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Abstract

A well-known property of solar wind plasma turbulence is the observed anisotropy of the autocorrelations, or
equivalently the spectra, of velocity and magnetic field fluctuations. Here we explore the related but apparently not
well-studied issue of the anisotropy of plasma density fluctuations in the energy-containing and inertial ranges of
solar wind turbulence. Using 10 yr (1998–2008) of in situ data from the Advanced Composition Explorer mission,
we find that for all but the fastest wind category, the density correlation scale is slightly larger in directions quasi-
parallel to the large-scale mean magnetic field as compared to quasi-perpendicular directions. The correlation scale
in fast wind is consistent with isotropic. The anisotropy as a function of the level of correlation is also explored.
We find at small correlation levels, i.e., at energy-containing scales and larger, the density fluctuations are close to
isotropy for fast wind, and slightly favor more rapid decorrelation in perpendicular directions for slow and medium
winds. At relatively smaller (inertial range) scales where the correlation values are larger, the sense of anisotropy is
reversed in all speed ranges, implying a more “slablike” structure, especially prominent in the fast wind samples.
We contrast this finding with published results on velocity and magnetic field correlations.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Space plasmas (1544); Plasma physics
(2089); Solar wind (1534); Magnetohydrodynamics (1964)

1. Introduction

There are two well-known reasons for turbulent fluctuations
in the solar wind to exhibit departures from statistical isotropy
(Batchelor 1970; Oughton et al. 2015). The first is solar wind
expansion, which in the simplest terms imposes the radial
coordinate as a preferred direction. This is expected to
influence mainly those structures larger than the turbulence
correlation scales. For smaller-scale structures, including the
inertial and kinetic ranges, the second influence—that of the
local large-scale magnetic field—is expected to exert a
dominant influence. Indeed, it is well established that in the
inertial range of magnetohydrodynamic (MHD) turbulence, the
correlation functions (or equivalently, the spectra) of magnetic
field and velocity fluctuations exhibit anisotropy relative to the
magnetic field direction (Matthaeus et al. 1990, 1996; Shaikh &
Zank 2010; Chen et al. 2012; Oughton et al. 2015). The
symmetries that may be associated with this anisotropy may be
referred to as rotational symmetries, such as axisymmetric
“slab” or “2D” geometries (Bieber et al. 1996). The analogous
issue of anisotropy of density fluctuations has received some
attention, reviewed below, in the theoretical and numerical
simulation literature (Matthaeus et al. 1996; Chandran &
Backer 2002; Cho & Lazarian 2002; Zank et al. 2012) as well
as in remote sensing observations (Coles & Harmon 1989).
However, to our knowledge, the issue of correlation or spectral
anisotropy of the density fluctuation field in the energy-
containing and inertial ranges of turbulence has not been fully

examined in solar wind in situ observations. Here we take a
step in that direction by examining density correlation statistics,
their variation relative to the mean magnetic field and their
variation with scale. (Mean values and other statistics are
computed over samples of at least a correlation scale, in accord
with classical ergodic theory; see e.g., Panchev 1971.) As in the
usual picture of turbulence, scales can be categorized as the
energy-containing, inertial, and dissipation regimes. Here, we
focus on the former two, which are roughly separated by the
correlation scale (Frisch 1995). Our study emphasizes observa-
tions near 1 au, where long-term data sets provide the
possibility of high statistical weight analyses.
Coronal and solar wind density fluctuations can be studied

based on remote sensing techniques, such as analysis of
scintillation of signals from distant radio sources (Coles &
Harmon 1989; Armstrong et al. 1990; Kellogg & Horbury
2005; Kontar et al. 2023). Rotational symmetry is frequently
extracted from these measurements. Many of these studies are
designed to detect coronal density properties, while a few have
been carried out near 1 au. The seminal work of Celnikier et al.
(1987) describes the limitations and sensitivities of this class of
scintillation studies. A typical conclusion is that structures in
the coronal density fluctuation field are preferentially elongated
in the direction of the inferred mean magnetic field. This
implies that density gradients are stronger in directions
perpendicular to the magnetic field. This sense of correlation
anisotropy is familiar in solar wind measurements of velocity
and magnetic field (Matthaeus et al. 1990; Bieber et al. 1996;
Hamilton et al. 2008; Narita et al. 2010; Chen et al. 2011;
Horbury et al. 2012; Oughton et al. 2015).
Interplanetary density spectra have also been examined

