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Often when working with historic air traffic management (ATM) documents, it is helpful to
classify them into specific categories. In this paper, we conduct a thorough review of natural
language processing techniques to perform this classification task on Letters of Agreement
(LOAs), technical aviation documents outlining rules for utilizing US airspace. We evaluate
multiple techniques for representing the text in the documents as embeddings: unigram and
bigram Term Frequency Inverse Document Frequency (TFIDF), Word2Vec, Doc2Vec, GloVe
and RoBERTa. We investigate a wide range of classification models: K-Nearest Neighbors,
Random Forest, Support Vector Machines (SVM), Logistic Regression, Naive Bayes, Feed-
Forward Neural Network, Convolutional Neural Networks (CNNs) and Long-Short Term
Memory (LSTM). By comparing the different methods, we found the best overall approach for
our task was to use unigram TFIDF representations with SVM while also gaining insight into
how the other methodologies performed on a small technical datasets.

I. Introduction
The United States National Airspace System (NAS), managed by the Federal Aviation Administration (FAA), is

subdivided into many different regions and areas of control which contribute to the safe management of air traffic. Users
of the NAS range from commercial airlines, civilian operators, military airspace users, and independent companies such
as sky-diving operators who all need to coordinate their movements with air traffic controllers. In order to formalize and
standardize this coordination, the FAA established Letters of Agreement (LOA). These letters are made between two
or more parties, and establish the default operations in or between adjacent airspaces. These rules or conditions that
airspace users must follow are referred to as constraints.

Currently, LOAs are stored as portable document format (PDFs) and are made accessible to their responsible parties.
In particular, controllers are trained on the LOAs that pertain to their airspace but other airspace users do not have direct
access to the constraints contained within the LOAs; they may glean from experience what positions and altitudes they
are likely to be assigned (i.e., based on routes they were allowed to fly in the past). To address this accessibility issue,
we are exploring how best to digitize and share the LOA constraints with airspace users in a form that is compatible
with existing aviation data models such as the Aeronautical Information Exchange Model (AIXM)∗. These digitization
efforts have been documented in a report to the International Civil Aviation Organization [1]. This report outlines the
goal and steps taken towards the overall digitization effort.However, because LOAs can be made between the FAA and
the military and/or private companies, not all documents should be made publicly available. We consider the LOAs that
are only between the FAA and/or other public entities to be ‘civil’ LOAs and the constraints within can be digitized and
shared. All LOAs that do not meet this criteria are ‘not-civil’. This is due to at least one party to the LOA not being a
public entity and therefore not being eligible for public release.
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Fig. 1 Truncated example LOA from FAA 7210.3

While it might seem easy to simply have a list of all official aviation entities entities and use a rule based filter to
identify the documents, our previous work on named entity recognition (NER) showed that the variation in how agency
names were written (fully spelled out, containing common acronyms, etc.) make this approach untenable. It is better to
have a model-based document classification scheme due to its ability to generalize between similar entity names. The
LOA documents contain metadata that gives us a straightforward way to create a labeled dataset. Subject matter experts
(SMEs) use this metadata to label documents - see discussion in section II. This provides us with training data for a
model-based approach. Labeled data is scarce in the aviation domain and these SME labels provide the framework to
evaluate different NLP methods on the dataset and find techniques we can use in other low resource applications within
LOA classification. As such, we cast this as a two-class classification problem with the labels civil and non-civil.

LOAs are written in a highly technical language that uses Aviation/Air Traffic Management (ATM) specific
phraseology. There are many proper nouns, abbreviations, and technical aviation terminology that is not present in
general English. Additionally, as a small dataset, there are few examples of each proper noun or technical term. This
characteristic motivated us to evaluate methods built purely from the data using models trained on general English as
well as transfer learning from general English to what we call ‘Aviation English’. As such, we performed a survey
of embedding methodologies as well as modeling techniques to establish the optimal approach for representing and
classifying documents in a technical dataset of this size. This gives us the most insight into what representations to
use for LOA data and what models preform well on the classification task. This paper documents the creation of the
LOA dataset used for classification (Section II), the methodology used to pre-process the text data before creating our
embeddings (Section III.A), creating embeddings (Section III.B), before training two-class classifiers to identify the
civil documents (Section III.C), and finally evaluates the best performing techniques (Section IV).

II. Dataset

A. LOA documents
As noted, the LOAs are currently stored as PDFs which can be seen in the FAA Order JO 7210.3DD† and Figure 1.

