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ABSTRACT

In today's competitive landscape, the effective development and utilization of machine-
learning (ML) applications have become imperative across various sectors. This study
presents an outline of the procedure involved in creating and implementing ML models
for conceptualizing and evaluating aircraft engines. These models leverage supervised
deep-learning algorithms to analyze patterns within an open-source repository containing
data on both production and research conventional turbofan engines. The main areas of
focus encompass crucial engine parameters like thrust-specific fuel consumption (TSFC),
engine weight, engine diameter, and turbomachinery stage counts. While the creation of
ML models is fundamental for their utilization, ensuring their seamless deployment holds
equal significance. To address this aspect, a conversational Al chatbot that specifically
focuses on propulsion has been developed. Leveraging natural language processing
(NLP) techniques, this chatbot streamlines the deployment of machine learning (ML)
models. The comprehensive workflow encompasses several key stages: gathering and
enhancing engine data, training and cross validating the ML models, testing and
evaluating their performance, and finally, deploying, monitoring, and updating the ML
models. By following this systematic approach, the aim is to streamline the development
and deployment process of ML models tailored for aircraft engine assessment.
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NOMENCLATURE
Al Artificial Intelligence
API Application Program Interface
BPR Bypass Ratio
ANN Artificial Neural Networks
DNN Deep Neural Networks
HPC High-Pressure Compressor
OPR Overall Pressure Ratio
SVM Support Vector Machine
TSFC Thrust Specific Fuel Consumption

1.0 INTRODUCTION

In recent years, the accessibility of big data and the growing emphasis on data-driven
decision-making have fueled a surge of interest in applying machine learning (ML)
techniques across various industrial sectors. One such sector witnessing significant
traction in ML adoption is the aircraft engine industry. Over time, this industry has
amassed substantial datasets from diverse sources, ranging from databases housing
current engine models to records from ongoing and completed development projects, as
well as conceptual designs. These datasets represent a trove of valuable information that
holds immense potential as a knowledge asset for shaping the future of engine
development.

Designing an aircraft engine is a complex and labor-intensive process, marked by
interdisciplinary considerations and significant time investments. A critical challenge
faced by engine designers, particularly during the conceptual design phase, is the rapid
and accurate evaluation of engine performance against mission requirements and design
parameters. Given the vast array of potential engine configurations, designers often resort
to system analysis and simulation techniques to estimate performance, necessitating
exhaustive propulsion system studies for each configuration. This process can be
exceedingly time-consuming, especially when dealing with expansive design spaces.

The advent of advanced data science techniques and ML algorithms presents a promising
avenue for addressing these challenges. By leveraging existing and historical engine
datasets, ML models can be trained to assess new aircraft engine concepts swiftly and
accurately, offering insights that may elude conventional analysis methods. These models
have the capacity to discern intricate patterns and trends within the data, thereby enabling
more informed decision-making and expediting the engine design process. The ability to
rapidly evaluate new engine concepts not only enhances efficiency but also confers a
competitive edge in the highly dynamic landscape of aircraft engine development.

However, the efficacy of ML models hinges not only on their development but also on
their seamless deployment in production environments. Effective deployment strategies,
such as user-friendly interfaces or conversational Al platforms, are essential to ensure
practical utilization of these models in real-world scenarios.

Furthermore, the dynamic nature of data necessitates ongoing assessment and updating
of deployed ML models to maintain their relevance and predictive accuracy. Regular
integration of fresh engine data into the models facilitates adaptation to evolving industry
trends and patterns, ensuring continued effectiveness over time.

This paper outlines the methodology for creating and implementing machine learning
(ML) models to evaluate aircraft engine concepts. The process is divided into two main
sections: the frontend and the backend. The frontend focuses on constructing a
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conversational Al platform, Aero-Engines Chatbot, utilizing natural language processing
(NLP). This chatbot is crafted to simulate human conversation via textual interactions and
serves to involve users in the deployment of the ML models.

