
Towards an Aviation Large Language Model by
Fine-tuning and Evaluating Transformers
1st David Nielsen

KBR Inc.
NASA Ames Research Center

Moffett Field, USA
david.l.nielsen@nasa.gov

2nd Stephen S. B. Clarke
Flight Research Aerospace

NASA Ames Research Center
Moffett Field, USA

stephen.s.clarke@nasa.gov

3rd Krishna M. Kalyanam
Aviation Systems Division

NASA Ames Research Center
Moffett Field, USA

krishna.m.kalyanam@nasa.gov

Abstract—In the aviation domain, there are many applications
for machine learning and artificial intelligence tools that utilize
natural language. For example, there is a desire to know the
commonalities in written safety reports such as voluntary post
incidents reports or create more accurate transcripts of air traffic
management conversations. Another use-case is the possibility of
extracting airspace procedures and constraints currently written
in documents such as Letters of Agreement (LOA) which is used
as the evaluation case in this paper. These applications can benefit
from the use of state-of-the-art Natural Language Processing
(NLP) techniques when adapted to the language/phraseology
specific to the aviation domain. This paper evaluates the viability
of transferring pre-trained large language models to the aviation
domain by adapting transformer based models using aviation
datasets.

This paper utilized two datasets to adapt a ‘Robustly Opti-
mized Bidirectional Encoder Representations from Transformers
Approach’ (RoBERTa) model and two down-stream classification
tasks to assess its performance. These datasets are all built upon
Letters of Agreement which are Federal Aviation Administration
(FAA) documents that formalize airspace operations across the
national airspace system. The first two datasets are used for
the adaptation of RoBERTa to the aviation domain and were
of different sizes to assess the number of documents needed
to adapt to the aviation domain. They contain many examples
of ‘aviation English’ using domain specific terminology and
phrasing which serves as a representative basis to perform the
unsupervised adaptation. The second dataset is a separate set of
LOA documents with two sets of classification labels to be used
for evaluation; one at the document level and one at the line
level. These down-stream evaluations allowed the measurement
of improvement by adapting RoBERTa. The accuracy increased
by 4-6% on both tasks and the F1 score on the class of interest
increased by 4-8% from the adaptation.

I. INTRODUCTION

Aviation and Air Traffic Management (ATM) present many
opportunities to leverage machine learning (ML) and Artificial
Intelligence (AI) as applied to natural language due to a
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number of factors. Firstly, there are large amounts of technical
documents written in the aviation domain ranging from the
rules and regulations governing the use of airspace to safety re-
ports and further. In addition to written documents, many ATM
actions are coordinated via human-to-human conversations
opening up the possibility of speech-based ML techniques to
be applied.

With these natural language datasets come Natural Lan-
guage Processing (NLP) and natural language understanding
(NLU) tasks. For example, work has been done analyzing
the Aviation Safety Reporting System (ASRS), a voluntary
anonymous safety incident reporting system, utilizing the
NLP methods of sentiment analysis and clustering in order
to find common corrective actions [1]. Additionally, Letters
of Agreement (LOA) are formal documents created by the
Federal Aviation Administration to standardize operations be-
tween airspace users such as airports and their Terminal Radar
Approach Control Facilities (TRACON). Work has been done
to use NLP techniques to digitize the constraints contained
within these LOAs [2]. For the audio data, work has been done
to train models to transcribe the communications as well as
correct those transcriptions to be more accurate to the aviation
domain [3].