based on in situ observations (see, e.g., Bellamy et al. 2005).
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But the directional dependence of density fluctuation statistics
in the inertial and energy-containing ranges of scales have
sometimes been overlooked, even in relatively complete
characterizations of turbulence correlations (Borovsky 2012).
When density fluctuations have been considered, the emphasis
has often been on high-frequency or subion scales (Celnikier
et al. 1987; Malaspina et al. 2010; Chen et al. 2013; Kontar
et al. 2023) where kinetic plasma properties are probed.
However, we are not aware that a comprehensive survey has
been carried out to describe the anisotropy of MHD-scale
inertial range correlation of the plasma density. This motivates
our current focus on the anisotropy of energy-containing range
and inertial range density fluctuations near Earth’s orbit.

This paper is organized as follows: in Section 2 we discuss
the “Maltese cross” representation of correlation anisotropy,
which serves as the theoretical basis prompting this research. In
Section 3 we describe our data and analysis procedure.
Section 4 presents our results on the scale-dependent density
correlation anisotropy, and Section 5 discusses the implications
of the results.

2. Simplified Representations of Anisotropy

A point of reference that motivates the present study is the
“Maltese cross” autocorrelation pattern (Matthaeus et al. 1990)
derived from the interplanetary magnetic field at 1 au. The
pattern is assumed to be axisymmetric about the mean magnetic
field B0 and consists of a lobe that admits gradients mainly in
the direction parallel to B0 and another part that varies mainly
in the directions perpendicular to B0. In an idealized sense, the
former are known as “slab” fluctuations, and the latter, “2D”
fluctuations. This so-called two-component model has become
a useful parameterization for anisotropy that incorporates both
Alfvén wavelike spectral components and a quasi-2D (Q2D)
ingredient that varies, at most, weakly along a mean field
(Bieber et al. 1994, 1996). The two-component parameteriza-
tion allows for arbitrary admixtures of energy in models that
vary mainly along or transverse to the mean field, and as such
has become a convenient and often-invoked model for use in
theoretical work on charged particle scattering (Zank et al.
2004; Shalchi 2009; Shalchi et al. 2010; Zhao et al. 2017,
2018). It is also incorporated with several variations into
turbulence transport models that describe turbulence through-
out the heliosphere as well as models for solar wind
acceleration and evolution in the presence of turbulence (e.g.,
Adhikari et al. 2017; Usmanov et al. 2018). The anisotropy
present in such models exerts a strong influence on the results
of such calculations and modeling of turbulence. It is essential
to bear in mind that such parameterization of anisotropy are
crude representations, and are not intended as dynamical
turbulence models. However, they demonstrate the physical
significance and impact of correlation or spectral anisotropy.

Another approach to describing spectral anisotropy is based
on wave theory, with the premise being that linear MHD wave
modes may be separated unambiguously based on their
polarization properties (Cho & Lazarian 2002; Cho et al.
2002). (The standard decomposition has been controversial for
some time and recently a more complete approximate
representation that includes structures as well as waves has
been suggested by Zank et al. 2023.) This wave decomposition
idea can be directly carried over to turbulence in the weak
turbulence regime. In that case, the adopted basis and leading-
order dynamical solutions are constructed from the linear

modes themselves (Chandran 2005). In this view, the Alfvén
mode is anisotropic, a well-established property in strong MHD
turbulence (Shebalin et al. 1983; Oughton et al. 1994). In
addition, the Alfvén mode is polarized transverse to the mean
magnetic field, a small-amplitude property adopted in critical
balance theory by Goldreich & Sridhar (1995; see also
Oughton & Matthaeus 2020). The slow mode is assumed to
follow a passive dynamics, and to admit an anisotropy similar
to the incompressible Alfvén mode. The decomposition into
wave modes is completed by extracting fluctuations with the
polarization of linear fast modes. These remain isotropic, as the
fast mode dispersion does not depend on direction. It is widely
regarded that useful results have been attained based on a
linear-wave decomposition. However, it should be disparaged
as a general representation of MHD turbulence, as it has been
shown to be essentially incomplete (Zank et al. 2023); in
particular it lacks coherent structures and nonpropagating
structures that are nonetheless found to be dynamically
important (Gan et al. 2022; Zhao et al. 2023).
The linear-wave theory underlies a popular surrogate for

