Engineering Requirements

• Updated applicable documents and forms

• Added SWE requirements for SMA

− Converted from “will” to “shall”

• Updated Tech authority wording

• Clarifications on Licensing and IP rights

• Addition of 100% code coverage for safety-critical software

• Addition of cyclomatic complexity for safety-critical software

• Adaptation of cybersecurity requirements

• Number of editorial fixes

39

ISWE
Software Engineering Handbook

• Guidance material to help the NASA
workforce implement the software
engineering requirements in NPR 7150.2
and promote best practices across the
Agency in software engineering.

• Addresses topics of interest identified by
the Software Engineering community of
practice

• Provides guidance for all of the software
engineering requirements contained in
NASA’s NPR 7150.2, plus topics

• Guidance material includes requirement
specific guidance, rationale, examples,
best practices, lessons learned,
references, tools and templates

NPR 7150.2A

NPR 7150.2B

NPR 7150.2C

https://swehb.nasa.gov/

NPR 7150.2D

40

ISWE
Handbook Version Transition Page

41

ISWE
Software Handbook –Project Requirements

42

ISWE
Remember…

• NPRs and Standards (including NPR 7150.2) are not intended to be “one
size fits all documents”

• They have built-in tailoring
• Software Classification (Class A, B, C, D, E, or F)

• Tailoring of the Software Classification requirements

• There is a level of compliance and rigor specified that is associated with the class
of the software to be built or acquired

• Part of your job as is to carefully consider what tailoring is necessary and build
time into your schedule to complete it

• There are tailoring procedures via Center and HQ Engineering Technical
Authority (ETA)

Use good software engineering and software assurance judgement on which requirements
should be implemented by your project

43

ISWE

Look at the software requirements and determine what you need
to do for your project

Summary

• The NPR provides a minimal set of requirements for software
acquisition, development, maintenance, retirement, operations, and
management

• The updated directive supports NASA programs and projects in
accomplishing their planned goals (e.g., mission success, safety,
schedule, and budget) while satisfying their specified requirements.

• The directive provides increased flexibility and tailoring options for
software requirements for projects based on risk

44

ISWE

Software Engineering
Handbook Demo

45

ISWE

https://swehb.nasa.gov/

46

https://swehb.nasa.gov/

ISWE

Visual Overview of NPR 7150.2

47

ISWE

Lead Software
Engineering Initiave

Lead Software
Assurance and Safety

Initiative

Staff and advance
software engineering

capability

Measure for
Improvement

Maintains contributor
list

Benchmark Center’s
Capabilities against

this NPR

Benchmark Center’s
SWA and SW Safety

Capabilities

Establish and execute
software processes

Establish and maintain
software cost repo

Ensure Proper transfer
of software

Benchmark Center
Mapping Matrices

Review Center’s
Mapping Matrices

Comply with NPR per
Classification in

Appendix C

Contribute to Agency
PAL (Process Asset

Library)

Contract Officer:
Ensure NPR is on

contract
Authorize Compliance

Appraisals
Authorize Appriasals
against requirements

Report project status Define content of SW
documentation

Tech Authority:
Assess against NPR

Provide Software
Engineering Training

Provide Software
Assurance Training

Maintain list of
projects

Ensure Government
rights to Software

OCE, SMA, OCIO:
agree on tailoring

Maintain Process Asset
Library (PAL)

Makes Decisions on
Tailoring IVV Rqmt

Establish and maintain
software Metrics

Ensure reuse software
conforms to policies

Project Manager:
Update plans per

Classification

30 “Institutional” Requirements (Chapter 2)

Applicable to All Classifications
OCE SMA Center Director/Delegate(s)

48

ISWE

Make/Buy Tailor Classify Perform MC/DC Verify Cyber
Protection

Validate Accredit Tools Regression Test Track Changes Record Peer
Review Results

Plan Mapping to this
NPR

Maintain
Classification

Records

Track Cyclomatic
Complexity

Use Secure
Coding

Architect Plan, Report Tests Test Safety Rqmts Identify CM Items Measure
Software

Track Actual vs.
Expected Plan

Establish and
Acquire OTS

Plan SA & IVV Plan Auto-Gen
lifecycle

Use Cyber Static
Analysis

Review
Architecture

Test Develop, Test
Data Upload
Procedures

Establish CM
Procedures

Analyze Software
Measurements

Determine
Acceptance

Criteria

Establish Cost Ensure IVV Receive Auto-Gen
Supplier Inputs

Record
Adversarial

Actions

Design Manage
Configuration

Test Reuse/COTS
Equally

Maintain CM
Records

House
Measurement

Data

Determine
Deliverables

Include Specific
Cost Items

Ensure IVV
Project Exec Plan

(IPEP) if IVV

Perform and
Certify as CMMI

Perform Bi-
Directional
Traceability

Implement, Code Evaluate Test
Results

Plan Ops,
Maintenance,

Retirement

Perform CM
Audits

Compare
Measured vs.

Expected

Define
Milestones

Store Cost in Repo Provide IVV
Artifacts

Identify Reuse
Rqmts

Establish Rqmts Adhere to Coding
Standards

Use Accredited
Tools

Deliver Products Develop Release
Procedures

Measure
Software
Volatility

Developer Report
Status

Develop Schedule Respond to IVV
Findings

Evaluate
Reusability

Map to System
Rqmts

Perform Static
Code Analysis

Update Plans Complete
Verification

Participate in
Audits

Track Defects

Dev’er Provide
Product & Metrics

Regularly Review
with Stakeholders

Determine Safety
Criticality

Assess Cyber Include Safety
Rqmts

Unit Test Validate in High-
fidelity

Maintain Determine,
Manage Risk

Determine
Severity Levels

Developer to
Provide Access to

Source Code

Dev’ers Report
Schedule

Adhere to 8739.8
SWA & SW Safety

Std

Identify Cyber
Risks

Track Rqmt
Changes

Repeat Unit Test Track Code
Coverage Metrics

Archive Peer Review
Rqmts, Plans,

Code, Test

Assess reuse,
COTS defects

Comply with this
NPR

Train Do Safety-Crit
items: SWE-134

Implement Cyber
Protection

Track Corrective
Actions

Develop VDD Validate Metrics
in Test

Plan CM Follow Basic Peer
Review Process

Assess Process
Defects

100 NPR Requirements* - Applicable Based on Classification

*Note SWE-220 Cyclomatic Complexity has 2 shalls, counted as 1 here

Software Management (Chapter 3) Lifecycle (Chapter 4) Lifecycle Support-Ch5

49

ISWE
Make/Buy Tailor Classify Perform MC/DC Verify Cyber

Protection
Validate Accredit Tools Regression Test Track Changes Record Peer

Review Results

Plan Mapping to this
NPR

Maintain
Classification

Records

Track Cyclomatic
Complexity

Use Secure
Coding

Architect Plan, Report
Tests

Test Safety
Rqmts

Identify CM
Items

Measure
Software

Track Actual vs.
Expected Plan

Establish and
Acquire OTS

Plan SA & IVV Plan Auto-Gen
lifecycle

Use Cyber Static
Analysis

Review
Architecture

Test Develop, Test
Data Upload
Procedures

Establish CM
Procedures

Analyze
Software

Measurements

Determine
Acceptance

Criteria

Establish Cost Ensure IVV Receive Auto-
Gen Supplier

Inputs

Record
Adversarial

Actions

Design Manage
Configuration

Test Reuse/COTS
Equally

Maintain CM
Records

House
Measurement

Data

Determine
Deliverables

Include Specific
Cost Items

Ensure IVV
Project Exec

Plan (IPEP) if IVV

Perform and
Certify as CMMI

Perform Bi-
Directional
Traceability

Implement,
Code

Evaluate Test
Results

Plan Ops,
Maintenance,

Retirement

Perform CM
Audits

Compare
Measured vs.

Expected

Define
Milestones

Store Cost in
Repo

Provide IVV
Artifacts

Identify Reuse
Rqmts

Establish Rqmts Adhere to
Coding

Standards

Use Accredited
Tools

Deliver Products Develop Release
Procedures

Measure
Software
Volatility

Developer
Report Status

Develop
Schedule

Respond to IVV
Findings

Evaluate
Reusability

Map to System
Rqmts

Perform Static
Code Analysis

Update Plans Complete
Verification

Participate in
Audits

Track Defects

Dev’er Provide
Product &

Metrics

Regularly
Review with
Stakeholders

Determine
Safety Criticality

Assess Cyber Include Safety
Rqmts

Unit Test Validate in High-
fidelity

Maintain Determine,
Manage Risk

Determine
Severity Levels

Developer to
Provide Access
to Source Code

Dev’ers Report
Schedule

Adhere to
8739.8 SWA &
SW Safety Std

Identify Cyber
Risks

Track Rqmt
Changes

Repeat Unit Test Track Code
Coverage
Metrics

Archive Peer Review
Rqmts, Plans,

Code, Test

Assess reuse,
COTS defects

Comply with this
NPR

Train Do Safety-Crit
items: SWE-134

Implement
Cyber Protection

Track Corrective
Actions

Develop VDD Validate Metrics
in Test

Plan CM Follow Basic
Peer Review

Process

Assess Process
Defects

Class A&B (All 100) RequirementsC (92) D (64) E (12)

50

ISWE
Make/Buy Tailor Classify Perform MC/DC Verify Cyber

Protection
Validate Accredit Tools Regression Test Track Changes Record Peer

Review Results

Plan Mapping to this
NPR

Maintain
Classification

Records

Track Cyclomatic
Complexity

Use Secure
Coding

Architect Plan, Report
Tests

Test Safety
Rqmts

Identify CM
Items

Measure
Software

Track Actual vs.
Expected Plan

Establish and
Acquire OTS

Plan SA & IVV Plan Auto-Gen
lifecycle

Use Cyber Static
Analysis

Review
Architecture

Test Develop, Test
Data Upload
Procedures

Establish CM
Procedures

Analyze
Software

Measurements

Determine
Acceptance

Criteria

Establish Cost Ensure IVV Receive Auto-
Gen Supplier

Inputs

Record
Adversarial

Actions

Design Manage
Configuration

Test Reuse/COTS
Equally

Maintain CM
Records

House
Measurement

Data

Determine
Deliverables

Include Specific
Cost Items

Ensure IVV
Project Exec

Plan (IPEP) if IVV

Perform and
Certify as CMMI

Perform Bi-
Directional
Traceability

Implement,
Code

Evaluate Test
Results

Plan Ops,
Maintenance,

Retirement

Perform CM
Audits

Compare
Measured vs.

Expected

Define
Milestones

Store Cost in
Repo

Provide IVV
Artifacts

Identify Reuse
Rqmts

Establish Rqmts Adhere to
Coding

Standards

Use Accredited
Tools

Deliver Products Develop Release
Procedures

Measure
Software
Volatility

Developer
Report Status

Develop
Schedule

Respond to IVV
Findings

Evaluate
Reusability

Map to System
Rqmts

Perform Static
Code Analysis

Update Plans Complete
Verification

Participate in
Audits

Track Defects

Dev’er Provide
Product &

Metrics

Regularly
Review with
Stakeholders

Determine
Safety Criticality

Assess Cyber Include Safety
Rqmts

Unit Test Validate in High-
fidelity

Maintain Determine,
Manage Risk

Determine
Severity Levels

Developer to
Provide Access
to Source Code

Dev’ers Report
Schedule

Adhere to
8739.8 SWA &
SW Safety Std

Identify Cyber
Risks

Track Rqmt
Changes

Repeat Unit Test Track Code
Coverage
Metrics

Archive Peer Review
Rqmts, Plans,

Code, Test

Assess reuse,
COTS defects

Comply with this
NPR

Train Do Safety-Crit
items: SWE-134

Implement
Cyber Protection

Track Corrective
Actions

Develop VDD Validate Metrics
in Test

Plan CM Follow Basic
Peer Review

Process

Assess Process
Defects

Class F Requirement Applicability (OCIO Authority)

51

ISWEClass Plan
Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources

Software Documentation
Software Costing

Software Processes
Software Assurance

Software Safety-Critical

Software IV&V
Software Classifications

Software Reuse and Internal Sharing
Software Cybersecurity

Software Lifecycles and Reviews

Software Planning Requirements and Considerations

Software Requirements
Software Architecture

Software Design

Software Coding
Software Testing

Software Maintenance

Software Life-cycle Requirements

Software Configuration Management
Software Risks

Software Peer Reviews
Software Measurements

Software Defect Management
Software Bi-Directional Traceability

Software License Management
Software Acquisition

Software Development Supporting Requirements Why do we
do these
things?

Software
Failures

52

ISWE

Software Engineering
Documentation

53

ISWE
Key NPR requirements for documentation
• The project manager shall develop, maintain, and execute software plans, including security plans, that

cover the entire software life cycle and, as a minimum, address the requirements of this directive with
approved tailoring. [SWE-013]

• The project manager shall establish and maintain the software processes, software documentation plans,
list of developed electronic products, deliverables, and list of tasks for the software development that are
required for the project’s software developers, as well as the action required (e.g., approval, review) of the
Government upon receipt of each of the deliverables. [SWE-036]

• Where approved, the project manager shall document and reflect the tailored requirement in the plans or
procedures controlling the development, acquisition, and deployment of the affected software. [SWE-121]

• The project manager shall transform the requirements for the software into a recorded software
architecture. [SWE-057]

• The project manager shall develop, record, and maintain a software design based on the software
architectural design that describes the lower-level units so that they can be coded, compiled, and tested.
[SWE-058]

• The project manager shall establish and maintain: [SWE-065]
− a. Software test plan(s).

− b. Software test procedure(s).

− c. Software test(s), including any code specifically written to perform test procedures.

− d. Software test report(s).

54

ISWE
Software Documentation Considerations

• When deciding how to prepare any of these
items, consider the users of the information first.

• Reviewing and understanding the requirements,
needs, and background of users and stakeholders
are essential to applying the recommendations
for content of software records

• Specific content within these records may not be
applicable for every project.

• Use of NASA Center and contractor formats in
document deliverables is acceptable if necessary
content (as defined by the project) is addressed.

• Product records should be reviewed and updated
as necessary.

55

ISWE

Typical software engineering products or electronic data include:

Plans:

• Software Development Plan/Software Management Plan.

• Software Configuration Management Plan.

• Software Test Plans.

• Software Maintenance Plan.

• Software Assurance Plan.

• Software Safety Plan, if safety-critical software.

Products:

• Software Schedule.

• Software Cost Estimate.

• Software Requirements Specification.

• Software Data Dictionary.
• Software Design Description.

• Software and Interface Design Description (Architectural
Design).

• Software Change Reports.

• Software Test Procedures.

• Software Test Reports.

• Software Version Description Reports.

• Software Acceptance Criteria and Conditions.

• Software User's Manual.

• Programmer's/Developer's Manual.

Analysis products:

• Records of Continuous Risk Management for Software.

• Software Measurement Analysis Results.

• Software product analysis results

• Record of Software Engineering Trade-off Criteria &
Assessments (make/buy decision).

• Software Status Reports.

• Software Reuse Report.

Software Documentation

The recommendations for content of software records
are defined in NASA-HDBK-2203.

The Software Engineering handbook also provides
guidance regarding when these records should be
drafted, baselined, and updated.

Examples and templates for these records and/or data
sets are on the Software Process Across NASA (SPAN)
Web site, accessible at https://span.nasa.gov/.

56

https://span.nasa.gov/

ISWE
Software Life Cycle Planning

57

ISWE

Software Cost Estimation

58

ISWENPR 7150.2D Requirements on Software

Cost Estimation
• 3.2.1 To better estimate the cost of development, the project manager shall establish, document, and maintain: [SWE-

015]

a. Two cost estimate models and associated cost parameters for all Class A and B software projects that have an estimated project cost of $2 million or
more.

b. One software cost estimate model and associated cost parameter(s) for all Class A and Class B software projects that have an estimated project cost
of less than $2 million.

c. One software cost estimate model and associated cost parameter(s) for all C and D software projects.

d. One software cost estimate model and associated cost parameter(s) for all Class F software projects.

• 3.2.2 The project manager’s software cost estimate(s) shall satisfy the following conditions: [SWE-151]

a. Covers the entire software life-cycle.

b. Is based on selected project attributes (e.g., programmatic assumptions/constraints, assessment of the size, functionality, complexity, criticality, reuse
code, modified code, and risk of the software processes and products).

c. Is based on the cost implications of the technology to be used and the required maturation of that technology.

d. Incorporates risk and uncertainty, including end state risk and threat assessments for cybersecurity.

e. Includes the cost of the required software assurance support.

f. Includes other direct costs.

• 3.2.3 The project manager shall submit software planning parameters, including size and effort estimates, milestones,
and characteristics, to the Center measurement repository at the conclusion of major milestones. [SWE-174]

59

ISWE
Let’s do a Cost Estimate!

• You want to build your dream home!

− 4000 ft2

− Two Story Brick Veneer

− 4 Bedrooms

− Living Room, Dining Room, Den, Rec Room,
Office, Laundry, etc.

− 3 Baths (Master w/Separate Tub, Walk in
Shower, and WC)

− High-End Kitchen with Professional Appliances

How Much Will It Cost?
Assume that the land is provided

The Quality of an Estimate is Directly Affected by Experience,
Time Available, the Detail/Maturity of the Technical Definition,

and the Quantity and Relevance of Historical Data

60

ISWE
The Cost Estimating Universe

61

Thousand$ Million$ Billion$

Basic Research & Technology Development

Small Optics and Components

Technology Development Missions

Small Satellites

Big Satellites Large Observatories

Human Spaceflight

Launch Vehicles

Payloads & Large Components

Focus of this Class*
*However the Principles Apply to Any Estimate!

Sounding Rocket & Balloon Experiments

Grants, Data Analysis, Space Act Agreements

Payload Operations

ISWE
Why Costing, Sizing, Progress Tracking?

• This section introduces you to some of the topics necessary to
manage your project well

• In the current atmosphere of budget reductions, its critical to be
able to make good software cost estimates

− And to be able to track progress so projects finish on-time/within budget!

• NASA requires for software activities:

− doing at least one software cost estimate for your project, two are required
for Class A and B projects $2M and over

− planning the project

− tracking progress against the plan

62

ISWE
Cost Estimating Methods

• Grass Roots/Bottoms-Up

• Analogy

• Expert Opinion/Delphi
Approach

• Factors/Rules of Thumb

• Parametric

The Available Detail and Maturity of the Technical Content, Plus
the Estimate Scope, Requirements, and Purpose will Determine

the Best Estimating Method(s

63

ISWE
Software Cost Estimation Issues

• Know the Purpose of a Cost Estimate

• Know How to Do a Cost Estimate

• Know if Your Cost Estimate is Any Good

• Budget ‘bogies’ get set very early in lifecycle.
Sometimes based on casual conversations.

• You will typically get held to this number!!

• Current proposal and planning process
encourages/ demands under-estimating in
early stages of lifecycle

• Software estimation is fundamentally an
uncertain business under the best of
conditions

64

ISWE
Steps in Performing a Cost Estimate

1. Identify the Content of the Estimate (Spacecraft Bus, Subsystem,
Component, Test, Analysis, Software components, etc.)

2. Determine the Work Required to Perform the Content

• Design

• Build

• Integrate

• Test

• Etc.

3. Estimate the Resources Required to Perform the Work

4. Determine the Amount of Uncertainty and Risk in the Estimate

5. Validate and Document the Results

65

ISWE

• Software ‘size’ is simply a measure of code ‘bigness’

• The most common way to estimate size is through Source
Lines of Code (SLOC)

• Includes any code delivered as a software release

• Many definitions and standards:

• Raw physical: SLOC are the total number of lines in a
file

• Physical: SLOC are the total number of non-blank,
non-comment lines

• Logical: SLOC captures size using language-specific
rules.

• ……and many others

• SLOC is easy to capture using common counting utilities

Estimating Software Size Using

Source Lines of Code (SLOC)

66

ISWE

• Model-based estimates are estimates made using
parametric cost models

• SEER-SEM and COCOMO are the two primary
software cost models used with NASA

• Model-based estimates can be used

• As a primary estimate early in life cycle

• As a secondary backup estimate for
validation

• To help you “reason about the cost and
schedule implications of software decisions
you may need to make”

• Cost risk methodology using parametric models
has been applied on many projects across NASA

Parametric Software Cost Estimation

67

ISWE

• Required Software Reliability:

• Database Size:

• Product Complexity

• Developed for Reusability:

• Documentation Match to Life-Cycle Needs:

• Execution Time Constraint:

• Analyst Capability:

• Programmer Capability:

• Personnel Continuity:

• Applications Experience:

• Platform Experience:

• Language and Tool Experience:

• Multisite Development:

• Required Development Schedule:

• Development Flexibility:

• Architecture / Risk Resolution

• Team Cohesion

• Process Maturity:

Software Cost Parameters
• Main Storage Constraint:

• Platform Volatility:

• Use of Software Tools:

• Precedentedness:

68

ISWE
Example Model Output

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000

C
o
s
t
P
ro

b
a
b
ili
ty

Cost ($K)

Software Development Cost Cumulative Distribution
Function

Recommended Budget with Reserv es => 70%

Recommend between
$1.2-1.4M

Recommended Minimum without
Reserv es => 50%

• For tasks with 10% level
of reserves or less
recommend a range of
50% to 70% probability

• For tasks with 20% or
greater reserves
recommend 40-70%

69

ISWE

✓What am I Estimating?

✓Why am I doing the Estimate?

✓What Information did I Use for the Estimate?

✓How did I do the Estimate?

✓How much Uncertainty and Risk is in the Estimate?

✓How did I Validate the Results?

Documenting the Estimate

All of this Information becomes Part
of Your Basis of Estimate (BOE)

70

ISWE

• Use at least two estimates

• Document the basis of estimate
(BOE)

• Update estimate at significant
milestones

• Keep your history

• Incorporate Uncertainty

Key Points

71

ISWE
Software Cost Data

Plans and
Requirements

(LCCR-PRR)
5%

Product Design
(PRR-PDR)

15%

Detailed
Design (PDR-CDR)

25%

Code and
Unit Test (CDR-

UTC)
30%

Integration and
Test (UTC-SWAR)

15%

Transition (SWAR-
SAR)
10%

EFFORT%

Plans and
Requirements

(LCCR-PRR)
10%

Product Design
(PRR-PDR)

20%

Programming (PDR-UTC)…

Integration
and Test (UTC-

SWAR)
20%

Transition
(SWAR-SAR)

10%

SCHEDULE%

Phase (end points) Effort% Schedule%

Plans and Requirements

(LCCR-PRR)
7 (2-15) 16-24 (2-30)

Product Design (PRR-PDR) 17 24-28

Programming (PDR-UTC) 64-52 56-40

 Detailed Design

(PDR-CDR)
 27-23

 Code and Unit Test

(CDR-UTC)
 37-29

Integration and Test (UTC-

SWAR)
19-31 20-32

Transition (SWAR-SAR) 12 (0-20) 12.5 (0-20)

Table 4. Waterfall Phase Distribution Percentages

72

ISWE
Software Cost Data

73

ISWE

• Cost Estimation is Indispensable to
Good Decision Making and Good
Program/Project Management

• Expect a Credible, Supportable,
Defendable Basis of Estimate

• Affordability Requires Awareness of
the Cost to Perform the Work

• Beware of the Optimism Bias – It will
Cost More than You Think!