In order to create a test set of documents for our digitization effort, we focus on 493 documents from Dallas Fort Worth
†https://www.faa.gov/air_traffic/publications/atpubs/foa_html/chap4_section_3.html
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Air Route Traffic Control Center (ZFW)‡. We chose ZFW because our SMEs had vast experience in that region and we
could leverage their knowledge in document classification. The documents were mostly LOAs but a few other aviation
procedure documents were included as well to allow our model to have a more real-world dataset on which to classify.
After gathering these documents we used SME knowledge along with the document storage that provides metadata on
whether a document is an LOA or a Standard Operating Procedure (SOP), civil or military, etc. Our SMEs were able to
label each document in our dataset as either a ‘civil LOA’ or not. This resulted in a set of 222 civil LOA documents
and 271 documents that are ‘non-civil LOAs’. This is a relatively small dataset which will allow us to asses which
techniques in Section III are best suited to its size. With our documents thus labeled, we could then begin to extract the
text and pre-process them for two-class classification.

B. Document pre-processing
The text of the LOAs making up our dataset is considered an unstructured dataset as there is no agreed upon formal

way to write a Letter of Agreement; there are guidelines to follow but these allow for significant variation. This means
that the formatting of the documents tend to vary between facility to facility, and even letter to letter. In addition, we
have non-LOA documents that made it into the dataset as well. There are recommended section headers (e.g. Purpose,
Subject, Scope, Cancellation, Responsibilities, Procedures, and Appendix) that many of documents use, though there
are still many that do not follow these conventions.

The LOA pre-processing methodology begins by converting the LOA dataset of PDFs to plain text using Amazon
Textract§. This returns a JSON structure with all the document text captured either using PDF2Text or optical character
recognition (OCR). This provided us with the raw text to begin pre-processing. We then proceeded to extract the most
relevant document sections for civil classification from this raw text. We used rule based methods along with the LOA
template as published in FAA Order JO 7210.3DD¶ to identify section headers and group text with these headers when
they are present. This creates a semi-structured dataset to begin our representation and model survey work.

III. Methodology

A. Text Pre-Processing
To convert our documents into a representation readable by our machine learning models we convert them to

numerical embeddings, also known simply as embeddings. Embeddings that contain the specific information needed to
discern whether a document is a civil LOA or not is pertinent to getting the best accuracy out of machine learning model
for classification. Any extra or superfluous information may cause the embeddings to have less prominent features for
the classification and will result in a poor model. For example, the beginning of civil LOAs tend to have more useful
information pertaining to the document class within the Purpose, Subject, and Scope sections while the remainder of the
document focuses on Procedures containing constraints that have less relevant information. As such, we will focus the
pre-processing on collecting this relevant information over the full text.

Note that while all of the documents in our dataset were able to be processed by Amazon Textract, we were not
always able to extract the expected section headers and associated section text. Those that were nicely extracted had the
expected section headers and associated text. However, many times it failed to extract section information at all and we
just had the unstructured Textract text to work with. This led us to use a rule-based schema to make sure we use the
most informative text possible for our embeddings.

1. Rule-Based Schema Part I
The first part of our rule-based schema involved the documents that were able to be nicely extracted with section

headers and section text using the following section headers: DOCUMENT, TITLE, FACILITY, EFFECTIVE, SUBJECT,
PURPOSE, and SCOPE. The documents were picked under the following guidelines through manual exploration of
what sections may be helpful towards identifying whether a document was a civil letter of agreement or not.

Only one of the following four criteria must apply to be applicable to Part I of the rule-based schema: (1) All of the
above sections were present; (2) All of the above sections, except SCOPE, were present; (3) All of the above sections,

‡This dataset cannot be made public due to being an internal FAA dataset.
§https://docs.aws.amazon.com/textract/latest/dg/what-is.html
¶https://www.faa.gov/air_traffic/publications/atpubs/foa_html/chap4_section_3.html
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except SCOPE and any ONE other section, were present; (4) All of the above sections, except TITLE and FACILITY,
were present. It does not matter if SCOPE was present or not here as well.

The last guideline will make use of the section called RAW_HEADER as well, since a lot of the info missing
from the sections was put into this unnamed header by Amazon Textract at the beginning of the document, but not
parsed through accurately. For the embeddings we will use all of the available text from the sections gathered using the
guidelines above, as well the RAW_HEADER for the last guideline.

2. Rule-Based Schema Part II
For the rest of the documents not matching the above criteria, text was extracted from only the first page of each

document regardless of any sections. From manual exploration of what may help the classification, we found that the
text here tended to match what informative text was used in Rule-Based Schema Part I. The length of one page also
matched well with the same amount of text found in Rule-Based Schema Part I, if it was a letter of agreement. The first
page also had valuable identifying information even if the document wasn’t a letter of agreement.

3. Clean-Up and Tokenization
Clean-up is integral as this removes extra text structure that humans use purely for readability, and not needed for the

model. This tends to include formatting and punctuation on documents. For our text, we combined paragraphs together.
Regular expressions from the package regex‖, were used to remove extra formatting bullet point numbers, bullet point
letters, bullet point roman numerals, plain numbers on a line, page numbers, and all punctuation. The package NLTK
word_tokenize∗∗, was then employed to tokenize all the text into words. As the last part of our clean-up, words in all
uppercase or mixed case (past the first letter) were maintained to help preserve acronyms so that they are succinct from
other words. The remaining were standardized to lowercase to help the computer recognize that they are the same words.

