

LTV-xEVA Applied Injury Biomechanics

Keegan Yates, PhD¹

Aaron Drake¹

Kristine Davis²

Trade names are used in this presentation for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

¹KBR, Human Health and Performance Contract, Houston, TX

²NASA Johnson Space Center, Houston, TX

Background

- Operating a rover in reduced gravity while wearing a modern EVA suit is a loading condition with very few analogs
- The Apollo Lunar Roving Vehicle (LRV) is an obvious starting point
 - Apollo astronauts wore an EVA suit, though different from modern suits
 - The Apollo missions were in different terrain and lighting conditions than planned Artemis missions
 - Lunar Terrain Vehicles (LTVs) are different than the Apollo LRV
 - We don't know what the actual Artemis LTV will look like
- A short literature review was performed on the Apollo LRV

Apollo Notes

- One injury noted (wrist laceration) due to suit¹
- Obstacles constantly encountered
- Visibility difficult
- "Vehicle traverse cross slope caused discomfort to the crewman on the down-slope side and was avoided whenever possible"²

¹ https://www.nasa.gov/wp-content/uploads/static/history/alsj/a16/A16_MissionReport.pdf ² https://ntrs.nasa.gov/api/citations/19730025089/downloads/19730025089.pdf

Background

- LTV operation has potential to cause injury
 - EVA suit inertia
 - Rollover risk
 - Blunt loading from suit rigid components
 - Restraints can't interface with body directly
 - Obstacles may be difficult to see
- LTV injury probability difficult to predict with standard tools
 - Anthropomorphic test devices (ATDs) likely wont fit in an EVA suit
 - Brinkley ground rules are broken by presence of EVA suit
 - Types of injury most likely (bruising, abrasions, point loading) not considered by existing dynamic injury tools
- Human body models (HBM) are compatible with EVA suits, and have potential to be used to predict LTV injury

Methods

- Human body models placed into model of occupant facing xEMU suit hard goods
- Models positioned into two postures
- Models simulated through "worst-case allowable" loading conditions
- Model outputs compared to injury metrics

Human Body Models

NASA

- Global Human Body Models Consortium (GHBMC) 5th female, 50th male, and 95th male occupant models used
- Can be positioned like a human
- Provides outputs similar to ATDs (accelerations, forces, etc.)
- Can provide contact forces with suit components

Suit Model

- xEMU model used for all simulations
- M95 uses the large HUT
- Model consists of only the rigid suit components that face the occupant
 - Harness shoulder pads used in all cases
 - Back pad used for F05 model
- HBMs placed in suit in roughly the right posture
- Final positioning done as a pre-simulation
 - Allows HBM to come to final position with natural contact with the suit
 - Allows for deformation of the HBM flesh

LTV Agnostic Model

- Restraints were modeled as a rigid attachment of the HUT to a seat and feet to floor
- Greatly simplifies modeling effort
 - Non-rigid restraints require modeling of seat, restraint system, and pressurized suit
 - Interaction between seat, restraint, and suit is also crucial to capture
- Rigid attachment may be the worst case for single events
 - Immediate transfer of loading from vehicle to suit
 - Only single events modeled in this effort
 - Non-rigid attachment may be better for single events
 - Repeated events with non-rigid attachment may cause amplification of loading
 - Non-rigid restraints could represent an injury risk not covered in this work

Postures

- Models placed in a seated posture as well a semi-standing "Leaning Post" configuration
 - Based on NASA Ground Test Unit designs
- Settling of occupant within suit performed as beginning of simulation

Loading Conditions

- Realistic lunar loading conditions currently unknown
- Requirements¹ specify maximum accelerations in all directions and maximum acceleration rate-of-change (jerk)
- "Worst-case allowable" impact starts at the maximum acceleration in one direction, then switches to the maximum acceleration in the other direction
- This process was applied to each direction and combination of directions
- These are not representative of any particular LTV operation

¹ Dolick, Kevin R., et al. "Lunar Transport Vehicle Occupant Protection Requirements." (2022).

