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In this research, the strategic deconfliction of unmanned aircraft systems for an urban
package delivery environment with two depots and multiple drop-off locations is studied. This
research aims to formulate a mathematical model to compute both the departure sequence
and scheduled time of departure for each unmanned aircraft system at a depot, considering
temporal constraints at en-route crossing waypoints and depots for strategic deconfliction.
However, the problem formulation results in an NP-hard mixed-integer nonlinear programming
problem for the global optimal solution, so instead, a "rolling horizon with 𝑘-position search"
heuristic method is developed. The simulation studies show that an increase in the value of
𝑘 (the parameter used to determine the size of the local neighborhood) reduces the average
ground delay at the cost of an increase in the computation time for a given problem size. The
study also shows an order of magnitude increase in the maximum number of flights scheduled
with the integration of rolling horizon (time decomposition) compared to those without the
integration of rolling horizon in the heuristic algorithm for a given computation time cut off.

I. Introduction
Small unmanned aircraft systems (UAS) are envisioned to provide socio-economic benefits to the public by

revolutionizing operations related to package delivery, precision agriculture scouting, surveillance, supporting first
responders, and inspection of critical infrastructure like railroads and bridges [1, 2]. These UAS are anticipated to
operate in the following manner: i) much closer to each other (higher traffic density) than conventional aircraft, ii)
exclusively in low-altitude airspace, i.e., less than 400 ft above ground level (AGL) [2], and iii) beyond visual line
of sight (BVLOS) in the National Airspace System (NAS) [3–5]. Therefore, UAS traffic management (UTM) aims
to create a system that can safely and efficiently integrate low-altitude airspace UAS BVLOS operations safely and
efficiently into NAS.

A. Background

1. Conflict Management Model
UAS traffic management (UTM) has been envisioned to have multiple layers of a conflict management model to

ensure the safe, efficient, and scalable operations of UAS. These layers of the conflict management model are strategic
deconfliction, tactical separation assurance, and collision avoidance [4]. At each layer, conflicts are resolved through
a series of maneuvers compatible with the operational environment. The objective of the first layer of the conflict
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management model, i.e., strategic deconfliction, is to i) minimize the likelihood of airborne conflicts between UAS
operations and ii) maximize the airspace usage by adjusting the departure times of UAS [3, 4]. The strategic deconfliction
may involve re-planning routes in some scenarios. The tactical separation assurance layer consists of executing one or
more maneuvers (speed change, altitude change, and path-stretch) to avoid an airborne conflict promptly when strategic
deconfliction is ineffective due to uncertainties [6–8]. Finally, the last layer of protection is the onboard detect and avoid
(DAA) system, i.e., collision avoidance system [3].

2. Trajectory-Based Operational Intent and Operational Volume Blocks
In the UTM ecosystem, a UAS operator planning to fly BVLOS is required to share the trajectory-based operational

intent with other UAS operators/airspace users via the UAS Supplier Service (USS) network [3, 4]. As shown in
Figure 1, the trajectory-based operational intent includes a sequence of 4D (spatiotemporal) operational volume blocks
(OVBs) that make up the intended flight profile [3, 9, 10]. An OVB gets activated when a UAS enters it and deactivated
when it exits as shown in Figure 1 [3]. In this research, each OVB is assumed to be fixed in space and has specified
entry and exit times for the UAS of an operator per NASA and the FAA’s UTM concept of operations [3, 4, 9]. In
the operation planning phase, prior to departure, the UAS operator or operator’s USS checks the OVBs against other
operations for any 4D conflicts. If any spatiotemporal overlapping of OVBs is detected, then negotiation and replanning
of the operational intent of the UAS are performed [3, 11]. Whenever there is a 4D spatiotemporal overlapping of two
operational intents of different UAS operators, for example, at a crossing waypoint, then deconfliction of overlapping
OVBs can be performed via temporal separation at that waypoint [2, 3].