B. Embedding Approaches
In order to find the best hyperparameters for each embedding method, all embeddings were tuned on a downstream

classification task. The details of the models used for the classification task can be found in the section III.C. Although
there are intrinsic methods for embedding evaluation, such as analogy tasks [2], the majority of these focus on evaluating
word-embeddings. Since we are creating document embeddings we decided to use the extrinsic evaluation task of
classification to verify that our embeddings were learning the information needed. All embedding methods except the
RoBERTA [3] transfer learning were tuned with a SVM, as defined in section III.C.3. Logistic Regression, defined in
section III.C.4, was used to tune RoBERTa transfer learning embeddings.

In the classification task used for tuning, both SVM and Logistic Regression were trained with 10-Fold cross
validation on F1-Macro score, with 90% of the full dataset being used as training data. The technique of cross validation
is helpful for our problem, as it helps us make the most out of our small dataset by helping us re-sample our data for
multiple runs. A Grid Search over the parameters mentioned in Section III.C was utilized for tuning with the downstream
task. A random seed of 211 was used for the Python libraries random, numpy, pytorch, and hugginface.

1. Frequency-Based Embeddings
The simplest embeddings we use for our survey of embeddings are Term Frequency Inverse - Document Frequency

(TFIDF) embeddings. The TF-IDF weighting scheme is commonly used in many information retrieval systems. This
should help the TF-IDF weights in the vector to have higher scores for words more rare in the document, and thus help
indicate how that document’s content may differ a bit from others. [4]

For this exploration, we used the TFIDFVectorizer implemented by the python library scikitlearn††. We used the
n-gram ranges unigram (one word), bigram (two words), and unigram & bigram (both combinations of one and two
words) and trained it over our own document corpus. N-grams are the number of words in sequence we used as the
TF-IDF feature type. For simplicity, we will call these embeddings TFIDF Unigram, TFIDF Bigram, and TFIDF
Unigram + Bigram respectively. For hyperparameters, we chose to include less frequent words from the documents
by choosing to not eliminate any words from the TFIDF embeddings (𝑚𝑖𝑛_𝑑𝑓 = 0). We thought this may help the
classification due to our small low-resource dataset within the airspace domain language. This is because a lot of civil

‖Package: https://docs.python.org/3/library/re.html
∗∗Package: https://www.nltk.org/api/nltk.tokenize.word_tokenize.html
††Package: https://scikit-learn.org/stable/
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N-gram max_df norm
Unigram 0.65 L2
Bigram 50 L2

Unigram + Bigram 70 L2
Table 1 TFIDF Tuned Embedding Parameters

Parameter vector_size window workers alpha epochs sample negative
Value 350 20 6 0.01 1000 1e-4 15

Table 2 Word2Vec Tuned Embedding Parameters

documents could be classified by a variety of specific terms that may indicate a facility or vessel that conducts civil
operations, but conversely each term may be rarely used due to the large variety of them. We also chose to remove
stopwords with the given ‘english’ list provided by sklearn (stopwords=‘english’) since these features may not be helpful
toward classification as they are general terms. We tuned the other hyper-parameters, 𝑚𝑎𝑥_𝑑𝑓 and 𝑛𝑜𝑟𝑚, using SVM to
obtain meaningful embeddings that will work well end-to-end with classification, as shown in Table 1 below.

2. Co-occurrence Embeddings
When using word sequence frequencies, as in the above section, contextual knowledge may be lost as words typically

have different meanings in the context of other words. GloVe [5] makes use of co-occurrence frequencies to handle
just that. But it is only able to handle words in the immediate vicinity of the feature/token. It is done by creating
a co-occurrence matrix based on statistics of an existing corpus [5]. For this exploration we used the pre-trained
implementation by Pennington et al.‡‡. We use the matrix that was pre-trained on Wikipedia 2014 + Gigaword 5 with
300 dimensions. Since these embeddings produced are actually word embeddings, we employed plain averaging and
TF-IDF-weighted averaging as defined in Section III.B.6. For simplicity, we will call these embeddings Averaged Glove
and TFIDF-Averaged Glove respectively.

