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This paper presents a technical approach to improve the confidence in the systems analysis
process by integrating Uncertainty Quantification (UQ) techniques within a Model-Based
Systems Analysis and Engineering (MBSA&E) framework. The MBSA&E architecture uses
system models and multidisciplinary analytical solutions as central artifacts for system design and
analysis. The integration of UQ enables engineers to assess and mitigate uncertainties associated
with a system model, design parameters, and constraint inputs, leading to more complete design
studies and better informed decision-making processes. The proposed approach leverages the
strengths of MBSA&E and extends it with a UQ methodology to quantify uncertainties in
the input parameters and to trace the uncertainties as they propagate throughout the system
model. To demonstrate the effectiveness of an integrated MBSA&E-UQ approach, a case study
involving a simplified analysis of a Transonic Truss-Braced Wing (TTBW) concept vehicle is
performed. This integration enables a more comprehensive evaluation of system performance
and behavior under uncertainty and a more robust approach for system design and analysis.
Lastly, the paper addresses the challenges and considerations associated with integrating UQ
into an MBSA&E framework.

I. Nomenclature

𝐴𝑖 = the 𝑖𝑡ℎ polynomial chaos expansion (PCE) coefficient
𝑎 = significance level
𝐶𝐷 = drag coefficient
𝐶𝐿 = lift coefficient
𝑑 = PCE deterministic variables
𝐹 = PCE response
𝑓NLF = impact of natural laminar flow on the vehicle drag
𝑔 = gravity
𝑁𝑡 = number of terms necessary for PCE model
𝑛 = number of PCE variables
𝑃 = number of terms in PCE model
𝑝 = order of PCE expansion
𝑞 = cruise dynamic pressure
𝑅 = mission range
𝑆 = wing reference area
sfc = engine specific fuel consumption
𝑉 = flight velocity
𝑊 = vehicle weight
𝜇 = mean
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𝜎 = standard deviation
Ψ𝑖 = PCE basis functions 𝑖𝑡ℎ mode
𝝃 = PCE random variables

II. Introduction

Systems Engineering (SE) is an interdisciplinary approach and means to enable the realization of successful
systems. It focuses on defining customer needs and required functionality early in the development cycle,

documenting requirements, and then proceeding with design synthesis and system validation [1]. A Systems Engineering
Transformation (SET) framework has been used by Blackburn et al. [2] to explore the interaction of mission and system
models with multidisciplinary design, analysis and optimization (MDAO), airworthiness, and cost models as applied to
the design of a fixed-wing unmanned aerial vehicle (UAV). A modular and complex aerospace system requires a defined
architecture, logical decomposition, and interactions with sub-systems and components using model-based design and
engineering techniques. Model-Based Systems Engineering (MBSE) is the formalized application of modeling to
support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design
phase and continuing throughout development and later life cycle phases [1]. Previous research has been performed in
linking MBSE models to MDAO analysis for air vehicle design. For instance, Aiello et al. [3] used MDAO analysis
of battery usage in a Systems Modeling Language (SysML) model of a drone to satisfy mission requirements. The
approaches using engineering analysis for design validation in the early lifecycle stage of a system through the joint
use of MBSE and MDAO have been well documented by Chaudemar et al. [4] An agile approach to develop complex
aerospace systems of interest using MBSE-based system models bridged with MDAO design models has been studied
by Ciampa et al. [5]

Systems Analysis (SA) is an explicit formal inquiry carried out to identify alternative courses of action and examine
the consequences of these alternatives in terms of costs, benefits, and risks resulting in a comparative framework for
decision makers to make an informed choice from among the alternatives. Model-Based Systems Analysis (MBSA) is a
formalized application of SA that uses physics-based design and empirical relationship models which are informed
by MDAO analytical tools and methods. Ozoroski et al. [6] have explored MBSA in a multidisciplinary design and
analysis (MDA) framework with multifidelity capabilities to study the acoustics and performance of supersonic concept
aircraft.