(a) Lateral view of active operational volume block # 1 (b) Lateral view of active operational volume block # 2

Fig. 1 Activation (Green Color) and Deactivation (Grey Color) of Operational Volume Block (OVB) as a UAS
Enters and Exits [5]

3. Departure Sequencing and Scheduling
The departure scheduling problem is to find a sequence of aircraft departure times that optimize an objective such as

average ground delay or aggregate ground delay of all aircraft or makespan (scheduled time of departure of the last
aircraft) [12, 13]. Mixed-integer linear programming (MILP) and mixed-integer nonlinear programming (MINLP) are
powerful tools to model and solve combinatorial optimization problems such as departure sequencing and scheduling.
MILP and MINLP problems cannot be solved deterministically in polynomial time (NP-hard) [14], so the computation
time for finding an exact solution is exponential in the number of UAS. Therefore, heuristic methods for MILP/MINLP
are of high interest for real-time solutions in conventional air traffic management (ATM) and traffic management of new
entrants like UTM [12, 13, 15, 16].

4. Local Neighborhood Search
Local neighborhood search is a heuristic algorithm for local-optimal real-time solutions. Unlike global search

methods that explore the entire solution space, local neighborhood search algorithms focus on making incremental
changes to improve a current solution until they reach a satisfactory solution [12]. This approach is practical when the
vast solution space makes an exhaustive search impractical in real-time [13].

5. Rolling Horizon
The rolling horizon scheduling approach involves decomposing the MINLP problem into multiple time slots, which

are solved sequentially as sub-problems [17]. Figure 2 illustrates the concept of rolling horizon [17]. The rolling horizon
mechanism delivers the scheduling plan periodically for every planning horizon. As shown in Figure 2, the time horizon
of prediction (T) is defined as the time period from the beginning of the planning horizon to the end of the current UAS
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traffic prediction. In each planning horizon (Figure 2), the scheduled time of departure (STD) of UAS with the earliest
time of departure (ETD) in the current planning horizon are computed considering predicted conflicts at depots and
en-route crossing waypoints due to UAS from current and previous planning horizons. Once the STDs are computed for
the current planning horizon, they are frozen [18]. Then, STDs are calculated for UAS that have ETDs falling in the
next planning horizon. The rolling horizon process is repeated until the sequencing and scheduling for overall traffic
(multi-stage optimization problem) is computed [17].

Fig. 2 Illustration of Rolling Horizon Concept for Strategic Deconfliction

B. Motivation
The current research aims to extend strategic deconfliction using OVBs at a single crossing waypoint [5] to

multiple crossing waypoints. In conventional ATM research, the 𝑘-Position search (KPS), also known as insertion
and local search (ILS), and constrained position shift (CPS) have been applied for departure and arrival sequencing
and scheduling problems [12, 13]. Given the small flight range and flight time for UAS package delivery operations
(in minutes) compared to conventional ATM (in hours), the KPS can be extended for en-route strategic deconfliction
along with departure sequencing and scheduling of UAS operations. In this research, the simulated network structure
of routes with depots and corresponding drop-off locations, are considered hub-and-spoke type [3, 19, 20], therefore,
arrival sequencing and scheduling has been ignored. Since the departure sequencing and scheduling problem is
non-deterministic polynomial-time (NP) hard, one way of overcoming scalability issues is to break down the departure
sequencing and scheduling timeline at depots into subproblems using the concept of the rolling horizon [17, 18] and
then apply KPS to each rolling horizon. Therefore, this research aims to understand the scalability of rolling horizon
with the KPS heuristic algorithm for departure sequencing and scheduling with en-route strategic deconfliction in the
UTM package delivery environment.

