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Abstract—In space communications, particularly when involv-
ing regions beyond cislunar space, the development of advanced
networking solutions is essential to address the challenges posed
by limited connectivity, substantial propagation delays, and radio
signal variations. This study explores a data-driven approach to
the Licklider Transmission Protocol (LTP), specifically focusing
on dynamically adjusting the maximum payload size of seg-
ments. Prior research has emphasized the potential benefits of
dynamically adjusting this parameter, introducing the concept of
Cognitive LTP. This paper presents a software implementation
of Cognitive LTP (CLTP) within an open-source Delay Tolerant
Networking (DTN) framework, specifically the High-rate Delay
Tolerant Networking (HDTN), and experimentally evaluates its
performance under realistic space conditions. Leveraging the
Cognitive Ground Testbed (CGT), developed by NASA GRC
for spacecraft communication emulation, this study effectively
bridges the gap between theoretical advancements and practi-
cal applications. By thoroughly analyzing CLTP’s functionality
within the CGT, this research offers insights into the practical
implications of adaptive networking strategies, emphasizing the
importance of conducting tests in relevant environments for the
maturation of space communication technologies.

Index Terms—Delay Tolerant Networking, Reinforcement
Learning, Licklider Transmission Protocol, Spiking Neural Net-
works

I. INTRODUCTION

Space networks are inherently sparse systems operating
in extremely harsh environments, posing significant technical
challenges. These challenges lead to intermittent network
connectivity and substantial propagation delays, affecting in-
dividual channels to different extents. To address these issues,
the DTN architecture has been developed, departing from
the traditional assumptions of classic networking protocols.
A notable protocol within DTN is the Licklider Transmission
Protocol (LTP) outlined in RFC 5326. LTP serves as a conver-
gence layer protocol supporting both reliable and best-effort

bundle deliveries, employing a method of transmitting data
bundles as a sequence of segments.

A crucial parameter within LTP is the maximum payload
size of segments, which is typically determined manually by
the operator. Previous studies have highlighted the significant
influence of this parameter on block delivery performance,
as well as the potential advantages of dynamically adapting
its value to different operational scenarios. Both analytical
and simulation outcomes have indicated the advantages of this
approach, often referred to as Cognitive LTP [1]. However, an
open question, which the present study endeavors to address,
concerns the practical performance of this approach when
evaluated within the context of standard space protocols and
under realistic operational conditions.

The Cognitive Communications Project at NASA Glenn
Research Center (GRC) has been focused on increasing the
technology readiness level of advanced space communications
systems utilizing state-of-the-art algorithms for automation
and cognition[2]. A significant gap between the develop-
ment of many delay tolerant and interplanetary networking
optimizations using artificial intelligence, machine learning,
and related techniques [3], [4], [5] is the lack of testing
in a relevant environment, which is one of the key criteria
for technology maturation. To address this need, a realistic
spacecraft emulation testbed known as the Cognitive Ground
Testbed (CGT) has been developed by NASA GRC [6].

This paper addresses the development of a cognitive ex-
tension for LTP (CLTP) that is then tested in both a lab-
oratory computer network and the high-fidelity emulation
environment of the CGT consisting of software defined radios,
flight computers, channel emulators, modems, orbital analysis,
mission operations, and network automation servers. Conse-
quently, this paper’s contributions include the development of



a software implementation of CLTP integrated into an open-
source DTN protocol distribution, namely HDTN. Our study
rigorously examines the performance of CLTP through real-
world testing under approximated space conditions, enhancing
the credibility and practicality of our findings. We believe that
the approach taken in both method implementation and test
environments represents a novel and substantial contribution
towards the advancement of cognitive networking technolo-
gies.

II. RELATED WORKS

Several studies have approached topics closely related to
this research. Bezirgiannidis and Tsaoussidis [7] conducted
experimental investigations on the impact of packet size.
Additionally, Lu et al. delved into an analysis of packet
sizes for DTN through non-convex optimization [8]. No-
tably, the latter work relies on knowledge of channel con-
ditions, introducing practical limitations on its applicability.
The academic community has also invested substantial effort
in evaluating the performance of DTN and space network
protocols, with various studies focusing on different facets
of LTP. These aspects include assessing LTP’s flow control
[9], examining bundle aggregation within blocks [10], [11],
and investigating the effects of the convergence layer [12],
[13]. Recent research endeavors have sought to enhance LTP
performance, for instance, by implementing a Reed-Solomon
code to mitigate segment loss probabilities [14]. On the
other hand, HDTN has been developed by NASA GRC to
optimize many aspects of interplanetary networking [15]. The
project was originally conceived to support high-rate optical
communications onboard the International Space Station [16],
however it also serves as a networking framework for a variety
of cognitive applications [17], [18], [19], routing methods [20],
and forward error correction for CubeSat applications [21].
HDTN uses a modular architecture and high-speed message
bus to allow enhancement of basic functions with external
third-party modules, simplifying software development and
integration.

