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ABSTRACT 

 
In today's competitive landscape, the effective development and utilization of machine-

learning (ML) applications have become imperative across various sectors. This study 

presents an outline of the procedure involved in creating and implementing ML models 

for conceptualizing and evaluating aircraft engines. These models leverage supervised 

deep-learning algorithms to analyze patterns within an open-source repository containing 

data on both production and research conventional turbofan engines. The main areas of 

focus encompass crucial engine parameters like thrust-specific fuel consumption (TSFC), 

engine weight, engine diameter, and turbomachinery stage counts. While the creation of 

ML models is fundamental for their utilization, ensuring their seamless deployment holds 

equal significance. To address this aspect, a conversational AI chatbot that specifically 

focuses on propulsion has been developed. Leveraging natural language processing 

(NLP) techniques, this chatbot streamlines the deployment of machine learning (ML) 

models. The comprehensive workflow encompasses several key stages: gathering and 

enhancing engine data, training and cross validating the ML models, testing and 

evaluating their performance, and finally, deploying, monitoring, and updating the ML 

models. By following this systematic approach, the aim is to streamline the development 

and deployment process of ML models tailored for aircraft engine assessment. 
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NOMENCLATURE 

AI 

API 

Artificial Intelligence 

Application Program Interface 

BPR Bypass Ratio 

ANN 

DNN 

HPC 

OPR 

SVM 

TSFC 

       

Artificial Neural Networks 

Deep Neural Networks 

High-Pressure Compressor 

Overall Pressure Ratio 

Support Vector Machine 

Thrust Specific Fuel Consumption 

 

  

 

1.0  INTRODUCTION 

In recent years, the accessibility of big data and the growing emphasis on data-driven 

decision-making have fueled a surge of interest in applying machine learning (ML) 

techniques across various industrial sectors. One such sector witnessing significant 

traction in ML adoption is the aircraft engine industry. Over time, this industry has 

amassed substantial datasets from diverse sources, ranging from databases housing 

current engine models to records from ongoing and completed development projects, as 

well as conceptual designs. These datasets represent a trove of valuable information that 

holds immense potential as a knowledge asset for shaping the future of engine 

development. 

Designing an aircraft engine is a complex and labor-intensive process, marked by 

interdisciplinary considerations and significant time investments. A critical challenge 

faced by engine designers, particularly during the conceptual design phase, is the rapid 

and accurate evaluation of engine performance against mission requirements and design 

parameters. Given the vast array of potential engine configurations, designers often resort 

to system analysis and simulation techniques to estimate performance, necessitating 

exhaustive propulsion system studies for each configuration. This process can be 

exceedingly time-consuming, especially when dealing with expansive design spaces. 

The advent of advanced data science techniques and ML algorithms presents a promising 

avenue for addressing these challenges. By leveraging existing and historical engine 

datasets, ML models can be trained to assess new aircraft engine concepts swiftly and 

accurately, offering insights that may elude conventional analysis methods. These models 

have the capacity to discern intricate patterns and trends within the data, thereby enabling 

more informed decision-making and expediting the engine design process. The ability to 

rapidly evaluate new engine concepts not only enhances efficiency but also confers a 

competitive edge in the highly dynamic landscape of aircraft engine development. 

However, the efficacy of ML models hinges not only on their development but also on 

their seamless deployment in production environments. Effective deployment strategies, 

such as user-friendly interfaces or conversational AI platforms, are essential to ensure 

practical utilization of these models in real-world scenarios. 

Furthermore, the dynamic nature of data necessitates ongoing assessment and updating 

of deployed ML models to maintain their relevance and predictive accuracy. Regular 

integration of fresh engine data into the models facilitates adaptation to evolving industry 

trends and patterns, ensuring continued effectiveness over time. 