II. Problem Formulation
The strategic deconfliction of UAS at an en-route crossing waypoint, depot A (departure port), and depot B (departure

port) has been formulated as a MINLP problem. The minimum temporal separation between UAS of different operators
at an en-route crossing waypoint has been imposed based on temporal separation equations derived in [5] for strategic
deconfliction. The strategic deconfliction at departure ports (depots) and en-route crossing waypoints is performed by
adding ground delays (GDs) to the STDs of UAS. Assuming the flight time (FT) of a UAS to various crossing waypoints
from a depot remains constant. Therefore, for each scenario, adjustment to the scheduled times of arrival (STAs) at
various crossing waypoints of a UAS is performed by adjusting the STD. The variables and constants used in the MINLP
problem are shown in Table 1.

The departure sequence, STDs, and STAs to various waypoints of UAS from all previous planning horizons are
treated as constant while in the current planning horizon for departure sequencing and scheduling with en-route strategic
deconfliction. Therefore, departure sequencing and scheduling are computed only for UAS in the current planning
horizon (Figure 2).
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In this section, for ease of explanation, the variables of interest are defined for the 𝑖𝑡ℎ UAS. Still, without loss of
generality, similar formulas exist for the 𝑗 𝑡ℎ and other UAS.

Table 1 Definition of Variables and Constants Used in the MINLP Problem

Terminology Definition Characteristic Unit
GD Ground delay of a UAS Objective variable Seconds

n Total number of flights scheduled to Constant Number of
depart from a depot in a planning horizon Flights

ODT On-demand service request time Poisson distribution Seconds
to deliver a package

Δ𝑡prep Flight preparation time Constant Seconds

Δ𝑡sep Minimum departure time separation Constant Seconds

Δ𝑡CW Minimum temporal separation Constant Seconds
at the crossing waypoint

ETD Earliest time of departure of the Poisson distribution Seconds
UAS considering ODT and flight

preparation time

STD Scheduled time of departure Decision variable Seconds

FT Flight time of a UAS to travel Constant Seconds
from the depot to the crossing

waypoint

STA Scheduled time of arrival of a UAS Function of STD and FT Seconds
to the crossing waypoint

𝜔(𝑖, 𝑗) Decides which UAS will sequence the Binary decision variable N/A
waypoint first: 𝑖𝑡ℎ UAS or 𝑗 𝑡ℎ UAS

1. Objective Function
In this research, the objective function of the MINLP problem is the average ground delay defined as follows [5]:

Minimize

∑𝑛𝐴

𝑖=1 GD(i) +∑𝑛𝐵
𝑗=1 GD(j)

𝑛𝐴 + 𝑛𝐵
(1)

where GD(i) and GD(j) are the ground delays of the 𝑖𝑡ℎ UAS of the operator A, and 𝑗 𝑡ℎ UAS of the operator B,
respectively. Here, 𝑛𝐴 and 𝑛𝐵 are the total number of flights scheduled to depart from depot A and depot B in the

4



current planning horizon, respectively. The average ground delay is computed and minimized in each planning horizon.
The ground delay of the 𝑖𝑡ℎ UAS is defined as the difference between its STD and the earliest time of departure

(ETD) as follows:
GD(i) = STD(i) − ETD(i) (2)

ETD(i) of the 𝑖𝑡ℎ UAS is the sum of on-demand service request time for a package delivery (ODT(i)), and the flight
preparation time (Δ𝑡prep) [5]:

ETD(i) = ODT(i) + Δ𝑡prep (3)

Δ𝑡prep is the time required for preparing the UAS flight, which includes time for on-demand order processing,
packaging of order, loading of delivery package to the assigned UAS, and pre-flight checks. It is assumed to be a
constant 3600 seconds.