Conversely, the backend involves developing ML models using supervised deep-learning
algorithms. These models analyze patterns in an open-source database covering both
production and research conventional turbofan engines. Key engine parameters, such as
thrust-specific fuel consumption (TSFC), engine weight, diameter, and turbomachinery
stage counts, are primary areas of analysis. The workflow includes data collection,
augmentation, and preparation; training and cross-validation of ML models; testing and
evaluation; as well as continuous monitoring and updating of the models. The ML model
development process, previously described by the author [1,2,3], is summarized in this

paper.

The author had earlier developed an easy-to-use application interface, an app, that
facilitated the deployment of pre-trained ML models for the evaluation of aircraft
engine concepts. The app design aimed to provide a user-friendly experience with a
simple point-and-click feature. It is described in detail in Reference 1. The present study
explores an alternative approach of integrating established machine learning (ML)
models within a conversational interface, named Aero-Engines Chatbot. Figure 1
illustrates the systematic workflow for deploying ML models using the chatbot.

Propulsion systems database
and pre-trained
machine-learning models

!

User query -—) Aero-Engines |
& 4= Chatbot ) Answer queries
interaction

Figure 1 — Workflow process of ML models deployment via Aero-Engines Chatbot

2.0 AICHATBOT FOR ML MODEL DEPLOYMENT

An Al chatbot, Aero-Engines chatbot, is employed to implement the ML models
developed for assessing aero-engines concepts. Originally created to facilitate the
exchange of aeropropulsion expertise among peers within the department at the author’s
organization, this interactive chatbot, has been enhanced to support the deployment of the
ML models. Unlike generative Al, which learns from data and adapts its behaviour based
on discovered patterns, this chatbot operates using explicitly programmed rules - a rule-
based approach. This design choice helps save computing power and memory usage, as
it does not require a GPU. The chatbot was built through natural language processing
(NLP) using Python's NLTK (Natural Language Toolkit) library [4] and Keras [5]. NLTK
is an open-source Python library for Natural Language Processing.

NLTK provides essential tools for working with human language data, while Keras
offers a high-level neural networks API for building and training deep learning models.
automate conversations and interact with people through messaging platforms. The
chatbot automates conversations and interact with people through messaging platforms.
Here's an overview of the chatbot-building process:
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o Data Collection and Preprocessing: The first step is to gather conversational
data or a corpus. This corpus can be in the form of chat logs, customer service
interactions, or any other text-based conversations. In this work, a data file in
JSON format, was created to list the intents, tags and words or phrases related
to aircraft engine design input parameters, that the Chatbot would be
responding to. Once created, the data needs preprocessing, which includes
tokenization (splitting text into words or phrases), removing stop words
(commonly used words like "and," "the," etc.), and stemming or lemmatization
(reducing words to their root form). NLTK provides functions for these tasks.

e Feature Extraction: After preprocessing, the text data needs to be converted
into numerical vectors that can be fed into a machine learning model. In this
work, Bag-of-Words (BoW) technique was used for this purpose. The Bow
model works on the principle of representing text data as a bag of words,
ignoring grammar and word order while preserving the frequency of each
word. Essentially, it converts a text document into a numerical feature vector
where each unigue word in the text corresponds to a feature and the value
represents the frequency of the word. NLTK provides functions to implement
this technique.

e Model Building: Once the data was preprocessed and features were extracted,
the next step was to build the chatbot model. In this case, Keras [5] came into
play. Keras is an open-source neural networks API written in Python. A neural
networks architecture was constructed to train the chatbot.

e Training: With the model architecture defined, it's time to train the model
using the preprocessed data. During training, the model learns to map input
text sequences to appropriate responses. Keras provides easy-to-use APIs for
training neural networks, with TensorFlow [6] as the backend engine. Keras
allows one to specify parameters such as the number of epochs, batch size, and
optimizer choice.