This all demonstrates a growing demand for NLP and NLU
in the aviation domain, and presents unique challenges. This
comes with a desire to utilize state-of-the-art methods such as
Large Language Models (LLM). In 2018, a novel language
model based on neural units (called transformers) was created
and became known as “Bidirectional Encoder Representations
from Transformers” or BERT [4]. This architecture combined
with large amounts of English training data and innovative
semi-supervised training tasks set the standard for what would
later emerge as LLMs. The performance of these models was
further improved by hyperparameter tuning and refinement of
the semi-supervised training task and resulted in “Robustly
Optimized BERT Pretraining Approach through hyperparame-
ter tuning” or RoBERTa models [5]. These pre-trained LLMs
proved to be useful for a wide variety of natural language
processing tasks such as text classification and question an-
swering through a process called fine-tuning. The transformer
architecture with pre-trained weights served as the basis with
the last few layers replaced with layers fine-tuned to perform



a new task e.g., a layer that provides a label for the entire
input text. Transformer-based architectures can also be used
to create rich representations of text called embeddings which
can serve as the input to other ML models. This allows
simpler algorithms such as logistic regression to use context-
rich representations of the text while still remaining quick to
train and evaluate.

In previous work, due to the technical content and special-
ized language of most aviation documents, fine-tuning pre-
trained Large Language Models to specific NLP tasks has
not met the benchmark on natural language processing tasks
set by simpler models trained from scratch on the data [6].
To address this deficiency, this paper follows the work done
with LegalBERT and BioBERT and evaluates the improve-
ments from adapting a LLM with a large set of aviation
documents using the original semi-supervised training tasks
before performing specific natural language tasks [7], [8]. In
adaptation, a domain-specific dataset is used on the original
training task but with the pre-trained Large Language Model
instead of starting from a random initialization. This approach
allows the model to be adapted to the specific domain language
without discarding the information gained from training on
general English data. Both BioBERT and LegalBERT showed
improvement over the pre-trained baseline BERT models by
performing this adaptation. In this vein, this paper gathered
LOA documents and used them to adapt the RoBERTa model
to the aviation domain as laid out in the following section.

II. METHODOLOGY

A. Dataset pre-processing

The first step of LLM adaptation is to collect training
data. This took the form of LOAs from the Federal Avi-
ation Administration (FAA). These are stored in Portable
Document Format (PDF). 7, 497 LOA PDFs were collected
covering much of the National Airspace System (NAS). The
libraries utilized for adaption require plain text input so the
text was extracted from the PDFs using Amazon Textract1.
This returned JavaScript Object Notation (JSON) objects that
contained the plain text of the LOAs along with metadata about
the document structure such as text position. This metadata
was used to remove the repeated header text and page numbers
from the LOA body text. The body text was then cleaned
and tokenized. The cleaning consisted of removing new line
characters, punctuation, and removing initial capitalization
(though fully capitalized words were unchanged to preserve
acronyms). The text was then tokenized using the Python nltk
library2. The maximum input length to the RoBERTa model is
512 tokens including a start and stop token so those documents
that were longer than this were divided into 500 token sections
resulting in 29,904 total LOA training documents which will
be called FullLOA hereafter.

A subset of this full LOA dataset was created by select-
ing all LOAs that had an Air Route Traffic Control Center

1https://docs.aws.amazon.com/textract/latest/dg/what-is.html
2https://www.nltk.org/api/nltk.tokenize.word tokenize.html

(ARTCC) as one of the parties. This resulted in a 7, 057
document subset that still covered a large portion of the NAS
so adaptation sensitively to training dataset size could be
assessed. This will be called ARTCCLOA hereafter.

In addition to the adaptation training data, an evaluation
dataset was created to measure adapted RoBERTa performance
on down-stream classification tasks as described in Section
II-C. These documents were different LOAs from the Dallas-
Fort Worth ARTCC (ZFW) and totaled 493 PDFs. These
ZFW LOAs were labeled by Subject Matter Experts (SME)
with two sets of labels. The first labeling type labeled each
document as ‘civil’ or ‘not-civil’. This two-class classification
distinction divided documents whose signatories are all public
entities like the FAA from those not-civil documents that had
one or more signatories who were non-public airspace users
such as private companies. This task was derived from the
efforts to digitize LOAs which focused on these civil LOAs
[9]. Training NLP models to classify documents is important
for the automation of this step. The total counts can be seen
in Table I. This dataset was first used to survey embedding
methods and modeling techniques in [6] and served as a good
source of motivation and comparison.