2. Temporal Constraints at Departure Depots
The ODT in Equation 3 is simulated using a Poisson distribution [5]. The STD of each UAS is separated from its

ODT by at least Δ𝑡prep at each departure port [5]:

STD(i) ≥ EDT(i) (4)

At the departure port of UAS operator A and UAS operator B, STD of two consecutive UAS are separated by at least
the minimum departure time separation (Δ𝑡sep) [5]:

STD(i+1) ≥ STD(i) + Δ𝑡sep (5)

3. Temporal Constraints at En-Route Crossing Waypoints
The minimum temporal separation (Δ𝑡CW) constraint between two UAS of different UAS operators at the crossing

waypoint is as follows [21]:

(STA(j) − STA(i))𝜔(𝑖, 𝑗) + (STA(i) − STA(j)) (1 − 𝜔(𝑖, 𝑗)) ≥ Δ𝑡CW (6)

𝜔(𝑖, 𝑗) =
{

1, if 𝑖𝑡ℎ UAS sequences before 𝑗 𝑡ℎ UAS,
0, if 𝑗 𝑡ℎ UAS sequences before 𝑖𝑡ℎ UAS,

(7)

The STA of the 𝑖𝑡ℎ UAS to the crossing waypoint is given by:

STA(i) = STD(i) + FT(i) (8)

where FT(i) is the flight time of the 𝑖𝑡ℎ UAS to the crossing waypoint.
The minimum temporal separation (between two flights) at an en-route crossing waypoint to avoid overlapping of

active OVBs is defined based on the length and width of the OVBs, incoming crossing angle, and groundspeed of UAS
[5]. The minimum temporal separation is shown in Equation 9, Equation 10, and Table 2. A UAS operator is assumed
to not have real-time position and velocity information of a UAS of another UAS operator. However, the UAS operator
would have real-time position and activation and deactivation times information of OVBs of another UAS operator. As
stated earlier, STAs to various waypoints of UAS already airborne and planned in one of the previous planning horizons
remains the same (Figure 2).

• For an incoming crossing angle > 90 deg, the minimum temporal separation (Δ𝑡CW) at the crossing angle is
defined using equations from [5] as follows:

Δ𝑡CW = max
(
2𝑙𝐵
𝑉𝐵

+ 𝑊𝐵

2𝑉𝐴 sin 𝜃
− 𝑊𝐴 cos 𝜃

2𝑉𝐴 sin 𝜃
,

2𝑙𝐵
𝑉𝐵

+ 𝑊𝐴

2𝑉𝐴 tan 𝜃𝐴

)
(9)

• For an incoming crossing angle ≤ 90 deg, the minimum temporal separation (Δ𝑡CW) at the crossing angle is
defined using equations from [5] as follows:

Δ𝑡CW = max
(
2𝑙𝐵
𝑉𝐵

+ 𝑊𝐵 sin 𝜃
2𝑉𝐴

,
𝑙𝐵

𝑉𝐵
+ 𝑙𝐴

𝑉𝐴

− 𝑊𝐴

2𝑉𝐴 tan 𝜃𝐴

)
(10)
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Table 2 Definition of Terms Used in Temporal Separation Equations [5]

Terminology Definition
𝑉𝐴, 𝑉𝐵 Groundspeed of the UAS of operator A or B (assumed to be constant).

𝑙𝐴, 𝑙𝐵 Length of the active operational volume block of UAS operator A or B.

𝑊𝐴,𝑊𝐵 Width of the active operational volume block of UAS operator A or B.

𝜃 Incoming crossing angle at the waypoint.

The optimization problem discussed earlier has a linear objective function (1) and linear constraints (4)-(5) except
for minimum temporal separation constraints (6) at crossing waypoints. In this research, the Big-M method [22] has
been utilized on the minimum temporal separation constraint at crossing waypoints (Equation 6) to convert the quadratic
constraint into two linear constraints as shown in the following equations. One for if 𝑖th UAS sequences before 𝑗 th UAS:

(STA(j) − STA(i)) + 𝑀 (1 − 𝜔(𝑖, 𝑗)) ≥ Δ𝑡CW (11)

and the other for if 𝑗 th UAS sequences before 𝑖th UAS:

(STA(i) − STA(j)) + 𝑀𝜔(𝑖, 𝑗) ≥ Δ𝑡CW (12)

where in both equations, i.e., Equation 11 and Equation 12 have the Big-M value, (𝑀 ≫ 0) which is a large positive
constant. Ideally the Big-M value approaches infinity but one usually has to employ a trial-and-error methodology, i.e.
randomly pick values of 𝑀 ≫ 0 and run an optimizer to see results then repeat as needed to find a suitable value. Now
with the introduction of the Big-M value, the problem has been formulated as a MILP problem.