e Evaluation and Testing: After training, it's crucial to evaluate the
performance of the chatbot model. This involves testing the chatbot with
unseen data or human evaluators to assess its ability to generate meaningful
and contextually appropriate responses. NLTK can be used to calculate metrics
like BLEU score (a measure of machine-generated text's similarity to human-
generated text) for evaluation.

e Deployment: Once the model performs satisfactorily, it can be deployed into
production as a chatbot application. This involves integrating the ML models
into a chat interface where users can interact with it in real-time. Figure 2 on
page 7 depicts the deployment of Aero-Engines chatbot, showcasing an
example conceptual design output for an engine.

By leveraging NLTK for text pre-processing and feature extraction and Keras for building
and training the deep learning model, the Aero-Engines chatbot is capable of
understanding and generating human-like responses based on natural language input.
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3.0 ML MODELS DEVELOPMENT

The current development of machine learning models focuses on axial-compressor
turbofan engines, with plans for future expansions to include other engine types like
turboshaft and hybrid-turbofan. Our engine database comprises a rich collection of 145
manufactured engines [7 to 12], supplemented by 39 engines previously examined in
various NASA aeronautics projects [13 to 18]. These engines, spanning from the mid-
1960s to the mid-2010s, encapsulate over fifty years of technological advancements and
insights, providing a robust foundation for predictive analytics. The NASA engine data,
derived from system studies across multiple aeronautics projects [13 to 18], are included
in the database, as detailed in Appendix A. The development process consists of the
following steps:

e Engine data collection, augmentation, and preparation
e ML models training

e ML models testing and evaluation

e  Monitoring and updating

3.1 ENGINE DATA COLLECTION, AUGMENTATION, AND PREPARATION

e Engine data collection

Our database primarily comprises 145 commercial engines [7 to 12] and 39 engines from
NASA aeronautics projects [13 to 18]. These commercial engines represent a broad
spectrum of advancements and insights into engine technology over the past five decades,
thereby providing a robust foundation for our machine learning models.

e Data augmentation

Data augmentation is a crucial technique employed in machine learning to enhance model
performance and generalization. By augmenting existing data through various
transformations and modifications, we increase the diversity and quantity of training data,
thereby improving the model's adaptability and performance. In our study, we augmented
the data by scaling up current engines by 10%, while maintaining key operating
parameters such as bypass ratio, overall pressure ratio, and others, as shown below:

SLS Thrust Alt. TSFC Weight
BPR OFR (Ibs) Mach ()  (Ib/hrflb)  (Ibs)
8.44 38.37 79377 0.85 35000 .5526 18949
8.44 3837 87315 0.85 35000 5526 20844

With data augmentation, our database expanded as follows:

Turbofan type No. of engines
2-spool direct-drive 273
2-spool geared 89
3-spool direct-drive 50

Following data collection and augmentation, the next step involved preparing the data for
training our machine learning models. This process entailed cleaning, preprocessing,
normalization, and random shuffling of the dataset. The dataset was then split into training
and testing sets for model training and evaluation, respectively.

e Dataset preparation

The next step was to prepare the data that would be used to train the ML models. It
involved cleaning and preprocessing the data to remove errors or inconsistencies and
organizing the data into a format that could be used for the training. The engine dataset
was normalized and shuffled randomly (using pseudo-random number generator) and
divided into two datasets: the training set and the testing set. The training set was used
to train, cross-validate, and build predictive models. The testing set consisted of the
remaining engines that were unseen by the training models and was retained for the
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final evaluation of the predictive analytics. The dataset preparation is described in detail
in[1, 2, and 3].

3.2 ML MODELS TRAINING

Once the data was prepared, we selected appropriate algorithms for training our machine
learning models. Supervised deep-learning and K-nearest neighbor algorithms [19] were
utilized for constructing models predicting TSFC, engine weight, core size, fan diameter,
and turbomachinery stage count.

