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Contrail formations have been shown to contribute to the greenhouse effect: they are 
practically transparent to incoming solar radiation and do little to reflect heat away from 
Earth but are highly effective at trapping heat within Earth’s atmosphere. To understand the 
impact contrails have on climate change, contrail frequency indices (CFIs) can be used as a 
method to quantify aircraft-induced persistent contrails. These indices are capable of tracking 
long-term contrail formation and identify regions of airspace with the highest contrail 
formation rates. In this paper, an algorithm is proposed which is capable of using NASA 
Sherlock and Global Forecast System (GFS) datasets and computing CFIs over large 
geographic regions and long temporal intervals using NASA Ames’ High-End Computing 
Capability (HECC) supercomputing system. CFIs are computed using nowcast weather data 
and previously flown flight tracks. This paper calculated the CFIs of all twenty Air Route 
Traffic Control Centers in the National Airspace System on October 28th, 2019 and compared 
the distribution of non-zero CFIs with observed contrail data collected from GOES-16 
Satellite data in order to assess the accuracy of the CFI system as a contrail prediction model. 
It was ultimately determined that the computed CFIs were broadly distributed in the same 
way as the GOES-16 contrail data and that the individual CFIs computed at the 
latitude/longitude points at which GOES-16 contrail masks were available had high precision 
and recall (at 0.75 and 0.86 respectively). While these validation results bode well for the 
accuracy of the CFI method, the number of provided GOES-16 masks was quite small. Future 
work should aim to increase the size of the GOES-16 dataset in order to perform a more 
comprehensive comparison between these two datasets. 

I. Introduction 
Condensation trails (contrails) are formed when water vapor expelled by aircraft engines condenses and freezes 

around engine exhaust particles. Under particularly low temperatures, any water added to the atmosphere will 
immediately freeze; this creates persistent contrails that can linger for hours. Such formations have been shown to 
contribute to the greenhouse effect: they are practically transparent to incoming solar radiation and do little to reflect 
heat away from Earth but are highly effective at trapping heat within Earth’s atmosphere. As a whole, contrails have 
been found to increase nighttime atmospheric warming by 33%, while persistent contrails specifically have been 
shown to have an up to ten times greater contribution to the greenhouse effect than other aircraft emissions [1]. 
Furthermore, the warming effect of contrails is, unlike carbon dioxide emissions, immediate, making them an urgent 
driver of climate change [2]. For both this reason as well as concerns that, as the commercial airline industry grows, 
contrails will form at more frequent rates, contrail mitigation is a primary objective of modern aviation industries [3]. 

As the aviation industry looks to tackle the problems posed by contrails, steps have been taken to better understand 
the ambient conditions that are conducive to persistent contrail formation so that aircraft can avoid these regions, as 
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previous research indicates that small flight diversions can mitigate most contrail-induced warming [4]. Most of this 
contrail research has been achieved with observational satellite data, which can visually obtain insights on regions and 
times of contrail formation. However, different satellites have different drawbacks: low-Earth orbit (LEO) satellites 
have been used to quantify contrail coverage, but such satellites are unable to shed much light on the temporal shifts 
in contrail formation due to their infrequent passes of the same region of Earth’s surface, while geostationary satellites, 
despite bypassing this issue by collecting continuous data, are often plagued with low-fidelity images due to course 
spatial resolutions [5] [6]. As such, it has been necessary to develop algorithms capable of predicting contrail formation 
regions. Such models are also of value to the aviation industry as they can be used to make short-term predictions of 
potential contrail formation regions, allowing flights to be rerouted to avoid these airspace regions. 

Historically, contrail prediction models have been developed around hand engineered, bottom-up algorithms which 
use physical properties of the atmosphere to determine the locations of contrails; however, these algorithms lack 
fidelity and long-term accuracy [7]. As a result, the aviation field is currently working to develop novel models capable 
of making more accurate predictions about contrails. 