compressional effects, the so-called magnetic compressibility,
that has been extensively employed in observational solar wind
studies (Chen et al. 2012; Bruno & Carbone 2013). This
surrogate assumes that the relative strength of the component of
the magnetic variance parallel to the ambient (mean) magnetic
field is a measure of compressional dynamical activity. This
assumption breaks down for large-amplitude turbulence,
wherein parallel fluctuations need not be identified with
compressional fast magnetosonic modes. Such fluctuations
could have a more general character, such as an indication of
spherical polarization of large-amplitude Alfvénic fluctuations
(Barnes & Hollweg 1974; Barnes 1981), which are usually not
associated with density variations.
In the following, we will not make explicit use of

representations based on mode decomposition, but rather will
incorporate the underlying ideas into our physical discussion of
the anisotropy of solar wind density fluctuations.

3. Data and Analysis Procedure

We acquire 10 yr (from 1998 February to 2008 March) of
ion number density data observed by the SWEPAM instrument
on the Advanced Composition Explorer (ACE) spacecraft
(McComas et al. 1998), along with corresponding solar wind
speed measurements from SWEPAM and magnetic field
measurements from the magnetic field instrument (MAG;
Smith et al. 1998) on ACE. This data set covers most of a solar
activity cycle, with maximum sunspot number occurring in
2003 (e.g., Balmaceda et al. 2009). The original data at 64 s
resolution is upsampled to a 1 minute cadence and separated
into data sets that span 1 day. Overlapping midnight-to-
midnight and noon-to-noon intervals are included to increase
the total number of data sets and suppress systematic day-
timescale periodicities. We remove interplanetary coronal mass
ejections (ICMEs) from the data samples, under the assumption
that their characteristic average plasma properties relegate them
to a distinct class of wind intervals (Klein & Burlaga 1982;
Cane & Richardson 2003) that we do not consider here; for
this, we consulted an available online table of ICMEs
(Richardson & Cane 2024). About 11% of intervals with wind
speeds below 400 km s−1 are removed, while approximately
15% are removed for wind speeds surpassing 400 km s−1. The
difference may be attributed to the prevalence of ICMEs during
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the solar maximum, particularly when fast solar winds are more
abundant within the ecliptic plane. In addition, a density
interval is discarded if over 70% of the observations are empty.
Within the retained intervals, any missing data—necessarily
less than 70% of the span of the interval is marked “NAN” to
exclude it from our computations. We then compute a linear
least-squares fit to each interval, and detrend the interval by
subtracting the fit from the data, resulting in zero-mean data
samples.

We group the data intervals based on their mean solar wind
speed VSW and the angle between their mean magnetic and
velocity fields:

⎜ ⎟
⎛
⎝

⎞
⎠

˜ ˜

| | | |
( )q =

á ñ ⋅ á ñ
á ñá ñ

- B V

B V
cos 11 SW

SW

where the tilde notation Ã indicates computing the absolute
value of each component of a vector A, and 〈L〉 refers to
averaging over an individual 24 hr data set. Taking the absolute
value effectively avoids the cancellation of θ within a given
interval due to magnetic polarity reversals. The θ channels are
0°–40°, 40°–45°, 45°–50°, 50°–55°, 55°–60°, 60°–65°, and
65°–90°, and the VSW channels are 0–400, 400–500, and
500–1000 km s−1 for slow, medium, and fast winds,
respectively. The channels are chosen to ensure a sufficient
number of data sets in each group, as shown in Table 1 (also
see Appendix A for a distribution of the solar wind speeds).

To proceed with our analysis, we compute the density
autocorrelation function for each data set using the Blackman–
Tukey method (Blackman & Tukey 1958; as described in detail
in Roy et al. 2021). The ensemble definition of the
autocorrelation is

( ) ( ) ( ) ( ) ( ) ( )t r r t r r t= á + ñ - á ñá + ñR t t t t , 2

where ρ is the ion density and τ is the time lag. Invoking the
ergodic theorem, the brackets 〈L〉 correspond formally to
averaging over an infinite sample size. For finite data consisting
of N equally spaced samples, we denote the averaging
operation as á ñ¢. Specifically, for a data set {ρi}= ρ0, L ,
ρN−1 with sampling time Δt= 60 s, τ takes integer multiples of
Δt, and the averaging can be written explicitly as