III. COGNITIVE APPROACH TO LTP SEGMENT
OPTIMIZATION

A. Problem Formulation

The fundamental concept entails replacing the conventional
static data segment size selection methodology of the stan-
dard LTP with a dynamic selection approach driven by an
intelligent agent or controller. This dynamic selection method
presents a sequential resource allocation challenge among sev-
eral competing alternatives. In this context, these alternatives
correspond to distinct segment sizes available for partitioning
a data block for transmission. The objective revolves around
optimizing the attainable rewards, where a reward can be
interpreted as minimizing the delivery delay for bundles. This
optimization is achieved by effectively striking a balance
between the header overhead of individual segments and the
necessity for segment retransmissions in the event of one or

more segments being lost during a transmission round. The
role of the cognitive extension for LTP is given in Fig. 1.
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Fig. 1. Overview of the proposed method that dynamically selects the segment
length for each new LTP block transmission. The number of rounds required
by previous sessions serves to adjust the synapse strengths of the SNN, helping
the CNC to improve the next segmentation.

The operational dynamics of the LTP communication sys-
tem, employing a specific segment length, can be charac-
terized through the utilization of two stochastic sequences,
denoted as x(0), x(1), . . . and R(x(0)), R(x(1))), . . ., where
x(n) denotes the state of the communication after n block
transmissions and R(xn) the reward obtained for the n-th
transmission. The reward can be interpreted as the inverse of
the block delivery time. The state transition after the n-th block
transmission is given by: x(n) = fn−1(x(0), x(1), . . . , x(n−
1),W (n − 1)), where fn−1(.) is the transition function and
W (n) is a sequence of independent random variables making
the process not necessarily Markov.

Given k possible segment sizes (actions) to be used, the
problem constitutes a type of multi-armed bandit process
where the controller needs to choose every time exactly one
action with all other actions disabled. Therefore, the system
behavior with each possible action can be described by the
sequences {(xi(ni(t)), R(xi(ni(t))))}, where ni(t) denotes
the number of times the i-th segment size option was selected
until time t. If U(t) = (U1(t), . . . Uk(t)) represents the
action taken by the controller at time t. U(t) takes values
in {e1, . . . , ek} where ej is a unit k-vector of zeros except for
a 1 at the j-th position.

The system’s evolution unfolds according to the following
rules: xi(ni(t + 1)) = fni(t)(xi(0), . . . , xi(ni(t)),W (ni(t)))
if Ui(t) = 0. Otherwise, xi(ni(t + 1)) = xi(ni(t)). Also,
ni(t + 1) = ni(t) for Ui(t) = 0 and ni(t + 1) = ni(t) + 1
otherwise. A given segment selection only yields a reward



when it is chosen:

Ri(t) = Ri(xi(ni(t)), Ui(t)) =

{
Ri(xi(ni(t))) ;Ui(t) = 1

0 ;Ui(t) = 0

The scheduling policy γ = (γ1, γ2, . . . ) defines the control
action U(t) for each time t:
U(t) = γt(Z1(t), . . . , Zk(t), U(0), . . . , U(t − 1)), where

Zi(t) = [Xi(0), . . . , Xi(ni(t))]. The optimization problem is
therefore to find the scheduling policy that maximizes:

Jγ = E

[ ∞∑
t=0

βt
k∑

i=1

Ri(xi(ni(t)), Ui(t))|Z(0)

]
(1)

B. Cognitive Network Controller

Expression 1 is approximated through a sequential decision-
making processes computed with a Spiking Neural Network
(SNN) architecture. This architecture comprises of k excitatory
neurons, each corresponding to a possible segment size, and
their activity serves as an indication of the optimal choice.
Additionally, the network includes k − 2 inhibitory neurons
responsible for regulating the membrane potential across the
network. The spiking neurons within this framework are
characterized by the Leaky Integrate and Fire (LIF) model
[22], which models the membrane potential using a resis-
tor–capacitor circuit. A spiking neuron emits a brief pulse
or spike upon reaching a specific threshold in its membrane
potential. Network connections facilitate the transmission of
spikes to other neurons, with amplification given by the weight
values associated with specific connections. In this architecture
that was initially developed for routing [23], the outputs of all
neurons are connected to every excitatory neuron.