3. Bigger Windows for Contextual Word Embeddings
Neural networks are able handle bigger windows while producing contextual word embeddings. Word2Vec is one

the first examples of this seen in the field, as GloVe actually post dates it. Word2Vec makes use of a fake task to be
able to obtain the weights for the layers, with a common fake task being the Continuous Bag of Words (CBOW). With
CBOW we input several words (with no word-order hence it being a bag-of-words) and output a word that should be
related as per the context. This fake task provides data to the network which gives the network the ability to fine-tune
weights to predict based upon context words or produce the context words, and try to understand words at a contextual
level [6]. For this exploration we used the Gensim§§ Word2Vec implementation, and train it over our own document
corpus using the CBOW approach. Since these embeddings produced are also word embeddings, we employed plain
averaging and TF-IDF-weighted averaging as defined in Section III.B.6. For simplicity, we will call these embeddings
Averaged Word2Vec and TFIDF-Averaged Word2Vec respectively. For hyper-parameters, we chose to stay with the
CBOW model (𝑠𝑔 = 0), and to not ignore any words with lower frequencies (𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 = 0). We chose to keep all
lower frequency words for the same reason as mentioned with the TFIDF vectors in section III.B.1. The number of
workers was not tuned and kept at 6, as we are not using parallelism for faster training. The rest of the parameters,
vector_size, window, alpha, epochs, sample, and negative, were tuned with and may be referenced in Table 2.

Doc2Vec is built over Word2Vec, and helps to create document or paragraph vectors. Similar to Word2Vec, Doc2Vec
trains words with similar contexts to have closer vectors in space, but at the same time, also trains a document feature
vector to try to capture what is missing from the context [7]. For this exploration, we used the Doc2Vec Gensim
implementation as well. The Doc2Vec embeddings were actually tuned before the Word2Vec ones, and as you may
notice, some of the values for hyper-parameters are similar since the models are trained similarly. We use the distributed
memory version of the model, which is similar to CBOW in the Word2Vec model. This may contribute to why some of

‡‡Package: https://nlp.stanford.edu/projects/glove/
§§Package: https://radimrehurek.com/gensim/index.html
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Parameter vector_size window workers alpha epochs sample negative dm_concat
Value 300 8 6 0.01 1000 1e-5 15 0

Table 3 Doc2Vec Tuned Embedding Parameters

Parameter learning_rate weight_decay adam_beta1 adam_beta2
Value 0.0001 0 0 0.75

Table 4 TL RoBERTa Tuned Embedding Parameters

the best hyper-parameters are similar across embedding models. We choose 𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 = 0. The parameters we tuned
matched those of Word2Vec, except for 𝑑𝑚_𝑐𝑜𝑛𝑐𝑎𝑡 which we have additionally tuned, as shown in Table 3.

4. Large Language Models
Large language models using transformer-based architectures not only handle bigger windows for more context, but

also, as in the name, handle a large corpus as its training data. This can allow the model to have a much greater number
examples to learn the context of language and may produce more accurate embeddings. However, it does come with a
cost in that it will only learn from the type of corpus that it was trained on. Since our problem task is of a specific
aviation domain, it might not work out to be the perfect embeddings. This leads us to the use of transfer learning with
these types of pre-trained embeddings. For this exploration we used the HuggingFace implementation of the pre-trained
RoBERTa¶¶ model embeddings. The model was mainly based off of an improved BERT as the name itself stands
for Robustly Optimized BERT pre-training Approach [3]. We also used transfer learning with this model, which is
explained in the next section.

5. Transfer Learning
Transfer learning is a widely used technique in machine learning, often when we have a small or limited amount

of training data to work with. Our dataset is small, so it is worth employing transfer learning to see if it can help us
to improve the accuracy. For our purposes, we make use of transfer learning by using a pre-trained model on a large
English corpora. The pre-trained corpora will have picked up on a good base for English patterns in language, which
can help it to perform well on basic English tasks. This can be helpful to our problem as training from scratch with a
small dataset may not be enough for the model to pick up on the patterns. To make use of the pre-trained model, we can
use its existing weights (trained on the large corpora), and train over it more with our small training dataset to fine-tune
it with our dataset’s documents and have it learn more about our document’s domain. Transfer learning can be helpful if
the original corpora of the pre-trained model is similar in language to the dataset. [8]

For this task, the pre-trained Glove and RoBERTa models were pulled and fine-tuned on our own document corpus.
The pre-trained GloVe vocab weights were input into an untrained Word2Vec model with it set to re-train over it
using our own document corpus. This means our vocab from the train data will be incorporated while leveraging all
the extra knowledge from the existing pre-trained GloVe. Since these embeddings with once again correspond with
words we will use plain averaging and tfidf-weighted averaging defined in this section III.B.6. For simplicity, we will
call these embeddings TL Glove, where TL stands for transfer learning. To train the hyper-parameters, we started
by using the best parameters found by Word2Vec, while still accounting for the different pre-trained vector_size of
300. We found it to perform well with these beginning parameters and stuck with them. Similarly, RoBERTa was
fine tuned over our own document corpus. We used the weights from the RoBERTa Base model and trained over
it using the RoBERTaForMaskedLM model. We chose the 𝑝𝑒𝑟_𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 16. We settled with
𝑛𝑢𝑚_𝑡𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 10. We then performed with a manual grid search to tune the the finalized hyper-parameters∗∗∗,
as presented in Table 4. For simplicity, we will call these embeddings TL RoBERTa.