II. Methods 
The current work proposes one such contrail prediction model. In previous work, a quantification method was 

proposed to define the contrail frequency index, or CFI [1]. The CFI of a particular region can be calculated by 
determining [1]: 

 
i. The supersaturation of ice with respect to water in the surrounding atmosphere. When ice is supersaturated, 

the atmosphere is cold enough to maintain persistent contrails. This can be calculated using temperature 
and pressure readings from NOAA’s National Centers for Environmental Information (NCEI)’s Global 
Forecast System (GFS) dataset [13] using Eq. (1) [8], where T is the temperature in Celsius and RHw is the 
relative humidity with respect to water (both of which are stored within the GFS dataset). The NCEI 
collects new readings globally on a 361 x 720 degree grid (that is, the data has a fidelity of 0.5 degrees) 
every six hours (at 0:00, 6:00, 12:00, and 18:00 UTC) and minimizes uncertainty by generating 21 different 
forecasts, all of which are used when producing the final GFS dataset [8]. 

ii. The number of aircraft flying through the chosen geospatial point over the course of one hour. 
 

RHi =  RHw ×  
6.0612𝑒𝑒18.102𝑇𝑇/(249.52+𝑇𝑇)

6.1162𝑒𝑒22.577𝑇𝑇/(237.78+𝑇𝑇) 

(1) 

Previous work indicates that knowledge of these two datapoints will allow for predictions about whether a persistent 
contrail will form. When the atmosphere is in a state of supersaturation, the relative humidity with respect to ice (RHi) 
will exceed 100%, and the long-lived ice crystals that are characteristic of persistent contrails could form. Aircraft 
must then fly through this section of airspace while RHi remains above 100% to form a persistent contrail [9]. The 
CFI method makes use of this information to quantify the number of aircraft flying through a specific region over the 
course of one hour that could create persistent contrails [1]. 

The CFI of a particular Air Route Traffic Control Centers (ARTCC) for a particular point in time is thus calculated 
by summing the product of supersaturation from a persistent contrail formation matrix (a binary value of 1 when 
supersaturation occurs and 0 otherwise) and aircraft count across all geospatial points within that air traffic region’s 
airspace as in Eq. 1. ARTCCs are defined by the FAA has per Fig. 1. 
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Fig 1. A map of the FAA’s 20 ARTCCs over the continental US [10]. 
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Using Eq. (2), the CFI of a particular ARTCC composed of an m x n grid, where each point on the grid is separated 
by 0.5 degrees on a traditional latitude and longitude plot, can be computed. The higher the CFI value, the greater the 
chance that a plane flying through that airspace will produce a persistent contrail, which is defined as a contrail that 
exists for at least 2 minutes. Eq. (2) sums over the product of each term in the persistent contrail formation matrix ri,j 
the localized ARTCC matrix (ci,j, which is 1 if the given spatial data point is within the ARTCC region of interest and 
0 otherwise), and ai,j, the number of aircraft track points within that point over the hour of interest. Note that this grid 
size can be generalized to a region of any arbitrary size so long as the product of ri,j, ci,j, and ai,j is summed over a grid 
consisting of regions 0.5 degrees by 0.5 degrees in size. This study only produced CFIs over the continental United 
States due to the fact that only domestic air traffic and flight data was available for use. 

Previous work on CFIs has indicated that the CFI predictions made using this quantification model are highly 
correlated with the true CFI [1]. The predicted CFIs were computed using Eq. (2), predicted future aircraft locations, 
and NOAA’s Rapid Updated Cycle (RUC) atmospheric forecast dataset, while the true CFIs made use of known flight 
tracks and nowcast dataset. CFIs were computed at the 1-hour mark with an average correlation coefficient of 0.85 
and had decreased correlation over longer prediction intervals (with three- and six-hour average correlation 
coefficients of 0.64 and 0.52 respectively). Results indicate that CFIs are stable in relation to small variations in air 
traffic and, instead, are largely dependent on shifting atmospheric conditions inherent in a contrail prediction model. 
Thus, with further analysis on larger datasets, CFIs show great promise as a new state-of-the-art model for making 
contrail predictions. 

This paper aims to address this need by comparing CFI matrices produced over large timescales with an observed, 
human-labeled contrail dataset, thus shedding light on the accuracy of this method. The work first outlines a novel 
Python algorithm developed to compute CFI matrices using input atmospheric and flight track data, then discusses the 
use of Ames Research Center’s HECC supercomputing facilities to generate large quantities of CFI matrices for long-
term comparisons, and finally discusses a method for treating and comparing these matrices to the ground truth, 
human-labeled dataset. 

