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We present a hybrid neural network and rule-based Inverse Text Normalization (ITN) method
for domains containing unique technical phraseology, specifically Air Traffic Control System
Command Center (ATCSCC) planning telecon audio transcriptions. The ATCSCC hosts
bi-hourly planning telephone conferences (or planning telecons) to ensure smooth operations
within the National Airspace (NAS). Access to both live and post meeting transcripts of this
speech audio would enable quick review of meetings. Provided speech transcripts, ITN is
the process of converting unformatted “raw” Automated Speaker Recognition (ASR) model
transcripts into a human (expert) readable written form. Our hybrid ITN framework utilizes a
fine-tuned Bidirectional Encoder Representations from Transformers neural network to format
conversational English, and rule-based methods to format domain-specific aviation text. With
an overall Punctuation Error Rate (PER) of 25.56 and Word Error Rate with Punctuation and
Capitalization (WER PC) of 5.47, we show that this method has vast potential in being applied
to ATCSCC planning telecon audio and other audio/text based data available in ATM.

Nomenclature

automatic speech recognition

air traffic control

air traffic control system command center

air traffic control tower

air traffic management

character error rate

inverse text normalization

long short-term memory

national airspace system

named entity recognition

national flight data center

natural language processing

punctuation error rate

subject matter expert

traffic management initiative

text normalization

terminal radar approach control

word error rate with no punctuation and no capitalization
word error rate with capitalization and no punctuation
word error rate with punctuation and capitalization

I. Introduction

Every flight in the United States is affected by operations at the Air Traffic Control System Command Center
(ATCSCC). The Command Center maintains constant communication with stakeholders in the National Airspace
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System (NAS) to address current and future air traffic constraints, events, and delays, as well as how to mitigate the
adverse effects of these events to ensure smooth traffic flowff] Traffic Management Initiatives (TMIs) are one of many
techniques Air Traffic Control (ATC) managers utilize to prevent backlog in the NAS. For example, TMIs including
airborne holding and ground delay programs are used to balance capacity with demand and ensure safe flow of traffic
(e.g., under inclement weather). The key to the ATCSCC'’s ability in maintaining safe flight operations lies in its efficient
communications pipeline. The Command Center maintains effective communication with multiple NAS users: Air
Route Traffic Control Centers (ARTCCs), Terminal Radar Approach Control (TRACON) facilities, Air Traffic Control
Towers (ATCTs), and the aviation industry’s many partners and stakeholders. Every day, the Command Center organizes
planning telecons, Plan, Execute, Review, Train, and Improve (PERTI) meetings, and pop-up side-bar meetings between
different parties. These planning telecons are hosted bi-hourly to identify and discuss upcoming terminal and airspace
constraints in the NAS and develop control measures (e.g., TMIs) on how to mitigate them. This paper will focus on
these planning telecons.

An automated speech recognition (ASR) and natural language processing (NLP) workflow to transcribe, process,
and analyze planning telecon audio can enhance the efficiency of the information sharing/dissemination process. In the
current quality control process, air traffic management specialists manually listen through and review planning telecons.
Access to text transcriptions has the potential to optimize this traditionally time consuming process by providing
text-searchable data, bypassing the time-consuming step of listening to 10-30 minute long audio recordings. Searching
a text document for the mention of a specific airport, say ‘DFW,” could take seconds using standard find tools in modern
text processors. Moreover, building a historic data record of text transcriptions enables post-processing data analytics,
trend identification, and development of AI/ML based modeling and prediction tools.