In this research study, a Model-Based Systems Analysis and Engineering (MBSA&E) framework is used to couple
the MBSA and the MBSE disciplines with their associated tools, methods, and models. Recent research has been
done to develop integrated MBSA-MBSE frameworks and modeling workflows. The MBSE-Based Requirement
Verification Framework (RVF) by Bruggeman et al. [7] ensures requirements compliance throughout aircraft design
phases using a wing box use case. Workflow optimization of MBSE model parameters, MDAO problem setup,
and tradeoffs using MBSE activity diagrams have been applied to a mechanical system by Habermehl et al. [8]
Swaminathan et al. [9] have used the Extended Requirements-Functional-Logical-Physical (RFLP) Framework to
integrate MBSE and MDAO for the design of a single-aisle transport aircraft. At NASA, a MBSA&E framework is
being developed for the Advanced Air Transport Technology (AATT) Project under the Sustainable Flight National
Partnership (SFNP) initiative. The MBSA&E vision is to have a systems-level, digital integration across SFNP projects,
which will support the assessment, advancement, and adoption of sustainable technologies for 2030 entry-into-service
subsonic transport aircraft concepts. The research objectives of the MBSA&E activity are 1) to develop an open,
cross-project, cross-program, external-capable MBSA&E framework building off the Aeronautics Research Mission
Directorate’s (ARMD) investments and capabilities across the Advanced Air Vehicles Program (AAVP) and other
programs; 2) to conduct coordinated, integrated systems analysis studies using common, open, reference and vision
vehicle models; and 3) to conduct technology benefit assessments and sensitivity studies.

This work builds on related work within NASA’s MBSA&E activity to demonstrate a novel approach of integrating
uncertainty quantification (UQ) in the aircraft design and analysis workflow. UQ encompasses the study of the impact
of uncertainties in input parameters and modeling simplifications on the outputs or responses of a process or simulation.
UQ can vary in scope by including only a single model or multiple models of varying fidelity as well as experimental
data. The overarching objective of UQ is to create a more robust design or evaluation process by identifying sensitivities
and mitigating the potential impact of uncertainties through informed, targeted resource investments. Two main types
of uncertainty are present in most simulations: model input uncertainty and model form uncertainty. Sources of
uncertainty associated with the simulation input parameters are referred to as model input uncertainties, whereas sources
of uncertainty associated with modeling simplifications are referred to as model form uncertainties. An important facet
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of UQ is the proper characterization and treatment of the simulation input uncertainties [10, 11].
This paper consists of five sections. After this Introduction, Section III describes the Transonic Truss-Braced Wing

(TTBW) aircraft system model development in MBSE, the disciplinary models in MBSA, the UQ analysis model, and
the cross-domain workflow. Section IV explains the TTBW case study and the derived results in terms of confidence
intervals applied to the design gross mass and cost evaluations. Section V provides the impact and application of this
work and its extension into future work.

III. Approach and Implementation
The TTBW aircraft geometry used in the demonstration of this work is shown in Fig. 1. This non-proprietary

configuration referred to as the TTBW Tech Collector has been developed by NASA in an effort to allow future vehicle
technology studies, open publication of results, and easier collaboration with research partners outside of NASA.

Fig. 1 NASA Transonic Truss-Braced Wing Tech Collector concept.

A. Model-Based Systems Engineering
The aircraft system model was developed using industry MBSE tools, SysML, and elements of the Unified

Architecture Framework (UAF). The principles of model consistency were applied to enable the system model to be
reusable for different concept vehicles and extendable within an airspace system-of-systems (SoS) through project
usages. The MBSE model was constructed using NASA developed and adopted systems engineering [12] and modeling
practices [13], processes and requirements [14], technical standards [15], meta-model and hierarchy, model library,
data classification, and model documentation. A phased approach was used in developing the MBSE model by 1)
building a descriptive system, sub-system, and component level model representing physical decomposition (Fig. 2)
and functional decomposition; 2) developing an executable, parametric model which enables mission and design
requirements verification, system validation, and trade study analysis; and 3) coupling the MBSE vehicle system model
with a multidisciplinary, physics-based MBSA model to yield an integrated modeling environment (IME) which can be
used for conceptual design of advanced air vehicles infused with novel and sustainable technologies. The model to be
demonstrated is the TTBW Tech Collector aircraft configuration with applied sustainable flight technologies.

The development and demonstration of these MBSE capabilities for conceptual design and mission analysis will
introduce digital artifacts to support an integrated technology development of subsonic transport aircraft. The early
lifecycle development path will encompass aircraft design and technology readiness of sustainable flight technologies,
including all design phases and certification – digital aircraft design to digital flight test.