For this study, a human-labeled contrail dataset collected by NASA Ames colleagues from the GOES-16 
geostationary weather satellite was used. This dataset was collected from generated contrail masks at various 
latitude/longitude pairs across a period of months over 2019 and 2020 containing information on the specific spatial 
location of observed contrail pixels. This dataset functioned as an effective validation method with which to test the 
CFI method, as described below. 

 

A. Contrail Frequency Index Matrix Formation 
 
As discussed in the previous section, a matrix containing the CFIs of a particular ARTCC can be built using 

atmospheric and flight track data. This work developed a Python language algorithm capable of reading in data from 
GFS and from NASA’s Sherlock Data Warehouse [11]. GFS can be used to determine the RHi at a given spatial point, 
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and Sherlock contains flight track information of all domestic commercial airlines over a given hour. Our algorithm 
parses the data from both GFS and Sherlock for all flights through the region of interest over the hour of interest and 
builds a flight matrix. The flight matrix contains information on the elevation and changing geospatial locations of 
each flight. The flight matrix data is then converted into the binary data needed to calculate the CFI for each ARTCC 
within the region of interest. 

Next, the data from the GFS is used to build a binary supersaturation matrix, a graphical representation of which 
can be found in Fig 2, which contains information on whether each geospatial point in the region of interest has a 
saturation index of above or below 100%. Finally, these matrices are multiplied together and summed over the 
region of the ARTCC to compute the CFI of each ARTCC within the region of interest; these CFIs are output in an 
easy-to-read table (Table 1). 

 
Fig 2. A graphical representation of the RHi matrix computed at an elevation of 30,000 ft from 0:00-1:00 

UTC on October 28th, 2019. Regions in blue indicate an RHi above 100% (which is associated with a value of 
1 on the binary RHi matrix), regions on grey indicate the presence of landmasses, and regions in white 

indicate water. 
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Table 1. CFIs at each altitude (in feet) from 20000 ft to 46000 ft in 1000 ft increments for each US ARTCC on 
October 28th, 2019 from 0:00-1:00 UTC. 

 
 
CFI matrices are rapidly produced over long timescales (generally a period of several months, for the purposes of 

this project) by running this algorithm on the HECC, NASA Ames’ supercomputing facility. As each CFI matrix 
contains the CFIs for all continental United States ARTCCs for one hour, a run of several months produces 
approximately 1,000 CFI matrices. This offers the advantage of allowing the authors to test the efficacy of this 
algorithm on large quantities of aviation data, providing in-depth information on the robustness of this approach. 

For this particular study, CFI tables were generated for 0:00-1:00, 6:00-7:00, 12:00-13:00, and 18:00-19:00 UTC 
on October 28th, 2019. This day was chosen due to the high volume of contrails observed over its 24-hour period in 
the GOES-16 human-labeled dataset, making it an ideal time period with which to compare the generated CFIs and 
ground truth data owing to the relatively large number of contrail pixels in the latter dataset. Meanwhile, this set of 
hours was selected due to limitations in the ways the GFS’ nowcast data was stored. The GFS only collected 
atmospheric data at 0:00, 6:00, 12:00, and 18:00 UTC every day; any CFIs generated outside of the hour following 
this data’s collection would be generated using out-of-date atmospheric data, which could result in inaccurate CFIs 
that didn’t reflect the current state of the atmosphere. 

Notably, the generated CFI matrices and GOES-16 pixel count have different dimensions (the matrices are 4-
dimensional in terms of latitude, longitude, elevation, and time while the GOES-16 pixel counts are 3-dimensional 
in terms of latitude, longitude, and time). Therefore, to produce CFI matrices with the same dimensions as the 
GOES-16 dataset and allow for accurate comparisons, the CFI matrices were next flattened along the elevation axis. 
This flattening process was done by summing the CFIs of all elevations of a particular ARTCC together, producing 
a singular CFI for each ARTCC for each studied hour. This flattening process can be justified by noting that, for the 
purposes of this study, no information is lost by merging the different elevation levels together. The GOES-16 
satellite collected its information by treating the atmosphere of the Earth as a two-dimensional plane; that is, 
contrails that existed at different elevations were flattened onto a single plane when the satellite images were 
captured. The CFI matrix flattening procedure replicates this process. Furthermore, when flattening the CFI 
matrices, all information is conserved. If a specific latitude/longitude point had a nonzero CFI at a specific elevation 
point, then it will still have a nonzero CFI at that same latitude/longitude point after the flattening procedure takes 
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place. For these reasons, the flattening procedure was the most effective and accurate way to compare the two 
datasets. 