Upon the arrival of a spike, the membrane potential of the
receiving neuron either increases or decreases depending on
whether the source neuron is of the excitatory or inhibitory
type. All neurons receive a constant stimulus of sufficient
magnitude to evoke an initial spike simultaneously. Given the
uniform stimulus across all neurons, the primary differentiat-
ing factor influencing the emission of new spikes becomes the
weight values of the connections. Consequently, these weight
values undergo modification via a reinforcement learning step,
which either encourages or discourages the re-selection of the
last action. The optimal action is encoded in the timing of the
second spike emission.

As the reward signal becomes available only after the LTP
sender decides either to drop a data block (resulting in a
very low reward signal) or upon receiving confirmation of
successful delivery from the receiver, these events determine
when the reinforcement learning step is executed. To this end,
the controller maintains an average cost Gi associated with
each segment size choice i through exponential averaging of
the number of transmission rounds Ci required for successful
block delivery. In cases where the block was dropped, a
penalty term is applied: Gi ← αCi + (1 − α)Gi, where
0 ≤ α ≤ 1 is a hyperparameter. The synapse weights are

updated as follows with the third update element added for
faster convergence:

w(cj , ci) ← w(cj , ci) + ηδ ; j = 0, . . . , k − 1; i ̸= j
w(cl, ci) ← w(cl, ci)− ηδ ; l = k, . . . , 2k − 3;
w(ci, cj) ← w(cl, ci)− ηδ ; j = 0, . . . , k − 1; i ̸= j

(2)
where η > 0 is the learning rate and δ = C −min{Gi}.

IV. IMPLEMENTATION

Because the cognitive extension for LTP only affects the
sender engine, it can be easily integrated into existing im-
plementations of the protocol. In the LTP protocol, incoming
bundles are aggregated into blocks, and each block is divided
into segments for transmission, each with a maximum size
denoted as L. These segments are dispatched sequentially
when there is a suitable contact opportunity. It is assumed
that data blocks are sent using the reliable block delivery
mode, i.e., with the retransmission of lost segments, which
occurs in retransmission rounds. To monitor the progress of
this process, a counter, denoted as nbr tx, is used to keep
track of the number of transmission rounds required for the
reliable delivery of the block. This value is approximated by
incrementing the counter each time a checkpoint (CP) number
is received within a report segment (RS). Since LTP allows
sending multiple RS for the same CP in some cases, the
counter may not be an accurate measurement. However, it still
serves to assess the approximate retransmission effort level
needed for a block under the current channel conditions.

The typical procedure concludes when either the block is
successfully delivered, leading to the transmission of a final
report acknowledgment (RA) to the receiver, or when the
block is dropped after a session failure. However, with the
introduction of the cognitive extension, an additional step
occurs at this point: a reinforcement learning process takes
place, resulting in the updating of the SNN weights, as
elaborated upon in Section III. The update process employs
the inverse of nbr tx-ref as the reward signal, where nbr tx
is intentionally set to a high value (MAX) as a penalty for
block drops. Here, the value denoted as ref represents the
minimum average number of transmission rounds among the
available options. The value of MAX should be equal to or
greater than the maximum anticipated number of transmission
rounds (usually a protocol configuration parameter). A larger
value intensifies the penalty for block drops. Subsequent to
the SNN weight update, the SNN is executed to determine the
new action, specifically the segment size value to be employed
for the next block transmission. These sequential steps are
summarized in the flow chart depicted in Fig. 2.

A. Modifications Made to HDTN

HDTN is an implementation of the standard DTN protocols
developed at NASA’s GRC that is available as open source
[15]. The implementation of the cognitive extension logic
for HDTN primarily impacts two key classes. Firstly, the
LtpSessionSenderCommonData class has been extended to
incorporate three additional members: a boolean flag that
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Fig. 2. Simplified flow chart of LTP including the cognitive extension that dynamically optimizes segment lengths. The boxes with dashed borders indicate
the two main events that may occur after a transmission round.

indicates whether the cognitive extension should be applied,
the count of available actions representing the number of
segment length options, and a pointer pointing to the data
structure responsible for implementing the Cognitive Network
Controller (CNC). Enabling the extension can be achieved
through standard HDTN configuration, specifically by zeroing
the ltpDataSegmentMtu parameter within the LTP JSON data
structure.