Our primary focus in this work is Inverse Text Normalization (ITN), the process of converting unformatted text
normalized (TN) speech text inferred by an ASR model into a more (human/expert) readable written form for end-users.
By digitizing this process, we ensure both efficient and consistent planning telecon transcriptions. These transcripts can
then be used by the ATCSCC to view past trends as well as contribute to future modelling work. In order to create
formatted transcripts, we require a pipeline that can process both the conversational and aviation-specific language used
by air traffic managers in planning telecons. To address this task, we apply a hybrid neural network and rule-based ITN
framework [[1]]. In this hybrid framework, raw ASR output data is first processed by a classification model to predict
capitalization and punctuation labels for each word in an input sequence. The results from the classification model are
then passed into rule-based methods which utilize dictionaries and regex [2] (Regular Expression) search patterns to
replace any remaining unformatted tokens into their ITN form. As we will continue to discuss, the neural-network-based
punctuation/capitalization method benefits greatly from general-domain pretrained transformer models like Bidirectional
Encoder Representations from Transformers (BERT) [3]] and DistilBERT [4], whereas the rule-based methods can easily
be fine-tuned to cater to the specific formatting required in the ATM domain.

The rest of the paper is organized as follows. Section[[I]provides an overview of the data collection and preprocessing
methods. Section [[TI] dives deeper into the specific methodology of our hybrid neural network and rule-based ITN
framework. Lastly, Section [[V]discusses the results of our approach and how well it works for our domain-specific
use-case.

I1. Data Collection and Preprocessing

The ATC speech dataset used to develop the hybrid ITN model includes 5 hours, 1,249 utterances, or 57,478
words of speech transcripts from ATCSCC planning telecons. This dataset was developed from ATCSCC planning
telecon audio collected in-house at NASA Ames Research Center in partnership with the FAA. The audio was first
transcribed into TN transcriptions by an in-house ASR model, and then updated to ground truth by subject matter expert
(SME) annotators (i.e., retired controllers and air traffic managers). This TN dataset consists only of audio-based text
transcriptions. All text is lowercase, containing no punctuation, with numbers and numeric phrases in their expanded
written form (‘thirteen fifteen zulu’ instead of ‘1315Z’) and acronyms/abbreviations in their expanded written form
(‘d f w’ instead of ‘DFW’ or ‘tracon’ instead of “TRACON’). We then created the ITN dataset by adding the above
punctuation, capitalization, numeric formatting, acronyms and abbreviations to the TN data. See Table|[I]for examples
of the two different formats. After completing the required transcriptions, the TN and ITN text dataset was split 80/20
into training and testing datasets.

Additional data used for the rule based system includes lists of airport names from the National Flight Data Center
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(NFDC lists of cities and states from the airport dataset, and other miscellaneous lists such as TRACONs, ARTCCs
and common FAA acronyms pertaining to the planning telecon content. These miscellaneous lists were developed by
SME:s while reviewing the training dataset. See Table 2] for examples of each category.

TN: seventeen hundred zulu
ITN: 1700Z

TN: seattle g d ps
ITN: Seattle GDPs

TN: toronto and minneapolis a f ps
ITN: Toronto and Minneapolis AFP’s

TN:vfrtoifr
ITN: VER to IFR

TN: o i s page philadelphia
ITN: OIS page Philadelphia
Table 1 Example comparisons between TN and ITN

Dictionary Name Examples

Cities Aberdeen, Abilene, Adak Island, Aguadilla, Akron, ...
Aerodromes Chicago O’hare, Los Angeles, Dallas-Fort Worth, Denver, ...
ARTCCs Albuquerque, Anchorage, Atlanta, ..., ZAB, ZAN, ...
TRACONSs All, A80, A90, ..., Anchorage, Atlanta, ...

Common Carriers American, Delta, JetBlue, FedEx, UPS, United, ...
Abbreviations FAA, OIS, TCF, TAF, DSP, ...

Table 2 Dictionaries collected and used for rule-based I'TN.

When training the neural-network-based capitalization and punctuation method, a script was used to compare our
TN dataset (input) and our ITN dataset (output) to automatically generate labels for each token. These token labels and
token counts are displayed in Table|3] We have labels for both lowercase and uppercase (capitalization of the first letter
in a word), and three punctuation marks: periods, commas, and question marks. Note that there is no class for fully
uppercase words since acronyms are either separated by letter (e.g., ‘f a a’ as seen in Table[d) or later handled by the
rule-based method (e.g., tracon’).