Summary for Software Cost Estimation

What do you need
for

a successful
software

development
effort?

74

ISWE

Software Processes

75

ISWE

• The challenge for leaders is to examine every area of
their organization and identify the processes that are
in place.

• Ask:

− Does the right process or procedure exist?

− Is the process effective? How do you know?

− Do staff members know the outcome of the procedure?

− Does everyone know the “why” of the process?

− How and when is the process evaluated?

− Does everyone know how they fit into the process and what
to do?

− Are staff members held accountable to the process?

− What is the process to fix an ineffective process?

Process Questions

76

ISWE
Your process should not look like this

77

ISWE
NASA’s Software Engineering Capability as

measured by CMMI Rating Level

• What is CMMI?

– The Capability Maturity Model Integration
(CMMI)® is a proven set of global best
practices that drives business performance
through building and benchmarking key
capabilities.

– Is recognized worldwide as benchmark for
software engineering capability

– Consist of 5 well defined levels

https://cmmiinstitute.com/cmmi/intro

Originally created for
the U.S. Department of
Defense to assess the
quality and capability of
their software
contractors.

78

https://cmmiinstitute.com/cmmi/intro

ISWE
Why Are We Addressing CMMI® in This

Course?

CMMI® has been shown by industry to have many benefits

It is required by NASA Directives for Class A and B software:

3.9.3 The project manager shall acquire, develop, and maintain software from an organization
with a non-expired CMMI-DEV rating as measured by a CMMI Institute Certified Lead Appraiser as
follows: [SWE-032]

• a. For Class A software: CMMI-DEV Maturity Level 3 Rating or higher for software.

• b. For Class B software (except Class B software on NASA Class D payloads, as defined in NPR
8705.4): CMMI-DEV Maturity Level 2 Rating or higher for software.

When followed it can lead to better cost, schedule, and
quality control, and…

79

ISWEThe CMMI model use at NASA

• The CMMI model is an industry-accepted model of software development practices.

• It is utilized to assess how well NASA projects are supported by software
development organization(s) having the necessary skills, practices, and processes in
place to produce reliable products within cost and schedule estimates. The CMMI
model provides NASA with a methodology to:

− Measure software development organizations against an industry-wide set of best practices that
address software development and maintenance activities applied to products and services.

− Measure and compare the maturity of an organization's product development and acquisition
processes with the industry state of the practice.

− Measure and ensure compliance with the intent of the directive’s process related requirements
using an industry standard approach.

− Assess internal and external software development organization’s processes and practices.

− Identify potential risk areas within a given organization's software development processes and
practices.

80

ISWE

81

ISWE

82

ISWE

83

ISWEWhy has NASA Management directed the use

of CMMI® standards?
• The CMMI requirement is a qualifying requirement. The requirement is included to

make sure NASA projects are supported by software development organization(s)
having the necessary skills and processes in place to produce reliable products
within cost and schedule estimates.

• It is a benchmarking tool widely used by industry and government, both in the US
and abroad

• It acts as a roadmap for process improvement

• It provides criteria for reviews and appraisals

• It provides a reference point to establish present state of processes

• It can help the government compare the maturity of one offerer (or supplier) to
another

• It addresses practices that are the framework for process improvement

• It is not prescriptive; it does not tell an organization how to improve

84

ISWE

 In 2011 our data clearly showed the impact of the use of
rigorous development processes (PPI >80%), when
compared to JPL tasks with less rigorous processes (PPI
<70%)

 lower cost growth

 higher productivity

 lower defect rates

Rigorous Software Processes Are

Producing Superior Results

Process Performance
Effort Growth

from PDR

Productivity
(Lines of Code/
Work Month)

Defect Density
(Defects/

Thousand Lines of
Code)

Robust Process 39% 150 4.3

Low to Moderate
Process Performance

116% 106 5.9

Flight Software Key Process and Product Metrics

PPI – Process Performance Indicators

85

ISWE

Case Study: Defense Industry

High CMMI Maturity Reduces Costs for Repair

Quantitative Results

Potential Cost Savings From
$1.9 million to $2.3 million
per average-sized program

86

ISWE
Benefits of CMMI

• Reducing risk of software failure - Increasing mission safety,

• Improving the accuracy of schedule and cost estimates by requiring the use
of historical data and repeatable methods

• Helping NASA become a smarter buyer of contracted out software,

• Increasing quality by finding and removing more defects earlier,

• Improving the potential for reuse of tools and products across multiple
projects,

• Increasing ability to meet the challenges of evolving software technology,

• Improving Software development planning across the Agency,

• Improving NASA contractor community with respect to software
engineering,

• Lowering the software development cost, improves productivity

• Improving employee morale,

• Improving customer satisfaction,

• Improving NASA and Contractor community knowledge and skills,

• Providing NASA a solid foundation and structure for developing software in
a disciplined manner.

87

ISWE
Summary
• CMMI® is an integrated framework for maturity models and associated products

• CMMI® combines

− A set of best practices

− A model for organizational improvement

− A community developed guide

− A common-sense application of process management and quality improvement
concepts

• Successful projects require

− Focus on customer satisfaction
− Dynamic project planning
− Compliance with NASA project requirements and plans
− Use of appropriate methodologies and tools
− Control of project financial and business issues

88

ISWE

Software Assurance

89

ISWECurrent NASA Software Documentation Tree
(with a few related non-software documents in gray)

NPD 7120.4

NASA Engr. &

Prog./Proj. Mgt.

Policy

NPR 7150.2D

NASA Software

Engineering

Requirements,

2022, OCE

NPR 2210.1

Release of

NASA

Software

Policy

Procedural

Requirements

Standards

Handbooks &

Guidebooks

Center Level

Directives

NASA-STD-8739.8B

Software Assurance and

Software Safety Standard

NASA-STD-7009

Standard for

Models &

Simulations

invokes

parent of parent of

NASA-HDBK-8739.23

Complex Electronics

HDBK for Assurance

Professionals

NASA-HDBK-2203
NASA Software
Engineering and

Software Assurance
Handbook

is supported by

is supported by

NASA-HDBK-4008

Programmable

Logic Device HDBK

NPR 7120.8

NASA Research &

Tech. Prog./Proj.

Requirements

2012, JUL

NPR 7120.7

NASA IT & Infra.

Prog./Proj.

Requirements

2012, JUL

NPR 7120.5

NASA Space

Flight Prog./Proj.

Requirements

NPR 7123.1

NASA Systems

Engr, Process

& Requirements

Center Level Software

Directives

(Ames, DFRC, GRC,

GSFC, JPL, JSC, KSC,

LaRC, MSFC, & SSC)

90

ISWE
Documents:

• Links to the current releases of our software assurance documents are provided below. When
new documents are created, or existing documents are updated, the list of links will be revised
accordingly.

NASA Software Assurance Standard (NASA-STD-8739.8)

Complex Electronics Handbook for Assurance Professionals (NASA-HDBK-8739.23)

https://swehb.nasa.gov/

https://sma.nasa.gov/sma-disciplines/software-assurance-and-software-safety

https://standards.nasa.gov/safety-quality-reliability-maintainability

91

https://swehb.nasa.gov/
https://standards.nasa.gov/safety-quality-reliability-maintainability
https://standards.nasa.gov/safety-quality-reliability-maintainability

Basics of Software Assurance

The objectives or value of the Software Assurance and Software Safety include the following:

a. Ensuring that the processes, procedures, and products used to produce and sustain the

software conform to all specified requirements and standards that govern those

processes, procedures, and products.

(a) A set of activities that assess adherence to, and the adequacy of the software

processes used to develop and modify software products.

(b) A set of activities that define and assess the adequacy of software processes to

provide evidence that establishes confidence that the software processes are

appropriate for and produce software products of suitable quality for their

intended purposes.

b. Determining the degree of software quality obtained by the software products.

c. Ensuring that the software systems are safe and that the software safety-critical

requirements are followed.

d. Ensuring that the software systems are secure.

e. Employing rigorous analysis and testing methodologies to identify objective evidence

and conclusions to provide an independent assessment of critical products and processes

throughout the life cycle.

The Software

Assurance activities

provide a level of

confidence that software is

free from vulnerabilities,

either intentionally

designed into the software

or accidentally inserted at

any time during its life

cycle, that the software

functions in an intended

manner, and that the

software does not function

in an unintended manner.

92

Basics of Software Assurance

Types of Software Defects Across NASA Projects

• Requirements
• Missing Required Functionality

• Poorly articulated requirements and traceability issues

• Security controls assessment

• High level use-case based requirements don’t always fully encapsulate

user expectations

• Inadequate verification approach

• Depth and breadth of unit tests not adequate (based on requirements,

not how code written)

• Testing needed in development labs or simulated environments as well as hardware-

in-the-loop environments

• Limited ability to test in full up system integrated modeuntil System

Integration Test

• Coding Errors

• Data type differences; Memory Leaks; Race conditions;

Timing/synchronization issues

• Software Design
• Incorrect design to meet requirements

• Interface definition not complete ormissing

93

Basics of Software Assurance

Examples of NASA software issues seen during operations

- Coding errors

- Timing Discrepancies (of different varieties: between processes,

between in-house built and COTS code);

- Misunderstood requirements;

- Changes during maintenance or updates that negate

other software, have unintended consequences, or leave

dead code behind

- Incomplete/Incorrect Requirements

- Incomplete ICD/Undocumented interface features

- Testing error

- Incomplete Regression Testing

- Incomplete set of test cases during development

- Inadequate hardware in the loop testing

- Use of software in an unknown/unplanned configuration or scenario

- General areas that introduced errors

- Not enough insight into contractor activities

- Inadequate risk management

- Inadequate peer reviews

94

Basics of Software Assurance

NASA-STD-8739.8A Standard Approach

25

95

ISWE
Software Handbook – Requirements Example

96

Basics of Software Assurance

31

Software

Engineering

and Software

Assurance

Handbook

Topics
97

Basics of Software Assurance

Key Software Assurance and Software Safety Activities

Software Assurance Planning
1 Implementation of the NASA-STD-8739.8 requirements
2 Software assurance\safety requirements mapping

matrix, review any tailored requirements
3 Software assurance\safety approach, plan and resource

allocations
4 Software assurance\safety requirements flow down into

contracts

Software Assurance Analysis
5 Software requirements analysis
6 Software safety analysis

7 Software test analysis
8 Software hazard analysis

9 Software source code quality analysis
10 Peer reviews

11 Static Analysis Tools Assessments

Audits
12 Software engineering requirements flow down and

implementation
13 Software process audits
14 Software test witnessing

Communication
15 Software assurance and software safety planned activities

16 Metric and status reporting by software assurance\safety
17 IV&V plan and communication (if required)
18 Software risks, findings or known issues

Product reviews
19 Major Milestone product reviews
20 Software development product reviews
21 Software metric data reviews

Defect Tracking and Management
22 Root causes analysis

98

Basics of Software Assurance

SA Tasking Checklist Tool

• Checklist tool that gives Software Assurance and Software Safety analysts the ability to tailor the software

assurance and software safety tasks in NASA-STD-8739.8 and generate a tailored checklist for the tasks

required on a project's software classification and safety criticality.

https://swehb.nasa.gov/display/SWEHBVD/8.15+-

+SA+Tasking+Checklist+Tool

Software Assurance Planning activities

99

https://swehb.nasa.gov/display/SWEHBVD/8.15+-+SA+Tasking+Checklist+Tool
https://swehb.nasa.gov/display/SWEHBVD/8.15+-+SA+Tasking+Checklist+Tool
https://swehb.nasa.gov/display/SWEHBVD/8.15+-+SA+Tasking+Checklist+Tool

Basics of Software Assurance

Software Assurance Analyses

activities
Primary Software Assurance and Software Safety work products

• Software Assurance Plan - Describes Software Assurance Plan content as well as sub-plans for Safety and Security

• IV&V Program Execution Plan - This is produced by the IV&V team, if software IV&V is required on a project.

• Software Requirements Analysis - This section focuses on analysis techniques for assuring and improving requirements

• Software Safety and Hazard Analysis - (Only applicable for safety critical projects) - Under Construction –

• Software Design Analysis – Section focuses on analysis techniques for improving the design.

• Source Code Quality Analysis - Section focuses on analysis techniques for determining and improving source code quality.

• Testing Analysis - Discusses considerations for developing and evaluating test products (test plans, test procedures and test

results)

• Software Assurance Status Reports - Contains recommended content for SA status reporting, including reporting details for

analysis, assessments and audits.

• Audit Reports - Discusses required audits and provides information and resources for performing audits

• Objective Evidence - This topic provides a definition with some examples of "objective evidence" and contains a listing of all

the tasks in NPR-8739.8 278 where "objective evidence" may be the only product.

• Hazard inputs

• Findings, issues, defects, problem reports, and identified software risks

https://swehb.nasa.gov/display/SWEHBVD/8.16+-+SA+Products

100

https://swehb.nasa.gov/display/SWEHBVD/Software+Assurance+Plan
https://swehb.nasa.gov/pages/viewpage.action?pageId=102695746
https://swehb.nasa.gov/display/SWEHBVD/Software+Requirements+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Software+Safety+and+Hazard+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Software+Design+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Source+Code+Quality+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Testing+Analysis
https://swehb.nasa.gov/display/SWEHBVD/Software+Assurance+Status+Reports
https://swehb.nasa.gov/display/SWEHBVD/Audit+Reports
https://swehb.nasa.gov/display/SWEHBVD/Objective+Evidence
https://swehb.nasa.gov/display/SWEHBVD/8.16+-+SA+Products#_tabs-4
https://swehb.nasa.gov/display/SWEHBVD/8.16+-+SA+Products

Basics of Software Assurance

Software source code quality analysis

o Drilling down a level – and particularly for mission-

and safety-critical systems, the code itself entails

risks. For example, consider the risk that a code

base is:

▪ Hard to test thoroughly

▪ Prone to critical failures / crashes

▪ Unmaintainable over its expected lifecycle

▪ Tough to extend for new capabilities

▪ Exploitable to cyber attacks

▪ Difficult to harvest for reuse

▪ Plagued with a multitude of latent defects

▪ Hard to change without adding new defects

Code Risk

Is there a way to characterize these types of risk for a given code base?
101

Basics of Software Assurance

Software source code quality analysis

102

Basics of Software Assurance

We can use the Code Risk

Estimation Worksheet to

improve code assessments,

enhancing:

• Thoroughness

• Objectivity

• Consistency

• Traceability

• Standards adherence

The resulting estimates provide customers with an easy to understand snapshot of the risk level
inherent within their code base.

Software source code quality analysis

103

Basics of Software Assurance

Software test witnessing

https://swehb.nasa.gov/display/SWEHBVD/8.13+-+Test+Witnessing

Guidance for software assurance personnel performing test

witnessing.

• Software assurance will review the test procedures and

either review test results or witness the tests being run

to confirm the test coverage of the requirements.

• In projects with safety-critical code, software assurance

will perform extra rigor to ensure that all safety-related

features are thoroughly tested.

• Tests for safety features should include testing in

operational scenarios, nominal scenarios, off-nominal

conditions, stress conditions, and error conditions that

require bringing the system to a safe mode.

• Projects should do regression for any changes made to

the software during the test process, following the

project’s change management process.

104

Basics of Software Assurance

Static Code Analysis Examples of some SCA Tools used across NASA
CodeSonar
Cppcheck
HPFortify
Klocwork
SonarQube
Understand
coverity
FindBugs/SpotBugs
IKOS
JPL CAE SRUB
lgtm
OCLint
Parasoft C++
Polyspace
PRQA
RIPS
semmle
VI Analyzer (LabVIEW)

• SWE-135 in NPR 7150.2 requires the use of static

analyzer tools during development and testing.

• Modern static code analysis tools can identify a variety

of issues and problems, including but not limited to

dead code, non-compliances with coding standards,

security vulnerabilities, race conditions, memory leaks,

and redundant code.

• Software peer reviews/inspections of code items can

include reviewing the results from static code analysis

tools.

• One issue with static code analyzers is they may

generate a number of false positives that will need to be

resolved and can be very time consuming.

• Static code analyzers are not available for all platforms

or languages.

• For critical code, it is essential to use sound and

complete static analyzers.

Static Analysis Tools Assessments

105

https://swehb.nasa.gov/display/SWEHBVD/SWE-135+-+Static+Analysis

Basics of Software Assurance

Requirements Analysis Software

• Manual requirements review is an

unreliable process.

• There are simply too many

elements to confirm against

industry standards and best

practices (as well as internal best

practices) for these manual

checks to be fully accurate.

• Poor requirements analysis can

lead to costly corrections in later

development phases that would

otherwise be easier and less

expensive to correct when
requirements are first written. Agency wide tool

Hosted by the NSC

106

Basics of Software Assurance

Software Assurance Auditing Function Principle Description

Auditors are qualified Auditors need to have knowledge of or
experience with audit processes and necessary
backgrounds in the audit subject matter, such
as software engineering or software assurance.
Qualification can be through training, on-the-
job experience, a mentor-mentee relationship,
or simply by including a variety of these skills
on the audit team.

An audit is against agreed-to
requirements/criteria

To get the best objective results, define the
audit criteria before the project starts (i.e., the
process requirements, standards, development
plans, etc. to be used for the audit). The team
being audited knows they are expected to
follow these criteria so the audit team simply
looks for evidence of that compliance.

Conclusions are based on the evidence Audit results are based on and backed up by
the collected evidence only.

The audit focuses on the project records, not
the personnel

An audit is designed to assess compliance, not
personalities or behavior; therefore, the
auditors focus on the records, the interviews,
and observations to determine the results.

• Audits provide management with information about the project team, the project

processes and help identify best practices and areas of improvement.

• Audits are useful to assess:

➢ Adequacy of project plans, processes, systems

➢ Compliance with those plans, processes, systems

➢ Effectiveness of those plans, processes, systems, and internal project

controls on those processes

➢ Product fitness for use/compliance to specifications

➢ Areas for improvement

• The results of audits allow project management to make adjustments and

corrections to ensure high-quality products are being produced and delivered

and that the team is functioning efficiently and effectively.

• Trending audit results over time allows management to identify systemic issues

and areas of risk while monitoring the effect of process and product

improvements.

Ensuring that the processes, procedures, and products

used to produce and sustain the software conform to

all specified requirements and standards that govern

those processes, procedures, and products.

https://swehb.nasa.gov/display/SWEHBVD/8.12+-

+Basics+of+Software+Auditing

Audits

107

https://swehb.nasa.gov/display/SWEHBVD/8.12+-+Basics+of+Software+Auditing
https://swehb.nasa.gov/display/SWEHBVD/8.12+-+Basics+of+Software+Auditing

Basics of Software Assurance

Maturity of software assurance and software safety products at milestone reviews

https://swehb.nasa.gov/display/SWEHBVD/7.8+-

+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews

https://swehb.nasa.gov/display/SWEHBVD/7.9+-

+Entrance+and+Exit+Criteria

Communication

108

https://swehb.nasa.gov/display/SWEHBVD/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews
https://swehb.nasa.gov/display/SWEHBVD/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews
https://swehb.nasa.gov/display/SWEHBVD/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews
https://swehb.nasa.gov/display/SWEHBVD/7.9+-+Entrance+and+Exit+Criteria
https://swehb.nasa.gov/display/SWEHBVD/7.9+-+Entrance+and+Exit+Criteria

Basics of Software Assurance

Entrance and Exit Criteria

• Defines the responsibilities of the software

assurance community throughout the project life

cycle reviews.

• Includes reviews and products which are the

primary responsibility of the software assurance

community as well as software engineering

community contributions to system activities and

products, such as the Project Plan.

• Note that different mission types (e.g., robotic vs.

human) can have different life cycles and,

therefore, different sets of life cycle reviews that

apply.

Product reviews

109

Basics of Software Assurance

Software Assurance Suggested Metrics

• There are multiple “Metrics Types”,

and each type includes optional

“Measurements” by life-cycle phase

for the “Associated SWE

Requirements”.

• Projects should choose a set of

measurements to provide information

on the project being implemented.

• The measurements do not have to be

implemented as written.

• The metrics should be modified to

best fit the characteristics of the
project.

https://swehb.nasa.gov/display/SWEHBVD/8.18+-

+SA+Suggested+Metrics

Communication

110

https://swehb.nasa.gov/display/SWEHBVD/8.18+-+SA+Suggested+Metrics
https://swehb.nasa.gov/display/SWEHBVD/8.18+-+SA+Suggested+Metrics
https://swehb.nasa.gov/display/SWEHBVD/8.18+-+SA+Suggested+Metrics

Basics of Software Assurance

Root Cause Analysis

• To reduce defects from occurring, we have to understand

why the defect or software non-conformance occurred.

• Root Cause Analysis is a structured evaluation method

that identifies the root causes of an undesired outcome

and the actions adequate to prevent a recurrence.

• Software Assurance should use a method like, Root

Cause Analysis as a technique to help the projects

identifies the root causes of an undesired outcome

• Root cause analysis can be decomposed into four steps:

▪ Identify and describe clearly the problem.

▪ Establish a timeline from the normal situation up to

the time the problem occurred.

▪ Distinguish between the root cause and other causal

factors (e.g., using event correlation).

▪ Establish a causal graph between the root cause and

the problem.

Defect Tracking and Management

111

Basics of Software Assurance

Software Hazard Causes

• When a device or system can lead to injury, death, the destruction or

loss of vital equipment, or damage to the environment, system safety

is paramount. The system safety discipline focuses on “hazards” and

the prevention of hazardous situations.

• A hazard is the presence of a potential risk situation that can result in

or contribute to a mishap. To ensure the system being developed is as

safe as possible, it is important to begin identifying potential hazards

as early as possible in the development. Thus, the software and

system safety personnel generally look at the hazardous events that

could happen and what could potentially cause them.

• Every hazard has at least one cause, which in turn can lead to several

effects (e.g., damage, illness, failure).

• A hazard cause may be a defect in hardware or software, a human

operator error, or an unexpected input or event which results in a

hazard. The table below provides several potential software causes to

consider in the project when developing the list of hazards and their

potential causes.