III. Rolling Horizon with 𝑘-Position Search for Departure Sequencing and Scheduling with
En-Route Strategic Deconfliction

Given the difficulty of finding the exact solution to the NP-hard MINLP problem, a heuristic algorithm called rolling
horizon with 𝐾-Position Search (KPS) developed in this research is shown in Figure 3 and Figure 4. The rolling horizon
methodology decomposes the MINLP problem into multiple time slots, which are solved sequentially as sub-problems
[17, 18]. The KPS algorithm developed in this research is based on the ILS algorithm described for single runway
scheduling of commercial air traffic by Malik and Jung [12, 16]. As shown in Figure 3 and Figure 4, in a given planning
horizon of the rolling horizon methodology [17], the KPS starts with the initial guess for the UAS departure sequence
using the first-come-first-served (FCFS) order based on the ETDs. The term "position" means the position of a UAS in
the departure sequence.

1. 𝐾-Position Search at Single Depot
As shown in Figure 3, an instance of a list of UAS with package delivery request is processed using the concept of

rolling horizon [17], where the problem of computing the departure sequencing and scheduling of the instance of a list
of UAS is decomposed into multiple subproblems based on ETDs of UAS as discussed earlier. At each planning horizon
(or subproblem), as shown in Figure 4, the sequencing and scheduling of UAS with ETDs falling in the current planning
horizon are computed using KPS [12]. In a given planning horizon, applying the KPS method at a depot involves the
following steps:

• Fixing the 𝑖𝑡ℎ position in the departure sequence involves a local neighborhood search starting from the 𝑖𝑡ℎ position
to the (𝑖 + 𝑘 − 1)𝑡ℎ position. For example, as shown in Figure 5, fixing the 1𝑠𝑡 position in the departure sequence
involves a local neighborhood search starting from the 1𝑠𝑡 position to the 3𝑟𝑑 position, i.e., {𝐴1, 𝐴2, 𝐴3} when
𝑘=3.
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Fig. 3 Rolling Horizon with 𝑘-Position Search Methodology

Fig. 4 Illustration of 𝐾-Position Search Algorithm for a Current Planning Horizon
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• There are 𝑘! possible sequences (permutations) of UAS for fixing a position. Therefore, local optimization is
carried out 𝑘! times to pick the preferred local sequence and fix the 𝑖𝑡ℎ position. For example, as shown in Figure
5, there are 3! possible sequences (permutations) of UAS for fixing the 1𝑠𝑡 position. The local optimization is
carried out 3! times to pick the preferred local sequence and fix the 1𝑠𝑡 position.

• During the local neighborhood search, the preferred sequence has the least objective value among all the objective
values in the 𝑘! sequences. Hence, for fixing the 𝑖𝑡ℎ position, the UAS positions from the 1𝑠𝑡 to the (𝑖 − 1)𝑡ℎ are
considered fixed whereas the positions from 𝑖𝑡ℎ to the 𝑛𝑡ℎ are considered free. For example as shown in Figure 5,
once 1𝑠𝑡 and 2𝑛𝑑 positions are fixed with UAS {𝐴3, 𝐴1}, the positions from 3𝑟𝑑 until 5𝑡ℎ are considered free.