These models were developed and trained using Keras, an open-source neural networks
API, with TensorFlow as the backend engine. Regularization techniques such as L2 and
Dropout [20 and 21] were employed to prevent overfitting, and optimization was
performed using the Adam optimization algorithm [22]. A grid-search routine was
utilized for hyperparameter tuning, ensuring optimal model performance.

A total of nine ML models were trained and cross-validated for various engine
parameters. The training and cross validation of these ML models are described in detail
in [1, 2, and 3].

3.3 ML MODELS TESTING
Following model training, the next step involved testing and evaluating their performance

using a separate testing dataset, described in detail in [1, 2, 3]. The results indicated high
accuracy levels across all models, as summarized below:

Uncertainty
Mean 95% confidence interval
ML model accuracy (2 standard deviations)
TSFC 98% 4%
Weight 95% 5%
Core size 98% 4%
Fan diameter 98% 5%
LPC stage count 98% 14% (or 1 stage”)
HPC stage count 98% 8% (or 1 stage”)
HPT stage count 96% 39% (or 1 stage)
LPT stage count 98% 18% (or 1 stage’)
IPT stage count 90% 44% (or 1 stage’)

Notes: *based on the current database
1-stage fan is assumed for all the engines

3.4 MONITORING AND UPDATING

Continuous monitoring and updates are vital for ensuring the sustained performance of
our machine learning models. While the commercial engine data remain static, the NASA
engine data are subject to revisions over time as aeronautics research progresses. It's
imperative to periodically update our models to incorporate these changes and maintain
their accuracy and effectiveness. As NASA's research evolves through different aircraft
generations (labeled N+1, N+2, N+3), corresponding updates to our models will be
crucial to align with evolving technological objectives and advancements.
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Figure 2 — An example engine design output

4.0 SUMMARY

This paper presents a comprehensive methodology for the development and deployment
of machine learning (ML) models aimed at assessing aircraft engine concepts. The
approach is bifurcated into two core components: the frontend and the backend.

At the frontend is the Aero-Engines Chatbot, an Al-driven conversational platform
powered by advanced natural language processing (NLP) techniques. Designed to
emulate interactive human dialogue through text, the chatbot engages users in the
practical application of ML models, thereby enhancing user experience and involvement
in the engine evaluation process.

In contrast, the backend is dedicated to the construction of robust ML models utilizing
supervised deep-learning algorithms. These models meticulously scrutinize data from an
extensive open-source repository that encompasses a wide array of both operational and
experimental turbofan engines. The analysis predominantly focuses on critical engine
metrics such as thrust-specific fuel consumption (TSFC), engine weight, diameter, and
turbomachinery stage counts. The comprehensive workflow encompasses data collection,
augmentation, preparation, followed by the training, cross-validation, testing, and
evaluation of the ML models, culminating in their ongoing refinement and enhancement.

This study shows that the integration of Al-powered chatbot to deploy ML-based
predictive analytics offers a promising opportunity for the exploration of aircraft engine
design concepts.
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Appendix A