B. Model-Based Systems Analysis
The multidisciplinary analysis model, shown in the design structure matrix in Fig. 3, was developed in

OpenMDAO [16]. Geometry and aerodynamic performance were modeled with OpenVSP [17, 18] and VSPAERO [18],
respectively. These OpenMDAO components are driven using the OpenVSP Python API and input files allow the user
to declare and map OpenMDAO input/output variables and options to OpenVSP parameters. VSPAERO aerodynamic
analysis was performed using a vortex lattice method with a second-order Karman-Tsien Mach correction. The mean
aerodynamic chord of 9.87 ft for the wing is used as the reference length to calculate Reynolds number at the constant
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Fig. 2 MBSE system structure.

cruise altitude of 38,000 ft and Mach number of 0.8.
The mass of the wing, strut, and jury assembly is calculated using surrogate models based on HyperSizer [19] and

Nastran [20] analysis of an aeroelastic model. In this structural model, material properties are smeared for each case to
compute deflections, strains, and stresses. Finite element analysis (FEA) data are passed to HyperSizer to compute
the local constraints for use in the optimization. The surrogates facilitate trade studies with respect to geometry and
structural parameters such as wing aspect ratio, sweep, taper ratio, thickness-to-chord, engine mass, rib spacing, and
strut attachment point. Finally, scaling factors are used to correct FEA mass to account for non-modeled structural
components including aerodynamic surfaces and secondary structures.

The baseline TTBW concept is modeled using our MBSA&E framework and sized using Aviary [21]. For the
demonstration study, this sized and trajectory-optimized design was used to inform a simpler model with a quicker
execution time. In this model, the masses of the truss-braced wing and engines are allowed to vary but all other
subsystem masses, as well as fuel burn during climb and descent, are held fixed to the baseline quantities calculated
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Fig. 3 Multidisciplinary design structure matrix.

during the Aviary [21] sizing run. For simplicity, vehicle performance during the cruise phase is modeled using the
Breguet range equation, shown in Eq. (1), where R is the range, sfc is the engine specific fuel consumption, V is flight
velocity, g is gravity, 𝐶L

𝐶D
is the lift-to-drag ratio, and 𝑊i and 𝑊f are the cruise initial and final vehicle weights. However,

note that throughout the paper, mass will be reported instead of weight. The impact of natural laminar flow on the
vehicle drag is quantified with the uncertain variable, 𝑓NLF, which applies a scaling factor to the wing profile drag. The
profile drag of the wing is estimated as one-third of the total profile drag and the total profile drag is assumed to be 70%
of the total drag of the vehicle [22].

𝑅 =
1

sfc
𝑉

𝑔

𝐶L
𝐶D

ln
(𝑊i
𝑊f

)
(1)

This equation is rearranged to compute the change in vehicle mass, or fuel burned, during the cruise phase, as shown
in Eq. (2). Here, 𝐶L is the average lift coefficient throughout the constant altitude cruise phase given by Eq. (3), 𝑞 is the
cruise dynamic pressure, and 𝑆 is the wing reference area. The implicit problem is solved using a Newton solver to
converge the lift coefficient in cruise and takeoff gross mass.

𝑊fuel = 𝑊i −𝑊f = 𝑊i (1 − 𝑒
𝑅
𝐶 ), where: 𝐶 =

1
sfc

𝑉

𝑔

𝐶L
𝐶D

(2)

𝐶L = 0.5
(𝑊i +𝑊f)

𝑞𝑆
(3)

Finally, the Economic Analysis Model from the Probabilistic Technology Investment Ranking System (PTIRS) [23]
is used to calculate the Direct Operating Cost Plus Interest (DOC+I). PTIRS is a comprehensive life cycle cost
model for development, production, and operations of commercial transport aircraft that can calculate DOC+I for
technology-enhanced aircraft and corresponding baseline aircraft. All subsystem mass inputs to the cost model, aside
from the wing, strut, and jury assembly, engine, and fuel mass, are assumed constant and set to the values of the
reference vehicle.

C. Uncertainty Quantification Analysis
The subsections below describe the uncertainty modeling methodologies and the corresponding tool used for the

uncertainty quantification analysis.

5



1. Second-Order Probability
To propagate uncertainty through the model, the second-order probability approach outlined by Eldred and Swiler [24]

for the treatment of mixed aleatory and epistemic uncertainties was employed. A flowchart of the method is shown in
Fig. 4.