 
B. Ground Truthing Via GOES-16 Contrail Dataset Comparisons 

 
Next, metadata from the human-labeled GOES-16 dataset was processed. This dataset contained the latitude and 

longitude of a contrail mask (each of which spanned approximately 0.5 x 0.5 degrees), the time and date at which 
the contrails within the mask were observed, and the number of contrail pixels within the mask (with a higher 
contrail pixel count correlating with a larger observed contrail). Note that each mask has pixel dimensions of 256 by 
256, so the maximum possible number of contrail pixels in a single mask is 65,536. The contrail information from 
0:00-1:00, 6:00-7:00, 12:00-13:00, and 18:00-19:00 GMT on October 28th, 2019 was extracted using a Python script 
and directly compared to the latitude and longitude points at which non-zero CFIs were generated. This 
methodology allowed for the validation of the CFI method by treating the GOES-16 images as a ground truth 
dataset. Each of these comparison points could be classified as one of four possible values (TP, FP, TN, FN): a true 
positive (TP; a non-zero CFI was generated and a non-zero number of contrail pixels were observed), a false 
positive (FP; a non-zero CFI was generated, but zero contrail pixels were observed), a true negative (TN; a zero CFI 
was generated and zero contrail pixels were observed), or a false negative (FN; a zero CFI was generated, but a non-
zero number of contrail pixels were observed). This data could then be used to compute the precision and recall of 
each studied hour, where: 
 

 Precision =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   

(2) 

and 

 Recall =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   

(3) 

with a high precision and recall indicating a high level of correlation between the generated CFIs and ground truth 
GOES-16 dataset [12]. 

III. Results 
 
 After running the above algorithms for October 28th, 2019, the flattened CFI matrices visualized in Fig. 3 were 
produced. 
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Fig 3. A visual representation of the flattened CFIs generated for all twenty ARTCCs at 0:00-1:00, 6:00-7:00, 

12:00-13:00, and 18:00-19:00 on October 28th, 2019. Over the course of the entire day, contrails are most 
likely to form across the midwestern and southeastern regions of the US. 

 
 
 Similarly, the GOES-16 human-labeled dataset at the same four times on October 28th, 2019 contained contrail 
masks at the locations visualized in Fig. 4. 
 
 



8 
 

 
Fig 4. A visual representation of the GOES-16 contrail masks produced during 0:00-1:00, 6:00-7:00, 12:00-
13:00, and 18:00-19:00 on October 28th, 2019. A red circle indicates a mask with 0 contrail pixels, while blue 
circles indicate masks with a non-zero number of contrail pixels. The blue circles are sized according to the 
magnitude of the observed number of contrail pixels (and the total number of pixels is inscribed within the 

circle). All circles are centered around the latitude/longitude pair at which the associated mask was produced. 
 
 First, to understand whether the broad distribution of CFIs agrees with the GOES-16 data for October 28th, this 
study considers the day’s total contrail pixel counts collected by colleagues at NASA Ames. These pixel counts, as 
illustrated in Table 2, show the number of contrail pixels counted over the entire day in 10 degree delineations. This 
data indicates that, on October 28th, the GOES-16 dataset observed the highest number of contrail pixels between a 
latitude of 30 and 40 and longitude of -80 and -90 (a region which covers the US’ southeastern states). Meanwhile, 
the number of contrail pixels drops off when progressing south along Florida or west toward California. As indicated 
in Fig. 3, the overall magnitude of the day’s CFIs match this pattern; across all four computed CFI maps, the flattened 
CFI count for the ZMA, ZOA, ZSE, and, to a lesser degree, ZLA ARTCCs tend to have the lowest magnitudes while 
the ARTCCs ZJX, ZTL, and ZDC tend to have some of the largest magnitudes. 
  