• After fixing the 𝑖𝑡ℎ position, the local neighborhood search window advances by one position, and the process is
repeated until fixing the (𝑛 − 𝑘 + 1)𝑡ℎ position. At the end of fixing the (𝑛 − 𝑘 + 1)𝑡ℎ position, the UAS positions
at 𝑛 + 2− 𝑘, ..., 𝑛 are fixed based on the preferred sequence for the (𝑛− 𝑘 + 1)𝑡ℎ position in the departure sequence
[16].

Fig. 5 Applying 𝐾-Position Search Method for Departure Sequencing and Scheduling at Single Depot (Depot A)
Whereas Depot B Maintains FCFS Departure Order in a Given Planning Horizon

2. Simultaneous 𝐾-Position Search at Two Depots
In a given planning horizon, the total number of UAS expected to takeoff from depot A and depot B is assumed

to be the same, i.e., 𝑛 is the number of UAS in the planning horizon and 𝑘 is the number of free (moving window)
UAS involved in local neighborhood search at each depot. The process of applying the KPS method at depots A and B
simultaneously involves the following steps:

• Fixing the 𝑖𝑡ℎ position in the departure sequence involves a local neighborhood search starting from the 𝑖𝑡ℎ position
to the (𝑖 + 𝑘 − 1)𝑡ℎ position at both depots. For example, as shown in Figure 6, fixing the 1𝑠𝑡 position in the
departure sequence involves a local neighborhood search starting from the 1𝑠𝑡 position to the 2𝑛𝑑 from each depot,
i.e., {(𝐴1, 𝐴2), (𝐵1, 𝐵2)} when 𝑘 = 2.

• As shown in Figure 4, there are (𝑘!)2 possible sequences (permutations) of UAS for fixing a position simultaneously
at each depot. A local optimization is performed (𝑘!)2 times to pick the preferred local sequence and fix the
𝑖𝑡ℎ position. The (2!)2 possible permutation in the example from Figure 6 are as follows: {(𝐴1, 𝐴2), (𝐵1, 𝐵2)},
{(𝐴2, 𝐴1), (𝐵1, 𝐵2)}, {(𝐴1, 𝐴2), (𝐵2, 𝐵1)}, and {(𝐴2, 𝐴1), (𝐵2, 𝐵1)}.

• During the local neighborhood search, the preferred sequence has the least objective value among all the objective
values in the (𝑘!)2 sequences. This preferred sequence is chosen and the 𝑖𝑡ℎ positions are fixed. For example, in
Figure 6, the 1𝑠𝑡 positions for Depot A and Depot B have been fixed by UAS 𝐴2 and 𝐵1 respectively.

• After fixing the 𝑖𝑡ℎ position at each depot, the local neighborhood search window advances by one position for
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Fig. 6 Applying 𝐾-Position Search Method for Departure Sequencing and Scheduling at Depot A and Depot B
Simultaneously in a Given Planning Horizon

each depot, and the process is repeated until fixing the (𝑛− 𝑘 + 1)𝑡ℎ position. At the end of fixing the (𝑛− 𝑘 + 1)𝑡ℎ
positions, the UAS positions at 𝑛 + 2 − 𝑘, ..., 𝑛 are fixed based on the preferred sequence for the (𝑛 − 𝑘 + 1)𝑡ℎ
position in the departure sequence [16].

3. Analysis of Computation Time
The computation time (CT) of the proposed algorithm, i.e., rolling horizon with 𝐾-Position Search can be written as

follows:
CT =

𝑛

𝑟
∗ (runtime to fix departure positions in a planning horizon) (13)

where n is the total number of flights, and r is the number of flights per planning horizon. Therefore, n/r is the total
number of rolling horizon windows required to schedule all flights. The runtime of a computer to solve the UAS
sequencing and scheduling problem is a complex function of various factors, such as, type of solver, type of processor,
computer memory, type of processing, k! (local neighborhood search), total number of flights (n), number of flights per
rolling horizon window (r), number of depots, and number of crossing waypoints [23, 24]. However, in this research,
only the impact of k! (local neighborhood search), and total number of flights (n) on the computation time is explored.
The MINLP runtime is:

MINLP runtime = 𝑂 (𝐶v ∗ 𝐶c) (14)

where C is a constant factor dependent on factors such as the solver, type of processor, computer memory, etc; v is the
number of variables, and c is the number of constraints. In the worst case scenario, the number of variables and number
of constraints both are O(𝑟2) in the problem formulation; therefore, MINLP runtime is:

MINLP runtime = 𝑂 (𝐶𝑟2 ) (15)

In a series processing to fix a departure position at a depot, each sequence (permutation) of a local neighborhood search
is solved one after another; therefore, the runtime to fix a departure position in a planning horizon should be multiplied
by O(k!). Hence, the rolling horizon with 𝐾-Position Search algorithm has the computation time as follows:

CT = 𝑂 ( 𝑛
𝑟
∗ 𝑘! ∗ (𝑟 − 𝑘 + 1) ∗ 𝐶𝑟2 ) (16)

(17)

Therefore, the algorithm with 𝑘 > 1 has 𝑘! times higher computation complexity than 𝑘 = 1, i.e., FCFS (departure order
at both depots).
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(a) Map View of Simulated Scenario-1 (b) Map View of Simulated Scenario-2

Fig. 7 Depiction of Hub-and-Spoke Network Structure of Routes in UTM Environment (Courtesy Open-
StreetMap)

IV. Simulation Studies

A. 4D Trajectories for Simulation Studies
To compute flight time (FT) of a UAS to various crossing waypoints from different depots (Figure 7), the 4D

trajectories of the UAS are generated using flight kinematics, flight dynamics, quadrotor performance data, and path
constraints from [5, 25] using multiphase optimal control approach [26]. The formulated multiphase optimal control
problem is solved using a direct collocation method for the generation of 4D trajectories [27]. A pseudospectral
method is a direct collocation method that transcribes a multiphase optimal control problem to a large sparse nonlinear
programming (NLP) problem [27, 28]. Finally, the corresponding NLP is then solved using Interior Point OPTimizer
(IPOPT) software library [29]. Table 3 lists the parameters relevant to simulation studies.

Table 3 Parameters Relevant to Simulation Studies

Parameter Value(s)
Δ𝑡prep 3600 sec
Δ𝑡sep 60 sec
Poisson demand rate 𝜆 1/60 (1/sec)
Length and width of operational volume blocks 500 m and 200 m
Cruise groundspeed and cruise altitude MSL 20 m/s and 121 m (400 ft)
Climb and descent flight path angle 10 deg
Rolling horizon window 300 sec
Local neighborhood search (k) 1, 2, and 3

B. Simulated Network Structure of Routes
In simulation studies, as shown in Figure 7, two scenarios are considered, i.e., i) Scenario-1 consists of two depots

and four drop-off locations per depot with sixteen en-route crossing waypoints, and ii) Scenario-2 consists of two depots
and four drop-off locations for depot A and one drop-off location for depot B with two en-route crossing waypoints.
Therefore, given the higher number of en-route crossing waypoints in Scenario-1, it is more complex than Scenario-2
[30]. The simulated network structure of routes, i.e., depot and corresponding drop-off locations, are considered
hub-and-spoke type [3, 19, 20] in the San Francisco metropolitan area.
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(a) Average Ground Delay (Scenario-1) (b) Computation Time (Scenario-1)

(c) Average Ground Delay (Scenario-2) (d) Computation Time (Scenario-2)

Fig. 8 Average Ground Delay and Computation Time as a Function of Number of Flights for the Heuristic
Algorithm Using MacOS, M2 Pro for Simulated Scenario-1 and Scenario-2

C. UAS Traffic Simulation
The UAS departure traffic at both depots is simulated using a Poisson distribution with an on-demand service request

rate (𝜆). The Poisson distribution has been used to model the on-demand service request at two depots because each
demand request is assumed to be discrete, independent, and mutually exclusive, but at an average rate (𝜆) when viewed
as a group for a set of demands.