( ) ( )r rá ñ¢ = á ñ t= - D -t , 3j j N t0, , 1

( ) ( )r t rá + ñ¢ = á ñ t= D -t , 4j j t N, , 1

( ) ( ) ( )r r t r rá + ñ¢ = á ñt t+ D = - D -t t . 5j j t j N t0, , 1

For the remainder of the paper, for clarity, we drop the prime in
the bracket notation.
For stationary data, R(τ) does not depend on the variable t,

i.e., the origin of time. And therefore by definition, the
correlation function is an even function of lag τ. Under
appropriate conditions, this is equivalent to the Reynolds
averaging expression for the correlation function, R(τ)= 〈δρ(t)
δρ(t+ τ)〉, where δρ(t)≡ ρ(t)− 〈ρ(t)〉 (see Germano 1992).
When we consider the normalized correlation function R̂, the

R(τ) resulting from Equation (2) is normalized by the data
variance R(0):

ˆ ( ) ( )
( )

( )t
t

=R
R

R 0
. 6

To eliminate undersampled fluctuations at large lags, we
pass each autocorrelation function through a 10% cosine taper
window (Matthaeus & Goldstein 1982), where the last 10% of
ˆ ( )tR values are multiplied by the factor

⎜ ⎟
⎛
⎝

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠

( ) ( )p
t

t t+ -
1

2
1 cos

0.1
0.9 7

max
max

with tmax representing the maximum lag over which the
autocorrelation is calculated. In this analysis the maximum lag
is 4.8 hr; this corresponds to 1/5 of the data interval, and
several times the anticipated correlation times.
We further transform the temporal lags τ into spatial lags λ

by applying the Taylor frozen-in hypothesis (Taylor 1938),
λ=− VSWτ, where VSW is the solar wind speed in the
upstream direction averaged over the data interval. With this
procedure, we arrive at a normalized, spatial lag-dependent
correlation function ˆ ( )lR .

4. Results

We first examine statistics of the density samples. The
standard deviation over mean, otherwise known as the
coefficient of variation, C.V., is a measure of the relative
fluctuation amplitude of the density samples. The C.V. range
up to 1.57 across the 24 hr data sets and increase with θ.
Figure 1 illustrates the average sample C.V. with respect to θ
and VSW, with the error bars representing standard errors. These
plots indicate that relative density fluctuations are stronger
when the spacecraft samples flow perpendicular to, rather than
parallel to, the mean magnetic field, and that slow wind
exhibits slightly larger density fluctuations compared to fast
wind. The top panel of Figure 1 is consistent with the recent
work of Du et al. (2023), on the anisotropy of density
fluctuations obtained from simulations of compressible MHD
turbulence. We present further statistics of our density samples
in Appendix B, which includes the standard deviation 〈δρ2〉1/2

of density for each angular and wind speed channel. It is well
known that slow wind is denser than fast wind (McComas et al.
2000; Usmanov et al. 2018); it is shown in Appendix B that the
density fluctuation magnitudes in slow wind are also larger. We
also include a joint distribution of the density standard
deviation and mean.
We proceed to our investigation of the correlation aniso-

tropy. The normalized autocorrelation functions are averaged
within each group of speed and angular channel, resulting in 21
instances of autocorrelations henceforth represented by
ˆ ( )l t= -R VSW . These are shown in the panels of Figure 2.

Table 1
ACE 24 hr Data Set Count in Each Wind Speed and Angular Channel

�400 km s−1 400–500 km s−1 �500 km s−1

0°–40° 62 81 34
40°–45° 96 97 77
45°–50° 206 283 284
50°–55° 341 487 563
55°–60° 449 621 492
60°–65° 373 400 227
65°–90° 392 265 81

Total 1919 2234 1758

Note. The angle θ is defined in Equation (1).
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Separate panels correspond to slow, medium, and fast winds,
and within each, angular variations are demonstrated.

The correlation length λc, defined as the spatial lag where the
correlation decreases by a factor of 1/e, is listed in Table 2 for
each channel. The uncertainties are standard errors calculated
from the ensemble of intervals within each channel. We further
plot λc over θ for all three wind channels in the top panel of
Figure 3, and fit each set of data with a linear curve using least-
squares analysis. We find a general subtle trend of correlation
length decreasing as θ increases in both slow and medium wind
—the slope of slow wind is negative with a 2σ confidence, as
shown in the legend of Figure 3. However, the slope of fast
wind is close to zero. This indicates that the longest average
correlation lengths in slow and medium winds occur when the
mean magnetic field direction is quasi-aligned with the plasma
flow direction, while in fast wind the correlation lengths are
approximately isotropic.