Fig. 4 Second-order probability architecture.

For each set of epistemic uncertainties, a cumulative distribution function (CDF) can be generated from the set of
aleatory uncertainties as seen in Fig. 5. The probability box (P-Box) plot shows the family of CDF curves generated from
the second-order probability approach. For a significance level of 𝑎 = 0.05, the 95% uncertainty interval is determined by
extracting the lowest response value at the 2.5% probability level and the highest response value at the 97.5% probability
level from the set of CDF curves. The use of the P-Box uncertainty approach is conservative, but it is statistically justifi-
able for the given inputs to the simulations as no assumption is made about the distribution within the uncertainty interval.

Fig. 5 Example P-Box.

2. Point-Collocation Non-intrusive Polynomial Chaos
Another method used in this research was non-intrusive polynomial chaos with point-collocation. Polynomial

chaos is a surrogate modeling technique based on a spectral representation of uncertainty. An important aspect of
spectral representation of uncertainty is that a response value or random function, 𝐹, can be decomposed into separable
deterministic and stochastic components, as shown in Eq. (4).
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𝐹 (𝒅, 𝝃) ≈
𝑃∑︁
𝑖=0

𝐴𝑖 (𝒅)Ψ𝑖 (𝝃) (4)

Here, 𝐴𝑖 is the deterministic component and Ψ𝑖 is the random variable basis functions corresponding to the 𝑖𝑡ℎ

mode. The basis functions, Ψ𝑖 , of each random variable are determined using the Askey key [25] and are dependent
on the distribution of each random variable. The response, 𝐹, is a function of independent, random variables, 𝝃, and
deterministic variables, 𝒅. This series is in theory an infinite series but is truncated in practice. To form a complete
basis or for a total order expansion, 𝑁𝑡 terms are required, which can be computed from Eq. (5) for a polynomial chaos
expansion (PCE) of order 𝑝 and the number of random dimensions or variables, 𝑛.

𝑁𝑡 = 𝑃 + 1 =
(𝑛 + 𝑝)!
𝑛!𝑝!

(5)

Further details on polynomial chaos theory are given by Eldred and Swiler [24]. To compute the expansion coefficients,
𝐴𝑖 , a point-collocation method is used by Hosder et al. [26]. The response, 𝐹, is sampled at locations throughout the
random variable space, and the expansion coefficients are computed with an over-determined, least squares approach.
At least 𝑁𝑡 samples are needed for this procedure; Hosder et al. [26] recommend an oversampling ratio of two (i.e.,
2 · 𝑁𝑡 samples).

3. Uncertainty Quantification with Polynomial Chaos Expansion
The uncertainty modeling and analysis contained in this research was performed with one of NASA’s in-house

uncertainty codes, Uncertainty Quantification with Polynomial Chaos Expansion (UQPCE) [27]. UQPCE is an open
source, Python-based research code for use in parametric, non-deterministic computational analysis and design. UQPCE
utilizes a non-intrusive polynomial chaos expansion surrogate modeling technique as outlined in Section III.C.2 to
efficiently estimate uncertainties for computational analyses. The software enables the user to perform an automated
uncertainty analysis for any given computational code without requiring modification to the source. UQPCE estimates
sensitivities, confidence intervals, and other model statistics which can be useful in the conceptual design and analysis
of flight vehicles.

D. Cross-domain Interface
A diagram of the cross-domain interface between MBSE and MBSA is shown in Fig. 6. A set of mission instances

is generated from the MBSE model based on stakeholder input and the data are exported to two text files containing 1)
the mission parameter values (e.g., wingspan and cruise range) and 2) the design parameter values required to conduct
system validation and verification against system requirements (e.g., total fuel mass, wing mass, wing area, and direct
operating cost plus interest). The OpenMDAO component labeled MBSE driver in Fig. 6 is used to read the analysis or
mission-specific aircraft design requests from the MBSE model, set up and execute the multidisciplinary problem, and
return the required performance metrics of interest, which are imported back into the MBSE model. These metrics
include not only a deterministic value but also a confidence interval associated with the analysis or design. Lastly,
since individual mission instances are independent, both the MBSE driver and UQPCE can leverage parallel execution
through Message Passing Interface (MPI) to reduce total computational time.