Engine database

Thrust, Cruise Cruise Year System  MNo.of CruiseTSEC Propulsion System

Org. Engine Model BPR [5LS) OPR(SLS) lbs (SLS] Mach Alt. kft. certified Type Spools 1b/1bf.hr Weight, Ibs
CFM Int'] CFM56-2C1 6.0 23.50 22000 0.80 35 1575 oD 2 0.651 7159
CFM Int'l CFM56-3B1 5.1 22.40 20000 0.80 35 1584 oD 2 0.655 6389
CFM Int'l CFMSE-3B2 5.1 24.30 22000 0.80 35 1984 oo 2 0.655 6607
CFM Int'l CFM56-3C1 5.1 25.50 23500 0.80 35 1986 oD 2 0.667 6766
CFM Int'] CFM5E-54A1 6.0 26.60 25000 0.80 35 1987 oo 2 0.596 7770
CFM Int'] CFM56-5A3 6.0 27.90 26500 0.80 35 1550 oo 2 0.596 7850
CFM Int'] CFM56-5A4 6.0 23.80 22000 0.80 35 1996 oo 2 0.596 7375
CFM Int'] CFM56-5A5 6.0 25.10 23500 0.80 35 1956 oo 2 0.596 7534
CFM Int'] CFM5B-5B1 5.7 30.20 30000 0.80 35 1994 oo 2 0.600 B366
CFM Int'l CFMSE-582 5.6 3130 31000 0.80 35 1993 oo 2 0.600 8479
CFM Int'l CFM56-5B3 5.4 32.60 33300 0.80 35 1997 oD 2 0.600 8734
CFM Int'] CFM5E-5B4 549 27.10 27000 0.80 35 1994 oo 2 0.600 8036
CFM Int'] CFM56-5B5/P 5.9 23.33 22000 0.80 35 1956 oo 2 0.600 7505
CFM Int'] CFMSE-5BE/P 6.0 2464 23500 0.80 35 1995 oo 2 0.600 7659
CFM Int'l CFMSE-5C2 6.8 28.80 31200 0.80 35 1991 oo 2 0.545 8796
CFM Int'] CFM5B-5C3 6.7 2990 32500 0.80 35 1994 oo 2 0.567 9133
CFM Int'l CFMSE-5C4 6.6 3115 34000 0.80 35 1994 oo 2 0.567 9285
CFM Int'] CFMS6E-7B20 5.4 2261 20800 0.80 35 1996 oo 2 0.603 5963
CFM Int'l CFM56-7B22 5.3 2441 22700 0.80 35 1996 oo 2 0.603 71594
CFM Int'] CFMS56-7B24 5.2 2578 24200 0.80 35 1956 oo 2 0.603 7360
CFM Int'] CFM56-7B26 51 2761 26300 0.80 35 1996 oo 2 0.603 7602
CFM Int'l CFMSE-7827 5.0 2863 27300 0.80 35 1996 oo 2 0.603 7872
CFM Int'] LEAP-1A26 111 33.40 27113 0.78 35 2015 oo 2 0.536 8840
CFM Int'l LEAP-1A35 107 38.60 32170 0.78 35 2015 oo 2 0.536 9401
CFM Int'] LEAP-1B25 B4 38.40 26797 0.79 35 20186 oo 2 0.536 7778
CFM Int'l LEAP-1B27 85 39.90 28034 0.79 35 2016 oo 2 0.536 7898
CFM Int'] LEAP-1B28 8.6 41.50 25315 0.79 35 2016 oo 2 0.536 8024