TABLE I
COUNT OF ZFW DOCUMENT CLASS LABELS

Total documents civil not-civil
493 222 271

The second labels were on the individual lines from the
222 civil LOAs. These labels marked the lines as containing
a trajectory constraint or not. Here, a trajectory constraint
is any rule that restricts the trajectory of an airspace user.
This classification task also supports the LOA digitization
work [9]. The goal of digitization is to represent trajectory
constraints in a digital format and one of the steps in this
process is identifying where in the document they occur. The
SME reviewed the individual lines resulting in the class counts
as seen in Table II

TABLE II
COUNT OF CIVIL ZFW LOA LINE LABELS

Total lines constraint not-constraint
499 129 370

B. Adaptation

In order to evaluate LLM adaptation to the aviation domain
using this LOA dataset, the RoBERTa transformer based model
was used. RoBERTa was chosen due to the improvements
over the baseline BERT while remaining a straightforward
transformer-based architecture. Additionally, RoBERTa was
pre-trained on general English using an unsupervised Masked
Language Modeling (MLM) task where a subset of the tokens
in a document were masked and the surrounding text was
used to predict these tokens. In BERT, a static 15% of tokens



were masked and RoBERTa improved upon this with dynamic
masking. This MLM was also found to be sufficient for pre-
training and in fact out performed the original BERT strategy
of combining MLM with Next-Sentence Prediction (NSP) [5].

The Python library HuggingFace was used to perform the
adaptation of RoBERTa3. Due to the smaller nature of the
LOA datasets, static masking was used as dynamic masking
was chosen as an improvement due to dataset size and this
is a much smaller dataset being used for adaptation. 15% of
tokens were masked for training and NSP was not performed.
The HuggingFace RoBERTaForMaskedLM model was used
for the adaptation training. The default AdamW optimizer was
used for this training. The following parameters were used
for all models: training epoch = 10, batch size = 16,
learing rate = 0.0001, and the AdamW beta2 = 0.75. A
grid search was performed across weight decay and AdamW
beta1 which is discussed in Section III as it involves the
evalutation tasks explained in Section II-C. This search found
that three different sets of hyperparameters performed better
on different evaluation tasks. As such, 3 models are presented,
artcc wd25 b50, artcc wd75 b50, full wd24 b90, whose hy-
perparameters can be seen in Table III. The first two models
were adapted using just the ARTCCLOA dataset while the
final was adapted using the entire FullLOA dataset. The details
of the performance of these three models on the evaluation
tasks will be covered in Section III but first the evaluation
tasks must be established.

TABLE III
ROBERTA ADAPTATION HYPERPARAMETERS

Model Dataset Weight decay AdamW beta 1
artcc wd25 b50 ARTCCLOA 0.25 0.5
artcc wd75 b50 ARTCCLOA 0.75 0.5
full wd25 b90 FullLOA 0.25 0.9

C. Evaluation tasks

While MLM provides intrinsic metrics about masked token
prediction after adaptation, because of the unsupervised nature
of the MLM task, it is not as useful for predicting model utility
as performing down-stream tasks. This is where the two sets
of ZFW classification labels proved useful. They provide an
extrinsic task relevant to the aviation domain that assists in
the evaluation of the adapted RoBERTa’s ability to represent
aviation information. To measure this performance, these two
sets of labels each were used in a 2-class classification problem
following the model established in previous work [6].

The architecture used starts with the adapted RoBERTa to
create embeddings of either the full document or individual
lines, as appropriate for the classification task. These embed-
dings along with their labels were then split 90/10% into a
training and test set. For both datasets, the training set was
then used to train a logistic regression model using the python
library sklearn. The hyperparameters in Table IV were found

3https://huggingface.co/docs/transformers/en/model doc/roberta

to perform best for this model in previous work [6]. Logistic
regression was chosen due to high performance in previous
work while being quick and simple to train but future work
will evaluate a RoBERTa classification layer as an end-to-end
classifier as well.