We also list, in parentheses in Table 2, the spatial lag where
the correlation decreases by a factor of 1/2e, denoted as λ1/2e.
The corresponding plot is shown in the bottom panel of
Figure 3. We find that as compared to λc, λ1/2e decreases more

Figure 1. Density coefficient of variation averaged over each θ channel (top
panel) and each VSW channel (bottom panel). Error bars represent standard
errors. Here δρ(t) ≡ ρ(t) − 〈ρ(t)〉, where 〈L〉 refers to an average over an
individual 24 hr data set, and “mean” refers to averaging the coefficient of
variations over all 24 hr data sets that lie within a θ or VSW channel.

Figure 2. Normalized density autocorrelation for slow (top panel), medium
(middle panel), and fast (bottom panel) winds as functions of spatial lag. The
correlations have been averaged within each angular channel, denoted by
distinctly colored lines. Dashed horizontal lines indicate where ˆ =R e1 and
1/2e.

Table 2
Correlation Length in Units of 106 km in Each Wind Speed and Angular

Channel

�400 km s−1 400–500 km s−1 �500 km s−1

0°–40° 1.55 ± .17 2.10 ± .14 2.43 ± .28
(2.88 ± .20) (3.43 ± .17) (4.56 ± .39)

40°–45° 1.65 ± .15 1.98 ± .13 2.38 ± .22
(2.90 ± .16) (3.51 ± .17) (4.56 ± .26)

45°–50° 1.53 ± .09 1.68 ± .07 2.18 ± .10
(2.60 ± .10) (3.13 ± .10) (4.16 ± .13)

50°–55° 1.48 ± .07 1.85 ± .06 2.30 ± .07
(2.58 ± .08) (3.26 ± .07) (4.36 ± .09)

55°–60° 1.50 ± .06 1.73 ± .05 2.08 ± .07
(2.53 ± .07) (3.16 ± .07) (4.03 ± .10)

60°–65° 1.55 ± .07 1.80 ± .06 2.23 ± .11
(2.75 ± .08) (3.28 ± .08) (4.01 ± .14)

65°–90° 1.40 ± .06 1.83 ± .07 2.55 ± .18
(2.40 ± .07) (3.08 ± .09) (4.51 ± .24)

Average 1.52 ± .27 1.85 ± .24 2.31 ± .44
(2.67 ± .31) (3.26 ± .30) (4.31 ± .58)

Note. The uncertainties represent standard errors. Spatial lags where correlation
decreases by / e1 2 are listed in parentheses.
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noticeably as θ increases, suggesting that the observed
correlation persists to larger distances in the parallel directions.
Equivalently, the gradients at the outer scale of turbulence are
moderately stronger in the perpendicular directions. Addition-
ally, we observe that the correlation lengths are systematically
longer in fast wind compared to slow wind. This latter
difference appears to be clearer in density correlations
compared with magnetic correlations (Weygand et al. 2011).

To better visualize the density correlation anisotropy for slow,
medium, and fast winds, in Figure 4 we plot the contour levels of
the averaged autocorrelations ˆ ( )lR in perpendicular and parallel
lag spaces through the transformation ( l l q l= =^ sin ,

)l qcos , following Dasso et al. (2005). The contours are
computed in the first quadrant, then mirrored about the θ= 0°
and 90° axes under symmetry assumptions. This is a statistical
demonstration of the“Maltese cross” geometry in density
fluctuation fields.

It is evident that the outermost contours of constant
correlation in Figure 4, those with the smallest correlation
values, are slightly elongated in the parallel direction for slow
and medium wind speed. These contours of very low
correlation values (the largest “circles”) may be characterized
as weakly “2D-like” in the sense described in Dasso et al.
(2005), whereas the fast wind contour is isotropic. However,

Figure 3. The correlation length λc (top panel) and the length λ1/2e where the
correlation decreases by a factor of 1/2e (bottom panel) as functions of angular
channel for slow, medium, and fast winds. The data and uncertainties are
consistent with those listed in Table 2. Dashed lines show linear best fits with
corresponding slopes listed in the legends.