GE CFE-60 549 2470 40000 0.85 35 1870 oo 2 0.646 11749
GE CFE-601 5.9 2470 41500 0.85 35 1571 oD 2 0.646 11855
GE CF&-601A 549 25.40 41500 0.85 35 1871 oo 2 0.646 11895
GE CF6-45A2 43 2580 46500 0.85 35 1973 oo 2 0.630 128927
GE CF&-50C 4.3 28.80 51000 0.85 35 1975 oo 2 0.657 13323
GE CFE-50C1 43 29.80 52500 0.85 35 1975 oo 2 0.657 13467
GE CFE-50C2 4.3 28.44 52500 0.85 35 1978 oD 2 0.630 13467
GE CF6-50C2B 4.3 29.06 54000 0.85 35 18749 oo 2 0.630 13611
GE CF&-50E 4.3 28.44 52500 0.85 35 15873 oD 2 0.657 13505
GE CF&-S0E2 4.3 29.80 52500 0.85 35 1973 oo 2 0.630 13505
GE CF5-804 5.0 29.00 45000 0.80 35 15981 oD 2 0.623 12883
GE CFE-804A2 5.0 30.10 50000 0.80 35 1881 oD 2 0.623 13076
GE CF6-80A3 5.0 30.10 50000 0.80 35 1981 oo 2 0.623 13069
GE CFE-80C2A1 5.1 30.96 59000 0.80 35 1885 oD 2 0.576 14782
GE CF6-80C2A2 5.1 28.00 52460 0.80 35 1986 oo 2 0.578 14034
GE CFE-B0C2A3 5.1 31.64 58550 0.80 35 1588 oo 2 0.576 14776
GE CFE-B0C2A5 51 31.58 60100 0.80 35 1988 oo 2 0.578 14907
GE CFE-80C2A8 5.1 31.00 55000 0.80 35 1996 oD 2 0.602 14782
GE CFe-80C2ZB1 5.1 30.08 56700 0.80 35 1887 oD 2 0.576 14529
GE CF6-80C2B1F 5.1 3013 57160 0.80 35 1989 oo 2 0.564 14628
GE CFe-80C2B2 5.1 27.74 51550 0.80 35 1887 oD 2 0.576 14039
GE CFe-80C2B4 5.1 3036 57180 0.80 35 1987 oo 2 0.590 14575
GE CF5-BOCZBE 5.1 31.56 60070 0.80 35 1587 oo 2 0.602 14851
GE CFEe-BOE1AL 51 32.46 67500 0.80 35 1993 oo 2 0.562 14844
GE CFG-BOE1AZ 5.1 33.10 68240 0.80 35 1993 oo 2 0.562 14844
GE CF&-B0E1AS 5.1 35.70 68520 0.80 35 2001 oo 2 0.562 14844
GE CFG-80E1A4 5.1 3450 66870 0.80 35 1997 oo 2 0.562 14844
GE CF34-104 5.4 26.50 18250 074 37 2010 oD 2 0.650 5453
GE CF34-10E 51 27.30 18820 074 37 2002 oo 2 0.665 5588
GE CF34-3A 6.3 19.70 9220 074 37 1586 oo 2 0.704 2845
GE CF34-8C1 51 23.03 12670 074 37 1999 oo 2 0664 3988
GE CF34-8C5 5.1 23.09 13358 074 37 2002 oo 2 0.680 35935
GE CF34-BESA2 5.1 2482 14500 074 37 2002 oo 2 0.680 4139
GE GE30-76B 8.6 3545 79654 0.80 35 1945 oo 2 0.545 20930

System type: DD = direct-drive system
G = geared system
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GEnx-1B54
GEnx-1B58
GEnx-1B64
GEnx-1B70
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11
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4.4
45
43
43
42
45
41
5.2
4.2
47
4.6
95
7.5

G

38.37
38.70
4053
4224
35.20
37.20
40.60
4350
15.82
15.88
17.28
18.24
18.30
2027
2150
2220
20.30
22.80
2350
2450
23.40
2420
26.30
26.70
20.30
2450
3170
32.30
26.90
25.40
3180
26.32
29.30
32.40
32.20
33.20
36.20
39.16
4137
26.90
29.30
3124
33.10
30.68
3191
2570
25.00
28.40
29.00
2510
2870
32.10
34.00
2150
25.40
18.08
2423
2898
3215
41.00
35.19

= direct-drive system
= geared system

Appendix A (cont’d)

Engine database

Thrust, lbs
isLs)
87315
94000
97300
115529
57394
60991
66993
72299
14000
14500
16400
17400
18500
21000
44300
46300
46950
48000
50000
53000
43000
50000
54750
56000
46300
53000
27000
19000
37600
40900
42600
52200
56750
60000
74500
77000
84000
90200
95340
52200
56750
54000
63600
50000
63300
22100
41000
49100
50000
51500
53000
58000
60600
37400
40100
7580
14750
18920
21430
70000
56620