Thttps ://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/
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Label Name Label Count
Comma Lowercase lower, 1,300

Comma Uppercase Upper, 1,414

Period Lowercase lower. 3,477
Period Uppercase Upper. 825
Question Lowercase lower? 524
Question Uppercase Upper? 178
Lowercase lower_ 42,980
Uppercase Upper_ 6,780
Total 57,478

Table 3 Data label definitions, labels, and counts for neural-network-based capitalization and punctuation.

To illustrate the tokenization scheme, we use the example sentence, Alright, any other FAA en route facilities with
items to bring forward?. The corresponding TN text, ITN text, and token for every word in the sentence are provided in

table

TN text ITN text token
alright Alright, Upper,
any any lower_
other other lower_
f F Upper_

a A Upper_

a A Upper_

en en lower_
route route lower_
facilities facilities lower_
with with lower
items items lower_
to to lower_
bring bring lower_
forward forward? lower?

Table 4 Tokenization and labels for example sentence

II1. ITN Methodology
Recall that ITN is the process of converting text from its spoken form to its natural written form. In general ITN is
used to convert numbers and time (of the day) from alphabetic form to numeric form and it is commonly used as a
post-processing step to ASR systems [1]] [3]] [5]. In the case of domain-specific aviation data however, we must address
the specific formatting of zulu times, runways, runway configurations, altitudes, speeds, and the many acronyms and
abbreviations used throughout the planning telecon.
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Fig.1 Hybrid Neural and Rule-Based ITN Methodology

There are many approaches to the ITN task including rule-based, probabilistic methods, and neural networks
[6]. Existing ITN models that make use of neural networks are typically trained on large datasets of conversational
English such as the Long Short-Term Memory (LSTM) model, trained on a 1.1 billion words Wikipedia dataset [7]],
or the pretrained BART [8]] model, fine-tuned on the 313 thousand words Must-C dataset [[1]] [9]. Training these
large neural networks however, requires extensive amounts of training data, a difficult task to address when using
small domain-specific datasets. Our approach utilizes a hybrid approach [1]] that combines neural-network-based and
rule-based methods applied to our aviation-specific dataset. We find that this approach bridges the gap between the
conversational English and technical aviation-specific phraseology found within the planning telecons. Figure[T|shows
how the input TN text is first piped through a neural network to inverse normalize the majority of common English
punctuation and capitalization. That output is then fed into rule-based methods which are created to format most of the
domain-specific acronyms and abbreviations that are used at the Command Center.

A. Neural Network Based ITN

Punctuation and Capitalization, a subset of ITN, is a common task within NLP that is often applied to the output
of ASR systems to improve readability [6]. This task has been previously addressed with many methods such as
rule-based, n-gram-based, probabilistic models, and neural networks [6]. With the recent rise of transformer-based
neural networks, one approach is to train a token-classifier on top of a pretrained transformer model like BERT [3]].
Other neural network approaches include using an Evolved Transformer with Chunk Merging [[10], Character-Level
Recurrent Neural Networks [11] and End-To-End Conformer Language Models [[12]. Additionally, both capitalization
and punctuation can be combined into a single step for a neural network [10].

Our neural network model combines both punctuation and capitalization to restore periods (.), commas (,), question
marks (?), and (upper or lower) casing as is appropriate. A detailed view of our classes is shown in Table 3] A
training pipeline was developed using the Hugging Face libraryﬁ Our first configuration utilizes BERT. Without any
modification of the base model we added and trained a linear layer on top of the BERT output layer for classification,
also known as a classification hea(ﬁ, to predict each token as described above. In our second configuration, we use a
fine-tuned punctuation and capitalization model DistilBERT-base re-punctuate ﬁ] transformer model which has already
learned some punctuation and capitalization labels. For the third configuration, we further fine-tune the DistiIBERT-base
re-punctuate with our data to provide for domain-specific aviation context. The process for applying the neural network
to TN data is as follows:

1) Split the TN sentence into a list of tokens.

ihttps ://huggingface.co/
§https ://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
Ihttps://huggingface.co/unikei/distilbert-base-re-punctuate
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2) Classify each token with a label found in Table [3|using our punctuation and capitalization model.