Figure 4. The correlation contours for slow (top panel), medium (medium
panel), and fast (bottom panel) winds, calculated from Figure 2 through the
transformation ( )l l q l l q= =^ sin , cos .
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the higher correlation contours (the smaller circles) tend to
exhibit the opposite type of anisotropy that may be described as
“slablike.” Specifically, for fast wind, the contours with
correlation greater than 0.1 is somewhat “slablike” with
elongation in the perpendicular direction, and this tendency
becomes more pronounced at higher correlation values, as
depicted in the bottom panel of Figure 4. Meanwhile, the
ˆ =R 0.5 contours for slow and intermediate winds remain
slightly 2D-like, even though they also become slablike at the
highest correlation values. This general tendency of the
correlation contours in its dependence on wind speed is
qualitatively consistent with the magnetic field results from
Dasso et al. (2005). We discuss this comparison in greater
detail later.

The general increase in correlation lengths with increasing
wind speed is also readily apparent in Figure 4, where
isocontours “expand” from the top to the bottom panel.

Table 3 quantifies the density anisotropies as we have
described above. Here, we list the values for λ⊥, λ∥, and λ⊥/λ∥
in all three wind speed channels corresponding the following
normalized correlations: ˆ =R 0.9, 0.7, 0.5, 1/e, 0.3, 1/2e, and
0.1. Scales larger than the correlation scale are considered the
energy-containing scale, while smaller scales belong to the
inertial range. The lags are calculated from Figure 2 using

( )–
 l l=^ R̂ sin 77.565 90 and ( )–

 l l= R̂ cos 200 40 , or can
be directly observed in Figure 4. Note that due to the coarse
binning at low θ, λ∥ may be underestimated and λ⊥/λ∥ may be
overestimated. Figure 5 shows how λ⊥/λ∥ varies with R̂. We
again observe that the correlations are slightly elongated along
the parallel direction at small R̂ (large spatial lags), while for
small spatial lags (large R̂), corresponding to the inertial range,
the correlations are elongated in the perpendicular direction.
The systematic underestimation of parallel correlation lengths

suggests that the dynamics may be more 2D-like than predicted
in Figures 4 and 5.

5. Discussion

There is a general tendency for MHD, and plasma turbulence
in the MHD range of scales as well, to exhibit correlation
anisotropy, and equivalently, spectral anisotropy relative to the
direction of a regional mean magnetic field of sufficient
strength (Shebalin et al. 1983; Oughton et al. 1994). Other
effects may also introduce anisotropies by imposing preferred
directions that influence regional and local dynamics. For
example, in a structured and expanding medium such as the
solar wind, large-scale plasma flows may introduce preferred
directions that influence anisotropy. A notable effect is that of
expansion, which, in the simplest case, selects the radial
direction as preferred. Other relevant effects include regions of
shear and compression occurring between high- and low-speed
streams and near shocks, as well as interactions involving
structures such as coronal mass ejections. One may expect that
these various influences on anisotropy may operate at different
length scales, and may have varying levels of influence on
different physical quantities. For mostly practical reasons, solar
wind studies on turbulence anisotropy have often concentrated
on the magnetic field. The present report extends this
discussion to include the fluctuations in density.
More specifically, most previous examinations of anisotropy

have considered the relatively local effects of the magnetic field
direction on the rotational symmetry of magnetic fluctuations
(Bieber et al. 1994, 1996). Based on results from laboratory
experiments (Robinson & Rusbridge 1971) and numerical
simulations (Shebalin et al. 1983; Oughton et al. 1994), the
expectation is that MHD-scale turbulence will display a Q2D
anisotropy relative to the field direction. This expectation is
mainly motivated by a property of incompressive dynamics,
namely that the cascade to higher perpendicular wavenumbers
proceeds unabated while the parallel cascade is inhibited by
wave propagation (Shebalin et al. 1983). This anisotropy is
reasonably well confirmed in most analyses of solar wind
rotational symmetry (Bieber et al. 1994, 1996). An exception is
the study of Saur & Bieber (1999), which finds some support

Table 3
Estimates of λ⊥ and λ∥ in Units of 106 km as Well as Their Ratio on the

Correlation Contours ˆ ( )l =R 0.9, 0.7, 0.5, 1/e, 0.3, 1/2e, and 0.1 for Slow,
Medium, and Fast Winds

R̂ λ⊥ λ∥ λ⊥/λ∥

0.9 0.04 0.02 1.67
0.7 0.31 0.26 1.17
0.5 0.85 0.89 0.95

�400 km s−1 1/e 1.37 1.45 0.94
0.3 1.69 1.87 0.90
1/2e 2.34 2.69 0.87
0.1 2.95 3.34 0.88