This paper outlines the methodology for creating and implementing machine learning 

(ML) models to evaluate aircraft engine concepts. The process is divided into two main 

sections: the frontend and the backend. The frontend focuses on constructing a 
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conversational AI platform, Aero-Engines Chatbot, utilizing natural language processing 

(NLP). This chatbot is crafted to simulate human conversation via textual interactions and 

serves to involve users in the deployment of the ML models.  

 

Conversely, the backend involves developing ML models using supervised deep-learning 

algorithms. These models analyze patterns in an open-source database covering both 

production and research conventional turbofan engines. Key engine parameters, such as 

thrust-specific fuel consumption (TSFC), engine weight, diameter, and turbomachinery 

stage counts, are primary areas of analysis. The workflow includes data collection, 

augmentation, and preparation; training and cross-validation of ML models; testing and 

evaluation; as well as continuous monitoring and updating of the models. The ML model 

development process, previously described by the author [1,2,3], is summarized in this 

paper. 

 

The author had earlier developed an easy-to-use application interface, an app, that 

facilitated the deployment of pre-trained ML models for the evaluation of aircraft 

engine concepts. The app design aimed to provide a user-friendly experience with a 

simple point-and-click feature. It is described in detail in Reference 1. The present study 

explores an alternative approach of integrating established machine learning (ML) 

models within a conversational interface, named Aero-Engines Chatbot. Figure 1 

illustrates the systematic workflow for deploying ML models using the chatbot. 

 

 

 

Figure 1 – Workflow process of ML models deployment via Aero-Engines Chatbot 

 

2.0  AI CHATBOT FOR ML MODEL DEPLOYMENT 

An AI chatbot, Aero-Engines chatbot, is employed to implement the ML models 

developed for assessing aero-engines concepts. Originally created to facilitate the 

exchange of aeropropulsion expertise among peers within the department at the author’s 

organization, this interactive chatbot, has been enhanced to support the deployment of the 

ML models. Unlike generative AI, which learns from data and adapts its behaviour based 

on discovered patterns, this chatbot operates using explicitly programmed rules - a rule-

based approach. This design choice helps save computing power and memory usage, as 

it does not require a GPU. The chatbot was built through natural language processing 

(NLP) using Python's NLTK (Natural Language Toolkit) library [4] and Keras [5]. NLTK 

is an open-source Python library for Natural Language Processing. 

NLTK provides essential tools for working with human language data, while Keras 

offers a high-level neural networks API for building and training deep learning models.  

automate conversations and interact with people through messaging platforms. The 

chatbot automates conversations and interact with people through messaging platforms. 

Here's an overview of the chatbot-building process: 
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• Data Collection and Preprocessing: The first step is to gather conversational 

data or a corpus. This corpus can be in the form of chat logs, customer service 

interactions, or any other text-based conversations. In this work, a data file in 

JSON format, was created to list the intents, tags and words or phrases related 

to aircraft engine design input parameters, that the Chatbot would be 

responding to. Once created, the data needs preprocessing, which includes 

tokenization (splitting text into words or phrases), removing stop words 

(commonly used words like "and," "the," etc.), and stemming or lemmatization 

(reducing words to their root form). NLTK provides functions for these tasks. 

 

• Feature Extraction: After preprocessing, the text data needs to be converted 

into numerical vectors that can be fed into a machine learning model. In this 

work, Bag-of-Words (BoW) technique was used for this purpose. The BoW 

model works on the principle of representing text data as a bag of words, 

ignoring grammar and word order while preserving the frequency of each 

word. Essentially, it converts a text document into a numerical feature vector 

where each unique word in the text corresponds to a feature and the value 

represents the frequency of the word. NLTK provides functions to implement 

this technique. 

 

• Model Building: Once the data was preprocessed and features were extracted, 

the next step was to build the chatbot model. In this case, Keras [5] came into 

play. Keras is an open-source neural networks API written in Python. A neural 

networks architecture was constructed to train the chatbot. 