Secondly, the LtpSessionSender class has been expanded to
include a counter tracking the number of transmission rounds,
which is incremented by the ResendDataFromReport member
function. Additionally, a set of hyperparameters essential for
the training phase of the Spiking Neural Network (SNN) has
been included. This training phase can be initiated from either
the LtpCheckpointTimerExpiredCallback member function or
the ReportSegmentReceivedCallback member function, contin-
gent upon the successful delivery of the block.

Following the execution of the SNN and the consequent
SNN training, the value of ltpDataSegmentMtu is updated.
Additionally, for exploration purposes, a small fraction of
decisions is replaced with random selections, albeit exclusively
after the successful delivery of a block.

B. Auxiliary Modifications

A few additional modification were introduced to facilitate
the performance measurement of the cognitive extension. The
BpGenAsyncRunner class was modified to store in a logfile the
number of transmission rounds after a block delivery and the
BpSinkAsyncRunner was changed to send the bundle creation
time to the source using a ZeroMQ socket via the control
network. The information is received by a background process
that calculates the round-trip time for the bundle transmission,
which approximates the one-way delivery time as the delay of
the return path via the control network is negligible.
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Moreover, to validate the implementation on a standard
computer network, specifically in the absence of radio equip-
ment, the HandleUdpReceive member function within the
LtpUdpEngineManager class was modified to introduce ran-
dom packet drops with a probability given by the formula
1− (1− ber)8L, where L denotes the segment payload size.

V. RESULTS

Tests were conducted in two settings. The initial code de-
velopment took place in a network laboratory, where emulated
packet drops were used to simplify the initial experimentation.
Further validation was carried out on a Cognitive Ground
Testbed using software-defined radios and more realistic chan-
nel conditions.



A. Network Laboratory Results

The initial validation was conducted using a wired 100
Mbps wired channel connecting both the sender and receiver,
primarily for experimental convenience. To emulate a propa-
gation delay of 100 ms, a NetEm queue discipline was applied
to the network interfaces at both ends of the link. Packet losses
were intentionally introduced to match a predefined Bit Error
Rate (BER), as detailed in Section IV (B). This BER value
served as one of the key experimental parameters.

Each experiment involved the transmission of 100 kB bun-
dles over a duration of 5 minutes, at a rate of 1 bundle per
second. These experiments were conducted with two different
configurations: one with the cognitive extension enabled for
dynamic segment size selection and the other using a fixed
segment size throughout the entire experiment’s duration.

The experiments concluded either when all bundles were
successfully received or when there was a lack of reception
activity for a specified period. HDTN’s LTP convergence-layer
adapter (LTP over UDP) was configured to allow a maximum
of 10 retransmission rounds, as determined by the parameter
ltpMaxRetriesPerSerialNumber. For each set of parameters,
a minimum of 5 samples were collected, with each sample
comprising data on the average bundle delivery time, bundle
loss ratio, average number of transmission rounds, and average
segment payload length.

Fig. 4 illustrates the average response time of the test bundle
flow in relation to the selected segment payload size across dif-
ferent channel BER values, specifically 10−6, 10−5, 2×10−5,
and 10−4. The block delivery times achieved by CLTP are
reported on the left side of each chart using circular markers.
The cross markers indicate the response times obtained by
the standard LTP after fixing the segment payload length to
the value shown on the horizontal axis. The response time of
the test flow without emulated packet losses closely resembled
that of the 10−6 case, leading to the omission of that particular
data point from the chart. At BER levels of 10−6 or lower, it
becomes evident that the response time tends to decrease with
larger segment sizes. This trend is expected, as larger segments
help mitigate the overall header overhead of the bundle flow,
and their loss rates are minimal due to the low BER. In this
scenario, CLTP discovered an average segment length of 960.7
bytes. However, with a BER of 10−5, the desirability of larger
segments persists, albeit the higher loss rate associated with
larger segments renders them somewhat less attractive. For
this experiment, CLTP determined an average segment size
of 814.6 bytes. This trend continues as the BER increases to
2×10−5, where the average segment length identified by CLTP
decreases to 722.1 bytes. It is worth noting that in these two
tests, we observed higher variability in the results. Finally,
with a substantial BER of 10−4, the optimal strategy shifts
toward employing much smaller segment sizes, which are less
susceptible to loss, thereby conserving retransmission time.
For this scenario, CLTP identified an average segment size
of 460.2 bytes. Furthermore, the experiment with a BER of
10−4 was the only one that resulted in significant block drops

as depicted in Fig. 5. In this case, the block loss ratio exhibited
a rapid increase for larger segments, reaching approximately
0.12.
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B. Cognitive Ground Testbed Results

Realistic tests were conducted using the CGT (Fig. 3)
which aims to emulate end-to-end communications between a
spacecraft and its mission operations center (MOC). Hardware
used in CGT includes: software-defined radios (SDRs) suitable
for smallsat missions (CesiumAstro SDR-1001), single-board
computers for spacecraft and MOCs, modems representative
of various service providers, and a radio channel emulator
(Keysight Propsim F64). AGI’s System Tool Kit (STK) is
used to model orbital dynamics and estimate received signal
parameters. During an active contact, the channel emulator
connects RF signals between the spacecraft and the active
provider’s modem. Link parameters computed in STK (signal-
to-noise ratio (SNR), Doppler shift) are added to emulate
signal conditions as they would appear on-orbit.