• Hazard control is a method for preventing the hazard, reducing the

likelihood of the hazard occurring, or the reduction of the impact of

that hazard. Hazard controls use software (e.g. detection of the stuck

valve and automatic response to open secondary valve), hardware

(e.g. pressure relief valve), operator procedures, or a combination of

methods to avert the hazard. For every hazard cause, there must be

at least one control method, usually a design feature (hardware and/or

software) or a procedural step.

https://swehb.nasa.gov/display/SWEHBVD/8.21+-

+Software+Hazard+Causes

Software hazard analysis

112

https://swehb.nasa.gov/display/SWEHBVD/8.21+-+Software+Hazard+Causes
https://swehb.nasa.gov/display/SWEHBVD/8.21+-+Software+Hazard+Causes

ISWE

Software Safety-Critical

113

Basics of Software Assurance

Software is classified as safety-critical if the software is determined by and traceable to a hazard

analysis. Software is classified as safety-critical if it meets at least one of the following criteria:

a. Causes or contributes to a system hazardous condition/event,

b. Controls functions identified in a system hazard,

c. Provides mitigation for a system hazardous condition/event,

d. Mitigates damage if a hazardous condition/event occurs,

e. Detects, reports, and takes corrective action if the system

reaches a potentially hazardous state.

Software Safety Analysis and Hazard Analysis

The Cartwheel galaxy and its companion galaxies
NASA, ESA, CSA, STScI, Webb ERO Production Team

114

Basics of Software Assurance

Primary Safety-Critical Software
Requirements
If a project has safety-critical software, the project
manager shall implement the safety-critical software
requirements contained in NASA-STD-8739.8. [SWE-
023]

Safety-critical software requirements contained in
NASA-STD-8739.8.

1. Confirm that the NPR 7150.2 requirement items
"a" through "l" are documented in the detailed
software requirements.

2. Assessment that the source code satisfies the
conditions in the NPR 7150.2 requirement "a"
through "l" for safety-critical software.

115

If a project has safety-critical software or mission-critical software,

the project manager shall implement the following items in the

software:

a. The software is initialized, at first start and restarts, to a known

safe state.

b. The software safely transitions between all predefined known

states.

c. Termination performed by software of functions is performed to

a known safe state.

d. Operator overrides of software functions require at least two

independent actions by an operator.

e. Software rejects commands received out of sequence when

execution of those commands out of sequence can cause a

hazard.

f. The software detects inadvertent memory modification and

recovers to a known safe state.

g. The software performs integrity checks on inputs and outputs

to/from the software system.

h. The software performs prerequisite checks prior to the

execution of safety-critical software commands.

i. No single software event or action is allowed to initiate an

identified hazard.

j. The software responds to an off-nominal condition within the

time needed to prevent a hazardous event.

k. The software provides error handling.

l. The software can place the system into a safe state.

Basics of Software Assurance

Primary Safety-Critical Software Requirements

Confirm 100% code test coverage has been
achieved or addressed for all identified
software critical components

Confirm that all identified software safety-
critical components have a cyclomatic
complexity value of 15 or lower.

116

Test
Coverage

Find Untested
code

Understand why
any untested code

exist

Complexity

Reliability

ISWESafety-Critical Software Requirements

Include software related safety constraints,
controls, mitigations and assumptions between
the hardware, operator, and software in the
software requirements documentation.

Verify through test the software requirements
that trace to a hazardous event, cause, or
mitigation technique.

The project manager shall perform, record, and
maintain bi-directional traceability between the
following software elements: [SWE-052]

Software requirements to the system hazards

Hazards

Software code

Software Test
Procedures

Software
Requirements

117

ISWE

NASA Software Independent
Verification and Validation
(IV&V) Activities

118

ISWE
NASA’s Independent Verification and

Validation (IV&V) Program

• Fairmont, WV

• http://www.nasa.gov/centers/ivv/home/index.html

119

http://www.nasa.gov/centers/ivv/home/index.html

ISWE
Introduction to IV&V

• Software Verification and Validation (V&V) is a systems engineering
discipline.

− V&V is more than testing, just like development is more than coding!

• The purpose is to help the development organization build quality
into the software during the software life cycle.

− Some objectives of performing V&V:
• Facilitate early detection and correction of software errors

• Enhance management insight into process and product risk

• Support the software life cycle processes to ensure compliance with program
performance, schedule, and budget requirements

• As part of Software Assurance at NASA, and utilizing IEEE standards,
IV&V is differentiated from V&V because it is managerially,
technically, and financially separated from developers.

120

ISWE
Generic Look at IV&V

Needs Analysis &
Concept Phase

Requirements
Specification

Design

Implementation

Integration &
Test

Ops &
Maintenance

Simplified development
lifecycle

Requirements Analysis
{ensure the requirements are high quality (correct, consistent, complete, accurate, unambiguous , and verifiable) and
adequately meet the needs of the system and user}

Simplified IV&V lifecycle

Design Analysis
{ensure the design is a correct, accurate, and complete transformation of the requirements that will meet the
operational need under nominal and off-nominal conditions and that no unintended features are introduced}

Code Analysis
{ensure the implementation is correct, accurate, and complete, relative to requirements, operational need under
nominal and off-nominal conditions, and introduces no unintended features }

Test Analysis
{ensure testing will serve as a sufficient means to verify and validate that the implementation meets the requirements
and operational need under nominal and off-nominal conditions}

Concept Analysis
{validate selected solution, validate s/w reuse strategy, verify sys. architecture is complete, ensure security threats &
risks are known}

C
ri

ti
ca

lit
y

A
n

al
ys

is
 {i

d
en

ti
fy

 m
o

st
 c

ri
ti

ca
l a

re
as

 o
f

th
e

sy
st

em
}

Operational & Maintenance Analysis
{ensure operating procedures are correct and usable, new constraints & changes are understood and appropriately
addressed, and ensure anomalies are understood and appropriately addressed}

121

ISWE
Determining the Amount of IV&V

• IV&V is conducted across the entire life cycle, BUT NOT on the entire
system

− IV&V can be focused or target just certain development phases, too

• The IV&V Program “scopes” the system to determine areas that warrant
analysis

− The process is called “Portfolio Based Risk Assessment” (PBRA)

− Results in a risk score for each capability/subsystem for a particular project that
enables informed decisions to be made:
• What parts of the system should IV&V work on

• How much analytical rigor should we apply (e.g., dynamic analysis should be conducted to
thoroughly test the implementation of the protocol used for communications)

• Same approach utilized by organizations to determine which projects
within their portfolio of projects warrant additional assurance

122

ISWE

• Analyses that provides value added evidence into
whether the requirements reflect/capture the
user’s needs, whether the implementation is
reliable, safe, & secure and reflective of these
user’s needs and whether the testing of the
system was adequate

• Confidence & Insight in terms of:

− Confidence that the system will do what it is supposed
to do

− Confidence that the system will not do what it is not
supposed to do

− Confidence in terms of what/how the system will
act/react to/under adverse conditions

• Independent Testing that provides exhaustive
execution of hazard domain, failure scenarios,
security breaches, duration testing, boundary
testing, off nominal testing

• IV&V Project Execution Plans (IPEPs)

− Documents/guides & communicates IV&V approach to
our customers/stakeholders

• Software Risks Identification

− Identified by IV&V; represent areas of
concern/potential for negative consequence(s) for
the development Project;

• Technical Issue Memorandums (TIMs)

− Documents specific instances of problems resulting
from analytical efforts

• Technical Analysis Reports

− Formally documents results of IV&V analysis
activities and results; typical reports include
requirement validation report(s), test validation
report(s), build analysis report(s), implementation
analysis report(s) including design and code
analysis reports

• Lifecycle Review Presentations/Safety and
Mission Success Review (SMSR) Presentations

− Provides necessary information for key decisions to
be made regarding the technical maturity of
system software (e.g. 3 questions including areas
of risk)

Products to Expect from IV&V

123

ISWE
Which Projects Receive IV&V?

[SWE-141] For projects reaching KDP A after the effective date of this
directive’s revision, the program manager shall ensure that software
IV&V is performed on the following categories of projects:

a) Category 1 projects as defined in NPR 7120.5.

b) Category 2 projects as defined in NPR 7120.5 that have Class A or
Class B payload risk classification per NPR 8705.4.

c) Projects selected explicitly by the Mission Directorate Associate
Administrator (MDAA) to have software IV&V

124

ISWE

http://www.nasa.gov/centers/ivv/home/index.html

125

http://www.nasa.gov/centers/ivv/home/index.html

ISWE

Software Classifications

126

ISWENASA-wide software classification structure

These definitions are based on:

(1) usage of the software with or within a NASA system,

(2) criticality of the system to NASA’s major programs and projects,

(3) extent to which humans depend upon the system,

(4) developmental and operational complexity, and

(5) extent of the Agency’s investment.

Note: It is not uncommon for a project to contain multiple separate
systems and subsystems having different software classes.

127

ISWESoftware Classification vs. Tailoring
• Software classification is the first level of tailoring!

− Classify software based on the definitions on the previous slide NOT the amount
of project schedule, funding, manpower, or other resources available.

• Engineering and SMA provide dual Technical Authority chains for resolving
classification issues. The NASA Chief Engineer is the ultimate Technical Authority for
software classification disputes concerning definitions in this NPR.

− Engineering evaluates the project characteristics and generates the initial
software classification.

− Software assurance can perform an independent software classification, or
software assurance can concur with engineering’s software classification decision.
Software engineering and software assurance technical authorities must agree on
the classification of each system and subsystem containing software.

• After classifying the software, software engineering tailors the applicable 7150.2D
requirements based on project characteristics.

128

ISWE
Tailoring Approach for NPR 7150.2D

"the project manager shall..." means the roles and responsibilities of the project manager may be further delegated
within the organization to the scope and scale of the system.

129

ISWE

Software Reuse and Internal
Sharing

130

ISWESummary of New Requirements on Internal NASA

Software Sharing or Reuse

• Clear rights in the software [SWE-215]

• Keep a list of all contributors to the software product.
[SWE-217]

• Conforms to NASA software engineering policy and
requirements. [SWE-216]

• Ensure that the software product contains appropriate
disclaimer and indemnification provisions [SWE-217]

• Perform the following actions for each type of internal
NASA software transfer or reuse: [SWE-214]

a. A NASA civil servant to a NASA civil servant

b. A NASA civil servant to a NASA contractor

c. A NASA civil servant to a foreign person or foreign entity

131

Sharing has
many legal aspects

ISWE

Software Cybersecurity

132

ISWE3.11 Software Cybersecurity

3.11.1 Software defects are a central and critical aspect of computer security vulnerabilities. Software defects with
cybersecurity ramifications include implementation bugs such as buffer overflows and design flaws such as inconsistent
error handling.

Note: Software security relies on high-quality code development and testing practices (clean code, modular structure,
well-defined interfaces) – anything that reduces error rates and opportunities misinterpretation or error; considers both
the development and deployment/operational context for the software; has the ability to rapidly assess, triage, correct,
and deploy security-related updates while the software is in deployment/operations.

3.11.2 The project manager shall perform a software cybersecurity assessment on the software components per the
Agency security policies and the project requirements, including risks posed by the use of COTS, GOTS, MOTS, OSS, or
reused software components. [SWE-156]

3.11.3 The project manager shall identify cybersecurity risks, along with their mitigations, in flight and ground software
systems and plan the mitigations for these systems. [SWE-154]

Note: Space Asset or Enterprise Protection Plans are a source of requirements to identify cybersecurity risks, along with
their mitigations, in-flight and ground software systems. Space Asset or Enterprise Protection Plans describe the
program's approach for planning and implementing the requirements for information, physical, personnel, industrial,
and counterintelligence/counterterrorism security, and for security awareness/education requirements in accordance
with NPR 1600.1, NPD 1600.2, NPD 2810.1, and NPR 2810.1.

133

ISWE3.11 Software Cybersecurity

3.11.5 The project manager shall test the software and record test results for the required software cybersecurity
mitigation implementations identified from the security vulnerabilities and security weaknesses analysis. [SWE-159]

Note: Include assessments for security vulnerabilities during Peer Review/Inspections of software requirements and
design. Utilize automated security static analysis as well as coding standard static analyses of software code to find
potential security vulnerabilities.

3.11.6 The project manager shall identify, record, and implement secure coding practices. [SWE-207]

3.11.7 The project manager shall verify that the software code meets the project’s secure coding standard by using
the results from static analysis tool(s). [SWE-185]

3.11.8 The project manager shall identify software requirements for the collection, reporting, and storage of data
relating to the detection of adversarial actions. [SWE-210]

3.11.4 The project manager shall implement protections for software systems with communications capabilities
against unauthorized access per the requirements contained in the NASA-STD-1006, Space System Protection
Standard. [SWE-157]

134

ISWE
NASA-STD-1006, Space System Protection

Standard Requirements
• Command Stack Protection

− [SSPR 1] Programs/projects shall protect the command stack with encryption that meets or exceeds the Federal Information Processing Standard (FIPS)
140, Security Requirements for Cryptographic Modules, Level 1

• Backup Command Link Protection

− [SSPR 2] If a project uses an encrypted primary command link, any backup command link shall, at a minimum, use authentication.

• Command Link Critical Program/Project Information (CPI)

− [SSPR 3] The program/project shall protect the confidentiality of command link CPI as controlled unclassified information (CUI) to prevent inadvertent
disclosure to unauthorized parties.

• Ensure Positioning, Navigation, and Timing (PNT) Resilience

− [SSPR 4] If project-external PNT services are required, projects shall ensure that systems are resilient to the complete loss of, or temporary interference
with, external PNT services.

• Interference Reporting

− [SSPR 5] Projects/Spectrum Managers/Operations Centers shall report unexplained interference to MRPP or to other designated notifying organizations.

• Interference Reporting Training

− [SSPR 6] Projects/Spectrum Managers/Operations Centers shall conduct proficiency training for reporting unexplained interference.

135

ISWE
Project Protection Plan (PPP) Requirement

• NPR 7120.5E requires all flight programs/projects
develop Threat Summaries and Project Protection
Plans (PPP)

− Develop program Threat Summary to address classified
threat information (TS/SCI)

− Develop PPP to recommend potential mitigations
(SECRET)

− Baseline by PDR

136

ISWE

• Updated direction for PPPs established in Office
of Chief Engineer (OCE) memo

− Supersedes NPR 7120.5E requirement for Project
Protection Plans (PPPs)

− Memos expected annually until NPR 7120.5 is
updated (schedule TBD)

• Memo and appendices define PPP

− Establishes approval authority
− Defines key elements of PPPs
− Lists projects requiring PPPs; based on Agency

Mission Program/Project List (AMPL)

• Candidate Protection Strategies (CPS) and PPP
template

− Posted on SAPP Community of Practice website
− PPPs archived in classified web-portal
− https://nen.nasa.gov/web/sap

Current Space Asset Protection Policy

137

OCE Memo – May 2018

https://nen.nasa.gov/web/sap

ISWE

• Serve as a starting point
for mission protection
planning

• Linked to consistent high
threat and risk issues

• Protection plans
incorporate results of
the CPS analysis,
including any requisite
requirement tailoring

Main CPS Categories

1. Engineering Focused Strategies –
Space Segment (3)

2. Engineering Focused Strategies –
Ground Segment (2)

3. Engineering Focused – All
Segments (2)

4. ConOps Focused Strategies (6)

5. Cybersecurity Strategies

Candidate Protection Strategies (CPS)

138

ISWE

Software Engineering Lifecycles

139

ISWE

• Software life cycle planning covers the software aspects of
a project from inception through retirement.

• The software life cycle planning cycle is an organizing
process that considers the software as a whole and
provides the planning activities required to ensure a
coordinated, well-engineered process for defining and
implementing project activities.

• These processes, plans, and activities are coordinated
within the project. At project conception, software needs
for the project are analyzed, including acquisition, supply,
development, operation, maintenance, retirement, and
supporting activities and processes.

• The software effort is scoped and the processes,
measurements, and activities are documented in software
plan(s).

• NASA Software Engineering NPR makes no
recommendation for a specific software life-cycle model
(i.e., it allows agile, incremental, spiral, etc., life-cycle
models). However, expectations from the system project
life- cycle models need to be adequately addressed in the
software plan(s).

3.1.3 The project manager shall develop, maintain, and execute
software plans that cover the entire software life cycle and, as a
minimum, address the requirements of this directive with approved
tailoring. [SWE-013]

Note: The recommended practices and guidelines for the content of
different types of software planning activities (whether stand-alone or
condensed into one or more project level or software documents or
electronic files) are defined in NASA-HDBK-2203. The project should
include or reference in the software development plans procedures for
coordinating the software development and the design and the system
or project development life cycle.

3.1.4 The project manager shall track the actual results and
performance of software activities against the software plans. [SWE-
024]

a. Corrective actions are taken, recorded, and managed to closure.

b. Including changes to commitments (e.g., software plans) that have
been agreed to by the affected groups and individuals.

Software Life Cycle Planning

140

http://swehb.nasa.gov/

ISWEProject Life Cycle

141

ISWE
From NPR 7150.2

“This NPR makes no recommendation for a specific software life-cycle
model. Each has its strengths and weaknesses, and no one model is
best for every situation. Whether using the spiral model, the iterative
model, waterfall, or any other development life-cycle model, each has
steps of requirements, design, implementation, testing, release to
operations, maintenance, and retirement…”

142

ISWE
Frequently Discussed Lifecycles ….

• Waterfall

• Incremental
Development

• Spiral Development

• Package-Based
Development

• Agile Development

• Legacy System
Maintenance

143

ISWE
“Agile” Based Incremental Software

Development Approach

144

ISWEAll Project Lifecycles are “Punctuated” with Formal
Technical Reviews

• Evaluations of the project, or element thereof, by a
knowledgeable group for the purposes of:

• Assessing the status of and progress toward accomplishing
the planned activities

• Validating the technical tradeoffs explored and design
solutions proposed

• Identifying technical weaknesses or marginal design and
potential problems (risks), and recommending improvements
and corrective actions

• Making judgments on the activities’ readiness for the follow-
on events to improve the likelihood of a successful outcome

• Making assessments and recommendations to the project
team, Center, and Agency management

• Providing a historical record of decisions that were made
during these formal reviews for future reference

• Assessing the technical risk status and current risk profile

145

ISWE
Software Life cycle products and their maturity level at the various software

project life cycle reviews (Part 1 of 2)

This chart summarizes current
guidance approved by the NASA
Office of the Chief Engineer
(OCE) for software
engineering life cycle products
and their maturity level at the
various software project life
cycle reviews.

This chart serves as guidance
only and NASA Center
procedures should take
precedence for projects at
those Centers.

https://swehb.nasa.gov/display/7150/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews

F = Final,
D = Draft,
P = Preliminary,
B = Baseline,
U = Updated/Updated as
required,
X = assume complete (final),
not explicit in NPRs

146

ISWE
Software Life cycle products and their maturity level at the various software

project life cycle reviews (Part 2 of 2)

This chart summarizes current
guidance approved by the NASA
Office of the Chief Engineer
(OCE) for software
engineering life cycle products
and their maturity level at the
various software project life
cycle reviews.

This chart serves as guidance
only and NASA Center
procedures should take
precedence for projects at
those Centers.

https://swehb.nasa.gov/display/7150/7.8+-+Maturity+of+Life+Cycle+Products+at+Milestone+Reviews

F = Final,
D = Draft,
P = Preliminary,
B = Baseline,
U = Updated/Updated as
required,
X = assume complete (final),
not explicit in NPRs

147

ISWE
Benefits

• Help increase probability of mission success

• Help ensure that all tasks and deliverables are managed
and achieved

• Issues presented or discovered during these activities
are communicated to appropriate personnel

• The tracking of these issues to closure ensures that
errors and shortcomings in the requirements,
architecture, design and/or build of the software are
corrected and prevented from reoccurring.

• Keep project stakeholders informed

Reviews
MCR
SRR

SwRR
MDR
SDR
PDR
CDR
PRR
SIR
TRR
SAR
ORR
FRR

148

ISWE
NASA-HDBK-2203, Topic 7.9

For each review
point
examples of:
1. Entrance

Criteria
2. Items

Reviewed
3. Exit Criteria

149

ISWE
What does the Systems NPR 7123 state for

Software

150

ISWE
Summary for Lifecycles and Reviews

• Know the requirements of NPR
7150.2 and how they apply to
your project

• Select a lifecycle that is
appropriate to your schedule and
the nature of the software
system that you are building

• Make sure that you understand
• What lifecycle you are using and the risks

associated with the lifecycle selection
• What should be done or reviewed during

each stage of the lifecycle
• Waterfall

• Incremental Development

• Spiral Development

• Package-Based
Development

• Agile Development

• Legacy System Maintenance

151

ISWEClass Plan
Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources

Software Documentation
Software Costing

Software Processes
Software Assurance

Software Safety-Critical

Software IV&V
Software Classifications

Software Reuse and Internal Sharing
Software Cybersecurity

Software Lifecycles and Reviews

Software Planning Requirements and Considerations

Software Requirements
Software Architecture

Software Design

Software Coding
Software Testing

Software Maintenance

Software Life-cycle Requirements

Software Configuration Management
Software Risks

Software Peer Reviews
Software Measurements

Software Defect Management
Software Bi-Directional Traceability

Software License Management
Software Acquisition

Software Development Supporting Requirements Why do we
do these
things?

Software
Failures

152

ISWE

Software Requirements

“Walking on water and developing software from
a specification are easy if both are frozen.”

- Edward V Berard

153

ISWERequirement Development

154

ISWE
NPR 7150.2D Requirements on Software

Requirements

• 4.1.2 The project manager shall establish, capture, record, approve, and
maintain software requirements, including requirements for COTS, GOTS,
MOTS, OSS or reused software components, as part of the technical
specification. [SWE-050]

• 4.1.3 The project manager shall perform software requirements analysis based
on flowed-down and derived requirements from the top-level systems
engineering requirements, safety and reliability analyses, and the hardware
specifications and design. [SWE-051]

• 4.1.4 The project manager shall include software related safety constraints,
controls, mitigations and assumptions between the hardware, operator, and
software in the software requirements documentation. [SWE-184]

155

ISWE
NPR 7150.2D Requirements on Software

Requirements
• 4.1.5 The project manager shall track and manage changes to the software

requirements. [SWE-053]

• 4.1.6 The project manager shall identify, initiate corrective actions, and track until
closure inconsistencies among requirements, project plans, and software
products. [SWE-054]

• 4.1.7 The project manager shall perform requirements validation to ensure that
the software will perform as intended in the customer environment. [SWE-055]

• 5.4.6 The project manager shall collect, track, and report software requirements
volatility metrics. [SWE-200]

Note: Software requirements volatility metrics are the total number of
requirements compared to requirement changes over time. It may include
additions, changes, and reduction of requirements.

156

ISWE
Software Requirements

• Software Requirements is a field
within software engineering that deals with
establishing the needs of stakeholders that are
to be solved by software.

• What requirements do you need to develop a
component of software?

• What is the system requirement vs hardware
requirement vs operational requirement vs
software requirement split?