¶¶Package: https://huggingface.co/docs/transformers/model_doc/roberta
∗∗∗Note that the default optimizer is AdamW.
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6. Word-Vector Averaging
Since both GloVe and Word2Vec are word embeddings, we must employ a word-vector averaging strategy to have

one embedding to represent the full document. Two strategies, plain averaging and TF-IDF averaging, are discussed
below. First as part of pre-processing, we first removed all the stopwords from the NLTK English stopwords list††† for
both type of averaging. To calculate the plain average, we performed element-wise addition between all the produced
word vectors and performed division of the resulting vector by the scalar n, where n is the number of words that are both
present in the document (without stopwords) and in the pre-trained corpus if there was one.

To calculate the TFIDF average, we multiplied each vector by the scalar 𝑤, where 𝑤 is the corresponding TF-IDF
weight for the word take from the the unigram TFIDFVectorizer model. If there are unknown TFIDF word weights,
𝑤 = ln(394). This was chosen as 394 is 80% of the number of documents in the entire data, and this number is around
the number used for the training data in the “train/validation” split, where 399 training documents were used for the
training when doing hyper-parameter tuning with the cross-validation datasets. The cross-validation datasets were made
up of 0.1 of the original 493 documents in the training set. Finally we followed the same process as the plain average to
produce an average of our vectors.

C. Classification Models
Using all the optimized representations we have just discussed in Section III.B we now want to use these embeddings

to evaluate different modeling techniques. In this section we will survey the different types of models and our reasoning
behind why we chose them. The models below each use all the possible embeddings in Section III.B. For all models
which utilize randomness, a random seed or state of 211 was used for all applicable parameters or the seed that was set
for the package.

All models make use of 10-Fold cross validation. The tuning technique used for sklearn models is Grid Search,
which is also from sklearn‡‡‡. For Keras models§§§ the technique used is Randomized Search, from sklearn, due to the
much larger amount of parameters. For Randomized Search, lesser and lesser amounts of parameters were used each
run to help try to find the optimum values for the parameters, while trying to center around the parameters that did well
in the last round.

1. Classification Based on Known Labeling
We used K-Nearest Neighbors (KNN) as the algorithm is different from the others; it focuses heavily on the proximity

of a known label. K-Nearest Neighbors looks at the K nearest already classified training document embeddings in space
and what classes are being predicted by them, then it approximates the current document’s class from a new dataset with
that information. [9] Being built entirely on distance from known contrasts with the other approaches that attempt to
build a discriminative or generative model for classification as described below.

For KNN we used the sklearn implementation and tuned all the hyper-parameters other than the type of algorithm to
compute the nearest neighbors. Since some of our embeddings were in a sparse vector representation (TF-IDF), we used
the algorithm brute as that was the only option for sparse vectors. Since some of our embeddings where sparse vectors,
we decided to always use brute force for the algorithm. The rest of the parameters tuned are n_neighbors, weights, and
metric.

2. Decision Tree
We also used a Random Forest (RF) model, which is an advanced Decision Tree model that makes use of sampling.

A Random Forest model creates many decision tree models on subsets of the data and averages the predictions for the
final prediction. We used the Random Forest implementation from sklearn and tuned all these parameters: n_estimators,
criterion, max_depth. and max_features. [10]

3. Linear Model
We also used Support Vector Machines (SVM), which are a popular type of linear model. A SVM is a linear model

that maximizes the distances between the classes in space (the decision boundary). It can also solve non-linear problems
†††Package: https://www.nltk.org/
‡‡‡Package: https://scikit-learn.org/stable/
§§§Package: https://www.tensorflow.org/guide/keras
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using special constructed kernels. For SVM, we used the sklearn implementation and tuned all these parameters: kernel,
C, degree, gamma, and coef0. [11]

4. Probabilistic
Logistic Regression (LR) is a discriminative classifier that makes use of an independence assumption and uses the

logistic function to map instances to a probability it belongs in that class [11, 12]. Naïve Bayes (NB) is a generative
classifier that uses an assumption of conditional independence (Bayes Rule) to map instances to a probability it belongs
in the class [11, 12]. We used both these models to compare if a probabilistic classifier may do better than the others,
and what what assumptions it might do better under. For both these models we used the sklearn implementation.

For Logistic Regression, in choosing the solver, liblinear was chosen due to it being usable with both the l1 and l2
penalties. Saga was not used as the solver as it’s meant for much larger datasets. The parameter dual meant for an
l2 penalty with liblinear, was always set to False since the number of samples tended to be greater than the number
of features for most of the embeddings. This was true for all embeddings but the TFIDF and RoBERTa embeddings.
fit_intercept was also set to True as it’s useful with liblinear, and intercept_scaling set to 0.0001 after experimenting
with it a bit and settling on this number that tended to do well for most of the embeddings. The class_weight was set to
balanced, as our dataset is balanced for the most part, but we let the model figure out the proportions through cross
validation. Finally, we chosen the max number of iterations, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 1000, as the solver tended to work best around
those number of iterations, even if was not able to converge to the solution. The parameters that we tuned using grid
search were penalty and C.