Cruise Cruise Alt. Year

Mach
0.80
0.80
0.80
0.80
0.85
0.85
0.85
0.85
0.80
0.80
0.80
0.80
0.80
0.80
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.78
078
0.80
0.80
0.80
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.80
0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.80
0.80
078
0.80
0.76
076
0.85
0.82

kft.
35
35
35
35
40
40
40
40
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
32
35
35
35
35
35

certified
1995
19497
2000
2003
2008
2008
2008
2008
1966
1967
1982
1976
1979
1985
1969
1971
1972
1974
1976
1978
1978
1982
1982
1982
1872
1974
2014
2013
1983
1987
19495
1587
1986
1988
1994
1994
1994
19496
1998
1986
1986
19493
2008
1988
1992
2004
1973
1973
1981
1979
1583
1989
1989
1981
1983
19497
19496
1998
19498
2007
2000

System
Type
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
G
G
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

No. of
Spools
2
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Cruise TSEC
Ib/Ibf.hr
0.553
0.545
0.545
0.550
0514
0514
0514
0514
0.796
0.807
0.825
0.825
0724
0.737
0.624
0.620
0.625
0.631
0.631
0.631
0.615
0.620
0.639
0.628
0624
0.631
0.530
0.544
0.563
0.563
0.563
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.560
0.540
0.655
0.633
0.603
0.656
0.631
0.582
0.572
0.646
0.598
0.625
0.630
0.620
0.620
0.506
0.539

Propulsion System
Weight, Ibs
21656
22280
22592
25876
16594
16952
17537
18054
4508
4646
4510
5009
5805
6266
12784
13102
13169
13270
13468
14055
13553
13565
14220
14340
13087
13990
6300
4800
10607
106872
11159
14027
14450
14819
19457
19950
20549
21522
22025
14036
14450
16886
17345
14802
15126
6311
12098
13270
13309
13370
13606
14040
14186
10338
10648
2332
4540
6155
6155
18056
14843



Org.
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
Rolls-Royce
RollsRoyce

MNASA SFW
MASA AATT
NASA AATT
MASA AATT
NASA AATT
NASA AATT
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MNASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA ERA
MASA SFW
MNASA SFW
MNASA SFW
MNASA SFW
MNASA SFW
MNASA SFW
MNASA SFW
NASA SFW
MNASA SFW
MASASFW
MNASA SFW
MNASA SFW
MNASA SFW
MNASA SFW
MNASA SFW
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System type: DD
G

Engine Model
Trent556-61
Trent 7000-72
Trent 768
Trent772
Trent7728-60
Trent875
Trent877
Trent884
Trent890-17
Trent 892
Trent 895
Trent570-84
TrentXWB-84
TrentXWB-97
V2500-A1
W2522-A5
V2524-A5
V2525-05
W2527-A5
V2528-D5
W2530-A5
W2533-A5
UHB
MN3CC-2016
MN3CC-2017
N+3
SmallCore geared
MN3CC-2018
Large-DD0-2015
Large-D0-2015-HWB-V1
Large-DD-2015-HWB-VZ

Large-Geared-2015-HWB-V3
Large-Geared-2015-HWB-V2

Large-Geared-2015-HWB
Large-Geared-2015
Medium-Geared-2015

Medium-Geared-2015-V2

small-DD-2015
Small-DD-2015V2
Small-Geared-2015
SmalkGeared-2015-V2
Large-DD-2014
Large-Geared-2014
Medium-Geared-2014
Small-DD-2014
Small-Geared-2014
SA-FPR1.4-DD-20
SA-FPR1.5-DD-2D
SA-FPR1.6-DD-2D
SA-FPR1.7-DD-2D
SA-FPR1.3-GR-HW-2D
SA-FPR1.4-GR-HW-2D
SA-FPR1.5-GR-HW-2D
5A-FPR1.6-GR-HW-2D
S5A-FPR1.3-GR-HW-ZE
SA-FPR1.4-GR-HW-2ZE
S5A-FPR1.5-GR-HW-ZE
SA-FPR1.6-GR-HW-ZE
SA-FPR1.7-DD-LW-2ZE
Simulated Genx
Simulated GESC-1108