157

ISWEFlow Down of Requirements

158

ISWE
Software Requirement Sources

Other Software Requirement Sources

Hardware specifications
Computer\Processor\Programmable Logic Device specifications
Hardware interfaces
Operating system requirements and board support packages
Data\File definitions and interfaces
Communication interfaces including bus communications Software
interfaces
Derived from Domain Analysis
Fault Detection, Isolation and Recovery requirements
Models
Commercial Software interfaces and functional requirements
Software Security Requirements
User Interface Requirements
Algorithms
Legacy or Reuse software requirements
Derived from Operational Analysis
Prototyping activities
Interviews
Surveys
Questionnaires
Brainstorming
Observation
Software Test Requirements
Software Fault Management Requirements
Hazard Analysis

Software Requirements

System

Requirements

159

ISWEGuidelines for the Software Requirements

Specification Content
The Software Requirements Specification shall contain:

a) System overview.

b) CSCI requirements:

− (1) Functional requirements.

− (2) Required states and modes.

− (3) External interface requirements.

− (4) Internal interface requirements.

− (5) Internal data requirements.

− (6) Adaptation requirements (data used to adapt a
program to a given installation site or to given conditions
in its operational environment).

− (7) Safety requirements.

− (8) Performance and timing requirements.

− (9) Security and privacy requirements.

− (10) Environment requirements.

− (11) Computer resource requirements:

• (a) Computer hardware resource requirements,
including utilization requirements.

• (b) Computer software requirements.

• (c) Computer communications requirements.

− (12) Software quality characteristics.

− (13) Design and implementation constraints.

− (14) Personnel-related requirements.

− (15) Training-related requirements.

− (16) Logistics-related requirements.

− (17) Packaging requirements.

− (18) Precedence and criticality of requirements.

c) Qualification provisions (e.g., demonstration, test, analysis,
inspection).

d) Bidirectional requirements traceability.

e) Requirements partitioning for phased delivery.

f) Testing requirements that drive software design decisions
(e.g., special system level timing requirements/checkpoint
restart).

g) Supporting requirements rationale.

160

ISWEGuidelines for the Software Data Dictionary Content

Software Data Dictionary shall include: [SWE-110]

a) Channelization data (e.g., bus mapping, vehicle
wiring mapping, hardware channelization).

b) Input/Output (I/O) variables.

c) Rate group data.

d) Raw and calibrated sensor data.

e) Telemetry format/layout and data.

f) Data recorder format/layout and data.

g) Command definition (e.g., onboard, ground, test
specific).

h) Effecter command information.

i) Operational limits (e.g., maximum/minimum
values, launch commit criteria information).

HardwareID Radius

HardwareEngineeringName ClockAngle

HardwareOpName InternalExternal

HardwareDescription HardwareComments

SignalType HardwarePOC

HardwareType HardwareControllingDocument

HardwareCategory HardwareChangeAuthorization

InstrumentationType SignalRouting

RefDes Card

LowStateDefinition Channel

HighStateDefinition ExcitationConnector

PositiveAccuracy ExcitationPinPositive

NegativeAccuracy ExcitationPinNegative

AccuracyUnits SignalConnector

Precision SignalPinPositive

SampleRate SignalPinNegative

LaunchCommitCriteria HardwareConnectivityComments

FlightCritical HardwareConnectivityPOC

Criticality HardwareConnectivityControllingDocument

CriticalityRationale HardwareConnectivityChangeAuthorization

AbortDetermination PrimitiveCUI

CautionWarningDetection HardwarePrimitiveIndexComments

CoordinateX HardwarePrimitiveIndexPOC

CoordinateY HardwarePrimitiveIndexControllingDocument

CoordinateZ HardwarePrimitiveIndexChangeAuthorization

ApproxXStation

Example from Integrated Measurement And Command System

161

ISWE
Requirements Maturity

Requirements Maturity over life of the projectExamples of maturing requirements:
• Fault Management,
• Detailed Hardware Interfaces,
• Command Details,
• Hardware fixes in software

162

Requirements (what is required?)

Derived Requirements (influenced by design)

Architecture and Design (Preliminary detail)

Design (Detailed detail)

Developed Software

Tested Software (removing defects)

Verified Software

Validated Software

SRR PDR CDR TRR ORR Change
ImpactsRequirements Maturity

ISWEWhen Requirements Development Is Not

Done Well…

• Unstated requirements or poorly stated
requirements lead to confusion among
staff and customers.

• Design, implementation, and test work
products inconsistently interpret the
requirements.

• It takes an inordinately long time to get
agreement on product design.

• There is an increased potential for higher
costs to meet customer expectations.

163

BA = Business Analysis
UBC Sauder, School of Business
The University of British Columbia

ISWE
Requirements Management Metrics

• New/Added Requirements

• Modified Requirements

• Deleted Requirements

• Requirements Traceability Percentage

• Number of derived requirements

• Requirements Volatility

• HW and SW Interface requirement maturity

• Updated cost estimates

164

ISWE

0

50

100

150

200

250

300

350

Ratio of SLOCs to Requirements

Comparison Chart for SLOC /

Requirements Ratios

MSFC, JSC, GSFC, ARC
Sample Software Projects

1995- 2018 timeframe

Avg 92 SLOCs/Requirement

165

ISWE
Requirements Management

Purpose
Manage requirements of the project’s products
and product components and to ensure
alignment between those requirements and
the project’s plans and work products.

166

ISWE
Requirements Management Process

167

ISWE
When Requirements Management Is Not

Done Well…

• Requirements are accepted by staff from any source they deem to
be authoritative.

• The project experiences a high level of requirements changes.

• There are high levels of rework throughout the project.

• There is an inability to prove that the product meets the approved
requirements.

• Lack of requirements traceability often results in incomplete or
incorrect testing of the product.

168

ISWECommon Software Requirements Problems

Defining and documenting requirements is not a simple task, common
problems that occur during or because of this activity and which are to be
avoided, include:

• Not enough detail in the software requirements

• Fault management requirements for hardware and software

• Failing to define needed requirements, including safety requirements.

• Writing requirements ambiguously.

• Using inexperienced personnel to define the requirements.

• Incorrect understanding of underlying assumptions or constraints.

• Including unneeded features or capabilities.

• No clear method for allocating requirements to software subsystems.

• Failing to spend enough time or resources on requirements definition.

• Pointing to other sources for the requirement information

169

ISWE
How Would You Design and Code These

Software Requirements?

• The XXXX software shall neither generate inaccurate data nor
inaccurately display data which could potentially cause Range Safety
to incorrectly conclude that a safe for launch or safe flight condition
exists.

• All GN&C functions shall implement deterministic behavior in the
presence of detectable numerical errors.

170

ISWE

Software Architecture

171

ISWE
NPR 7150.2D Requirements on Software

Architectures

• 4.2.3 The project manager shall transform the requirements for the
software into a recorded software architecture. [SWE-057]

• 4.2.4 The project manager shall perform a software architecture
review on the following categories of projects: [SWE-143]

− a. Category 1 Projects as defined in NPR 7120.5.

− b. Category 2 Projects as defined in NPR 7120.5 that have Class A or Class B payload risk
classification per NPR 8705.4.

172

ISWE
Questions

• Would you build a house without an architecture plan?

• What are some of the architectural features that you would want in
your house?

173

ISWEWhat is Architecture?

• Architecture is an essential software engineering
responsibility,

• Architecture addresses the structure, not only of the
software, but also of its functions, the environment
within which it will work, and the process by which it
will be built and operated

• Just as importantly, however, architecture also deals
with the principles guiding the design and evolution of
a software program

− Complexity, uncertainty, and ambiguity in the
design of complicated systems may be reduced to
workable concepts

− In the best practice of architecture, this aspect of
architecture must not be understated or neglected

174

ISWE
Two Aspects of “Architecture”

• architecture — What gets built

− Describes components and interfaces

− Specifies details of assembly and integration

• Architecture — Why it gets built the way it does

− Identifies properties of interest beyond just the requirements, and from all
essential points of view

− Defines workable abstractions and other patterns of design that give the
design its shape and reflect fundamental concepts of the domain

− Guides design and maintains principles throughout the development
lifecycle

− Builds on a body of experience and refines concepts as necessary

rchitecture is about managing complexity
Source: Bob Rasmussen, JPL

175

ISWE
System Architecture vs. Software Architecture

Outward-looking:

• Mission scenarios

• Functional decomposition

• System analysis

• Performance requirements

• Resource allocations

• Command and telemetry
dictionaries

• Flight rules and constraints

• Control laws

• Failure modes analysis

• Fault protection

• Test procedures

• …

Inward-looking:

• Patterns, abstractions, algorithms

• Monitoring and control

• Data representation and data
management

• Concurrent threads, processes,
memory management

• Real-time execution, throughput

• Synchronization

• Inter-process communication

• Languages, libraries, operating
systems

• Verification and validation

• …

System
Architecture

Software
Architecture

Software
Architect

ownsinfluences

176

ISWE
Software Architect Essential Activities

• Understand what a system must do

• Define a system concept that will accomplish this

• Render that concept in a form that allows the work to be shared

• Communicate the resulting architecture to others

• Ensure throughout development, implementation, and testing that the
design follows the concepts and comes together as envisioned

• Refine ideas and carry them forward to the next generation of systems

Source: Bob Rasmussen, JPL

177

ISWE
Software Architecture Documentation

The actual format for recording and describing the architectural concept is left to the
software project team. As a minimum, include the following:

• An assessment of architectural alternatives.

• A description of the chosen architecture.

• Adequate description of the subsystem decomposition.

• Definition of the dependencies between the decomposed subsystems.

• Methods to measure and verify architectural conformance.

• Characterization of risks inherent to the chosen architecture.

• Documented rationale for architectural changes(if made).

• Evaluation and impact of proposed changes.

178

ISWE
Summary for Software Architectures

• Architecture is not just high-level design

− It includes quality attributes, rationale, and principles

• Architecture is not a one-time effort

− Make software architecture a driving force throughout the lifecycle

− Good architectures don’t step aside once development starts

• Embrace well-architected software as a response to system complexity

− Weak architecture …

◦ Can’t be analyzed or validated for correct behavior, except case by case

◦ Can’t be changed with confidence, even to correct errors

◦ Can’t be operated with confidence, other than the way it was tested

◦ Can’t be reused easily or inherited from

• Conduct software architecture reviews to …

− Inspect quality attributes, principles of design, verifiability, and operability

− Give team members a clearer understanding of the project

179

ISWE

Software Design

180

ISWE
NPR 7150.2D Requirements on Software

Design

• 4.3.2 The project manager shall develop, record, and maintain a
software design based on the software architectural design that
describes the lower-level units so that they can be coded, compiled,
and tested. [SWE-058]

181

ISWE
Architecture versus Design

Design

Architecture

drive

All architecture is design, but not
all design is architectural

Non-functional
requirements

Functional
requirements

Architects intentionally limit their focus and avoid
the details of how elements do what they do.

Detailed designs and implementation details are
left to downstream engineers/experts.

drive

Downstream engineers are expected to respect
the architecture to ensure properties promised

by the architect are present in the product.

182

ISWE
What is the Design?

• Software design - activities that fit between requirements and
implementation or coding

• Starts with the architectural design and describes the lower-level
components and interfaces so they can be coded

Transforms the “What” to “How”

183

ISWE
Activities During Design

• Typically design is divided into 2 stages:

− Preliminary Design: External design describes the real-world
design; Architectural design deposes the requirements into
software subsystems and defines high level interfaces

− Detailed Design: Further descriptions of the subsystems;
Decomposition of subsystems into components; Describes the
internal interfaces

• Formal reviews PDR, CDR are held after each step. Design is
baselined at CDR.

184

ISWE
Bi-directional Traceability

Bidirectional traceability
is defined as a traceability
chain that can be traced
in both the forward and
backward directions

Software
Requirements

Software

Software Test
Procedures

Software
Problem/Change

Request
Software Design

The project shall perform
and maintain bidirectional
traceability between the

software requirements and
the software design.

185

ISWE
Software Design Considerations (1 of 2)

Many things need to be considered during design (for example: “ilities”):

• Compatibility: how will it work with other software?

• Extensibility: Can it be changed easily for new capabilities?

• Fault-Tolerance: Can software recover from failures?

• Maintainability: How easily can functional modifications or bug fixes be made?

• Modularity: Are components easy to implement or test in isolation?

• Reliability: Can software perform its required functions over a specified period
of time?

186

ISWE
Software Design Considerations (2 of 2)

• Reusability: Can software be used in multiple applications with little or no
modification?

• Robustness: Can software operate under stress or tolerate
unpredictable/invalid input?

• Security: Is it able to withstand hostile acts?

• Usability: Is the software convenient to use?

• Performance: Does the software perform within specified time limits?

• Scalability: Does the software adapt to increases in data or users?

• Safety: Have the safety aspects of the system been considered?

187

ISWE
A Design Strategy

• Determine which design decisions are the most difficult to make or
most likely to change

• Use information hiding to design each hard decision into a
component specification

− Make the decisions affecting the largest portion of the system first

− Place the decisions “most likely to change” in modules first

− Then place other hard decisions and decisions likely to change into modules

• Continue process until all design decisions are hidden in a
component and provide low-level implementation assignments

188

ISWERules of Software Design

• Make sure design is clearly stated (avoids
misinterpretation!)

− All design criteria, requirements, and constraints
should be listed in design

• Document design decisions

• Check design for consistency (Avoids issues with
separately developed modules that don’t fit together)

• Always design for extension and contraction (Changes
are inevitable!)

• Do not connect independent concerns

• Design external functionality before internal
functionality

− View solution as a black box and decide how it
will interact with its environment—Then design
the inner organization of the “box”

• Choose reused software carefully

− Exercise caution if reusing only part of a reusable
component;

− Check that it meets requirements;

• Keep design as simple as possible

− Minimize dependencies –Design components so they
know about as few other components as possible

− Use as few parameters as possible

− Minimize number of calls between components

• Prototype when applicable

• When possible, use proven patterns to solve design
problems

• For flight software, consult Software Design Principles

• When crossing between paradigms, build an interface
layer that separates the two

189

ISWETake Advantage of the Software Engineering Design

Principles in Developing Your Software Designs

• Design principles in the following topic areas:

− Resource Margins

− Dead Code Exclusion

− Initialization/Safe Mode

− Input Data Errors

− IO Failures

− Resource Oversubscription

− Incorrect Memory Use/Access

− Thread Safety

− Resource Usage Measurement

− Invalid Data Handling

− FSW Modification

− Data Interface Integrity

− Command Receipt Acknowledgement

− Toggle Commands

− Coding Standards

− Fault Protection

• Discussion of cross-cutting issues of software safety (NPR 1750.2 SWE-134) and how the design principles support
implementation of the NPR

https://swehb.nasa.gov/ -> D. Topics-> (Tab) Software Design Principles

Toggle Commands Example

1. Principle
Design both internal and external commanding to place
the system into an explicitly specified state.

2. Rationale
Making assumptions about the system state can lead to
malfunctions

190

https://swehb.nasa.gov/

ISWE
Software Design Metrics

• Number of components designed

• Traceability percentage between the software design and
software requirements

• Number of units designed

• Number of CSCI designed

• Estimated SLOC count

• Updated software cost estimate

• UML metrics

191

ISWE
Summary For Software Design

• A good design follows a few key principles:

− Separate the interface from the implementation

− Determine what is common and what is variable with an interface and an
implementation

− Allow substitution of variable implementations through a common interface

− Determining what should be common vs. variable should depend on the
goals, nothing extra

• There are many modeling languages, both graphical and textual,
(UML) that can help describe your design and its behavior

• BUT—Good design still requires a thorough understanding of the
requirements and a lot of careful thought and planning!

192

ISWE

Software Implementation or
Coding

193

ISWE

NPR 7150.2D Requirements During Implementation

• 4.4.2 The project manager shall implement the software design into software
code. [SWE-060]

• 4.4.3 The project manager shall select, define, and adhere to software coding
methods, standards, and criteria. [SWE-061]

• 4.4.4 The project manager shall use static analysis tools to analyze the code
during the development and testing phases to, at a minimum, detect defects,
software security, code coverage, and software complexity. [SWE-135]

• 4.4.5 The project manager shall unit test the software code. [SWE-062]

• 4.4.6 The project manager shall assure that the unit test results are repeatable.
[SWE-186]

194

ISWE

NPR 7150.2D Requirements During Implementation

• 4.4.7 The project manager shall provide a software version description for
each software release. [SWE-063]

• 4.4.8 The project manager shall validate and accredit the software tool(s)
required to develop or maintain software. [SWE-136]

• 3.11.8 The project manager shall identify, record, and implement secure
coding practices. [SWE-207]

• 3.11.9 The project manager shall verify that the software code meets the
project’s secure coding standard by using the results from static analysis
tool(s). [SWE-185]

195

ISWE

Finally, we
get to build
something!!

What do you
mean –there’s

more than
coding?

Implementation

196

ISWE
Software Implementation –More Than Coding!

• Software implementation consists of implementing the requirements and design into code, data, and
documentation

• Software implementation also consists of following coding methods and standards

• Unit testing is also a part of software implementation.

• Other implementation activities:

− Peer-reviews, code walkthroughs

− Use of static analyzers

− Building test drivers and simulators

− Development of build procedures

− Documentation, may include unit development folders, build test plans and results, software version
description, users guide, operations manual, maintenance manual

− Following coding standards

− Maintaining software configuration control

− Reporting metrics

− Generating / Maintaining traceability information

− Responding to changes!

− Other possibilities: prototyping, user training, build testing

197

ISWE
Top 15+ Best Practices for Writing Super

Readable Code

• Commenting & Documentation

• Consistent Indentation

− Keep your indentation style consistent.

• Avoid Obvious Comments

• Code Grouping

− More often than not, certain tasks require a few lines of code. It is a good idea to keep these tasks within
separate blocks of code, with some spaces between them.

• Consistent Naming Scheme

• DRY Principle

− DRY stands for Don't Repeat Yourself. Also known as DIE: Duplication is Evil.

− The principle states:

• "Every piece of knowledge must have a single, unambiguous, authoritative representation within a system."

− The same piece of code should not be repeated over and over again.

• Avoid Deep Nesting

− Too many levels of nesting can make code harder to read and follow.
Top 15+ Best Practices for Writing Super Readable Code

by Burak Guzel

198

http://tutsplus.com/authors/burak-guzel

ISWE
Top 15+ Best Practices for Writing Super

Readable Code
• Limit Line Length

− Our eyes are more comfortable when reading tall and narrow columns of text. This is precisely the
reason why newspaper articles look like they do.

• File and Folder Organization

− Technically, you could write an entire application code within a single file. But that would prove to
be a nightmare to read and maintain.

• Consistent Temporary Names

• Capitalize SQL Special Words

− Database interaction is a big part of most web applications. If you are writing raw SQL queries, it is a
good idea to keep them readable as well.

• Separation of Code and Data

− This is another principle that applies to almost all programming languages in all environments

Top 15+ Best Practices for Writing Super Readable Code
by Burak Guzel

199

http://tutsplus.com/authors/burak-guzel

ISWE
Top 15+ Best Practices for Writing Super

Readable Code

• Object Oriented vs. Procedural

− Object oriented programming can help you create well structured code. But that does not
mean you need to abandon procedural programming completely.

• Read Open Source Code

− Open Source projects are built with the input of many developers. These projects need to
maintain a high level of code readability so that the team can work together as efficiently as
possible. Therefore, it is a good idea to browse through the source code of these projects to
observe what these developers are doing.

• Code Refactoring

− When you "refactor," you make changes to the code without changing any of its
functionality. You can think of it like a "clean up," for the sake of improving readability and
quality.

Top 15+ Best Practices for Writing Super Readable Code
by Burak Guzel

200

http://tutsplus.com/authors/burak-guzel

ISWE
Software Builds/Releases

• A software build is: A portion of the system that satisfies an
identified subset of the total software requirements

• A software release is: a build that is delivered to a customer for
formal testing

• Why do we need builds?

− Enables early testing of the software system

− Allows early delivery of capabilities needed for testing other items (like
hardware)

− Enables feedback on usability features

− Allows us to workaround uncertain requirements, long lead items

− Enables better progress tracking and schedule estimation

201

ISWE
Software Build Guidelines

• Keep the first build simple-especially if new application, computer, etc.

• Each build should contain complete testable functions of the system and add to the
capabilities of the previous build

• Work around long lead times (Hardware deliveries, operational computers, etc.)

• Plan capabilities critical to operational use of software early

• Don’t postpone “hard stuff” (high risk requirements, complex capabilities)

• Delay capabilities where requirements are incomplete or unstable until later builds

• Plan requirements critical for usability, stability, performance for net to last build

• Plan for a “clean-up” build

• Don’t plan a build with a long duration (longer than 8-9 months)

202

ISWE
Other Implementation Topics

• Static analyzer tools –allow the analysis of the software without
actually running it

− Different analyzers focus on different types of errors: violations of
coding standards, input/output flaws, security vulnerabilities,
coding errors such as memory leaks, unreachable code, etc.

• Prototyping may be necessary for some parts of the systems, e.g., to
verify that performance req. can be met, or test interface
requirements

• Peer reviews/walkthroughs –Should be done on safety critical code,
code performing critical functions, complex functions

• Considerations for COTS:

− Verify that COTS meets your requirements

− Make sure you are using COTS as intended

− Make arrangements for maintenance of COTS components

• Many other activities performed during implementation are covered
in other areas of the class

203

ISWE
Secure Coding Community of Practice Site

https://nen.nasa.gov/web/coding

204

ISWE

Software Version Description (VDD)

• Identification of system

• Executable software

• Software life cycle data

• Archive and release data

• Instructions for building software

• Data integrity checks

• Open problem reports, including
workarounds

• Change requests implemented in
current software version since last VDD

User’s Manual

• Software summary

• Access to software (initiating a
session, running software, etc.)

• Processing reference guide
(capabilities, back-up, recovery,
messages, etc.)

• Assumptions, limitations, safety
concerns

• Information that is unique for
version of the software

And Then There’s Documentation!

205

ISWE
Measures in Implementation

• Implementation progress:

− planned vs. actual schedule

− # modules coded/unit tested vs. # modules planned

− SLOC Developed vs Planned

• Functionality:

− # modules delivered in build/release vs. planned #

• Volatility:

− # of requirements changes vs. time

• Quality:

− # of errors found in peer reviews vs. expected #

− # of peer reviews planned vs. # completed

− Coding standard errors found per module

• Management:

− staffing vs. planned staffing

206

ISWE

Even with all this------

Most people think implementation is “the fun part!”

207

ISWE

Software Testing

208

ISWE
Software Testing Requirements NPR 7150.2D

• 4.5.2 The project manager shall establish and maintain: [SWE-065]

a) Software test plan(s).

b) Software test procedure(s).

c) Software test(s), including any code specifically written to perform test procedures.

d) Software test report(s).