IV. Demonstration and Results
The case study is explained in this section, and the final results are shown and discussed along with the impact of the

development of an integrated modeling environment for conceptual aircraft design.

A. Case Study
In this study, the goal is to demonstrate that a coupling of MBSE, MBSA, and UQ tools and methodologies improves

confidence in the systems analysis and design. The mission instances are derived from a combination of system
requirements for the reference TTBW concept vehicle and parametric models associated with the objective functions of
minimizing weight, fuel burn, and operating cost from within the MBSE environment. Each instance corresponds to a
simulated mission defined by a set of range and wingspan parameters. Table 1 shows the mission instances and their
respective mission and geometry parameters.
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Fig. 6 Cross-domain interface.

Table 1 Mission parameters from MBSE

Instance Range, nmi Wingspan, ft
Baseline 3,500 170
Aircraft 1 2,000 170
Aircraft 2 3,000 175
Aircraft 3 3,000 180
Aircraft 4 4,000 165
Aircraft 5 5,000 175

These parameters were passed into the MBSA environment for optimization using OpenMDAO, where deterministic
and uncertain parameters were run through a design of experiments (DOE). The uncertain variables used for this case
study are described in Table 2. In the UQ environment, uncertainty distributions are developed using UQPCE analysis,
which is executed for each aircraft geometry and mission instance. The design parameters with related uncertainty
are mapped back to the mission instances. The responses for wing area, wing mass, fuel volume, fuel mass, wing lift
coefficient, gross mass, and cost are returned to MBSE for requirements verification and system validation (V&V).
Note that the process is not limited to these parameters and is sufficiently general to allow passing and returning any
parameter that can be mapped between MBSA and MBSE.

Table 2 Uncertain variables

Input Distribution Parameters
𝑓NLF Epistemic [0.0, 0.5]

Mach Uniform [0.75, 0.85]
Cruise Altitude Gaussian 𝜇=38,000 𝜎=150

Wing Rib Spacing Gaussian 𝜇=20 𝜎=0.5
sfc Gaussian 𝜇=0.4394 𝜎=0.005

Engine Mass Gaussian 𝜇=4,578 𝜎=3

B. Results
The application of UQ to assess the impact of uncertainty on stakeholder requirements is shown in Table 3. Each

instance requires trajectory optimization to minimize fuel burn and resize the vehicle to meet the mission requirements.
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The resulting key design parameters of wing area, gross mass, fuel mass and fleet direct operating cost plus interest
(DOC+I) are shown for each instance. Apart from the deterministic parameter, wing area, both the mean value and
confidence interval are shown. The selected uncertain parameters of gross mass, fuel mass, and DOC+I are shown in
Table 3 because they correlate to the initial objective functions of mass, fuel, and cost minimization defined in MBSE.
A V&V simulation is intended to compare the aircraft design to stakeholder requirements and validate the vehicle
system in terms of sizing and weight constraints in a defined operating environment. A system indicator of pass or fail
determines the V&V status. In this study, the V&V takes in to consideration the requirements as compared to the mean
values and also assesses the requirements margin as compared to the confidence interval. The results show that the
aircraft design related to the third mission instance failed the V&V because the mean cost value of $568 billion did not
meet the requirement for the cost not to exceed $565 billion. The fifth mission instance failed the V&V because both its
mean gross mass value of 147,000 lbm and the upper confidence interval value of 151,000 lbm exceeded the system
requirement and operational bounds of 145,000 lbm.

Table 3 Verification and validation of uncertain design parameters in MBSE

Instance Wing Area, ft2 Gross Mass, K-lbm Fuel Mass, K-lbm Fleet DOC+I, $B System
Baseline 1,475 𝜇=138, [136, 140] 𝜇=19, [17, 21] 𝜇=559, [559, 560] Pass
Aircraft 1 1,475 𝜇=131, [130, 132] 𝜇=12, [11, 13] 𝜇=564, [564, 565] Pass
Aircraft 2 1,541 𝜇=137, [136, 139] 𝜇=17, [15, 18] 𝜇=564, [563, 564] Pass
Aircraft 3 1,607 𝜇=139, [138, 141] 𝜇=17, [15, 18] 𝜇=568, [567, 568] Fail
Aircraft 4 1,408 𝜇=138, [136, 141] 𝜇=21, [19, 23] 𝜇=556, [555, 556] Pass
Aircraft 5 1,541 𝜇=147, [144, 151] 𝜇=26, [23, 29] 𝜇=564, [563, 564] Fail

UQPCE was used to build second-order models on several responses including gross mass. The models were
validated by ensuring that the order of the model was sufficient for the underlying physics and that the model mean error,
signal-to-noise ratio, and distribution of error were all acceptable.