3) Format each token with its respective designation and recreate the sentence with ITN formatting.

Although there are large benefits to be had with neural-network-based punctuation and capitalization, it still lacks
the tools needed to address non-conversational English and aviation-specific acronyms and abbreviations. Next, we will
discuss how we complement the neural network process by utilizing rule-based algorithms to address this.

B. Rule-Based ITN

In prior ITN research, rule-based methods have been implemented by Finite State Transducers [[1] or rewrite tables
[13]]. Rule based systems are also used for other NLP tasks such as Named Entity Recognition (NER) [14], and NER in
the aviation domain [[15]].

After input TN data is processed by the neural network, rule-based methods locate and normalize any remaining
domain-specific text that requires formatting. Using only the neural network to normalize character patterns of
domain-specific locations and acronyms revealed inconsistencies where acronyms were either not recognized or
capitalized only as a proper noun. To combat this, our rule-based system uses regexm search strings. Regex is a widely
used format to parse text for specific strings [2]. We created regex search strings for runways, routes, numbers, and
times. These regex search strings are composed of capture groups condensing general searches for: single DIGIT (one,
two, etc.), TEENS (eleven, twelve, etc.), and TIES (twenty, thirty, etc.). When a target search string is identified within
the TN data, the selected character pattern is passed into its associated modification recipe to be modified and replaced.
Table [5] shows an example capture group recipe used in this process. The input string “twenty two z” is first recognized
by the regex search string as it starts with a TIES word (twenty), and follows with a DIGIT word (two) before ending
with z or zulu (in this case, z). The modification recipe then removes the spaces between the words and capitalizes the Z.

Name: Ties Digit Zulu

Regex Search String: (?P<TIES_00>)\s+(?P<DIGIT_00>)\s+(z|zulu)
Modification Recipe: (?P<TIES_00>) (?P<DIGIT_00>)Z

Captured String: twenty two z

Replacement: 227

Table 5 Capture Group Recipe Replacement

After regex replacement, we iterate through each dictionary dataset in Table 2] replacing the remaining unformatted
tokens such as locations and domain-specific acronyms with its corresponding formatted token. Some examples of these
are airport designators, TRACON designators, ARTCC designators, common airspace fix names, airline names, and
other FAA acronyms like TMISs.

IV. Results

Our validation consisted of running our TN test data through our hybrid model utilizing three neural network
progressions. We measure results of the end-to-end hybrid model with the following three neural networks: (1)
BERT-base uncased model with fine-tuning (BERT-base-uncased + FT), (2) DistilBERT-base re-punctuate model
without fine-tuning (DistilBERT-base re-punctuate), and (3) DistilBERT-base re-punctuate model with fine-tuning
(DistilBERT-base re-punctuate + FT). We measure results at the intermediate (neural-network-based) step and calculate
end-to-end metrics of the entire framework after applying the rule-based methods. To measure neural network
performance, we report the accuracy, precision, recall, and Fl-scores of each label. After running the neural network
output through the rule-based system, we calculate the punctuation error rate (PER), word error rate with no punctuation
and no capitalization (WER), word error rate with capitalization and no punctuation (WER C), word error rate with
punctuation and capitalization (WER PC), and character error rate (CER). These metrics have been reported to provide
a standardized and accurate way of evaluating end-to-end ITN for speech data [12].