 

• Training: With the model architecture defined, it's time to train the model 

using the preprocessed data. During training, the model learns to map input 

text sequences to appropriate responses. Keras provides easy-to-use APIs for 

training neural networks, with TensorFlow [6] as the backend engine. Keras 

allows one to specify parameters such as the number of epochs, batch size, and 

optimizer choice. 

 

• Evaluation and Testing: After training, it's crucial to evaluate the 

performance of the chatbot model. This involves testing the chatbot with 

unseen data or human evaluators to assess its ability to generate meaningful 

and contextually appropriate responses. NLTK can be used to calculate metrics 

like BLEU score (a measure of machine-generated text's similarity to human-

generated text) for evaluation. 

 

• Deployment: Once the model performs satisfactorily, it can be deployed into 

production as a chatbot application. This involves integrating the ML models 

into a chat interface where users can interact with it in real-time. Figure 2 on 

page 7 depicts the deployment of Aero-Engines chatbot, showcasing an 

example conceptual design output for an engine. 

 

By leveraging NLTK for text pre-processing and feature extraction and Keras for building 

and training the deep learning model, the Aero-Engines chatbot is capable of 

understanding and generating human-like responses based on natural language input. 
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3.0  ML MODELS DEVELOPMENT 

The current development of machine learning models focuses on axial-compressor 

turbofan engines, with plans for future expansions to include other engine types like 

turboshaft and hybrid-turbofan. Our engine database comprises a rich collection of 145 

manufactured engines [7 to 12], supplemented by 39 engines previously examined in 

various NASA aeronautics projects [13 to 18]. These engines, spanning from the mid-

1960s to the mid-2010s, encapsulate over fifty years of technological advancements and 

insights, providing a robust foundation for predictive analytics. The NASA engine data, 

derived from system studies across multiple aeronautics projects [13 to 18], are included 

in the database, as detailed in Appendix A. The development process consists of the 

following steps: 

 

• Engine data collection, augmentation, and preparation 

• ML models training 

• ML models testing and evaluation 

• Monitoring and updating 

 

3.1 ENGINE DATA COLLECTION, AUGMENTATION, AND PREPARATION 
 

• Engine data collection 

Our database primarily comprises 145 commercial engines [7 to 12] and 39 engines from 

NASA aeronautics projects [13 to 18]. These commercial engines represent a broad 

spectrum of advancements and insights into engine technology over the past five decades, 

thereby providing a robust foundation for our machine learning models. 

 

• Data augmentation 

Data augmentation is a crucial technique employed in machine learning to enhance model 

performance and generalization. By augmenting existing data through various 

transformations and modifications, we increase the diversity and quantity of training data, 

thereby improving the model's adaptability and performance. In our study, we augmented 

the data by scaling up current engines by 10%, while maintaining key operating 

parameters such as bypass ratio, overall pressure ratio, and others, as shown below: 
 

 
 

With data augmentation, our database expanded as follows: 

 

Turbofan type    No. of engines 

2-spool direct-drive     273 

2-spool geared       89 

3-spool direct-drive       50 

 

Following data collection and augmentation, the next step involved preparing the data for 

training our machine learning models. This process entailed cleaning, preprocessing, 

normalization, and random shuffling of the dataset. The dataset was then split into training 

and testing sets for model training and evaluation, respectively. 

 

• Dataset preparation 

The next step was to prepare the data that would be used to train the ML models. It 

involved cleaning and preprocessing the data to remove errors or inconsistencies and 

organizing the data into a format that could be used for the training. The engine dataset 

was normalized and shuffled randomly (using pseudo-random number generator) and 

divided into two datasets: the training set and the testing set. The training set was used 

to train, cross-validate, and build predictive models. The testing set consisted of the 

remaining engines that were unseen by the training models and was retained for the 
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final evaluation of the predictive analytics. The dataset preparation is described in detail 

in [1, 2, and 3]. 