0.9 0.05 0.04 1.15
0.7 0.42 0.42 1.00
0.5 1.11 1.22 0.91

400–500 km s−1 1/e 1.78 1.97 0.90
0.3 2.18 2.41 0.91
1/2e 3.00 3.22 0.93
0.1 3.78 3.92 0.97

0.9 0.05 0.04 1.30
0.7 0.51 0.35 1.47
0.5 1.57 1.27 1.23

�500 km s−1 1/e 2.49 2.27 1.10
0.3 3.09 2.87 1.08
1/2e 4.39 4.28 1.03
0.1 5.40 5.42 1.00

Figure 5. Estimates of λ⊥/λ∥ as functions of ˆ ( )lR for slow, medium, and fast
winds. Dotted vertical lines indicate the 1/e and 1/2e correlation levels.
Dashed horizontal line indicates where λ⊥/λ∥ = 1.
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for a preferred role of the radial direction at relatively lower
frequencies. The later finding suggests the influence of
expansion, an effect clearly seen in WKB treatments (e.g.,
Völk & Aplers 1973).

Considering a broader context, the dynamics in the solar
wind at 1 au may consist of an admixture of incompressive and
compressive parts. In this more realistic portrayal, more
complex influences on rotational symmetry may be anticipated.
In particular, the incompressive tendency toward a Q2D
configuration merges with the relatively isotropic spectral
(and correlation) statistics attributed to the compressible
dynamics. Indeed, compressible MHD simulations (Matthaeus
et al. 1996; Du et al. 2023) with Mach number, plasma β, and
δB/B similar to those of the solar wind indicate that density
spectra are anisotropic, but less so than the anisotropy seen in
incompressible simulations (Oughton et al. 1994). This appears
to be consistent with the current findings in slow and medium
winds, wherein the correlation lengths parallel and perpend-
icular to the mean magnetic field differ from one another by
only a small relative fraction. The present finding also suggests
a more complex scenario in which the sense of anisotropy
varies across scales.

It has been previously suggested (Dasso et al. 2005;
Weygand et al. 2011) that for the magnetic field in the solar
wind, the parallel correlation scale is larger than the
perpendicular correlation scale by a factor of around 2 for the
slow solar wind. This is a modest 2D-like anisotropy compared
to what is expected at smaller scales in the inertial range.
However, such a ratio is considerably larger than that of the
density correlation scales reported here.

Here, for density fluctuations, the sense of anisotropy at the
correlation scale, whether measured at the 1/e or the 1/2e
level, is mainly of the “2D” type. (The fast wind is essentially
isotropic at the 1/e scale but becomes slightly 2D at larger
scales.) We suggest that the weaker outer-scale anisotropy of
the density is due to the effects of the admixture of more
anisotropic incompressive turbulence with less anisotropic
compressible turbulence, consistent with previous numerical
results (see, e.g., Figure 5 of Matthaeus et al. 1996).

It is interesting, perhaps a bit surprising and of potential
significance, that at smaller scales (higher correlation values),
the sense of density anisotropy reverses and favors slablike
symmetries. This trend occurs in all wind speed channels and is
especially dramatic for fast wind. This is reminiscent of the
sense of magnetic anisotropy at correlation scales in fast wind
(Dasso et al. 2005). Furthermore, by inspection of the magnetic
correlation contours in Dasso et al. (2005), it appears that
slablike symmetry occurs across a wide range of scales in fast
wind. This, however, was not quantified. But for slow wind, the
2D-like sense of magnetic anisotropy mentioned above as
present at the correlation scale remains (as seen by inspection)
2D-like over a reasonably wide range of scales. Furthermore, in
the above-quoted compressible MHD simulation results
(Matthaeus et al. 1996), the inertial range contours of density
spectra appear to be of the 2D type, although not dramatically
so. Finally, we note that our finding of slablike density in the
fast wind inertial range also seems to contradict Figure 5 and 6
of Chen et al. (2012), who use Ulysses data and adopt | |B as a
proxy for compressive fluctuations. A major difference,
however, is that the analysis of Chen et al. (2012) is carried
out in a coordinate system based on a local definition of the
mean field. Such a procedure systematically increases the ratio