TABLE IV
LOGISTIC REGRESSION HYPERPARAMETERS

Parameter value
solver liblinear

fit intercept True
intercept scaling 0.0001

class weight balanced
max iter 1000

III. RESULTS

The methodology laid out in the previous section (II-C)
created evaluation metrics for each of the two classification
tasks. These metrics were then used to measure performance
across a hyperparameter grid search to find the adapted
RoBERTa models with highest accuracy. In additional, we
compare the adapted models against a baseline RoBERTa
without any additional adaptation.

The hyperparamter grid search varied both weight decay and
AdamW beta1 across the range of [0, 0.25, 0.5, 0.75, 0.999].
This was an attempt to both find the best parameters for
adaptation as well as measure the sensitivity of model adapta-
tion to hyperparameter choice. This sensitivity was measured
using accuracy, acc = TP+TN

P+N , which is the ratio of correctly
identified cases to the total number of cases. Examining
this sensitivity, figure 2 shows both the ARTCCLOA and
FullLOA models accuracy varied similarly on the document
classification across the hyperparameter grid. The boxes show
the quartiles of the data, the whiskers show 1.5 interquartile
range (IQR), and the points show individual outlier models
whose accuracy was outside of that range. The outliers for
FullLOA all occurred with beta1 = 0.999 and were the lowest
accuracy ARTCCLOA models showing similar poor perfor-
mance between the two adaptation datasets. This held true
for the constraint classification so this hyperparameter choice
was sub-optimal. Additionally, for the constraint classification,
figure 2 show significantly higher sensitivity for the FullLOA
models. In this case, weight decay = 0.999 also significantly
under-performs compared with other hyperparameters. On the
other side of the distributions, there are fewer universally best
hyperparameter combinations; instead there are a range of
parameters that all perform within the expected bounds of
the distribution for all tasks except for two outperforming
outliers for constraint classification, the best of which will
be discussed below. The overall distributions across all the
cases show that evaluation tasks are necessary to eliminate
the extremely under-performing hyperparameter choices. Ad-
ditionally, the worse hyperparameter choices under-perform
the baseline RoBERTa which further shows the importance
of evaluation tasks in LLM adaptation. More specifics will be
discussed in the context of the best performing models below.



Fig. 1. Grid search document classification accuracy for ARTCCLOA and
FullLOA datasets

Fig. 2. Grid search constraint classification accuracy for ARTCCLOA and
FullLOA datasets

The grid search allowed for the selection of 3 adapted
models with the best performance on the evaluation tasks
were chosen for further comparison. Additionally, the baseline
RoBERTa model was used to establish a benchmark to com-
pare the adapted RoBERTa models against. Two main metrics
were collected in each case. The first is accuracy. Second
is the F1-Score for the minority class; in both document
classification tasks, these are the priority to focus identify so
considering the F1 of that class helps measure how well the
model focused on that class. F1 macro was also collected but
is omitted from these tables as it closely represents accuracy in
this application without largely imbalanced labels. The results
can be seen in Table V & VI.

For the document classification task, artcc wd25 b50
under-performs the baseline, while both the other adapted
models out-perform the baseline. We note the increase in
performance on civil LOA classification improvement corre-
lates with the size of the adaptation dataset; the additional
documents in the FullLOA dataset outperformed any other

TABLE V
DOCUMENT CLASSIFICATION RESULTS

Adaption dataset Test F1 civil Test accuracy
base RoBERTa 0.81 0.82

artcc wd25 b50 0.80 0.82
artcc wd75 b50 0.83 0.84
full wd24 b90 0.85 0.86

TABLE VI
CONSTRAINT CLASSIFICATION RESULTS

Adaption dataset Test F1 constraint Test accuracy
base RoBERTa 0.74 0.82

artcc wd25 b50 0.91 0.94
artcc wd75 b50 0.82 0.88
full wd24 b90 0.82 0.88

methods. This leads to the conclusion that for this document-
level task, the more example documents that can be used
for adaptation, the better. It is also of note that the baseline
RoBERTa performs round the same as the lower bound of the
first quartile of the models seen in figure 1. This implies that in
addition to more data, the right hyperparameters are necessary
in order to maximize the improvement due to adaptation data.