BPR (SLS] OPR(SLS)
75 36.70
9.0 45.40
52 34.00
50 35.80
49 36.80
6.1 3542
6.0 36.30
59 38.96
6.2 40.70
57 41.38
57 4152
85 38.00
9.0 41.10
8.0 48.60
53 29.80
49 2570
48 26.90
4.8 27.20
4.8 27.20
47 30.00
46 32.00
45 33.44
188 447
176 316
173 369
275 366
255 38.8
216 36.7
16.6 437
14.4 489
137 49.8
200 47.2
200 471
153 47.2
247 399
239 384
248 385
9.9 28.7
100 28.7
27.0 246
27.4 248
16.2 47.4
224 47.2
224 447
9.8 287
247 292
18.4 331
150 338
127 344
109 35
241 3286
175 338
146 335
1z.4 34
26.0 323
180 338
121 354
9.9 36.3
85 376
9.2 414
7.2 42

Appendix A (cont’d)

Engine Database

Thrust, lbs

515! Mach
56620 0.82
73700 0.85
68400 082
71100 0.82
72000 0.82
79100 0.83
81300 0.83
87700 0.83
91300 0.83
92500 0.83
92500 0.83
76100 0.85
85200 0.85
98200 0.85
25000 0.80
23043 0.80
24518 0.80
25000 0.80
25000 0.80
28000 0.80
28900 0.80
31600 0.80
36833 0.80
18830 070
21515 0.78
28620 0.80
37659 0.80
21662 0.79
71792 0.80
67183 0.80
67233 0.80
56172 0.80
67423 0.80
67386 0.80
74149 0.80
45829 0.80
45799 0.80
14647 0.80
14686 0.80
21525 0.80
21553 0.80
80071 0.80
87496 0.80
51295 0.80
15566 0.80
24887 0.80
23813 0.80
23370 0.80
23046 0.80
22734 0.80
26343 0.80
24917 0.80
23369 0.80
219124 0.80
28358 0.80
26575 0.80
24686 0.80
24262 0.80
23889 0.80
63800 0.85
110000 0.85

direct-drive system

geared system

Cruise Cruise Alt,

kft.
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
37.7
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

Year
certified
2000
2018
1994
1994
1998
1995
1995
1995
1995
1997
1999
2006
2013
2017
1988
1996
1996
1992
1992
1992
1992
1996
2015
2040
2040
2040
2040
2040
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2008
2003

System
Type
oD
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

OO oOoO o oo o

oQQ
ooo

No.of

Spools
3
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SFW — Subsonic Fixed Wing project
ERA — Environmentally Responsible Aviation project
AATT - Advanced Air Transport Technology project

Cruise TSFC

Ib/Ibf.hr
0.539

0.506
0.565
0.565
0.565
0.560
0.560
0.560
0.560
0.560
0.560
0.518
0.488
0.488
0.580
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0.477
0.461
0.485
0.464
0.460
0.479
0.480
0.485
0.487
0.465
0.464
0.466
0.458
0.466
0.465
0.526
0.525
0.485
0.483
0.469
0.458
0.467
0.519
0.486
0.479
0.496
0510
0.525
0.470
0.486
0.502
0517
0.473
0.495
0.515
0534
0.547
0.523
0.549

Propulsion System
Weight, lbs
14843

18864
16839
17105
17215
15430
19650
20284
20602
20762
20801
15379
21163
22771
7300
7500
7597
7900
7651
8140
8215
8420
9300
5343
6012
9354
12152
6007
21399
18768
18832
155591
18823
18823
23023
13631
13668
3815
3812
6203
6232
22534
23248
12645
3833
55813
10563
7965
6592
6095
8736
7401
6626
6252
8550
7123
6305
5896
5561
17198
237128