The tested scenario considered a single user spacecraft in
low-Earth orbit sending data via geostationary relay satel-
lites. Ephemerides of the International Space Station and the
Inmarsat Global Xpress constellation were used for orbital
mechanics computations. A Ka-band (26.5-40 GHz) terminal
with RF parameters similar to [24] was assumed in link budget
calculations. The 2nd Generation Digital Video Broadcasting
– Satellite (DVB-S2) standard [25] was used as the physical-
layer protocol and a QFlex-400 DVB-S2 modem was used to
represent service provider hardware. A corresponding DVB-S2
transceiver was implemented on the SDR which was limited
to a MTU of 1,005 bytes.

Since the proposed adaptive technique operates on es-
tablished contacts, the measurements were obtained without
regards of the time required to establish these contacts. No
artificial packet loss emulation was introduced during the tests,
as the channel naturally produced losses due to the selected
waveform and SNR conditions at the receiver.

The test flow comprised 10 kB bundles transmitted from
the emulated spacecraft node to the mission operation control
(MOC) node at a rate of 2 bundles per second for a duration of
300 seconds. Subsequently, network performance metrics were
collected and stored for later analysis. The traffic generation
was performed using the bpgen/bpsink programs, consistent
with the network laboratory tests. In the interference-free
scenario, the observed block delivery times for the bundles are
presented in Fig. 6 (a). In this context, the values for smaller
packets were higher compared to the network laboratory
tests due to the increased header overhead associated with
smaller segments. Conversely, larger segments proved to be
more desirable in this scenario, aligning with the dynamically
chosen values by CLTP, which averaged 915 bytes as shown
in Fig. 6 (b).

To investigate the protocol’s performance under adverse
communication conditions, interference was introduced by
overlaying a second QPSK signal at 1.65 GHz. Various power
levels were tested, revealing that the results tended to ex-
hibit more variability compared to tests with emulated packet
losses. Notably, synchronization issues emerged between the
transmitter and receiver, worsening with higher power levels.

This phenomenon rendered the channel unavailable for certain
periods, thereby adding additional delay to block transmissions
and causing intermittent disruptions within contacts. When
employing lower power levels (typically below -14 dBm),
no significant packet drops were observed, and consequently,
larger segment lengths remained optimal. As an example
demonstrating the tradeoff, Fig. 7 illustrates the results with
an interfering power level of -14.29 dBm. These results reveal
that CLTP identified an average segment length of 460 bytes,
achieving a lower average block delivery time than the regular
LTP.
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Fig. 6. Performance measurements of the bundle flow over a SDR channel
without added interference: (a) average bundle delivery time; (b) mean average
segment size; (c) bundle loss ratio.

VI. CONCLUSION

In conclusion, this study has explored the potential of
extending the Licklider Transmission Protocol with cognitive
capabilities and subsequently validated this approach. By
dynamically adjusting the maximum payload size of segments,
CLTP has demonstrated its ability to outperform the traditional
Licklider Transmission Protocol under specific loss conditions,
offering valuable insights into data transmission adaptability
within the challenging space environment.

The software implementation of CLTP within the HDTN
architecture, contributes with a substantial step forward in
the maturation of cognitive networking technologies. Rigorous
testing within the CGT provides a realistic and relevant envi-
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Fig. 7. Results for a bundle flow over a SDR channel with added interference
of -14.29 dBm a QPSK signal at 1.65 GHz: (a) average bundle delivery time;
(b) mean average segment size; (c) bundle loss ratio.

ronment, bridging the gap between theoretical advancements
and practical applications.

The findings underline the significance of adaptability and
highlight the potential of Cognitive LTP in improving the
efficiency and reliability of data exchange in space. As hu-
manity’s exploration of outer space continues, the insights
from this study are poised to contribute to the advancement
of space communication technology, enhancing its resilience
and adaptability to the dynamic challenges of deep space
exploration.
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