 

3.2 ML MODELS TRAINING 
 

Once the data was prepared, we selected appropriate algorithms for training our machine 

learning models. Supervised deep-learning and K-nearest neighbor algorithms [19] were 

utilized for constructing models predicting TSFC, engine weight, core size, fan diameter, 

and turbomachinery stage count. 

 

These models were developed and trained using Keras, an open-source neural networks 

API, with TensorFlow as the backend engine. Regularization techniques such as L2 and 

Dropout [20 and 21] were employed to prevent overfitting, and optimization was 

performed using the Adam optimization algorithm [22]. A grid-search routine was 

utilized for hyperparameter tuning, ensuring optimal model performance. 

 

A total of nine ML models were trained and cross-validated for various engine 

parameters. The training and cross validation of these ML models are described in detail 

in [1, 2, and 3]. 

 

3.3 ML MODELS TESTING 
 

Following model training, the next step involved testing and evaluating their performance 

using a separate testing dataset, described in detail in [1, 2, 3]. The results indicated high 

accuracy levels across all models, as summarized below: 

  

 

 

ML model 

Mean 

accuracy 

Uncertainty 

95% confidence interval 

(2 standard deviations) 

TSFC 98% 4% 

Weight 95% 5% 

Core size 98% 4% 

Fan diameter 98% 5% 

LPC stage count 98% 14% (or 1 stage
*
) 

HPC stage count 98% 8% (or 1 stage
*
) 

HPT stage count 96% 39% (or 1 stage
*
) 

LPT stage count 98% 18% (or 1 stage
*
) 

IPT stage count 90% 44% (or 1 stage
*
) 

 

Notes: *based on the current database 

   1-stage fan is assumed for all the engines 

 

3.4 MONITORING AND UPDATING 
 

Continuous monitoring and updates are vital for ensuring the sustained performance of 

our machine learning models. While the commercial engine data remain static, the NASA 

engine data are subject to revisions over time as aeronautics research progresses. It's 

imperative to periodically update our models to incorporate these changes and maintain 

their accuracy and effectiveness. As NASA's research evolves through different aircraft 

generations (labeled N+1, N+2, N+3), corresponding updates to our models will be 

crucial to align with evolving technological objectives and advancements. 
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Figure 2 – An example engine design output  

 

4.0  SUMMARY 

This paper presents a comprehensive methodology for the development and deployment 

of machine learning (ML) models aimed at assessing aircraft engine concepts. The 

approach is bifurcated into two core components: the frontend and the backend. 

At the frontend is the Aero-Engines Chatbot, an AI-driven conversational platform 

powered by advanced natural language processing (NLP) techniques. Designed to 

emulate interactive human dialogue through text, the chatbot engages users in the 

practical application of ML models, thereby enhancing user experience and involvement 

in the engine evaluation process. 

In contrast, the backend is dedicated to the construction of robust ML models utilizing 

supervised deep-learning algorithms. These models meticulously scrutinize data from an 

extensive open-source repository that encompasses a wide array of both operational and 

experimental turbofan engines. The analysis predominantly focuses on critical engine 

metrics such as thrust-specific fuel consumption (TSFC), engine weight, diameter, and 

turbomachinery stage counts. The comprehensive workflow encompasses data collection, 

augmentation, preparation, followed by the training, cross-validation, testing, and 

evaluation of the ML models, culminating in their ongoing refinement and enhancement. 

This study shows that the integration of AI-powered chatbot to deploy ML-based 

predictive analytics offers a promising opportunity for the exploration of aircraft engine 

design concepts. 
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Appendix A 

Engine database 

 

System type: DD = direct-drive system 

     G = geared system 
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Appendix A (cont’d) 

Engine database 

 

 
System type: DD = direct-drive system 

     G = geared system 
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Appendix A (cont’d) 

Engine Database 

 
System type: DD = direct-drive system       SFW – Subsonic Fixed Wing project 

                         G = geared system       ERA – Environmentally Responsible Aviation project 

           AATT – Advanced Air Transport Technology project 