For Naive Bayes, the sklearn implementation of MultinomialNB was used. The parameter fit_prior was chosen to be
True so probabilities will be learned from the given data. Otherwise, we focused on tuning the alpha parameter with
grid search.

5. Neural Networks
Neural networks are a subset of machine learning where the model does not rely on human patterns and probability

theory and instead tries to approximate a function, usually using more data than a non-deep learning algorithms to do so
[13].

Feed-forward networks (FFN) are the first type of neural network that we make use of. We used both the Multi-
Layer-Perceptron (MLP) implementation from sklearn and a FNN created by Keras. A MLP is a subset of FNNs in that
it is a densely connected feed-forward network. It differs from our Keras version that make use of a dropout of 0.2.
Additionally, we allow the MLP to tune the number of layers it uses, while with the FNN we restrict it to one layer. For the
MLP an 𝑎𝑙 𝑝ℎ𝑎 = 0.1 was chosen. The learning_rate was chosen to be constant, with a 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒_𝑖𝑛𝑖𝑡 = 0.08 and
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 300. Shuffle was set to False with the solver adam. The activation, beta_1. beta_2, and hidden_layer_sizes
were hyper-parameters that we tuned. We also chose to tune the batch_size to be between 25 and 30, along with
other hyper-parameters. Our FNN architecture in Keras is built out of the Sequential model and starts with the giving
embedding passed into a Dense Layer with relu activation, which is then passed to a Dropout Layer of 0.2, and then
finally at a final Dense layer of size 1 with sigmoid activation for the classification result.

Dropout is one way a neural network can try to combat over-fitting. When using dropout over an input layer, it is
often better to keep between 0.5 to 1 of the nodes, and better if it’s closer to 1 [14]. Additionally, dropout can become
more and more computationally expensive as the number nodes drop since that will make the number of iterations
to converge bigger [15]. We chose 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.2 for now, but we could tune it more for the future. We chose a
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001 with 𝑒𝑝𝑜𝑐ℎ𝑠 = 10 and early stopping with a 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 3 monitoring the max validation
accuracy. 𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 20 was also chosen. Due to the large compute power of neural networks, size of the singular
dense layer was chosen to be about half of the size of the embedding input shape. For the TFIDF Unigram + Bigram and
TFIDF Bigram embeddings, a 𝑑𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟 𝑠𝑖𝑧𝑒 = 1024 was chosen due to the extremely large input embeddings sizes,
causing the model to take a prohibitive amount of time to train. beta_1, beta_2, weight_decay, and ema_momentum
were hyper-parameters.

Convolutional Neural Networks (CNN) have a different type of neural architecture using filters that is mainly used to
extract different types of features in images. In an NLP context, we must reshape the embeddings to model an image
matrix, to see if we can hopefully get the model to also recognize low-level and high-level patterns in text to help with
our document classification. Our CNN architecture in Keras is also built out of the Sequential model and starts with
the giving embedding passed into a 1D convolutional Layer with relu activation, a Flatten layer, a 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.2, and
finally a 𝑑𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟 𝑠𝑖𝑧𝑒 = 1 with sigmoid activation for the classification result. Early stopping was also utilized.
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The CNN parameters that align with FNN, were chosen and tuned in the same manner. However, we also focus on
tuning the kernel for the Convolutional 1D Layer, and the maxpooling size that follows after it. The filter size for the
CNN matched that of the FNN’s dense layer sizes respectively. [16]

Long Short-Term Memory (LSTM) neural networks are a type of Recurrent Neural Network made to be used with
sequential data such a text. This makes this model better at handling dependencies between different words in text. Our
LSTM architecture in Keras is built out of the Sequential model and starts with the giving embedding passed into an
LSTM layer with activation tanh. It is then passed in a 𝑑𝑟𝑜𝑝𝑜𝑢𝑡𝑙𝑎𝑦𝑒𝑟 = 0.2, and finally a 𝑑𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟 𝑠𝑖𝑧𝑒 = 1 with
sigmoid activation for the classification result. Early stopping was not utilized here. The LSTM parameters that align
with both FNN and CNN, were chosen and tuned in the same manner. However, the size of the LSTM layer was chosen
to match the size of the FNN’s dense layer and CNN’s filter sizes. [16]

IV. Results
For the results tables, F1-Macro scores in plain bold are the top score for the model. Scores that are also italicized

were top F1-Macro scores overall, but were not the first-place for the model.