I https://docs.python.org/3/library/re.html
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A. Neural Network Capitalization and Punctuation Results

Figure [2] shows the classification accuracy of normalized text in predicted and truth data as a confusion matrix
for each model configuration. We see that our BERT-base-uncased + FT model’s classification per-label accuracy is
consistent with existing transformer-based methods [[10]. Even so, there appears to be noticeable confusion between
some classes. The first notable example is confusion between lower, (lowercase with a comma), lower. (lowercase with
a period) and lower_ (lowercase without punctuation). This makes sense since different annotators may have different
writing styles, leading to variable use of commas. There is also confusion with the uppercase variants Upper,, Upper.,
and Upper_. Another point of confusion is between lower_ and Upper_. Similar inaccuracies have been reported in prior
related work [10]], and is to be expected as proper nouns often overlap with non-capitalized nouns. The DistilBERT-base
re-punctuate + FT model shows similar performance across all labels, but the The DistiIBERT-base re-punctuate model
appears to over-predict punctuation and has confusion between labels.

BERT-base-uncased + FT DistilBERT-base re-punctuate DistilBERT-base re-punctuate + FT
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Fig. 2 Neural Network Capitalization and Punctuation Confusion Matrix

Overall, the BERT-base-uncased + FT and DistilBERT-base re-punctuate + FT models perform well by achieving
0.91 weighted average F1-Score respectively as seen in Table[6} We report the weighted average F1-Score because it is
more representative of the imbalanced label dataset, with lower_ being the majority class. This result is comparable to
the results produced in existing general-domain punctuation methods [6, [16]. We believe that these results shows good
performance of our model with the caveat that there is significant imbalance in our data with the lower_ label representing
nearly 75% of the dataset. While this imbalance exists because of the nature of capitalization and punctuation in the
English language, future works can still look to improve model performance by adding additional data and ensuring that
the annotation of specific punctuation like commas are consistent across the entire dataset.

BERT-base-uncased + FT DistilBERT-base re-punctuate | DistiiBERT-base re-punctuate + FT
Label Precision Recall F1-Score | Precision Recall F1-Score | Precision Recall F1-Score
lower, 0.43 0.25 0.32 0.23 0.55 0.33 0.54 0.44 0.48
Upper, 0.73 0.76 0.74 0.39 0.62 0.48 0.70 0.74 0.72
lower. 0.75 0.83 0.79 0.63 0.64 0.63 0.79 0.81 0.80
Upper. 0.59 0.53 0.56 0.36 0.29 0.32 0.65 0.47 0.55
lower? 0.78 0.88 0.83 0.42 0.17 0.24 0.84 0.84 0.84
Upper? 0.78 0.67 0.72 0.17 0.02 0.04 0.82 0.72 0.77
lower_ 0.97 0.96 0.97 0.94 0.91 0.92 0.96 0.96 0.96
Upper_ 0.82 0.86 0.84 0.72 0.65 0.68 0.81 0.84 0.82
Accuracy 0.91 0.83 0.91
Macro 0.73 0.72 0.72 0.48 0.48 0.46 0.76 0.73 0.74
Weighted 0.91 0.91 0.91 0.85 0.83 0.83 0.91 0.91 0.91

Table 6 Classification report of BERT-base-uncased + FT capitalization and punctuation model testing



B. End-to-end Results

When evaluated on the test dataset, the best performing end-to-end hybrid model with both fine-tuning (FT) and
rule-based (RB) is BERT-base-uncased + FT + RB. This model achieves a PER of 25.56%, WER of 0.68%, and WER
PC of 5.47% as seen in Table[7} Since there is no comparison or baseline to aviation domain sources, we compare these
results to general-domain sources. The results achieved on the general-domain LibriSpeech dataset are 29.27% PER,
2.22% WER, and 7.66% WER PC using an End-To-End Conformer Language Model [12]]. We observe that our results
measure similarly when compared to current state-of-the-art models in the general domain.