of perpendicular to parallel structure functions, thus favoring
2D-like interpretations (Matthaeus et al. 2012). Our computa-
tion of mean fields integrated over longer times is chosen to
avoid this bias.
We cannot rule out the appearance of field-aligned (2D-like)

anisotropies at much smaller scales, possibly for all wind
speeds. Indeed, these are favored by coronal observations such
as Armstrong et al. (1990). The study found field-aligned
elongated structures having anisotropy ratios that increase with
increasing heliocentric distance from 2 to about 10 solar radii.
However, these observations were at much smaller scales, and
much closer to the Sun, relative to the present large-scale
observations at 1 au. Nevertheless, these authors did suggest
that solar wind density anisotropy varies with scale. On the
other hand, Zank et al. (2024) studied density fluctuations in
sub-Alfvénic wind using mode-decomposition analysis, and
found anisotropy dominated by a combination of the slablike
entropy mode and the 2D-like backward propagating slow
magnetosonic mode. The anisotropy of their entropy mode is
consistent with our results, although their results extend over
the scales = ´ -k 2 10 6 to -10 2 -km 1, which slightly overlaps
with the smallest scales we investigate.
The present results for the anisotropy of density stand in

substantial contrast to expectations based on magnetic and
velocity field spectra in incompressible simulations and in solar
wind observations. The basis of this expectation is that the
incompressible cascade, which presumably is a major factor in
the solar wind dynamics, is well known to favor 2D-like
anisotropies (Oughton et al. 2015). The reasons for this
departure remain unclear at present, but most likely pertain to
the way compressible fluctuations are generated in the solar
wind. Further research will be required to arrive at a clearer
understanding.
Future observations from the PUNCH mission (Deforest

et al. 2022) will provide us with solar wind density data in
regions of the inner heliosphere yet unexplored and with an
unprecedented field of view. As observed in DeForest et al.
(2016), the solar wind shows a transition from “striated” to
“flocculated” features, suggesting an evolution toward iso-
tropization (Cuesta et al. 2022). Using the white-light images
obtained from PUNCH, it will be possible to recover
unprecedented mapping of solar wind density. Such measure-
ments will be used to perform analyses similar to those
presented in this paper, which will provide invaluable knowl-
edge about the radial evolution of solar wind anisotropy.
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Appendix A
Distribution of Solar Wind Speed at 1 au

The separation of data intervals into three wind speed classes
is a central part of this analysis. To ensure a reasonable level of
statistical validity in each class, we base the partitioning by
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speed on an understanding of its probability distribution, as
shown in Figure 6. The boundaries for slow, medium, and fast
wind channels are represented by dotted vertical lines to show
an almost equal number of counts in each channel.

Appendix B
Statistics of Solar Wind Density at 1 au

Here, we provide further statistics on our density samples.
The standard deviation, S.D., measures the fluctuation
amplitude, as opposed to the relative fluctuation amplitude
shown in Figure 1. Figure 7 shows the average S.D. of the

density samples with respect to θ and VSW, with error bars
representing standard errors. The S.D. values range from 0.6
to 3.4 cm−3 across the 24 hr data sets, and increase with θ and
decrease with VSW. By comparing Figures 1 and 7, we note
that the trend of the density fluctuation amplitude increasing
with the angle between the magnetic and velocity fields is not
compensated by the increasing mean density. Whereas the
tendency toward higher fluctuation amplitude in slower winds
is predominantly ascribed to a corresponding increase in mean
density.
To study the relationship between mean density and density

fluctuation in the solar wind at 1 au, we plot in Figure 8 the joint
probability density of the two variables. As expected, we observe
larger mean densities corresponding to greater fluctuations.

Figure 6. Shaded histogram shows the distribution of solar wind speeds.
Dotted vertical lines represent the boundaries of the solar wind speed channels.
Solid curve shows the best-fit lognormal distribution. Dashed curve shows the
lognormal distribution derived from the arithmetic mean and variance of the
wind speed samples. Parameters of both lognormal distributions are listed in
the legend.

Figure 7. Density standard deviation averaged over each θ channel (left panel) and each VSW channel (right panel). Error bars represent standard errors. Here δρ(t) ≡
ρ(t) − 〈ρ(t)〉, where 〈L〉 refers to an average over an individual 24 hr data set, and “mean” refers to averaging the coefficient of variations over all 24 hr data sets that
lie within a θ or VSW channel.

Figure 8. 2D distribution of density standard deviation and mean. Data from all
θ and VSW channels are combined.
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