D. Computing Resources
The UAS traffic simulation algorithm and heuristic algorithm (rolling horizon with the KPS) are implemented in

Python 3.11 on a MacOS-based laptop with a 2.6 GHz 12-Core Apple M2 Pro processor and 16 GB of memory. The
MINLP optimization problem is implemented in the PuLP modeling library [31, 32]. The simulations for UAS traffic
and the heuristic algorithm for strategic deconfliction are run on the above mentioned MacOS-based laptop.

V. Results
As stated in Simulation Studies section IV and Table 3, the UAS departure traffic at depot A and depot B are

simulated using Poisson distribution with an average departure separation of 60 seconds. Each UAS is randomly assigned
one of the routes with an origin as a given depot. The strategic deconfliction for various simulations of scenario-1 and
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Fig. 9 Maximum Number of UAS Flights Scheduled in 300 Seconds Computation Time Cut Off

scenario-2 is carried out using the heuristic algorithm (rolling horizon with the KPS) with different values of 𝑘 (1, 2,
and 3) and applied to either a single depot or both depots. The timeline of a simulation is decomposed into planning
horizons of 300 seconds. The simulations are categorized based on the number of UAS flights in the scenario.

In Figure 8, the average ground delay and computation time are averaged over all simulations for a given scenario,
size of the rolling horizon window, and total number of flights. The following can be observed from Subfigures of
Figure 8:

• The average ground delay (ground delay per UAS flight) increases with the total number of flights for a given size
of the rolling horizon window, Poisson departure rate, number of depots and routes.

• The simultaneous KPS with 𝑘=2 has the lowest average ground delay compared to the FCFS, single depot with
𝑘=2, and single depot with 𝑘=3 approaches for both Scenario-1 and Scenario-2.

• The FCFS departure order at depots has the lowest computation time, i.e., the departure order is the same as the
service request order. The low computation time for the FCFS compared to single depot with 𝑘=2, and single
depot with 𝑘=3 can be attributed to the fact that computation complexity of local neighborhood search algorithms
are known to be function of k! as shown in Equation 16, which has a value of 1 for the FCFS.

• The average ground delay reduces at the cost of an increase in the computation time with an increase in the value
of 𝑘 (local neighborhood search) in the KPS for a given number of UAS, rolling horizon window, and number of
depots involved in the local neighborhood search. Therefore, computation time is highly sensitive to any large
factor of k!. Hence, for feasibility, 𝑘 must be kept small, i.e., 1, 2, or 3.

In Figure 9, the average computation time are averaged over all simulations for a given scenario, size of the rolling
horizon window, and total number of flights. As shown in Figure 9, the maximum number of UAS flights scheduled in
computation time cut-off of 300 seconds increased at least by an order of magnitude with rolling horizon compared to
without rolling horizon for 𝑘 = 2 (simultaneous) and 𝑘 = 1.

VI. Conclusions
This research focused on the strategic deconfliction of unmanned aircraft systems for an urban package delivery

environment with two depots and multiple drop-off locations. A heuristic algorithm called rolling horizon with
𝑘-position search was used to compute both the departure sequence and scheduled time of departure of each unmanned
aircraft system at a depot, considering temporal constraints at en-route crossing waypoints and depots for strategic
deconfliction. The simulation studies showed that an increase in the value of 𝑘 (the parameter used to determine the size
of the local neighborhood) reduces the average ground delay at the cost of an increase in the computation time for a
given number of flights, size of the rolling horizon window, and number of depots involved in the local neighborhood
search. The study also showed at least an order of magnitude increase in the maximum number of flights scheduled with
the integration of rolling horizon (time decomposition) than without the integration of rolling horizon in the heuristic
algorithm for a given computation time cut off. In the future, during the strategic deconfliction uncertainties such as
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wind, departure time, and lateral path will be considered.
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