• 4.5.3 The project manager shall test the software against its requirements. [SWE-066]

− Note: A best practice for Class A, B, and C software projects is to have formal software
testing planned, conducted, witnessed, and approved by an independent organization
outside of the development team.

• 4.5.4 The project manager shall place software items under configuration management prior
to testing. [SWE-187]

− Note: This includes the software components being tested and the software components
being used to test the software, including components like support software, models,
simulations, ground support software, COTS and MOTS.

209

ISWE
Software Testing Requirements NPR 7150.2D

• 4.5.5 The project manager shall evaluate test results and record the evaluation. [SWE-068]

• 4.5.6 The project manager shall use validated and accredited software models, simulations, and
analysis tools required to perform qualification of flight software or flight equipment. [SWE-070]

− Note: Information regarding specific verification, validation and credibility techniques and the
analysis of models and simulations can be found in NASA-STD-7009 and NASA-HDBK-7009.

• 4.5.7 The project manager shall update software test and verification plan(s) and procedure(s) to
be consistent with software requirements. [SWE-071]

• 4.5.8 The project manager shall validate the software system on the targeted platform or high-
fidelity simulation. [SWE-073]

− Note: Typically, a high-fidelity simulation has the exact processor, processor performance,
timing, memory size, and interfaces as the target system.

• 4.5.9 The project manager shall ensure that the code coverage measurements for the software
are selected, implemented, tracked, recorded and reported. [SWE-189]

210

ISWE
Software Testing Requirements NPR 7150.2D

• 4.5.10 The project manager shall verify code coverage is measured by analysis of the results of
the execution of tests. [SWE-190]

− Note: If it can be justified that the required percentage cannot be achieved by test
execution, the analysis, inspection or review of design can be applied to the non-covered
code. The goal of the complementary analysis is to assess that the non-covered code
behavior is as expected.

• 4.5.11 The project manager shall plan and conduct software regression testing to demonstrate
that defects have not been introduced into previously integrated or tested software and have
not produced a security vulnerability. [SWE-191]

• 4.5.12 The project manager shall verify through test the software requirements that trace to a
hazardous event, cause or mitigation technique. [SWE-192]

• 4.5.13 The project manager shall develop acceptance tests for loaded or uplinked data, rules,
and code that affects software and software system behavior. [SWE-193]

− Note: These acceptance tests should validate and verify the data, rules, and code for
nominal and off-nominal scenarios.

211

ISWE
Software Testing Requirements NPR 7150.2D

• 4.5.14 The project manager shall test embedded COTS, GOTS,
MOTS, OSS, or reused software components to the same level
required to accept a custom developed software component for its
intended use. [SWE-211]

212

ISWE
What is a Testing?

213

ISWE
Question

Who performs testing on your projects? Check all that apply.

□ Project-internal Software Testers

□ Independent Software Testers

□ Independent Verification and Validation Testers

□ Software Developers

□ System Engineers

□ Software Quality Assurance Engineers

□ Others

214

ISWE
Test Planning

• Plan before testing begins

− Plan as soon as relevant stage complete

− System test planning can start when requirements document is complete

− Allows for acquisition/allocation of test resources

• Focus testing on components most likely to have issues (high risk,
complex, many interfaces, demanding timing constraints, etc.)

• Involve the right people: quality engineers, software engineers,
systems engineers, etc.

• Include coverage of user documentation

• Capture planning in a software test or software verification plan

215

ISWE
Test Case Design / Test Procedures

• Include tests to:

− Confirm software does what it is supposed to do

− Confirm software does not do what it should not do

− Confirm software behaves in an expected manner under
adverse or off-nominal conditions

− Cover range of allowable inputs, boundary conditions, false or invalid inputs, load
tests, stress tests, interrupt execution and processing, etc.

− Evaluate performance

• Do not guess at how the software works

− If requirements not clear enough to write test procedures, ask questions of
appropriate project team members

• Do not assume tester understands intricacies of the software design

− Test procedures must be easy to follow

216

ISWE
Software Test Procedure Guidelines
• The project should establish test cases, in terms of inputs, expected results, and evaluation

criteria,

• Software test procedures, should cover the software requirements and design, including: as a
minimum:

− the correct execution of all interfaces (including between software units),

− statements and branches;

− all error and exception handling;

− all software unit interfaces including limits and boundary conditions;

− end-to-end functional capabilities,

− performance testing,

− operational input and output data rates and timing and accuracy requirements,

− stress testing,

− worst case scenario(s),

− fault detection, isolation and recovery handling,

− resource utilization,

− hazard mitigations,

− start-up, termination, and restart (when applicable); and all algorithms.

217

ISWE
Software Test Procedure Guidelines

• Legacy reuse software should be tested for:

− all modified reuse software,

− for all reuse software units where the track record indicates potential problems and

− all critical reuse software components even if the reuse software component has
not been modified.

• All software testing should be in accordance with the defined test cases and
procedures.

• Based on the results of the software testing, the developer should make all necessary
revisions to the software, perform all necessary retesting, update the SDFs and other
software products as needed.

• Regression testing should be performed after any modification to previously test
software.

− 4.5.11 The project manager shall plan and conduct software regression testing to
demonstrate that defects have not been introduced into previously integrated or
tested software. [SWE-191]

218

ISWE
Comparison Of Types

Static Testing

Reviews

Peer Reviews

Informal
Reviews

Formal
Reviews

Walkthroughs

Static Analysis
Tools

Dynamic Testing

Specification
Based (Black

Box)

Equivalence
Partitioning

Boundary Value
Analysis

Decision Table

State Transition

Use Case Testing

Structured Based
(White Box)

Statement
Testing

Decision Testing

Condition
Testing

Experience
Based

Error Guessing

Exploratory
Testing

219

ISWE
Independence in Software Item Testing

• For Class A, B and Safety critical class C software:

• The person(s) responsible for software testing of a given software
item should not be the persons who performed detailed design,
implementation or unit testing of the software item.

• This does not preclude persons who performed detailed design,
implementation or unit testing of the software item from
contributing to the process, for example by contributing test cases
that rely on knowledge of the software items internal
implementation.

220

ISWE
Software Assurance Witnessing

• The software test procedure developer should dry run the software
item test cases and procedures to ensure that they are complete and
accurate and that the software is ready for witnessed testing.

• The developer should record the results of this activity in the
appropriated software Development folders (SDFs) and should
update the software test cases and procedures as appropriate.

• Formal and acceptance software testing are witnessed by
software assurance personnel to verify satisfactory
completion and outcome.

• Software assurance is required witness or review/audit results
of software testing and demonstration.

221

ISWE
Testing on the Target Computer System

• Software testing should be performed using the
target hardware.

• The target hardware used for software
qualification testing should be as close as
possible to the operational target hardware and
should be in a configuration as close as possible
to the operational configuration.

• Typically, a high-fidelity simulation has the exact
processor, processor performance, timing,
memory size, and interfaces as the target system.

SWE-073, “The project manager shall validate
the software system on the targeted platform
or high-fidelity simulation.”

222

ISWE
Capturing Results

• Capture outcome of tests used to verify requirements, functionality, safety, etc.

• Capture decisions based on outcome of tests

• Provide evidence of thoroughness of testing

− Differences in test environment and operational environment and any effects
those differences had on test results

− Test anomalies and disposition of related corrective actions or problem reports

− Details of test results (e.g., test case identifications, test version, completion
status, etc., along with associated item tested)

− Location of original test results (output from tests, screen shots, error
messages, etc., as captured during actual testing)

223

ISWE
Analyzing Results

Analyze results to:

• Evaluate quality of tested products and effectiveness of testing processes

• Identify and isolate source of errors found in software

• Verify testing was completed as planned

• Verify requirements have been satisfied

• Verify safety-critical elements were properly tested

• Verify all identified software hazards eliminated or controlled to acceptable
level of risk

• Report safety-critical findings used to update hazard reports

224

ISWE
Analyzing Results

• Compare actual to expected results

• Identify discrepancies or mismatches in specification or behavior

• Document discrepancies individually for ease of tracking through the resolution process

• Determine cause of issue, including problems with testing methods, criteria, or
environment

• Identify changes required to address discrepancies

• Evaluate and record impact of changes needed to correct issues/discrepancies

• Plan for any repeat of testing effort

• Obtain and record approval for changes to be made versus those to be addressed at
different time

• Measure and predict quality of the software based on the testing results (typically, a
software assurance activity)

225

ISWE
Accredited software models, simulations, and analysis

tools
• The project manager shall use validated and accredited software models, simulations, and analysis tools

required to perform qualification of flight software or flight equipment. [SWE-070]

Why do we need to test the models and tools?

Accredited- officially
recognized or authorized.

List of GCC Compiler Bugs identified in 7 days

226

ISWE
SRR SDR SSR PDR CDR TRR TRR TRR CoFR

FCA

FQR

PCA

System

Requirements

Analysis

System

Design

Preliminary

Design

Software

Requirements

Analysis

Detailed

Design

Coding and

CSU Testing

CSC

Integration

and Testing
End-Item

Integration and

Verification

Stage

Integration and

Verification

On-Orbit

Verification

Detailed

Test Design

Preliminary

Test Design

Test

Requirements

Analysis
Test

Planning

Functional

Baseline

Allocated

Baseline
Development Configuration Product

Baseline

Reviews

SRR - System Requirements Review

SDR - System Design Review

SSR - Software Specification Review

PDR - Preliminary Design Review

CDR - Critical Design Review

TRR - Test Readiness Review

FCA - Functional Configuration Audit

PCA - Physical Configuration Audit

FQR - Formal Qualification Review

CoFR - Certificate of Flight Readiness

Software Test Preparation

Software CSCI Development

FQT

Scope

Test Procedures

Development

and Dry Run

CSCI

Testing

Major test cycles applicable
throughout software

development

Flight Software Testing Life-Cycle

227

ISWE
Sample Software Test Metrics

• Defects or problem reports found

• Static code analysis metrics

• Code coverage

• Test schedule metrics

• Test Procedure Development Status

• Software Release/Build Status

• Number of tested requirements

• Traceability – Software Requirements to Test Procedures

• Defects or problem reports open and closed, trending for closure

228

ISWE
Summary

• Key points

− Requirements drive
testing
• Detail in the requirements

• Derived requirements

− Testing approach and
coverage

− Testing completeness

− Data (metrics and
measurements)

229

ISWE

Software Maintenance

230

ISWE
Software Maintenance

231

ISWE
Software Operations, Maintenance, and

Retirement Requirements
• 4.6.2 The project manager shall plan and implement software operations, maintenance, and retirement

activities. [SWE-075]

• 4.6.3 The project manager shall complete and deliver the software product to the customer with
appropriate records, including as-built records, to support the operations and maintenance phase of the
software’s life cycle. [SWE-077]

• 4.6.4 The project manager shall complete, prior to delivery, verification that all software requirements
identified for this delivery have been met or dispositioned, that all approved changes have been
implemented, and that all defects designated for resolution prior to delivery have been resolved. [SWE-
194]

• 4.6.5 The project manager shall maintain the software using standards and processes per the applicable
software classification throughout the maintenance phase. [SWE-195]

• 4.6.6 The project manager shall identify the records and software tools to be archived, the location of the
archive, and procedures for access to the products for software retirement or disposal. [SWE-196]

232

ISWE
Software Maintenance

• The Software Maintenance phase of the software life cycle begins
after successful completion of formal test and delivery of the
software product to the customer.

• The Software Operation phase spans the time from execution of the
software product in the target environment to software retirement.

• The Software Maintenance phase overlaps the Software Operation
phase and continues until software retirement or discontinuation of
software support

• The results of planning for operations, maintenance and retirement
of software are captured in the Software Maintenance Plan for
implementation.

233

ISWE
Software Delivery

Delivery includes, as applicable, Software User's Manual, source files, executable software, procedures for creating
executable software, procedures for modifying the software, and a Software Version Description. Open source software
licenses are reviewed by the Center’s Chief of Patent/Intellectual Property Counsel before being accepted into software
development projects.

Other documentation considered for delivery includes:

a) Summary and status of all accepted Change Requests to the baselined Software Requirements Specifications.

b) Summary and status of all major software capability changes since baselining of the Software Design Documents

c) Summary and status of all major software tests (including development, verification, and performance testing).

d) Summary and status of all Problem Reports written against the software.

e) Summary and status of all software requirements deviations and waivers.

f) Summary and status of all software user notes.

g) Summary and status of all quality measures historically and for this software.

h) Definition of open work, if any.

i) Software configuration records defining the verified and validated software, including requirements verification data
(e.g., requirements verification matrix).

j) Final version of the software documentation, including the final Software Version Description document(s).

k) Summary and status of any open software-related risks.

234

ISWE
Operations Support

• Software team support of operations, including help desk activities, as
applicable.

• Documentation required for operations support (e.g., as-built documentation,
user's manual, source code, operations notes).

• Tools required for operations support (e.g., email systems, servers).

• Availability of problem reporting and corrective action (PRACA) system during
operations.

• Participation in mission debriefs, as appropriate.

• Capturing of lessons learned during operations.

• Software assurance, including software safety, monitoring activities.

• Operational backups (e.g., hot backups for critical systems), including
identification and planning of approach.

235

ISWE
Software Maintenance Support

• Modification of software after delivery.

• Updates to system and software documentation to align with/reflect these modifications.

• Availability and use of a configuration management system for documenting, reviewing,
analyzing modifications to code, documentation, and hardware test configurations.

• Tools required for maintenance activities (e.g., issue tracking systems, analysis tools,
configuration control systems, compilers).

• Other resources required to perform maintenance activities such as documentation,
development environment, test environment.

• Testing of modifications (including pre- and post-delivery).

• Delivery and installation of modifications, including generation of associated
documentation such as version description documents (VDDs).

• Capture of maintenance metrics.

• Maintenance transition plan.

• Software assurance and software safety activities for updates.

236

ISWE
Software Retirement Support

• Archival of software products, including capture in a configuration
management (CM) system.

• Retention period for retired software products.

• Tools needed to complete retirement activities (e.g., CM system).

• Security measures for access to and use of retired software
products.

• Transition plans for functionality and data if software being retired is
being replaced by another software product.

237

ISWE
Measures for Maintenance

Quality and Progress:

• # and severity of software errors,

• # errors opened, assigned, coded, tested, completed (corrections in operational
version)

• # of change requests open, approved, assigned, coded, tested, complete

• average # of staff hours to complete (large, medium, small) error correction or
change request

• # of staff hours available for maintenance

• # of errors by error type (requirements, operator, coding, interfaces, etc.)

238

ISWEClass Plan
Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources

Software Documentation
Software Costing

Software Processes
Software Assurance

Software Safety-Critical

Software IV&V
Software Classifications

Software Reuse and Internal Sharing
Software Cybersecurity

Software Lifecycles and Reviews

Software Planning Requirements and Considerations

Software Requirements
Software Architecture

Software Design

Software Coding
Software Testing

Software Maintenance

Software Life-cycle Requirements

Software Peer Reviews
Software Configuration Management

Software Risks
Software Measurements

Software Defect Management
Software Bi-Directional Traceability

Software License Management
Software Acquisition

Software Development Supporting Requirements Why do we
do these
things?

Software
Failures

239

ISWE

Peer Reviews/Inspections

240

ISWE
Inspection Approaches

241

ISWE
Peer Reviews/Inspection Requirements

• 5.3.2 The project manager shall perform and report the results of software peer reviews or software
inspections for: [SWE-087]

− a. Software requirements.

− b. Software plans, including cybersecurity.

− c. Any design items that the project identified for software peer review or software inspections according to the software
development plans.

− d. Software code as defined in the software and or project plans.

− e. Software test procedures.

.

• 5.3.3 The project manager shall, for each planned software peer review or software inspection: [SWE-
088]

− a. Use a checklist or formal reading technique (e.g., perspective based reading) to evaluate the work products.

− b. Use established readiness and completion criteria.

− c. Track actions identified in the reviews until they are resolved.

− d. Identify the required participants.

• 5.3.4 The project manager shall, for each planned software peer review or software inspection, record
necessary measurements. [SWE-089]

242

ISWE
Linus's Law

• Linus's Law is a claim about software development, named in honor of Linus
Torvalds and formulated by Eric S. Raymond in his essay and book The Cathedral
and the Bazaar (1999).

• The law states that "given enough eyeballs, all bugs are shallow"; or more
formally: "Given a large enough beta-tester and co-developer base, almost
every problem will be characterized quickly and the fix will be obvious to
someone."

• Presenting the code to multiple developers with the purpose of reaching
consensus about its acceptance is a simple form of software reviewing.

• Researchers and practitioners have repeatedly shown the effectiveness of
various types of reviewing process in finding bugs and security issues, and also
that code reviews may be more efficient than testing.

243

ISWE
Defect Removal Efficiency

Caper Jones DACS Software Tech News March 2010

244

ISWE
Products for Peer Reviews

• NPR 7150.2 requires certain products to be inspected/peer reviewed

• Required software products depend on the classification of the
project.

Software Class

Software
Documentation A B C D E F

Software Requirements X X X X

Software Plans X X X X

Software Design
Identified in Plans X X X X

Software Code
identified in Plans X X X X

Test Procedures X X X X

245

ISWE
Benefits

Among the most effective verification and validation practices

for software

Useful for many types of products: documentation,

requirements, designs, code

Simple to understand Provide a way for sharing/learning of good product

development techniques

Can result in very efficient method of identifying defects early

in the product’s life cycle

Serve to bring together human judgment and analysis from

diverse stakeholders in a constructive way

Use a straight-forward, organized approach for evaluating a

work product

- To detect potential defects in a product

- To methodically evaluate each defect to identify solutions

and track incorporation of these solutions into the

product

Can impact budgets: defects found and fixed early (rather than

allowed to slip into later phases) cost less and require less

rework

Add value and reduce risk through expert knowledge,

infusion, confirmation of approach, identification of defects,

and specific suggestions for product improvements – NPR

7123.1 (G.19)

One of the few V&V approaches that can be applied in the early

stages of software development (before there is any code that

can be run and tested)

246

ISWE

• Walkthroughs

− Author prepares review material

− Good for educating others on the
material

− Solutions often discussed as part of
the review

− No follow-up on identified issues

− No effectiveness measures

• Team Reviews

− Team of 5-7 people

− Material reviewed in advance of meeting

− Author leads review meeting

− Solutions discussed and attempt made to
choose best one

− No follow-up on identified issues

− Effectiveness measures collected

Process

• Effective peer reviews/inspections

− Are concerned with only the technical integrity
and quality of the product

− Are simple and informal

− Concentrate on review of the documentation
and minimize presentations

− Use a round-table format rather than a stand-
up presentation

− Give a full technical picture of items being
reviewed

− Are planned, use checklists, include readiness
and completion criteria

− Capture action items, monitor defects, results,
effort

247

ISWE
Process

• Best Practices – Process

− Defects found during inspections never used to evaluate author – goal is to
improve product

− Use checklists relevant to inspector’s perspective

− Use readiness and completion criteria

− Limit inspection meeting to 2 hours

− Track action items until resolved

− Collect and use inspection data
• Effort, number of participants, areas of expertise

• Defects - list, total, type

• Inspection outcome (pass/fail)

• Item being inspection and type (requirements, code, etc.)

• Date and time

• Meeting length, preparation time of participants

248

ISWE
Software Peer Review Base Metrics

Category Base Metric Description

Size Size planned Lines of code or document pages that you planned to inspection

Size Size Actual Lines of code or documents pages that were actually inspected or peer
reviewed

Time Time Meeting Time required to complete the inspection, if done over several meetings then
add up the total time required

Effort Planning Total number of hours spend planning and preparation for the review

Meeting time Total number of hours spent in the inspection meeting (multiply Time meeting
by number of participates

Rework Total number of hours spend by the author making improvements based on the
findings.

Defects Major Defects found Number of Major defects found during the review

Minor Defect found Number of Minor defects found during the review

Major Defects Corrected Number of major defect corrected during rework

Minor Defects Corrected Number of minor defect corrected during rework

Other Number of Inspectors Number of people, not counting observers, who participated in the review

Product Appraisal Review teams assessment of the work product (accepted, accepted
conditionally, review again following rework, review not complete, etc.)

Derived Data Peer Review Defects

The Peer Review Defect metric measures the average number of defects per
peer review to determine defect density over time.
Number of defects found per Peer Review = [Total number of defects] / [To
number of Peer Reviews]

249

ISWE
Summary for Ensuring Quality in Your Project

Remember … it’s cheaper to build quality products than to go back
and fix the problems

• Make sure your team understands the processes and implements
them as defined

• Include quality activities in your plan and track their progress

• Have objective evaluators assess the Team’s adherence to
documented process and product standards

250

ISWE

Software Configuration
Management

251

ISWE
NPR 7150 Software Configuration

Management Requirements

• 5.1.2 The project manager shall develop a software configuration management plan that describes
the functions, responsibilities, and authority for the implementation of software configuration
management for the project. [SWE-079]

• 5.1.3 The project manager shall track and evaluate changes to software products. [SWE-080]

• 5.1.4 The project manager shall identify the software configuration items (e.g., software records,
code, data, tools, models, scripts) and their versions to be controlled for the project. [SWE-081]

• Note: The items to be controlled include tools, items, or settings used to develop the software, which
could impact the software. Examples of such items include compiler/assembler versions, makefiles,
batch files, and specific environment settings.

252

ISWE
NPR 7150 Software Configuration

Management Requirements

• 5.1.5 The project manager shall establish and implement procedures to: [SWE-082]

• a. Designate the levels of control through which each identified software configuration item is
required to pass.

• b. Identify the persons or groups with authority to authorize changes.

• c. Identify the persons or groups to make changes at each level.

• 5.1.6 The project manager shall prepare and maintain records of the configuration status of software
configuration items. [SWE-083]

253

ISWE
NPR 7150 Software Configuration

Management Requirements

• 5.1.7 The project manager shall perform software configuration audits to determine the correct
version of the software configuration items and verify that they conform to the records that define
them. [SWE-084]

• 5.1.8 The project manager shall establish and implement procedures for the storage, handling,
delivery, release, and maintenance of deliverable software products. [SWE-085]

• 5.1.9 The project manager shall participate in any joint NASA/developer audits. [SWE-045]

• 4.5.4 The project manager shall place software items under configuration management prior to
testing. [SWE-187]

• Note: This includes the software components being tested and the software components being used to
test the software, including components like support software, models, simulations, ground support
software, COTS, GOTS, MOTS, OSS, or reused software components.

254

ISWE
SAE/EIA-649B Configuration Management

Standard

• SAE/EIA-649B Configuration Management Standard is the NASA CM standard
• A companion standard (EIA-649-2) to "SAE/EIA-649B Configuration Management Standard,"

provides a resource that standardizes Configuration Management (CM) requirements specific to
National Aeronautics and Space Administration (NASA) agreements and design activities.