A. Cross Validation Results
Cross Validation Mean F1 Macro results for all embedding-model combinations on are shown in Table 5. These

were computed using 90% of the LOA dataset using the cross validation methods discussed in Section III.C. The top
F1-Macro scores were found to be between 0.841 to 0.854. The TFIDF Unigram is the embedding that most consistently
has the top cross validation F1-Macro score over all the models. Averaged Word2Vec is the next most consistent
embeddings for top scores.

B. Test Results: Best Embeddings
The Final Test F1 Macro Results, shown in Table 6, were generated on the held-out test set which amounts to 10%

of our total data. We used the hyper-parameters found by the best cross validation score. The top F1-Macro scores were
found to be between 0.877 to 0.919.

The top embeddings are both TFIDF Unigram and TFIDF Unigram + Bigram consistently across the different
models. For our task, we will choose TFIDF Unigram as the best performing embedding due to it being consistent
with our top cross validation results. It is also the more efficient embedding during training time, as it has a length of
4447 compared to 23,482, the length of TFIDF Unigram + Bigram. The other embeddings–TFIDF Bigram, Averaged
Word2Vec, and TFIDF-Average Word2Vec perform well on some models too, though not as consistently. All of our
TFIDF and Word2Vec embeddings work well for our task. This may be due to these embeddings being fully trained on
our dataset from scratch. Remember that our civil document classification will most probably rely on similar entity
names, as explained in Section I. This makes sense why TFIDF works well as the top embeddings, since it’s providing
weighted frequencies on the terms in our documents to aid in the classification. Doc2Vec did not perform well despite
its genesis from Word2Vec. It is possible that this is due to Doc2Vec’s focus to general document topic. The other
embeddings are either pre-trained or use transfer learning from the pre-trained embeddings, and don’t perform well for
our task. This may be due to the language of these documents being different from the original corpus used to train the
pre-trained embeddings.

C. Test Results: Best Models
Based on the results in Table 6, we have observed that the models that perform the best and most consistently

are SVM followed by Logistic Regression. KNN, Random Forest, and Naive Bayes also perform well with some
embeddings, but not as consistently as SVM. So, we choose SVM as our top performing model.

None of our neural models perform as well as the non-neural models. This may be due to having many more
parameters that need to be tuned. This is much harder for the models to tune well, since we have a small dataset.
Interestingly, both the large language model embeddings–RoBERTa and TL RoBERTa–performed extremely poorly
compared with the Neural Network models. While we were able to tune it well to the cross validation, it is still
over-fitting on the cross validation. This can also be seen with the low F1-Macro scores we are getting on the test set.
The F1-Macro scores for the train set are also high compared to test results, due to over-fitting, and can be seen in the
Appendix.
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KNN RF SVM LR NB MLP FNN CNN LSTM
TFIDF Unigram 0.818 0.824 0.846 0.841 0.837 0.854 0.843 0.835 0.847

TFIDF Unigram + Bigram 0.831 0.813 0.844 0.829 0.823 0.828 0.837 0.837 0.838
TFIDF Bigram 0.809 0.782 0.813 0.822 0.812 0.807 0.814 0.824 0.804
Averaged GloVe 0.808 0.812 0.807 0.816 0.734 0.814 0.787 0.792 0.793

TFIDF-Averaged GloVe 0.799 0.801 0.793 0.800 0.703 0.801 0.800 0.799 0.806
Averaged Word2Vec 0.806 0.821 0.843 0.832 0.745 0.845 0.847 0.835 0.836

TFIDF-Averaged Word2Vec 0.813 0.823 0.836 0.825 0.724 0.836 0.833 0.835 0.840
Doc2Vec 0.813 0.788 0.814 0.799 0.741 0.792 0.808 0.807 0.810
RoBERTa 0.853 0.812 0.828 0.808 0.711 0.768 0.802 0.776 0.801

TL Averaged GloVe 0.808 0.806 0.826 0.815 0.697 0.812 0.833 0.828 0.829
TL TFIDF-Averaged GloVe 0.806 0.806 0.824 0.806 0.676 0.803 0.835 0.819 0.830

TL RoBERTa 0.804 0.824 0.826 0.845 0.699 0.761 0.792 0.810 0.806
Table 5 10-Fold Mean Cross Validation F1-Macro Scores

KNN RF SVM LR NB MLP FNN CNN LSTM
TFIDF Unigram 0.919 0.75 0.877 0.880 0.860 0.854 0.714 0.840 0.788

TFIDF Unigram + Bigram 0.859 0.878 0.859 0.879 0.879 0.828 0.853 0.853 0.833
TFIDF Bigram 0.797 0.853 0.878 0.879 0.859 0.807 0.830 0.819 0.807
Averaged GloVe 0.818 0.814 0.816 0.778 0.740 0.814 0.407 0.359 0.569