Method PER (%) WER (%) WERC (%) WERPC (%) CER (%)
BERT-base-uncased + FT + RB 25.56 0.68 4.53 5.47 2.00
DistilBERT-base re-punctuate + RB 43.24 1.58 8.05 12.53 4.04
DistilBERT-base re-punctuate + FT + RB 26.05 0.95 4.70 5.61 2.03

Table 7 End-to-end evaluation metrics

As for the DistilBERT-base re-punctuate models, we can see that without fine-tuning the model achieves a 43.24%
PER. While this number is almost double the best PER, this model still performs well when viewing specific examples.
We believe this drop in performance is a result of being trained on out-of-domain data. By further fine-tuning the
DistilBERT-base re-punctuate model, we achieve comparable results to the BERT-base-uncased + FT model. Although
the addition of fine-tuning provides results comparable to our the BERT-base-uncased + FT model, we expected to see
slight a slight improvement given overall more data was included in the DistiIBERT-base re-punctuate model training.
Future works should investigate training and testing additional off-the-shelf models with the additional fine-tuning task
for comparison.

Table 8] shows a selection of comparisons between our hybrid model’s predictions and the ground truth. We see that
numbers and time (of the day), locations and aviation acronyms are consistently predicted correctly while punctuation is
sometimes incorrectly predicted or missed entirely. The rule-based algorithm could be improved in examples such
as where ‘3 north’ is incorrectly predicted as ‘3N.” This is as simple as adding an additional regex search string and
modification recipe for digits followed by a cardinal direction. An interesting example of punctuation error appears in
the third example with the truth phrase “...evening from the TRACON. We’re planning on...” versus the ITN prediction
“...evening from the TRACON, We’re planning on...”. Both of these sentences have the same meaning and speaker intent,
but a period was replaced with a comma. Although many end users may term both correct, our evaluation still considers
this an error. Given that these misalignments in punctuation occur often in English, we deduce that some minimum
level of PER will always exist.



TN: no not much more to add weather still clear the bridge a few at the airport expecting a fifty four rate at
fourteen z and we’ll just see how the weather goes from there

ITN Truth: No, not much more to add. Weather still clear the bridge. A few at the airport. Expecting a 54
rate at 14Z and we’ll just see how the weather goes from there.

ITN Prediction: No, not much more to add. Weather Still clear the bridge a few at the airport expecting a 54
rate at 14Z and we’ll just see how the weather goes from there.

TN: good evening from the tracon we’re planning on three north operation with a ninety two arrival rate all the
gates will be open we’re looking for a smooth end of the week

ITN Truth: Good evening from the TRACON. We’re planning on 3N operation with a 92 arrival rate. All the
gates will be open. We’re looking for a smooth end of the week.

ITN Prediction: Good evening from the TRACON, We’re planning on 3 north operation with a 92 arrival rate.
All the gates will be open. We're looking for a smooth end of the week.

TN: and umm just looking at our solid bunch in our southeast corner also but like i said i think we’re just
gonna remain tactical through this first bank

ITN Truth: And umm, just looking at our solid bunch in our southeast corner also. But like I said, I think
we’re just gonna remain tactical through this first bank

ITN Prediction: And Umm, just looking at our solid bunch in our southeast corner also. But like I said, I
think we’re just gonna remain tactical through this first bank.

Table 8 End-to-end Examples

These results show promise for enhancing the ATC quality assurance workflow. Future works should examine
additional models and data cleaning techniques to further lower the overall PER while maintaining the current low
WER and WER PC numbers. We aim to extend the current training and testing datasets to larger planning telecon
datasets since this work only encompasses data from 2018. Work should also extend to other subsets of aviation speech
in addition to ATC management. While this model performs well on planning telecons, it must be tested on other
sub-domains (i.e., air traffic control and other air traffic management speech data) before it can be used. Additionally,
we will continue to work with ATM SME:s to ensure the usage of this work is accurate and industry-relevant.

V. Acknowledgements
We are grateful for the support and guidance provided by subject matter experts and other stakeholders at the FAA
Office of NextGen.

References
Sunkara, M., Shivade, C., Bodapati, S., and Kirchhoff, K., “Neural inverse text normalization,” ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 7573-7577.

1

—

2

—

Goyvaerts, J., “Regular Expressions,” Regular Expression, 2006.

[3] Nagy, A., Bial, B., and Acs, J., “Automatic punctuation restoration with bert models,” arXiv preprint arXiv:2101.07343, 2021.