In contrast with document classification, the best model
for constraint classification was artcc wd25 b50 which out-
performed the baseline and other adapted models by a sig-
nificant margin and was one of the positive outliers. There
is not a clear single cause of this performance, especially
given that artcc wd75 b50 and full wd24 b90 both perform
identically on this task which also out-performs the baseline.
The weight decay is used to prevent model overfitting and
it may be that in this case, this was not necessary due
to the nature of the evaluation data. This would explain
why artcc wd75 b50 performed worse than artcc wd25 b50.
The fact that full wd24 b90 did not perform as well as
artcc wd25 b50 despite having the same weight decay and
performs the same as artcc wd75 b50 implies that there was
not additional information to be gained in ARTCC constraint
classification from the non-ARTCC LOA documents. We also
see an overall increased sensitivity in this task as seen in figure
2. This is possibly due to the nature of the evaluation task as
well; it appears overall that this task is more tightly defined
and just as general information does not improve the model,
it is possible that the variations in hyperparameter choice that
leads to slight differences in the adapted model have a larger
effect in this task.

As seen with the improvements in accuracy and F1-Score,
these two adaptation datasets both created adapted RoBERTa
models that showed improvement on the evaluation tasks.
This supports that the overall hypothesis that the technical
language of aviation documents can be used to improve LLM
performance on tasks in the domain. This positive conclusion
motivates additional study as outlined in the next section.



IV. FUTURE WORK

In order to progress this work, there are 3 main areas of
focus. The first is the addition of more data to the adaptation
process. As seen in Section III, the document classification
improved with additional training data. As such, leveraging
more aviation data could be used to further improve results.
Additionally, in order to align this work with efforts in other
domains, the training size would need to increase; this is
a much smaller dataset than the ones used in [7], [8]. The
evaluation tasks would allow the measurement of whether
there is a sufficient amount of data where performance on
the document classification stops improving or if the high
performing artcc wd25 b50 could be out-preformed. Addi-
tionally, by adding data sources such as the ASRS reports or
transcripts of ATM conversations could easily supplement and
broaden the LOA data and allow the inclusion of additional
domain specific evaluation tasks [1], [3]. It would also be of
interest to see measure sensitivity of the models

Additionally, this paper was built using logistic regression
for the evaluation tasks based on previous works but in
future work, RoBERTa with various trained output layers
could be used for the down-stream tasks. The architecture is
suited to fitting a classification specific head to the adapted
RoBERTa model and could be compared with the simple
logistic regression model. As this no longer has a closed-form
solution, there would also be work to evaluate the sensitively to
random initialization in addition to additional hyperparameters
from these new layers. This comparison would be valuable
and this end to end method also would apply to the following
future work.

In this same vein, the HuggingFace library has many
other pre-trained LLMs available. There are additional BERT-
based architectures such as DeBERTa4 which aims to further
improve upon the BERTA architecture by changing the at-
tention mechanism as well as more refinement of the masked
language modeling pretraining task [10]. In addition to BERT-
based models, work has been done to identify longer-input
transformer based architectures such as Longformer5. These
models work to expand the length of input from BERT’s
512 token limit with a modified attention mechanism [11].
Many aviation documents are over this arbitrary token limit.
In adaptation, the longer documents were split into sub-
documents as seen in Section II-A. However, this division
does limit the attention mechanisms of RoBERTa as the entire
document is not present. By using a longer input architecture,
the full document context could be used during adaptation.
Also OpenAI’s GPT models6 showed an entirely new LLM
architecture that could be evaluated. While still based on
transformers, the GPT architectures focus on generative tasks
and increased the model size significantly. This size increase
changes the nature of model adaptation to new domains but
comparison should be made to these state of the art methods.

4https://huggingface.co/docs/transformers/en/model doc/deberta
5https://huggingface.co/docs/transformers/en/model doc/longformer
6https://huggingface.co/docs/transformers/en/model doc/openai-gpt

Following the framework developed in this paper, these base
models could be evaluated on aviation tasks and then adapted
to the aviation domain and re-evaluated.
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