The systems analysis considers the uncertainty associated with flight conditions, structural sizing, and aerodynamic
and propulsion efficiency, leading to more confidence in the assessment of system level metrics related to vehicle sizing
and cost evaluations. Figure 7a shows the probability density of the uncertain response gross mass with variation in
design range for the baseline geometry with a wingspan of 170 ft. The mean expected value and lower and upper 95%
confidence intervals are given by the yellow, blue, and red lines, respectively. A similar uncertainty quantification plot
with respect to wingspan is shown in Fig. 7b, where wingspan is varied while holding the baseline range of 3,500 nmi
constant.

Figure 7a shows an increasing linear trend between mission range and takeoff gross mass. The width of the uncertain
interval increases as range increases, which could be due to the epistemic uncertain parameter 𝑓NLF and the aleatory
uncertain parameter sfc. In Eq. 2, the range, sfc, and 𝑓NLF are all in the numerator of the exponential term. Any change
in sfc or 𝑓NLF affects the rate of fuel consumption instead of a constant offset of fuel consumption. The change in rate
with respect to range leads to a widening of the uncertain interval as range increases. Figure 7b shows a nearly linear
increase in the gross mass as span increases. Both the lower and upper confidence intervals follow the same trend,
increasing at the same rate as the mean.

The plot in Fig. 7a also shows the importance of uncertainty quantification when presenting analysis and design
data to a decision-making stakeholder. The horizontal black dashed line in this figure shows the maximum allowable
gross mass based on the requirement defined in the MBSE system model in MagicDraw. This maximum gross mass
requirement is observed to intersect the mean value at a design range of 5,000 nmi, potentially leading the stakeholder
to incorrectly assume that the vehicle will always be able to satisfy this requirement as long as range is less than
5,000 nmi. However, under uncertain conditions, it is possible for vehicles designed for a range of 4,400 nmi or greater
to violate the maximum gross mass requirement of 145,000 lbm. This additional information can now be provided to
the stakeholder through the implemented MBSE-MBSA interface, allowing more informed decisions and reducing
costly future re-designs.
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(a) Uncertainty of takeoff gross mass with range. (b) Uncertainty of takeoff gross mass with wingspan.

Fig. 7 Uncertainty quantification for vehicle sizing.

V. Summary and Future Work
The paper has outlined a demonstration study of integrating uncertainty quantification in the conceptual aircraft

design process by coupling MBSE, MBSA, and UQ tools, methods, and models. The resulting MBSA&E-UQ framework
enables an improved system design and analysis with a goal of assessing the technical feasibility and fully exploring the
design space of new aircraft concepts and novel flight technologies.

This study progresses previous research by developing a working MBSA&E framework which can be applied to
aircraft design and mission engineering. This work shows the benefit of using a MBSA&E framework, which is to
leverage the capabilities associated with both the MBSE and the MBSA disciplines to derive a complete modeling
and simulation environment for conceptual vehicle design and analysis. One of the challenges was in coupling
MBSE-MBSA-UQ environments to enable the exchange of and translation of models and data. This was addressed by
developing an MBSE driver which mapped MBSE-MBSA mission and design parameters to a common aircraft data
dictionary and facilitated the input and output of data in each domain. For the MBSA-UQ analysis, this was addressed
by updating the MBSE driver to allow parsing of uncertainty information when available, and additional software was
developed to support executions of analysis models that were not inherently vectorized, as is the case with the MBSA
model.

The future work will utilize the extensible MBSE system model to conduct safety, reliability, and sustainability
assessments of conceptual aircraft design. Further work is planned in demonstrating the integration of MBSA&E-UQ
into a digital engineering platform to expand digital aircraft design capabilities and predictive mission modeling and to
create a design lifecycle thread. Lastly, the simplified systems analysis model used in this work will be updated to use
Aviary for vehicle sizing and mission analysis.
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