—

[4

—_

Sanh, V., Debut, L., Chaumond, J., and Wolf, T., “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter,”
ArXiv, Vol. abs/1910.01108, 2019.

[5] Gaur, Y., Kibre, N., Xue, J., Shu, K., Wang, Y., Alphanso, L., Li, J., and Gong, Y., “Streaming, Fast and Accurate on-Device
Inverse Text Normalization for Automatic Speech Recognition,” 2022 IEEE Spoken Language Technology Workshop (SLT),
IEEE, 2023, pp. 237-244.

[6] Piis, V., and Tufis, D., “Capitalization and punctuation restoration: a survey,” Artificial Intelligence Review, 2021, pp. 1-42.

[7] Sproat, R., and Jaitly, N., “RNN approaches to text normalization: A challenge,” arXiv preprint arXiv:1611.00068, 2016.



(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L., “Bart:
Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” arXiv preprint
arXiv:1910.13461, 2019.

Di Gangi, M. A., Cattoni, R., Bentivogli, L., Negri, M., and Turchi, M., “MuST-C: a Multilingual Speech Translation Corpus,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), edited by J. Burstein, C. Doran, and T. Solorio, Association
for Computational Linguistics, Minneapolis, Minnesota, 2019, pp. 2012-2017. https://doi.org/10.18653/v1/N19-1202, URL
https://aclanthology.org/N19-1202,

Nguyen, B., Nguyen, V. B. H., Nguyen, H., Phuong, P. N., Nguyen, T.-L., Do, Q. T., and Mai, L. C., “Fast and accurate
capitalization and punctuation for automatic speech recognition using transformer and chunk merging,” 2019 22nd conference of
the oriental COCOSDA international committee for the co-ordination and standardisation of speech databases and assessment
techniques (O-COCOSDA), IEEE, 2019, pp. 1-5.

Susanto, R. H., Chieu, H. L., and Lu, W., “Learning to Capitalize with Character-Level Recurrent Neural Networks: An
Empirical Study,” Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, edited
by J. Su, K. Duh, and X. Carreras, Association for Computational Linguistics, Austin, Texas, 2016, pp. 2090-2095.
https://doi.org/10.18653/v1/D16-1225, URL https://aclanthology.org/D16-1225|

Meister, A., Novikov, M., Karpov, N., Bakhturina, E., Lavrukhin, V., and Ginsburg, B., “LibriSpeech-PC: Benchmark for
Evaluation of Punctuation and Capitalization Capabilities of end-to-end ASR Models,” arXiv preprint arXiv:2310.02943, 2023.

Pusateri, E., Ambati, B. R., Brooks, E., Platek, O., McAllaster, D., and Nagesha, V., “A Mostly Data-Driven Approach to
Inverse Text Normalization.” INTERSPEECH, Stockholm, 2017, pp. 2784-2788.

Sekine, S., and Nobata, C., “Definition, Dictionaries and Tagger for Extended Named Entity Hierarchy.” LREC, Lisbon,
Portugal, 2004, pp. 1977-1980.

Clarke, S. S., Zhu, Z., He, O., Almeida, J. A. A., Kalyanam, K., and Pai, R., “Natural Language Understanding and Extraction
of Flight Constraints Recorded in Letters of Agreement,” AIAA Aviation Forum, 2022.

Yi, J., and Tao, J., “Self-attention Based Model for Punctuation Prediction Using Word and Speech Embeddings,” ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 7270-7274.
https://doi.org/10.1109/ICASSP.2019.8682260.

10


https://doi.org/10.18653/v1/N19-1202
https://aclanthology.org/N19-1202
https://doi.org/10.18653/v1/D16-1225
https://aclanthology.org/D16-1225
https://doi.org/10.1109/ICASSP.2019.8682260

	Introduction
	Data Collection and Preprocessing
	ITN Methodology
	Neural Network Based ITN
	Rule-Based ITN

	Results
	Neural Network Capitalization and Punctuation Results
	End-to-end Results

	Acknowledgements