• This provides a template of CM requirements and user guidance for tailoring the requirements
for each unique use case.

3.3.5 Software Change Control
For software, the customer controls the CSCI requirements (design specifications) and release to
include all associated software documentation (i.e., Version Description Document (VDD),
manuals, guides) and products (i.e., code, databases, PLDs). The suppliers have the responsibility
to establish hardware and software integrated control authorities (control boards) to ensure the
evaluation of all changes affecting the software within an integrated CI/CSCI product structure.
Both hardware and software deliverables are released using the same baseline definitions and
functions described in this Standard.
(1) The Supplier shall prepare a VDD as specified in the agreement DRD-STD-VDD.
(2) The Supplier shall comply with NPR 7150.2B, Section 4.1.

Should be Section 5.1

255

ISWE
Software Configuration Management

• Software Configuration Management is the process of applying
configuration management throughout the software life cycle to ensure
the completeness and correctness of software configuration items.

• SCM applies technical and administrative direction and surveillance to:

− identify and record the functional and physical characteristics of software
configuration items,

− control changes to those characteristics,
− record and report change processing and implementation status,
− verify compliance with specified requirements.

• SCM establishes and maintains the integrity of the products of a software
project throughout the software life cycle.

• Use of standard Center or organizational SCM processes and procedures is
encouraged where applicable.

256

ISWE
Configuration Items

Deliverable and non-deliverable software development products

Documentation (plans, standards) Source code

Object code Executable

Data Development and test tools (operating systems, compilers,
etc.)

Development and test environments Test cases/scenarios, data, scripts, reports

Flow charts, UML, input to code generators COTS software

Build procedures Defect lists, change requests

Metrics Software assurance records

Requirements Simulators, models, test suites

Interface documents Databases

Training materials Baselines and identification of their contents

Specifications Traceability matrices

Presentations Release notes

257

ISWE
Change Control

• Levels of control configuration items must pass through

− May differ by item type (e.g., documentation, code)

• Persons or groups with authority to authorize changes and to make
changes at each level

− Change control boards

− Change authorization boards

− Engineering change boards

− Peer review teams

− Project managers

258

ISWE
Audits

• Provide checks to ensure that the planned product is the developed
product… determine correct version of configuration items and verify
they conform to documents and requirements that define them

• Performed

− At time product released

− Prior to delivery (assure products are complete, contain proper versions and
revisions, and all discrepancies, open work, deviations and waivers properly
documented and approved)

− At end of a life cycle phase

− Prior to release of new or revised baseline

− As project progresses (prevent finding major issues at end when more costly to fix)

− Incrementally for very large, complex systems focusing on specific functional areas
with a summary audit to address status of identified action items

259

ISWE

Software Risk
Identification and Management

260

ISWE
Software Risk Requirement in NPR 7150.2

Software Risk Requirement

• 5.2.1 The project manager shall record, analyze, plan, track, control,
and communicate all of the software risks and mitigation plans.
[SWE-086]

261

ISWE
Remember to Plan for Risk Management

• Risk Management means:

− Identifying risks that threaten success of the project

− Analyzing the risks to gain understanding and develop possible mitigations

− Tracking the risks as conditions change

− Communicating risk status to management

• Why should you do this?

− Because surprises are usually unpleasant and this minimizes surprises

− Because the earlier a potential problem is acknowledged and the more you
know about it, the better you can deal with it

− Because it’s also an Agency requirement!

262

ISWE
Software Risk Requirement Rationale

• The purpose of risk management is to identify potential problems
before they occur so that risk handling activities can be planned and
invoked as needed across the life of the product or project.

• Risk handling activities are intended to mitigate adverse impacts on
achieving the project's objectives.

• "Generically, risk management is a set of activities aimed at
achieving success by proactively risk-informing the selection of
decision alternatives and then managing the implementation risks
associated with the selected alternative."

• Identification and management of risks provide a basis for
systematically examining changing situations over time to uncover
and correct circumstances that impact the ability of the project to
meet its objectives.

263

ISWEUse a Checklist to Help Identify Software Risk Items
Project Development Phase:

RISK

Yes/No

/Partial

ACTIO

N

Accept/

Work

System Requirements Phase

Are system level requirements documented?

 To what level?

Are they clear, unambiguous, verifiable ?

Is there a project wide method for dealing with future requirements

changes?

Have software requirements been clearly delineated/allocated?

Have these system level software requirements been reviewed,

inspected with systems, hardware and the users to insure clarity and

completeness?

Has Firmware and Software been differentiated, who is in charge of

what and is there good coordination if H/W is doing “F/W”?

Are the effects on command latency and its ramifications on

controllability known?

Can the Bus bandwidth support projected data packet transfers?

Are requirements defined for loss of power?

System reaction known or planned for?

UPS (Uninteruptable Power Supplies) planned for critical

components?

Is an impact analysis conducted for all changes to baseline

requirements

Software Design Phase

RISK

ACTION

Is the Software Management Plan being followed?

Does it need updating?

Is the Requirements flow down well understood?

Standards and guidelines sufficient to produce clear, consistent design

and code?

Will there be, has there been, a major loss of personnel (or loss of

critical personnel)?

Communication between systems and other groups (avionics, fluids,

operations, ground software, testing, QA, etc.) and Software working

well both directions?

Requirements

 Have they been baselined & are they configuration managed?

 Is it known who is in charge of them?

 Is there a clear, traced, managed way to implement changes to

the requirements? (i.e. is there a mechanism for in-putting new

requirements, or altering old, established and working)?

 Is there sufficient communication between those creating &

maintaining requirements and those designing to them ?

 Is there a traceability matrix between requirements and

design?

 Does that traceability matrix show the link from requirements

to design and then to the appropriate test procedures?

Has System Safety assessed Software?

Any software involved hazard reports?

Does software have the S/W subsystem hazard analysis?

Does software personnel known how to address safety critical

functions, how to design to mitigate safety risk?

Are there Fault Detection, Isolation and Recovery (FDIR)

techniques designed for critical software functions?

Has software reliability been designed for?

What level of fault tolerance has been built in to various

portions /functions of software?

Need to create Simulators to test software?

Were these simulators planned for in the schedule?

Is there sufficient resources to create, verify and run these?

How heavily does software completion rely on simulators?

How valid (close to the flight) are the simulators?

https://nen.nasa.gov/web/software/wiki/-/wiki/SPAN/Risk+Management

264

https://nen.nasa.gov/web/software/wiki/-/wiki/SPAN/Risk+Management

ISWE
Identifying Risks

• Risks have two main parts: a condition, and a consequence

− Condition: the event that might happen

− Consequence: the effect on the project if it does

− Often phrased as: “If condition, then consequence”

• Examples:

− If the simulator doesn't arrive on time, then the start of testing will be
delayed

− We were promised staff coming off project x, but project x has been delayed.
If we don’t get the promised staff, then our development effort may not be
able to meet its schedule commitments

• Classify each risk after it is identified

265

ISWE
Software Risk Identification Steps

• When identifying software risks, consider the following insights and
suggestions:

− Identify risks before they become problems.

− Communication is the center of the Risk Management paradigm (see NPR
8000.4, Agency Risk Management Procedures and Guidelines).

− Brainstorming is often used to identify project risks.
• People from varying backgrounds and points-of-view see different risks.

• A diverse team, skilled in communication, will usually find better solutions to the
problems."

− Use a checklist to avoid "missing" risks that have been identified on previous
projects.
• Use existing reference lists; NASA/SP-2007-6105, NASA Systems Engineering Handbook,

includes a list of example sources of risk.

266

ISWE
Software Risk Management Steps – Track,

Control, Communicate

• Track software risks

− Risks that are not eliminated need to be tracked throughout the project life
cycle to ensure their mitigation strategies remain effective.

− For low-risk items that are not formally included in the risk management
plan, consider using a watch list so that they are not forgotten and to help
ensure that they do not escalate to a higher level risk later in the project.

− Additionally, conditions that the team has identified as risk triggers are also
monitored and tracked until those situations are no longer risk factors. Risk
status also needs to be tracked and weighed against risk criteria to
determine if corrective action needs to be taken.

− If a risk management tool is in use for the project, risks need to be added to
and tracked using this tool. A tracking tool could be a simple spreadsheet or
database for a small project, a tool purchased specifically for tracking risks,
or part of an integrated tool used to track multiple aspects of the project.

267

ISWE
Software Risk Management Steps – Track,

Control, Communicate

• Control software risks

− When a risk occurs, action needs to be taken. Those actions should have
been included in the risk management plan and need to be implemented in
this step. Their effectiveness also needs to be measured so adjustments to
the plan can be made, if necessary.

• Communicate software risk information

− Risk information is communicated to all relevant stakeholders throughout
the project life cycle. Stakeholders include project managers, project
technical personnel, test team members, and anyone else affected by or with
the need to know about risks, their impact, and their mitigations. Project life
cycle reviews are one mechanism for risk communication.

268

ISWE

Software Measurements

269

ISWE
Why Measure? - 1

Management
without metrics
is just guessing

270

ISWE
NPR 7150.2D Requirements on Software

Requirements

• 5.4.2 The project manager shall establish, record, maintain, report, and utilize software
management and technical measurements. [SWE-090]

• 5.4.3 The project manager shall analyze software measurement data collected using
documented project-specified and Center/organizational analysis procedures. [SWE-093]

• 5.4.4 The project manager shall provide access to the software measurement data,
measurement analyses, and software development status as requested to the sponsoring
Mission Directorate, the NASA Chief Engineer, the Center Technical Authorities, HQ SMA, and
other organizations as appropriate. [SWE-094]

• 5.4.5 The project manager shall monitor measures to ensure the software will meet or
exceed performance and functionality requirements, including satisfying constraints. [SWE-
199]

• 5.4.6 The project manager shall collect, track, and report software requirements volatility
metrics. [SWE-200]

271

ISWE
A Thought!

"What gets measured, gets managed."
- Peter Drucker

There is so much power in this quote. If you've never tracked yourself,
you don't even know how much power there is in tracking. I couldn't even
explain it adequately. You wouldn't believe me. You'd think I was
exaggerating. The simple act of paying attention to something will cause
you to make connections you never did before, and you'll improve those
areas - almost without any extra effort.

272

ISWE
Why You Should Measure

• For the benefit of your current project

− Use objective measurement data to plan, track, and correct
project

• For the benefit of your future projects (and the rest of your Center’s
projects, too!)

− Help create a basis for planning future projects

− Help understand what baseline performance is for projects similar
to yours

− Provide organizational information to help improve software
activities

273

ISWEWhy Do Technical Performance

Measurement?
• Cost and schedule performance status is of little value unless the technical

performance is acceptable

• We need to track potential risks and verify technical assumptions or estimates behind
the plan, such as

− Our productivity rate projections

− Product size estimates

− Product complexity estimates

− Product performance assumptions

• We need to measure acceptability “as we go,”

− Trends in production rates

− Trends in performance

− Interim acceptability

274

ISWE
And a Few More Reasons to Measure---

• Forces advanced, detailed planning

• Helps in making development and management
planning decisions consistent with the project scope and
requirements

• Provides an objectivity in assessing progress which is
often difficult during the heat of the battle

• Provides status relative to approved scope and
requirements to support management control

• Allows corrective action in time to prevent the “crisis” or
to minimize the impact of the crisis

• Improves ability to estimate completion costs and
schedule variances by analysis of data and trends

BASIC Software Measurements

• Code Size (LSLOC)
− Use a standard counter
− Deliverable Code
− Test Code
− Comments

• Release Dates
− Date and Code Sizes

• Defect Reports by date
− Cumulative defects for your product

by date of releases
• Effort

− To repair
− To implement a feature

• IEEE Software Magazine Jan/Feb
2018

275

ISWE
Components of a Measurement Plan

1. Measurement objectives

2. The measures that will meet the objectives (and don’t forget
measures for the process areas)

3. Descriptions of how the measures will be collected and stored

4. The analysis methods for each of the measures

5. Communication of the measurement results

6. Commitment to the measurement plan from your team and
your management

276

ISWE

• Requirements volatility: total number of requirements and
requirement changes over time.

• Bidirectional traceability: Percentage complete of System level
requirements to Software Requirements, Software Requirements
to Design, Design to Code, Software Requirements to Test
Procedures

• Software size: planned and actual number of units, lines of code,
or other size measurement over time.

• Software staffing: planned and actual staffing levels over time.

• Software complexity: complexity of each software unit.

• Software progress: planned and actual number of software units
designed, implemented, unit tested, and integrated overtime,
code developed.

• Problem/change report status: total number, number closed,
number opened in the current reporting period, age, severity.

• Software test coverage: a measure used to describe the degree to
which the source code of a project is tested by a particular test
suite

• Build release content: planned and actual number of software
units released in each build.

• Build release volatility: planned and actual number of software
requirements implemented in each build.

• Computer hardware and data resource utilization: planned and actual
use of computer hardware resources over time.

• Milestone performance: planned and actual dates of key project
milestones.

• Scrap/rework: amount of resources expended to replace or revise
software products after they are placed under any level of
configuration control above the individual author/developer level.

• Effect of reuse: a breakout of each of the indicators above for reused
versus new software products.

• Cost performance: identifies how efficiently the project team has
turned costs into progress to date.

• Budgeted cost of work performed: identifies the cumulative work that
has been delivered to date.

• Audit performance: Are you following a defined processes, how many
audits have been completed, audit findings, audit findings open/close
numbers

• Risk Mitigation: Number of identified software risks, risk migration
status

• Hazard analysis: number of hazard analysis completed, hazards
mitigation steps addressed in software requirements and design,
number of mitigation steps tested

Candidate Management Indicators That Might Be

Used On A Software Development Project:

277

ISWE
Mapping of Organizational Goals to Metrics

Mapping of Organizational

Goals to Metrics

Goal Statements Goal Question SA Metric

Ratio of the number of detailed software requirements to the

number of SLOC to be developed by the project.

Percentage complete of each area of traceability.

Are requirements stable? Software requirements volatility trended after project baseline

(e.g., # of requirements added, deleted, or modified; tbds).

Do the software requirements

adequately address the software

hazards ?

Percentage complete of traceability to each hazard with software

items. (New)

Number of cybersecurity secure coding violations per number of

developed lines of code;

List of types of secure coding violations found.

Is the safety-critical code safe? Software cyclomatic complexity data for all identified safety-

critical software component;

Number of defects or issues found in the software after delivery;

Number of defects or non-conformances found in flight code,

ground code, tools, and COTs products used.

Do the requirements adequately

address cybersecurity?

Number and type of identified cybersecurity vulnerabilities and

weaknesses found by project.

Continuously improve the

quality of software requirements

to assure safe and secure

products are delivered in

support of mission success and

customer objectives.

Quality Software

Requirements

Quality CodeAssure quality, safe, and secure

code is being delivered.

Is the code secure and has the code

addressed cybersecurity

requirements?

What is the quality of the code?

Are the software requirements

detailed enough for development

and test?

procedures, and products.

278

ISWE
Acquisition Considerations:

Measuring the Contractor’s Work

• Measurement must be part of deliverables

− Make sure you specify a good set of measures in the RFP -- you can negotiate
minor changes later if necessary

− Amend existing contracts (eventually) to define measures

− Generally should use the same sort of measures as in-house projects, e.g.,
• Contractor earned value reports may cover software progress measures

• Planned and actual delivery dates

• Test results or count of outstanding problems

279

ISWE
Acquisition Considerations:

Measuring Government Work

• Should have acquisition process measures for Class A and B projects

− For example, planned and actual effort

• Consider other objectives as well

− Assure that government completes work on time
• How long does contract / amendment take in the procurement office?

• How long does it take to accept deliveries?

− Assure quality of government work
• Are requirements complete and stable?

• Are acquisition processes passing audits?

280

ISWE
Repeat The Thought

"What gets measured, gets managed." - Peter Drucker

There is so much power in this quote. If you've never tracked yourself,
you don't even know how much power there is in tracking. I couldn't even
explain it adequately. You wouldn't believe me. You'd think I was
exaggerating. The simple act of paying attention to something will cause
you to make connections you never did before, and you'll improve those
areas - almost without any extra effort.

281

ISWE
Summary for Software Measurements

• Some of the important features and advantages of metrics are:

− Motivation – Involving employees in the whole process of goal setting and increasing employee
empowerment. This increases employee job satisfaction and commitment.

− Better communication and coordination – Frequent reviews and interactions between superiors and
subordinates helps to maintain harmonious relationships within the organization and also to solve many
problems.

− Clarity of goals

− Subordinates tend to have a higher commitment to objectives they set for themselves than those imposed
on them by another person.

− Managers can ensure that objectives of the subordinates are linked to the organization's objectives.

− Everybody will be having a common goal for whole organization. That means, it is a directive principle of
management.

• Measure your project performance quantitatively

• Believe the data, especially the trends

• Analyze the causes of trends - and do something about them

• Identify and track key technical performance parameters

• Exercise management judgment - use the data to control your project

282

ISWE

Software Non-conformance or
Defect Management

283

ISWE
Software Non-conformance or Defect

Management

• 5.5.1 The project manager shall track and maintain
software non-conformances (including defects in
tools and appropriate ground software). [SWE-201]

• 5.5.2 The project manager shall define and
implement clear software severity levels for all
software non-conformances (including tools, COTS,
GOTS, MOTS, OSS, reused software components,
and applicable ground systems). [SWE-202]

• Note: At a minimum, classes should include loss of
life or loss of vehicle, mission success, visible to the
user with operational workarounds, and an ‘other’
class that does not meet previous criteria.

284

ISWE
Software Non-conformance or Defect

Management

• 5.5.3 The project manager shall
implement mandatory assessments of
reported non-conformances for all COTS,
GOTS, MOTS, OSS, and/or reused
software components. [SWE-203]

• Note: This includes operating systems,
run-time systems, device drivers, code
generators, compilers, math libraries, and
build and Configuration Management
(CM) tools. It should be performed pre-
flight, with mandatory code audits for
critical defects.

List of GCC Compiler Bugs identified in 7 days

285

ISWE
Software Non-conformance or Defect

Management

• 5.5.4 The project manager shall implement process assessments
for all high-severity software non-conformances (closed loop
process). [SWE-204]

Requirements TestingCodingDesignPlanning
High-severity

software
Defect Found

What caused the High-severity software Defect

286

ISWE

Bidirectional Traceability

287

ISWE
Bidirectional Traceability

Software
Requirements

Software code

Software Test
Procedures

Software
Problem/Change

Request
Software Design

Bidirectional traceability
is defined as a
traceability chain that
can be traced in both the
forward and backward
directions

288

ISWE
Bi-directional Traceability Requirement

Bi-directional Traceability Class A, B, and C Class D Class F

Higher-level requirements to the software requirements X X

Software requirements to the system hazards X X

Software requirements to the software design components X

Software design components to the software code X

Software requirements to the software test procedures X X X

Software requirements to the software non-conformances X X

3.12.1 The project manager shall perform, record, and maintain bi-
directional traceability between the following software elements:
[SWE-052]

Note: The project manager will maintain bi-directional traceability between the software requirements
and software-related system hazards, including hazardous controls, hazardous mitigations, hazardous
conditions, and hazardous events.

289

ISWE
Safety-Critical Software Requirements

The project manager shall perform,
record, and maintain bi-directional
traceability between the following
software elements: [SWE-052]

Software requirements to the system
hazards

Hazards

Software code

Software Test
Procedures

Software
Requirements

290

ISWE
Software Requirement Sources

Other Software Requirement Sources

Hardware specifications
Computer\Processor\Programmable Logic Device specifications
Hardware interfaces
Operating system requirements and board support packages
Data\File definitions and interfaces
Communication interfaces including bus communications Software
interfaces
Derived from Domain Analysis
Fault Detection, Isolation and Recovery requirements
Models
Commercial Software interfaces and functional requirements
Software Security Requirements
User Interface Requirements
Algorithms
Legacy or Reuse software requirements
Derived from Operational Analysis
Prototyping activities
Interviews
Surveys
Questionnaires
Brainstorming
Observation
Software Test Requirements
Software Fault Management Requirements
Hazard Analysis

Software Requirements

System

Requirements

291

ISWE

Software Licensing

292

ISWE
The Problem: Why We Need Software

Licensing Management

No Agency/Enterprise Approach

Limited Insight/Visibility

Inefficiencies in Internal Planning

293

ISWE

Using unlicensed software could
cost NASA MILLIONS and/or
introduce security vulnerabilities
into the NASA environment

It is critical to maintain software
patch levels/versions and remove
outdated/unsupported software
from the environment to decrease
the risks of cybersecurity threats to
NASA’s infrastructure

Avoid Hidden Dangers – Do Your Part!

294

ISWE
Software Publisher Audits

295

ISWE
Agency Software Lifecycle Management

Plan Vision, Goals, and Objectives

Vision

− Effectively manage software across the Agency and optimize software licensing and configurations

• Goals

− Implement an effective Agency-wide Software Lifecycle Management process
− Comply with the Megabyte Act of 2016 and OMB M-16-12 Category Management Policy 16-1: Improving the

Acquisition and Management of Common Information Technology: Software Licensing
− Support the achievement of the 2018-2021 IT Strategic Plan objectives

• Objectives

− Centralized, standardized, streamlined lifecycle processes for managing software that delivers service to the
customer in a timely manner and that is automated to the greatest extent possible

− Greater insight into the software entering and existing in NASA’s environment
− Increased cost savings/cost avoidance through the improved management of NASA’s software
− Improved software related investment decisions
− Reduced risk of security vulnerabilities related to software
− Reduced risk of non-compliance license issues and costly audit findings

296

Approved Software List (CAP)

https://esd.nasa.gov/now/nav/ui/classic/params/target/u_scan_assessed_cleared_list_list.do%3Fsysparm_userpref_module%3Db3921cf11b62cdd09912c844604bcbd9%26sysparm_clear_stack%3Dtrue

ISWE
Software License Lifecycle

• The software license lifecycle at NASA
consists of seven stages:

1. Planning
2. Request and Requisition
3. Procurement and Strategic Sourcing
4. Receipt and Deployment
5. Management and Maintenance
6. Reassignment and Reuse
7. Retirement and Disposal

• Project Managers have critical responsibilities
related to software licenses and subscriptions
management.

− Details are incorporated into NPR 7150.2D (section
2.1, 3.1) and the Applications Program (AP)
Handbook*.

1. Planning

2. Request/
Requisition

3. Procurement/
Strategic Sourcing

4. Receipt/
Deployment

5. Management/
Maintenance

6. Reassignment/
Reuse

7. Retirement/
Disposal

* https://sharepoint.msfc.nasa.gov/sites/ap/standards/SitePages/Home.aspx

297

https://sharepoint.msfc.nasa.gov/sites/ap/standards/SitePages/Home.aspx

ISWE

NASA Software
Acquisition Considerations

298

ISWE

Identify Need

to Buy

Something

Make/ Buy

Decision

Determine

Acquisition Type

Develop Acquisition

Package

Get Contract in

Place
Monitor the Contract

Accept Products Transition to Use Close Out

Supplier Agreement Management

Key Points in the process

Road Map for an Acquisition

299

ISWE
Beginning the Acquisition Planning

• First: What kind of item are we buying?