TFIDF-Averaged GloVe 0.819 0.855 0.816 0.739 0.714 0.801 0.760 0.643 0.661
Averaged Word2Vec 0.838 0.816 0.877 0.800 0.797 0.845 0.699 0.754 0.756

TFIDF-Averaged Word2Vec 0.840 0.898 0.877 0.799 0.731 0.836 0.760 0.758 0.814
Doc2Vec 0.853 0.758 0.820 0.836 0.407 0.792 0.644 0.407 0.706
RoBERTa 0.756 0.740 0.838 0.820 0.720 0.359 0.359 0.359 0.359

TL Averaged GloVe 0.816 0.773 0.731 0.754 0.660 0.812 0.714 0.714 0.696
TL TFIDF-Averaged GloVe 0.699 0.773 0.811 0.731 0.700 0.803 0.773 0.660 0.760

TL RoBERTa 0.836 0.811 0.795 0.838 0.760 0.685 0.359 0.359 0.359
Table 6 Test F1-Macro Scores

D. Conclusion
Overall, choosing the TFIDF Unigram embedding with the SVM model works most consistently for this task.

Bias from fine-tuning embeddings with SVM classification as the downstream task is a possible reason why SVM is
performing the best. This is with the exception of TL RoBERTa, which utilized cross validation on Logistic Regression
for the downstream task. More experimental work could be done on this by training the RoBERTa embedding-model
combinations end-to-end.
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V. Future work
This thorough survey of embedding methods has provided a solid foundation for future work that falls into two

categories: 1) increasing the scope of the methods evaluated on this dataset and 2) using the results from this dataset on
similar, or larger, aviation NLP tasks and datasets.

The first category includes additional methods such as RoBERTa with a text classification head, BerTopic, FastText,
and low resource classification methodologies [17–19]. This will allow us to compare additional approaches to our
existing methodologies.

Additionally, we are interested in trying the best performing methods found on this dataset for other aviation text
classification examples. Within the LOA documents, in addition to classifying documents, we also have research goals
to classify sentences or lines within the documents. This is a similar two-class problem with one relevant class and a
non-relevant class to capture the remainder. From the work performed here, we would expect to be able to use TFIDF
combined with SVM or Logistic Regression and obtain good results. This would be working with smaller text segments
but the representations would be similar and seeing techniques leading to 0.87 F1-macro scores on this problem gives us
high confidence of good performance on the sentence classification.

Similarly, we have been researching several speech-based (audio) datasets. After doing speech to text (transcription)
on the audio data, we often would like to perform intent classification and slot filling. Intent classification is a multi-class
classifier problem but in the same domain and with similar dataset sizes and limitations as our LOA work. The work
reported in this paper once again suggests evaluating a document-based embedding approach with similar classification
models but set up as a multi-class problem instead.
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Appendix
The F1 Macro scores over the full training data for the model, using the hyper-parameter results from the cross

validation, are presented in Table 8.

Embeddings size
TFIDF Unigram 4447

TFIDF Unigram + Bigram 23482
TFIDF Bigram 19011
Averaged GloVe 300

TFIDF-Averaged GloVe 300
Averaged Word2Vec 350

TFIDF-Averaged Word2Vec 350
Doc2Vec 300
RoBERTa 768

TL Averaged GloVe 300
TL TFIDF-Averaged GloVe 300

TL RoBERTa 768
Table 7 Embedding sizes

KNN RF SVM LR NB MLP FNN CNN LSTM
TFIDF Unigram 0.993 0.989 0.989 0.932 0.941 0.941 0.896 0.905 0.867

TFIDF Unigram + Bigram 0.995 0.995 0.929 0.993 0.934 0.927 0.938 0.901 0.938
TFIDF Bigram 0.799 0.995 0.943 0.989 0.952 0.807 0.947 0.907 0.936
Averaged GloVe 0.995 0.995 0.882 0.878 0.748 0.814 0.462 0.354 0.522

TFIDF-Averaged GloVe 0.998 0.995 0.890 0.870 0.709 0.801 0.729 0.655 0.660
Averaged Word2Vec 0.995 0.995 0.927 0.882 0.767 0.845 0.812 0.803 0.787

TFIDF-Averaged Word2Vec 0.864 0.995 0.911 0.903 0.754 0.836 0.760 0.766 0.855
Doc2Vec 1.0 1.0 0.927 0.923 0.783 0.792 0.600 0.427 0.739
RoBERTa 0.829 0.993 0.872 0.912 0.742 0.354 0.354 0.354 0.354

TL Averaged GloVe 0.995 0.995 0.898 0.866 0.704 0.812 0.775 0.730 0.724
TL TFIDF-Averaged GloVe 0.995 0.995 0.934 0.875 0.694 0.804 0.786 0.725 0.810

TL RoBERTa 0.834 0.993 0.895 0.941 0.726 0.697 0.354 0.354 0.354
Table 8 Train F1-Macro Scores
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