Loading Conditions

- Developed curves starting at 0, reaching a steady state in one direction, then reversing
- Steady-state is held for 100 ms
- There are 17 total combinations of these inputs

Case	+χ	-X	У	+Z	-Z
1	Х				
2		Х			
3	Х		Х		
4		Х	Х		
5	Х			Х	
6	Х				Х
7		Х		Х	
8		Х			Х
9	Х		Х	Х	
10	Х		Х		Х
11		Х	Х	Х	
12		Х	Х		Х
13			Х		
14			Х	Х	
15			Х		Х
16				Х	
17					Х

Simulation Outputs

- Traditional injury metrics
 - Forces and moments in neck, shoulders, humeri, elbows, wrists, femurs, knees, and tibias
 - Accelerations in head, spine, and pelvis
 - Deflection of the chest
- Contact force between specific bony
 locations of concern and suit components
 - Able to be used for comparison with requirements
 - Intended to prevent blunt trauma
 - Not traditional

Simulations - Directionality

Simulations – Size Variation

Leaning post, S9

Simulations – Posture Variation

Simulation Results - General

- Very short duration head impact spikes seen when head contacts the hut
- Energy of impact relatively low

Head Rotational Acceleration – M50 Leaning Post

Head Acceleration – M50 Leaning Post

NASA Applied Injury Biomechanics

Simulation Results - General

• Traditional injury metrics low in all cases, but some contact forces high

Head Injury Criterion* (unitless), M50 Leaning Post

* Limit is 340

Head to HUT contact Force

Simulation Results - General

- Some simulations passed blunt trauma limits in some body parts
- Limits primarily passed in the acromions, clavicles, and scapular spines
 - F05 primarily passed in acromions and clavicles
 - M50 primarily passed in acromions, clavicles, scapular spines
 - M95 primarily passed in scapular spines

Simulation Results - Posture

- For most injury metrics, posture affected phase of responses
- Peak loads largely the same
- Position of head/torso within suit largely the same in both postures*
- Metrics in lower extremities different, but still low for all cases

Force in Left Femur

Head Acceleration

Simulation Results – Model Size

- All model sizes stayed clear of traditional injury metric limits
- M50 model showed the most cases passing blunt trauma limit
- Only three conditions did not pass any blunt trauma limit for at least one model

Head Acceleration

Limitations

- This work focused on rigid restraints only
 - May not fully capture injury risk to lower extremities
- Models used in these studies do not respond to loading with active muscle
- Elements inside of the suit other than the harness not modeled
- All cases modeled are allowable during nominal operation of the LTV
 - Off nominal cases not modeled
- Rigid suit components in other parts of the body not modeled

Limitations

- Suit/LTV designs and loading conditions not representative of Artemis
 - Techniques developed intended to be design agnostic
 - Loading conditions were all purely linear, i.e. no rotational component
- HBM sizes not all encompassing
 - HBMs can be resized to any particular size
- Model positioning idealized
- Effects of repeated events not captured by this work
 - Repetition can cause amplification
 - Repeated loading on a body part could cause injury

Conclusions

- Traditional injury metrics (e.g., head injury criterion, neck and spine loads) show a low risk of injury
- Blunt loading limits are occasionally passed
 - Limits based on half of force required to fracture the weakest clavicle in a set of cadavers
 - The clavicle was deemed to be the "weakest link" in the torso
 - Model contained no padding other than harness pad (and back pad for F05)
- Head contact forces high, but it is unclear if the short duration could be responsible for injury
 - Study on boxer punches showed similar impulse, but more head acceleration¹
- Poorest performance relative to the blunt loading requirements seen in M50
 - Back pad in F05 model may have helped to prevent high closing velocities
- The data don't show a preference between seated and the semi-standing posture

¹Walilko, Timothy J., David C. Viano, and Cynthia A. Bir. "Biomechanics of the head for Olympic boxer punches to the face." *British journal of sports medicine* 39.10 (2005)

Acknowledgements

- Many people contributed to this work from across NASA
- This work was funded by the NASA Extravehicular Activity and Human Surface Mobility Program (EHP)

Questions?

keegan.m.yates@nasa.gov