• Commercial Off The Shelf (COTS) software?

• COTS software with modifications?

• Hardware, software tools or equipment?

• Custom software?

• Services from contractors to work with you on your teams?

• Begin working with procurement and management to determine
options for acquisition

• Possibilities might be:

• Direct purchase (purchase order or credit card purchase)

• Existing contract (using task order in place)

• New contract (nothing exists to help your acquisition)

• Part of larger (spacecraft) contract

300

ISWE
NPR 7150 Applies to All Software Acquisitions

• NPR 7150 applies to software development, maintenance,
retirement, operations, management, acquisition, and assurance
activities.

• The requirements of NPR 7150 cover all software created, acquired,
or maintained by or for NASA and apply to all of the Agency’s
investment areas containing software systems and subsystems.

• Put NPR 7150 on contracts, NASA project is still responsible either
way

301

ISWE
What Are Technical and Software Data Rights?

• The terms “Intellectual Property (IP) rights” or “data rights” refers to the
government’s license rights in data.

• IP Rights are sometimes referred to as Rights in Technical Data and/or
Computer Software

• As a general rule under government contracts, the contractor/developer
is allowed to retain ownership of the technical data and computer
software it developed.

• The government receives only a license to use that technical data and
computer software.

• The scope of the license depends on the needs of the agency, source of
funding for development, and the negotiations between the parties.

• Can apply to source code, executable code, documentation, test scripts,
tools (including the software development and build environment)

302

ISWE
What Are Technical and Software Data Rights?

• Determines who has the right to:

− Use
− Modify
− Disclose
− Distribute

• Data rights (or lack of data rights) can have long term impacts

− Use of the data the program office receives on the current program
− Data that is provided to interfacing programs (especially in complex systems efforts)
− Long term maintenance/sustainment of the current system

• It is always more expensive to try to negotiate data rights after the contract is let

− It is vitally important to think about what data rights are needed well before the RFP is being
prepared

• If data rights are important, ensure they are part of the evaluation criteria in a source
selection

• Determines how the government can use the technical data and
software produced in an acquisition

• Influences the ability of the government to economically sustain
systems

• Can influence the ability to interface to other systems
• Some commercial licenses are not in compliance with the Federal

Acquisition Regulations (FAR)

303

ISWE
Data Rights Questions

• When writing an RFP:
− What software data rights might you need?
− What software/ software data might require additional data rights?
− Who will need the software related data? And what data will they need?
− What is the risk involved in not getting the rights to software data you need?
− Will software data rights be used as an evaluation criteria?
− How will user licenses be handled?
− For commercial software

• Are data rights provided to the public under the commercial license acceptable?
• Are the commercial licenses in accordance with federal law?
• Does the vendor have long term stability?
• Is escrow a possibility? (Note – this does not totally solve most software rights issues)

− For non-commercial software
• Do we have a way to clearly identify what was developed with private or mixed funds?
• Are the standard rights acceptable (unlimited, government purpose, restricted) or do I need

specially negotiated rights?
• Will we have rights to subcontractor provided software?

Data rights is a complex area – be sure to involve

an IP Attorney and Contractor Officer as soon as

possible if you anticipate complex data right needs

304

ISWE

Copyright © 2010 The Boeing Company All Rights Reserved

Printout of this document is for information only, and is considered an uncontrolled document.

Marking Examples

305

https://www.archives.gov/cui

NPR 2810.7 Controlled
Unclassified Information

https://www.archives.gov/cui

ISWE
Data Rights Questions

• Other Things to Consider

− Ensure any license terms for COTS products do not conflict with any FAR
provisions
• Many of them do – so you need to check

− If applicable, ensure FPGA code is included in the software data rights
purposes

− Provide adequate training on data rights for those who will evaluating them
during the source selection

− Consider both technical data rights and software data rights as needed

− Continue to think about data rights throughout the program execution!

306

ISWE
Electronic Access Requirements

• All software products acquired for NASA projects are to be made available in
electronic format so they can be delivered accurately and used efficiently as
part of the project. The electronic availability of the software work products,
and associated process information, facilitates post delivery testing that is
necessary for assessing as-built work product quality, and for the porting of
products to the appropriate hosts. Electronic access to software projects
reduces NASA's project costs.

• This access also accommodates the longer-term needs for performing
maintenance, including defect repairs and software component augmentations,
assessing operation or system errors, addressing hardware and software
workarounds, and allowing for the potential reuse of the software on future
NASA projects.

• Electronic access is needed during all phases of the software development life
cycle. This enables software supplier activities to be monitored to ensure the
software work products are being developed efficiently and that the end
products that are called for in the project and software requirements are
actually produced.

307

ISWE

• Software, executable and
source code

• Models and simulations
• Programmable Logic Device

logic and software
• Trade study data, including

software tools used to help
formulate analysis of alternative
results if any scenarios need to
be re-run later

• Prototype software, including
prototype architectures/designs

• Data definitions and data sets
• Software ground products
• Software build products
• Build tools

• Software documentation,
including data presented during
any early design reviews

• Metric data
• Software cost data and

parameters
• Software database(s)
• Software development

environment
• Software Test Scripts and the

results of software testing
• Results of software static

analysis activities
• Bi-directional traceability for

the software products
• Software analyses and

compliance data

What Needs To Be Accessible?

308

ISWE
Summary

• Plan acquisition activities and identify potential suppliers

• Determine acquisition type and prepare acquisition documents

• Select suppliers and establish agreements (document all terms and
conditions to be met)

• Execute the agreement

• Review supplier adherence to selected processes

• Report status to higher management

• Accept and transition the product

309

ISWEClass Plan
Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources

Software Documentation
Software Costing

Software Processes
Software Assurance

Software Safety-Critical

Software IV&V
Software Classifications

Software Reuse and Internal Sharing
Software Cybersecurity

Software Lifecycles and Reviews

Software Planning Requirements and Considerations

Software Requirements
Software Architecture

Software Design

Software Coding
Software Testing

Software Maintenance

Software Life-cycle Requirements

Software Configuration Management
Software Risks

Software Peer Reviews
Software Measurements

Software Defect Management
Software Bi-Directional Traceability

Software License Management
Software Acquisition

Software Development Supporting Requirements Why do we
do these
things?

Software
Failures

310

ISWE

Software Related Failures

“The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming became
a mild problem, and now we have gigantic computers, programming has become an equally
gigantic problem.”

Edsger Dijkstra, 1972

311

ISWE
Why Software Projects Fail?

1. Unrealistic or unarticulated project goals

2. Inaccurate estimates of needed resources

3. Badly defined system requirements

4. Poor reporting of the project's status

5. Unmanaged risks

6. Poor communication: clients, developers, & users

7. Use of immature technology

8. Inability to handle the project's complexity

9. Sloppy development practices

10. Poor project management

11. Stakeholder politics

12. Commercial pressures

Others?

312

ISWE
Why is software special?

• Software is invisible, intangible, abstract

• Software alone is useless - its purpose is to configure some
hardware to do something

• Software doesn’t have to obey the laws of physics

• Software is more complex for its “size” than other designed
artifacts

• Software does not wear out

− statistical reliability measures don’t generally apply to
software

• Software can be replicated perfectly

• Software is designed, not manufactured

− Software can be re-designed after deployment

313

ISWE

“Software is the easiest to

change but in change, it is

the easiest to compromise.”

The "Bug" Heard 'Round the

World by John R. “Jack”

Garman October 1981

314

ISWE
Subsystem Failure Study Data

“Analysis of Launch Vehicle Failure Trends,” Futron
Corporation, August 7, 2006.

In addition to these specific failures, recent
analyses of launch vehicle failure trends have
shown that software and computing systems
have become a much more frequent cause of
failures recently than has occurred in the
past.

DEVELOPING SAFETY-CRITICAL SOFTWARE REQUIREMENTS FOR
COMMERCIAL REUSABLE LAUNCH VEHICLES
Daniel P. Murray(1) and Terry L. Hardy(2)
(1)Federal Aviation Administration, Office of Commercial Space Transportation, 800 Independence Avenue, S.W.,
Room 331, Washington, DC, 20591, USA, Daniel.Murray@faa.gov
(2)National Aeronautics and Space Administration Goddard Space Flight Center, Mail Code 302, Greenbelt, MD
20771, USA, Terry.L.Hardy@nasa.gov

Increase percentage contributed
to software and computing

315

ISWESoftware isn’t any more fail-proof than hardware

is… (it can and does break occasionally)

Coding
(often statically

detectable)

Memory
Use

(corruption, heap
memory, etc.)

Thread
Use

(race conditions;
synchronization)

Design
(Algorithmic)

Code
ReUse

(not rechecking
assumptions)

Fault
Protection
(over-reliance

on reboot/reset)

2000 MPL
(failure to reset variable) 2004 MER

(uncontrolled reboot)

2004 MER
(memory mngnt error)

2006 DART
(no backup controls)

2006 DART
(navigation errors)

2006 Feb MRO
(race condition)

2006 Jan MRO
(memory corruption)

1993 Clementine
(uncontrolled thruster
firing)

1996 Ariane5
(assumptions not
verified)

1997 Pathfinder
(priority inversion) 1999 MCO

(units adaptation
omitted)

1996 Ariane5
(dual string;
but same sw)

1962 Mariner 1
(“missing hyphen”)

1963 Mercury
(period instead of comma)

1968 Apollo 8
(memory corruption)

1969 Apollo 11
(1st moon landing)

1982 Viking 1
(memory corruption
loss of contact)

1988 Phobos
(command confusion)1981 Shuttle

(1st launch)

1977- Voyager
(navigation errors)

1971 Eole 1
(command confusion)

60s

70s
80s

90s

00s

2006 MGS
(misdiagnosed fault)2007 Dawn

(code reuse) 2009 Dawn
(fault protection)

316

ISWE

Detailed look at some of the Software Related
Failures
Examples

317

ISWE

• Even with a competent,
trained, hardworking
team, process escapes
can occur.

− DO NOT think this
cannot happen to you.

• “Sometimes, the holes
line up.”

The Main Lesson to be

Learned

Swiss Cheese Model of Accident Causation (Reason 1997)
318

ISWEIntelsat 6
• Intelsat 6, a $157 million spacecraft , was stranded

in a useless orbit March 14 , 1990 by a malfunction
in its Titan 3 booster.

• Martin Marietta has traced the failure to a design
error in the wiring associated with the separation
electronics on its Commercial Titan

• When the core vehicle of the Titan’s second stage
shut down after a normal launch from a propulsion
point of view, the vehicle’s computer sent a
spacecraft separation command. But the mismatch
between the software and the wiring resulted in a
signal being sent to the wrong wiring position, and
the satellite stayed locked atop the booster.

• The hardware engineers were supposed to go through a formal engineering change
procedure to communicate any hardware changes to software engineers.

• “The hardware guys thought they had communicated that change to the software side of the house,” a Martin Marietta official
said. But the communication breakdown occurred because an established change procedure was not used, the official said.

• The same communications breakdown was caught and fixed before the next Titan launch.

• STS-49 made repairs in space in time for the Intelsat 6 to participate in the broadcast of the 1992 Barcelona Olympics

319

ISWE
NASA Mars Climate Orbiter

• Incident Date: 9/23/1999 Price Tag: $125 million

• WASHINGTON (AP) -- For nine months, the Mars Climate Orbiter was
speeding through space and speaking to NASA in metric. But the
engineers on the ground were replying in non-metric English.

• It was a mathematical mismatch that was not caught until after the
$125-million spacecraft, a key part of NASA's Mars exploration program,
was sent crashing too low and too fast into the Martian atmosphere. The
craft has not been heard from since.

• Noel Henners of Lockheed Martin Astronautics, the prime contractor for
the Mars craft, said at a news conference it was up to his company's

engineers to assure the metric systems used in
one computer program were compatible with
the English system used in another program. The
simple conversion check was not done, he said

Root Cause Analysis Case
Study: Mars Climate Orbiter

http://youtu.be/UV3dNiR13CQ

320

http://youtu.be/UV3dNiR13CQ

ISWE
The Mars Program Independent Assessment

Team (MPIAT)
The MPIAT report found common characteristics among both successful and unsuccessful missions:

• Experienced project management or mentoring is essential.

• Project management must be responsible and accountable for all aspects of mission success.

• Unique constraints of deep space missions demand adequate margins.

• Appropriate application of institutional expertise is critical for mission success.

• A thorough test and verification program is essential for mission success.

• Effective risk identification and management are critical to assure successful missions.

• Institutional management must be accountable for policies and procedures that assure a high
level of success.

• Institutional management must assure project implementation consistent with required policies
and procedures.

• Telemetry coverage of critical events is necessary for analysis and ability to incorporate
information in follow-on projects.

• If not ready, do not launch.

321

ISWEAriane 5 Explosion
• Incident Date: 9/1997 Price Tag: $500 million

• Ironic Factor: ****

• (By James Gleick) It took the European Space Agency 10 years and $7 billion to
produce Ariane 5, a giant rocket capable of hurling a pair of three-ton
satellites into orbit with each launch and intended to give Europe
overwhelming supremacy in the commercial space business.   

• All it took to explode that rocket less than a minute into its maiden voyage last
June, scattering fiery rubble across the mangrove swamps of French Guiana,

was a small computer program trying to stuff a 64-bit number into a 16-
bit space.   

• The number was larger than 32,767, the largest integer
storeable in a 16 bit signed integer, and thus the conversion
failed.  

• This shutdown occurred 36.7 seconds after launch, when the guidance
system's own computer tried to convert one piece of data -- the sideways
velocity of the rocket -- from a 64-bit format to a 16-bit format.

• The number was too big, and an overflow error resulted. When the guidance
system shut down, it passed control to an identical, redundant unit, which was
there to provide backup in case of just such a failure.

• But the second unit had failed in the identical manner a few milliseconds
before. And why not? It was running the same software.

http://youtu.be/kYUrqdUyEpI

322

http://youtu.be/kYUrqdUyEpI

ISWE
Ariane 5 Accident

• Why did this failure occur?

− Why was Platform Alignment still active after
launch?

− SRI Software reused from Ariane-4

− 40 sec delay introduced in case of a hold
between -9s and -5s

• Why was there no exception handler?

− An attempt to reduce processor workload to
below 80%

− Analysis for Ariane-4 indicated the overflow not
physically possible

• Why wasn’t the design modified for Ariane-5?

− Not considered wise to change software that
worked well on Ariane-4

• Why did the SRIs shut down in response?

− Assumed faults caused by random hardware
errors, hence should switch to backup

• Why was the error not caught in unit testing?

− No trajectory data for Ariane-5 was provided in
the requirements for SRIs

• Why was the error not caught in integration testing?

− Full integration testing considered too
difficult/expensive

− SRIs were considered to be fully certified

− Integration testing used simulations of the SRIs

• Why was the error not caught by inspection?

− The implementation assumptions weren’t
documented

Software redundancy doesn’t always work
Software reuse is risky

323

ISWE
Mariner 1 Failure - Homework

324

Youtube Video:
“How a Tiny Mistake Destroyed America’s First Interplanetary Space Probe”

Scott Manly

ISWE
Titan IV B Centaur

• Objective: Titan IV B launch vehicle was equipped with a Centaur upper stage intended to
deliver a Milstar satellite into geosynchronous orbit

• Problem:

− After the Centaur separated from the Titan IV B, the vehicle began to experience anomalous rolls

• The reaction control system eventually stabilized the vehicle during the transfer orbit coast phase but used 85%
of its hydrazine fuel in the process.

− When the vehicle attempted its second burn, it became unstable again and continued into its third
burn tumbling.

• Failure Analysis:

− Failed software development, testing, and quality assurance was ultimately the cause of the failure.

− During development of the Centaur computer software, a decimal point was misplaced while
manually entering the roll rate filter constant in the Inertial Measurement System flight software file.

− This error was detected pre-flight but was not properly recognized or understood.

− Although it was not needed, the software had been kept in for “consistency”

• Date: 4/30/1999

325

Ref: https://ntrs.nasa.gov/citations/20170009844

https://ntrs.nasa.gov/citations/20170009844

ISWEDART Failure

What Happened:
When DART began its transfer out of the second staging orbit
to begin proximity operations, ground operators observed that
the spacecraft was using significantly more fuel than expected for
its maneuvers. It became clear that the mission would likely end
prematurely because of exhausted fuel reserves. Because DART
had no means to receive or execute uplinked commands, the
ground crew could not take any action to correct the situation.
During the series of maneuvers designed to evaluate AVGS performance,
DART began to transition its navigational data source from the GPS to AVGS as
planned. Initially, the AVGS supplied only information about MUBLCOM’s
azimuth (angular distance measured horizontally from the sensor boresight to
MUBLCOM) and elevation relative to DART. However, as DART approached
MUBLCOM, it overshot an important waypoint, or position in space, that
would have triggered the final transition to full AVGS capability. Because it
missed this critical waypoint and the pre-programmed transition to full
AVGS capability did not happen, the AVGS never supplied DART’s navigation
system with accurate measurements of the range to MUBLCOM.
Consequently, DART was able to steer towards MUBLCOM, but it was not able
to accurately determine its distance to MUBLCOM. Although DART’s collision
avoidance system eventually activated 1 minute and 23 seconds before the
collision, the inaccurate perception of its distance and speed in relation to
MUBLCOM prevented DART from taking effective action to avoid a collision.

Demonstration of Autonomous Rendezvous Technology (DART)

326

ISWEMultiple Root Causes and Recommendations on DART

• High Risk, Low Budget Nature of the Procurement

− DART was selected by NASA as a high-risk, low-budget technology demonstration under a NASA Research Announcement
(NRA). The government procured only the data, and set broad requirements. Most of the detailed design decisions about
how to meet those requirements were left to the discretion of the contractor.

• Training and Experience

− a lack of training and experience led the design team to reject expert advice because of the perceived risks involved in
implementing the recommendations.

• Lessons Learned Analysis

− Even though the DART team lacked training and experience, many of DART’s inadequacies could have been addressed
through review and proper application of mission experience and data (lessons learned) documented from previous NASA
projects.

• Guidance, Navigation and Control (GN&C) Software Development Process

− The MIB determined that one of the root causes of the mishap was an inadequate GN&C software development process.
Changes to the flight code and simulation models were often incorporated without adequate documentation.

• Systems Engineering

− inadequate, system-level integration process, which failed to reveal a number of design issues contributing to the mishap.

• Schedule Pressure

− Schedule pressure was identified as the cause for the inadequate testing of a late change to the navigation logic’s gain
setting.

327

ISWEMultiple Root Causes and Recommendations on DART

• International Traffic in Arms Regulations (ITAR) Restrictions

− insufficient technical communication between the project and an international vendor due to perceived restrictions in export
control regulations did not allow for adequate insight.

• Technical Surveillance/Insight

− the NASA DART insight team failed to identify issues that led to the mishap because of an inadequate assessment of project
technical risk and insufficiently-defined areas of responsibility.

• Risk Posture Management

− the lack of adequate risk management contributed to a zero-fault tolerant design and inadequate testing that resulted in an
insufficient collision avoidance system, among other things.

• Expert Utilization

− the DART team failed to fully use the resources of available subject matter experts.

• Contractor Review Processes

− internal checks and balances used by DART’s prime contractor failed to uncover issues that led to the mishap, such as the
undersized spherical envelope surrounding the AVGS range transition waypoint.

• Failure Modes and Effects Analysis (FMEA)

− analyses to identify possible hardware/software faults failed to consider a sufficient set of conditions that could lead to the
mishap.

328

ISWEThe Lewis Spacecraft

• The Lewis Spacecraft was procured by NASA via a 1994 contract with TRW, Inc., and launched on
23 August 1997. Contact with the spacecraft was subsequently lost on 26 August 1997. The
spacecraft re-entered the atmosphere and was destroyed on 28 September 1997.

• The Lewis Spacecraft Mission Failure Investigation Board found that the loss of the Lewis
spacecraft was the direct result of an implementation of a technically flawed Safe Mode in the
Attitude Control System.

• This error was made fatal to the spacecraft by the reliance on that untested Safe Mode by the on
orbit operations team and by the failure to adequately monitor spacecraft health and safety during
the critical initial mission phase.

• Other causes cited included requirement changes without adequate resource adjustment, cost
and schedule pressures, a Program Office move, inadequate ground station availability for initial
operations, frequent key personnel changes, and inadequate engineering discipline.

329

ISWE
Critical Lessons Overview

330

ISWE
Software error doomed Japanese Hitomi

spacecraft
Japan’s flagship astronomical satellite Hitomi, which launched successfully on 17 February, 2016 but
tumbled out of control five weeks later, may have been doomed by a basic engineering error.

• The spacecraft automatically switched into a safe mode and, at about 4:10 a.m., fired thrusters to try
to stop the rotation.

• But because the wrong command had been uploaded, the firing caused the spacecraft to accelerate
further.

• (The improper command had been uploaded to the satellite weeks earlier without proper testing;
JAXA says that it is investigating what happened.)

On 28 April, the Japan Aerospace
Exploration Agency (JAXA) declared the
satellite, on which it had spent ¥31 billion
(US$286 million), lost.

331

ISWE

332

Japanese ispace company moon lander

Hakuto-R crash

• Lander was launched and was attempting to land on moon
• Blame was placed on software issue

• Lander passed over a lunar crater
• Radar altimeter sensed sudden drop of 3 km
• Software was programmed to identify this (sudden change)

as a failure and disqualify the sensor
• Data was correct though

• Now Lander flying without measurement of ground, using
estimation of what it thinks (using gyros/accelerometers)

• Software “landed” on what it thought was surface, but never
got feedback it touched down, so hovered until fuel ran out

• Then dropped ~5km to surface
• Why was this not caught in testing?

• Landing site was changed after all simulations were run and never
done for the new landing site

• April 2023

https://www.youtube.com/watch?v=2JlUnOAiMm4

ISWE
ESA’s Schiaparelli Failure

3 November 2016New high-resolution images
taken by a NASA orbiter show parts of the
ExoMars Schiaparelli module and its landing site in
color on the Red Planet.

Schiaparelli was primarily meant to test European
landing technologies, with science as a secondary
objective. Recording the data during the descent
has already achieved a lot of the mission’s goals

Europe and Russia’s ExoMars lander may have suffered a computer glitch
during its descent to Mars last week, ultimately causing it to crash-land
into the planet’s surface, Nature reports. As the lander fell, the
mysterious software bug may have caused the vehicle to think it was
closer to the ground than it actually was, a lead researcher with the
European Space Agency suggests. That may be why the whole landing
sequence was thrown out of whack.

All this seems to suggest a software error, says Andrea Accomazzo, who
is in charge of ESA's solar and planetary missions. Accomazzo thinks
maybe Schiaparelli had a problem processing all the information it was
getting from its sensors. This led the spacecraft to think it was at a lower
altitude than it was during the fall, causing many of its landing operations
to cut off early.October 2016

333

http://www.nature.com/news/computing-glitch-may-have-doomed-mars-lander-1.20861

ISWEAdditional Common Problems:

Flight Software Lessons

• An appropriate high fidelity Flight Software test bed is non-negotiable for each flight Computer Processor
Unit (CPU).

• Strong Flight Software Requirements Development, Review and Control are mission critical

• Flight Software needs to be engineered across all onboard systems

• Flight Software requires specialized code that shouldn’t be underestimated in ability to impact mission
viability

• Project-level advocacy of flight software lead role across all subsystems is essential

• Flight Software Branch should explain and recommend a risk mitigating end-to-end Flight Software
development process to each project.

• Flight Software Organizations must voice concerns

• Closely question reuse assumptions when developing common software

• Use a defined evaluation process when selecting Off The Shelf software components

• Performance based contracting

• Carefully define deliverables, process, evaluation criteria and tracking metrics when writing Request For
Procedures and contracts.

334

ISWE
Summary

• Most Failures have multiple root
causes

• Lessons learned from space vehicle
failures have shown the importance of
developing valid software
requirements and verifying that those
requirements are effective and have
been implemented properly.

• Software and computing systems are
critical to safe launch vehicle
operations and spacecraft.

Questions for Discussion
• How does your organization acquire the evidence to

understand that your system software will do what it
is supposed to do, under adverse conditions, and
won’t do what it is not supposed to do (guard against
emergent behaviors)?

• How does your organization track configuration
management and evaluate change from a systems
perspective?

• If your primary unit failed due to software errors, will
it cause the same failure in your backup? What is
your proper level of redundancy?

• Has the risk level of your project decreased, and your
software testing plan increased to drive down risk?

• Do you have contingency plans for on-orbit
anomalies? What anomalies have been tested for?

• How does your organization verify reused or
modified code?

From:
Critical Software: Good Design Built Right
SYSTEM FAILURE CASE STUDIES
January 2012 Volume 6 Issue 2

335

ISWE

NASA Software Class Summary

336

ISWEClass Plan
Software's Role and Importance in NASA Missions

NASA Software Engineering & Assurance Policies, Requirements and Resources

Software Documentation
Software Costing

Software Processes
Software Assurance

Software Safety-Critical

Software IV&V
Software Classifications

Software Reuse and Internal Sharing
Software Cybersecurity

Software Lifecycles and Reviews

Software Planning Requirements and Considerations

Software Requirements
Software Architecture

Software Design

Software Coding
Software Testing

Software Maintenance

Software Life-cycle Requirements

Software Configuration Management
Software Risks

Software Peer Reviews
Software Measurements

Software Defect Management
Software Bi-Directional Traceability

Software License Management
Software Acquisition

Software Development Supporting Requirements Why do we
do these
things?

Software
Failures

337

ISWE
Course High Level Objectives

• To provide an introduction to NASA software engineering skills

• To help non software engineers, system engineers and project
managers understand the software development processes and
considerations

• To help NASA engineers make better software related decisions by
knowing where to get information and guidance

338

ISWE
Class Summary

339

ISWE

Look at the software requirements and determine what
you need to do for your project

Summary

• The NPR provides a minimal set of requirements for software
acquisition, development, maintenance, retirement, operations, and
management

• The updated directive supports NASA programs and projects in
accomplishing their planned goals (e.g., mission success, safety,
schedule, and budget) while satisfying their specified requirements.

• The directive provides increased flexibility and tailoring options for
software requirements for projects based on risk

340

ISWESoftware's Role and Importance on

NASA Missions

• Software engineering and software
assurance is a core capability and a key
enabling technology for NASA's missions
and supporting infrastructure.

• All NASA missions have software
involvement

• NASA’s success in increasingly dependent
on software functions and capabilities.

• NASA must become more efficient and
effective in developing and validating
quality software.

Future State

NASA missions will have more software, more complexity and more autonomous operations

We will need to invest in the software workforce to be able to support the NASA missions

341

ISWE
Questions

Additional information can be found at

https://nen.nasa.gov/web/software

https://swehb.nasa.gov/

https://sma.nasa.gov/sma-disciplines/software-assurance

https://nsc.nasa.gov/SMAToolbox/

https://software.nasa.gov

https://open.nasa.gov

https://developer.nasa.gov

342

https://nen.nasa.gov/web/software
https://swehb.nasa.gov/
https://sma.nasa.gov/sma-disciplines/software-assurance
https://nsc.nasa.gov/SMAToolbox/
https://software.nasa.gov/
https://open.nasa.gov/
https://developer.nasa.gov/

ISWE
Acronyms

NPR 7150.2 Appendix B

• Select Acronyms:
− CDR – Critical Design Review

− EGS – Exploration Ground Systems

− FAR – Federal Acquisition Regulations

− FPGA – Field Programable Gate Array

− FRR – Flight Readiness Review

− FSW – Flight Software

− FTE – Full Time Employee

− I/O – Input/Output

− ISWE – Introduction to Software Engineering

− MCR – Mission Concept Review

− MDR – Mission Definition Review

− NDA – Non-disclosure agreement

− NEN – Nasa Engineering Network

− OPM – Office of Personnel Management

− ORR – Operational Readiness Review

− PDR – Preliminary Definition Review

− PRR – Production Readiness Review

− RFP – Request for Proposal

− SAR – System Acceptance Review

− SDR – System Definition Review

− SIR – System Integration Review

− SLOC – Source Lines of Code

− SLS – Space Launch System

− SQL - Structured Query Language

− SRR – System Readiness Review

− SWE – Software Engineering

− SwRR – Software Readiness Review

− TDT – Technical Discipline Team

− TRR – Test Readiness Review

− UML - Unified Modeling Language™

− WYE – Work Year Equivalent

343

https://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002D_&page_name=AppendixB
https://nen.nasa.gov/

	Slide 1: Introduction to Software Engineering
	Slide 2: Introductions and Logistics
	Slide 3: Course Action Plan Slides
	Slide 4: Training alone won’t change performance
	Slide 5: Action Plans help you apply what you learn in order to improve performance
	Slide 6: Introduction of Students
	Slide 7: Course High Level Objectives
	Slide 8: Key Course Objectives
	Slide 9: Evaluation Pilot Courses Critical Behaviors
	Slide 10: Class Plan
	Slide 11: Software's Role and Importance in NASA Missions
	Slide 12: Class Questions
	Slide 13: Software's Role and Importance in NASA Missions
	Slide 14: NASA Software Workforce Trends
	Slide 15: Software Engineering Trends
	Slide 16: Software Engineering Capabilities Needed for Future Missions
	Slide 17: “Software is different than hardware (and not all software is the same). Hardware can be developed, procured, and maintained in a linear fashion. Software is an enduring capability that must be supported and continuously improved throughout its
	Slide 18: Software is the easiest to change but in change, it is the easiest to compromise.” The "Bug" Heard 'Round the World by John R. “Jack” Garman October 1981
	Slide 19: The Three Elements of Project Success
	Slide 20: Catching Software Faults Early Saves Money
	Slide 21: What Is Software Engineering?
	Slide 22: NASA’s Software Definition (From IEEE)
	Slide 23: Software Is Not All the Same
	Slide 24: NASA flight software systems have grown as measured by SLOC
	Slide 25: How Big is a Million Lines of Code?
	Slide 26
	Slide 27: Other Types of Software Intensive Facilities and Operations
	Slide 28: Spaceport Command and Control Systems
	Slide 29: Space-Ground Network Systems
	Slide 30: Mission Operations Centers
	Slide 31: Science Data Systems
	Slide 32: Software's Role and Importance on NASA Missions
	Slide 33: NASA Engineering and Software Policies, including key NASA software standards
	Slide 34: Governing Documents
	Slide 35: Current NASA Software Documentation Tree (with a few related non-software documents in gray)
	Slide 36: Purpose of the NASA Software Engineering Requirements, NPR 7150.2
	Slide 37: About NASA’s Software Engineering Requirements (NPR 7150.2)
	Slide 38: Recent update made to NPR 7150.2 for NPR 7150.2D
	Slide 39: Themes and Targeted Change Areas for NASA Software Engineering Requirements
	Slide 40: Software Engineering Handbook
	Slide 41: Handbook Version Transition Page
	Slide 42: Software Handbook –Project Requirements
	Slide 43: Remember…
	Slide 44: Summary
	Slide 45: Software Engineering Handbook Demo
	Slide 46: https://swehb.nasa.gov/
	Slide 47: Visual Overview of NPR 7150.2
	Slide 48: 30 “Institutional” Requirements (Chapter 2) Applicable to All Classifications
	Slide 49: 100 NPR Requirements* - Applicable Based on Classification
	Slide 50: Class A&B (All 100) Requirements
	Slide 51: Class F Requirement Applicability (OCIO Authority)
	Slide 52: Class Plan
	Slide 53: Software Engineering Documentation
	Slide 54: Key NPR requirements for documentation
	Slide 55: Software Documentation Considerations
	Slide 56: Software Documentation
	Slide 57: Software Life Cycle Planning
	Slide 58: Software Cost Estimation
	Slide 59: NPR 7150.2D Requirements on Software Cost Estimation
	Slide 60: Let’s do a Cost Estimate!
	Slide 61: The Cost Estimating Universe
	Slide 62: Why Costing, Sizing, Progress Tracking?
	Slide 63: Cost Estimating Methods
	Slide 64: Software Cost Estimation Issues
	Slide 65: Steps in Performing a Cost Estimate
	Slide 66: Estimating Software Size Using Source Lines of Code (SLOC)
	Slide 67: Parametric Software Cost Estimation
	Slide 68: Software Cost Parameters
	Slide 69: Example Model Output
	Slide 70: Documenting the Estimate
	Slide 71: Key Points
	Slide 72: Software Cost Data
	Slide 73: Software Cost Data
	Slide 74: Summary for Software Cost Estimation
	Slide 75: Software Processes
	Slide 76: Process Questions
	Slide 77: Your process should not look like this
	Slide 78: NASA’s Software Engineering Capability as measured by CMMI Rating Level
	Slide 79: Why Are We Addressing CMMI® in This Course?
	Slide 80: The CMMI model use at NASA
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Why has NASA Management directed the use of CMMI® standards?
	Slide 85
	Slide 86: Case Study: Defense Industry High CMMI Maturity Reduces Costs for Repair
	Slide 87: Benefits of CMMI
	Slide 88: Summary
	Slide 89: Software Assurance
	Slide 90: Current NASA Software Documentation Tree (with a few related non-software documents in gray)
	Slide 91: Documents:
	Slide 92
	Slide 93: Types of Software Defects Across NASA Projects
	Slide 94: Examples of NASA software issues seen during operations
	Slide 95: NASA-STD-8739.8A Standard Approach
	Slide 96: Software Handbook – Requirements Example
	Slide 97: Software Engineering and Software Assurance Handbook Topics
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Software Safety-Critical
	Slide 114
	Slide 115: Primary Safety-Critical Software Requirements
	Slide 116: Primary Safety-Critical Software Requirements
	Slide 117: Safety-Critical Software Requirements
	Slide 118: NASA Software Independent Verification and Validation (IV&V) Activities
	Slide 119: NASA’s Independent Verification and Validation (IV&V) Program
	Slide 120: Introduction to IV&V
	Slide 121: Generic Look at IV&V
	Slide 122: Determining the Amount of IV&V
	Slide 123: Products to Expect from IV&V
	Slide 124: Which Projects Receive IV&V?
	Slide 125
	Slide 126: Software Classifications
	Slide 127: NASA-wide software classification structure
	Slide 128: Software Classification vs. Tailoring
	Slide 129: Tailoring Approach for NPR 7150.2D
	Slide 130: Software Reuse and Internal Sharing
	Slide 131: Summary of New Requirements on Internal NASA Software Sharing or Reuse
	Slide 132: Software Cybersecurity
	Slide 133: 3.11 Software Cybersecurity
	Slide 134: 3.11 Software Cybersecurity
	Slide 135: NASA-STD-1006, Space System Protection Standard Requirements
	Slide 136: Project Protection Plan (PPP) Requirement
	Slide 137: Current Space Asset Protection Policy
	Slide 138: Candidate Protection Strategies (CPS)
	Slide 139: Software Engineering Lifecycles
	Slide 140: Software Life Cycle Planning
	Slide 141: Project Life Cycle
	Slide 142: From NPR 7150.2
	Slide 143: Frequently Discussed Lifecycles ….
	Slide 144: “Agile” Based Incremental Software Development Approach
	Slide 145: All Project Lifecycles are “Punctuated” with Formal Technical Reviews
	Slide 146: Software Life cycle products and their maturity level at the various software project life cycle reviews (Part 1 of 2)
	Slide 147: Software Life cycle products and their maturity level at the various software project life cycle reviews (Part 2 of 2)
	Slide 148: Benefits
	Slide 149: NASA-HDBK-2203, Topic 7.9
	Slide 150: What does the Systems NPR 7123 state for Software
	Slide 151: Summary for Lifecycles and Reviews
	Slide 152: Class Plan
	Slide 153: Software Requirements
	Slide 154: Requirement Development
	Slide 155: NPR 7150.2D Requirements on Software Requirements
	Slide 156: NPR 7150.2D Requirements on Software Requirements
	Slide 157: Software Requirements
	Slide 158: Flow Down of Requirements
	Slide 159: Software Requirement Sources
	Slide 160: Guidelines for the Software Requirements Specification Content
	Slide 161: Guidelines for the Software Data Dictionary Content
	Slide 162: Requirements Maturity
	Slide 163: When Requirements Development Is Not Done Well…
	Slide 164: Requirements Management Metrics
	Slide 165: Comparison Chart for SLOC / Requirements Ratios
	Slide 166: Requirements Management
	Slide 167: Requirements Management Process
	Slide 168: When Requirements Management Is Not Done Well…
	Slide 169: Common Software Requirements Problems
	Slide 170: How Would You Design and Code These Software Requirements?
	Slide 171: Software Architecture
	Slide 172: NPR 7150.2D Requirements on Software Architectures
	Slide 173: Questions
	Slide 174: What is Architecture?
	Slide 175: Two Aspects of “Architecture”
	Slide 176: System Architecture vs. Software Architecture
	Slide 177: Software Architect Essential Activities
	Slide 178: Software Architecture Documentation
	Slide 179: Summary for Software Architectures
	Slide 180: Software Design
	Slide 181: NPR 7150.2D Requirements on Software Design
	Slide 182: Architecture versus Design
	Slide 183: What is the Design?
	Slide 184: Activities During Design
	Slide 185: Bi-directional Traceability
	Slide 186: Software Design Considerations (1 of 2)
	Slide 187: Software Design Considerations (2 of 2)
	Slide 188: A Design Strategy
	Slide 189: Rules of Software Design
	Slide 190: Take Advantage of the Software Engineering Design Principles in Developing Your Software Designs
	Slide 191: Software Design Metrics
	Slide 192: Summary For Software Design
	Slide 193: Software Implementation or Coding
	Slide 194: NPR 7150.2D Requirements During Implementation
	Slide 195: NPR 7150.2D Requirements During Implementation
	Slide 196: Implementation
	Slide 197: Software Implementation –More Than Coding!
	Slide 198: Top 15+ Best Practices for Writing Super Readable Code
	Slide 199: Top 15+ Best Practices for Writing Super Readable Code
	Slide 200: Top 15+ Best Practices for Writing Super Readable Code
	Slide 201: Software Builds/Releases
	Slide 202: Software Build Guidelines
	Slide 203: Other Implementation Topics
	Slide 204: Secure Coding Community of Practice Site
	Slide 205: And Then There’s Documentation!
	Slide 206: Measures in Implementation
	Slide 207: Even with all this------
	Slide 208: Software Testing
	Slide 209: Software Testing Requirements NPR 7150.2D
	Slide 210: Software Testing Requirements NPR 7150.2D
	Slide 211: Software Testing Requirements NPR 7150.2D
	Slide 212: Software Testing Requirements NPR 7150.2D
	Slide 213: What is a Testing?
	Slide 214: Question
	Slide 215: Test Planning
	Slide 216: Test Case Design / Test Procedures
	Slide 217: Software Test Procedure Guidelines
	Slide 218: Software Test Procedure Guidelines
	Slide 219: Comparison Of Types
	Slide 220: Independence in Software Item Testing
	Slide 221: Software Assurance Witnessing
	Slide 222: Testing on the Target Computer System
	Slide 223: Capturing Results
	Slide 224: Analyzing Results
	Slide 225: Analyzing Results
	Slide 226: Accredited software models, simulations, and analysis tools
	Slide 227: Flight Software Testing Life-Cycle
	Slide 228: Sample Software Test Metrics
	Slide 229: Summary
	Slide 230: Software Maintenance
	Slide 231: Software Maintenance
	Slide 232: Software Operations, Maintenance, and Retirement Requirements
	Slide 233: Software Maintenance
	Slide 234: Software Delivery
	Slide 235: Operations Support
	Slide 236: Software Maintenance Support
	Slide 237: Software Retirement Support
	Slide 238: Measures for Maintenance
	Slide 239: Class Plan
	Slide 240: Peer Reviews/Inspections
	Slide 241: Inspection Approaches
	Slide 242: Peer Reviews/Inspection Requirements
	Slide 243: Linus's Law
	Slide 244: Defect Removal Efficiency
	Slide 245: Products for Peer Reviews
	Slide 246: Benefits
	Slide 247: Process
	Slide 248: Process
	Slide 249: Software Peer Review Base Metrics
	Slide 250: Summary for Ensuring Quality in Your Project
	Slide 251: Software Configuration Management
	Slide 252: NPR 7150 Software Configuration Management Requirements
	Slide 253: NPR 7150 Software Configuration Management Requirements
	Slide 254: NPR 7150 Software Configuration Management Requirements
	Slide 255: SAE/EIA-649B Configuration Management Standard
	Slide 256: Software Configuration Management
	Slide 257: Configuration Items
	Slide 258: Change Control
	Slide 259: Audits
	Slide 260: Software Risk Identification and Management
	Slide 261: Software Risk Requirement in NPR 7150.2
	Slide 262: Remember to Plan for Risk Management
	Slide 263: Software Risk Requirement Rationale
	Slide 264: Use a Checklist to Help Identify Software Risk Items
	Slide 265: Identifying Risks
	Slide 266: Software Risk Identification Steps
	Slide 267: Software Risk Management Steps – Track, Control, Communicate
	Slide 268: Software Risk Management Steps – Track, Control, Communicate
	Slide 269: Software Measurements
	Slide 270: Why Measure? - 1
	Slide 271: NPR 7150.2D Requirements on Software Requirements
	Slide 272: A Thought!
	Slide 273: Why You Should Measure
	Slide 274: Why Do Technical Performance Measurement?
	Slide 275: And a Few More Reasons to Measure---
	Slide 276: Components of a Measurement Plan
	Slide 277: Candidate Management Indicators That Might Be Used On A Software Development Project:
	Slide 278: Mapping of Organizational Goals to Metrics
	Slide 279: Acquisition Considerations: Measuring the Contractor’s Work
	Slide 280: Acquisition Considerations: Measuring Government Work
	Slide 281: Repeat The Thought
	Slide 282: Summary for Software Measurements
	Slide 283: Software Non-conformance or Defect Management
	Slide 284: Software Non-conformance or Defect Management
	Slide 285: Software Non-conformance or Defect Management
	Slide 286: Software Non-conformance or Defect Management
	Slide 287: Bidirectional Traceability
	Slide 288: Bidirectional Traceability
	Slide 289: Bi-directional Traceability Requirement
	Slide 290: Safety-Critical Software Requirements
	Slide 291: Software Requirement Sources
	Slide 292: Software Licensing
	Slide 293: The Problem: Why We Need Software Licensing Management
	Slide 294: Avoid Hidden Dangers – Do Your Part!
	Slide 295: Software Publisher Audits
	Slide 296: Agency Software Lifecycle Management Plan Vision, Goals, and Objectives
	Slide 297: Software License Lifecycle
	Slide 298: NASA Software Acquisition Considerations
	Slide 299: Road Map for an Acquisition
	Slide 300: Beginning the Acquisition Planning
	Slide 301: NPR 7150 Applies to All Software Acquisitions
	Slide 302: What Are Technical and Software Data Rights?
	Slide 303: What Are Technical and Software Data Rights?
	Slide 304: Data Rights Questions
	Slide 305: Marking Examples
	Slide 306: Data Rights Questions
	Slide 307: Electronic Access Requirements
	Slide 308: What Needs To Be Accessible?
	Slide 309: Summary
	Slide 310: Class Plan
	Slide 311: Software Related Failures “The major cause of the software crisis is that the machines have become several orders of magnitude more powerful! To put it quite bluntly: as long as there were no machines, programming was no problem at all; when w
	Slide 312: Why Software Projects Fail?
	Slide 313: Why is software special?
	Slide 314: “Software is the easiest to change but in change, it is the easiest to compromise.” The "Bug" Heard 'Round the World by John R. “Jack” Garman October 1981
	Slide 315: Subsystem Failure Study Data
	Slide 316: Software isn’t any more fail-proof than hardware is… (it can and does break occasionally)
	Slide 317: Detailed look at some of the Software Related Failures Examples
	Slide 318: The Main Lesson to be Learned
	Slide 319: Intelsat 6
	Slide 320: NASA Mars Climate Orbiter
	Slide 321: The Mars Program Independent Assessment Team (MPIAT)
	Slide 322: Ariane 5 Explosion
	Slide 323: Ariane 5 Accident
	Slide 324: Mariner 1 Failure - Homework
	Slide 325: Titan IV B Centaur
	Slide 326: DART Failure
	Slide 327: Multiple Root Causes and Recommendations on DART
	Slide 328: Multiple Root Causes and Recommendations on DART
	Slide 329: The Lewis Spacecraft
	Slide 330: Critical Lessons Overview
	Slide 331: Software error doomed Japanese Hitomi spacecraft
	Slide 332: Japanese ispace company moon lander Hakuto-R crash
	Slide 333: ESA’s Schiaparelli Failure
	Slide 334: Additional Common Problems: Flight Software Lessons
	Slide 335: Summary
	Slide 336: NASA Software Class Summary
	Slide 337: Class Plan
	Slide 338: Course High Level Objectives
	Slide 339: Class Summary
	Slide 340: Summary
	Slide 341: Software's Role and Importance on NASA Missions
	Slide 342: Questions
	Slide 343: Acronyms NPR 7150.2 Appendix B