Table 2. Total contrail pixel counts from the GOES-16 dataset for October 28th, 2019. Pixel counts are 
grouped into bins with a size of 10 degrees. The table’s x-axis represents each pixel count’s longitude while 

the table’s y-axis represents the pixel count’s latitude. 
 

 -120 -110 -100 -90 -80 -70 -60 
30 559 221 0 654 106,522 335 130 
20 0 4,551 775 937 1,002 464 816 

 
 
 In order to better understand the accuracy of the CFI method within smaller 0.5 x 0.5 degree regions, rather than 
only considering the large-scale CFI trends, the study examined the precision and recall of the computed CFIs as per 
the method outlined above. Comparisons were made at a fidelity of 0.5 degree by 0.5 degree grids (that is, considering 
all GOES-16 masks cover an area less than this grid, the total number of analyzed grids for any one hour is equal to 
the number of points on each hour’s GOES-16 plot in Fig. 4). The number of TP, FP, TN, and FN grids as defined 
above can be found in Table 3. 
 
 Using the values in Table 3, the precision and recall of the CFI algorithm during each hourly period on October 
28th, 2019 can be determined using (2) and (3) respectively. This information can be used to determine the algorithm’s 
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F1-score, which measures the overall predictive performance of the CFI method during the associated hourly period. 
Note that, due to the usage of different latitude/longitude points during each period, an overall F1-score for this dataset 
on October 28th, 2019 cannot be determined. The F1-score is calculated as per (4): 

F1 =  
2

( 1
𝑝𝑝𝑟𝑟𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + ( 1

𝑟𝑟𝑒𝑒𝑐𝑐𝑎𝑎𝑟𝑟𝑟𝑟)
 

(4) 

 The precision, recall, and F1-score values for each hour are listed in Table 3. Previous literature suggests that, to 
be considered a viable candidate for real-world contrail prediction applications, the CFI method should generate an 
F1-score of at least 0.80. While the size of this study’s dataset prevents sweeping conclusions about the accuracy of 
the CFI method to be made, the F1-scores for each hour are either just slightly lower than or, in the case of the 0:00-
1:00 dataset, above, this baseline. 
 

Table 3. Number of true positive, false positive, true negative, and false negative 0.5 degree by 0.5 degree 
grids across the four analyzed hours. For ease of comparison, any GOES-16 contrail masks that crossed into 
multiple grids were only compared with the CFIs in the 0.5 degree by 0.5 degree region holding the mask’s 

minimum latitude and longitude. 
 

 Number of 
TP 

Number of 
FP 

Number of 
TN 

Number of 
FN 

Precision Recall F1-Score 

00:00 – 
01:00 

3 1 5 0 0.75 1.00 0.85 

06:00 – 
07:00 

4 2 5 0 0.66 1.00 0.79 

12:00 – 
13:00 

2 0 3 1 1.00 0.66 0.79 

18:00 – 
19:00 

3 1 4 1 0.75 0.75 0.75 

 

IV. Conclusion 
As outlined above, this ground truth analysis suggests that the CFI method produces results that largely agree with 

the observed contrails. The computed CFIs follow the same general magnitude pattern as the GOES-16 contrail 
counts and, while the number of contrail masks may be small in number, the individual CFIs and GOES-16 contrail 
masks had high precision and recall. 

One notable drawback of this study is that the GOES-16 human-labeled dataset used was not comprehensive (that 
is, this study only examined a small handful of contrail points across the country). As such, while broad trends could 
be observed using the day’s total contrail pixel counts and the individual comparisons made between masks and CFIs 
indicate the general accuracy of the CFI method, a larger human-labeled dataset would allow for more rigorous 
comparisons to be made. As is, it is possible that the positive results observed in this study are not indicative of the 
overall performance of the CFI method. Future work could augment the GOES-16 dataset used in this study (or, 
alternatively, make use of a larger human-labeled contrail dataset) and then repeat the study’s methodology to 
develop more ironclad conclusions about the robustness of the CFI method. Another direction for future work could 
involve comparing the contrails predicted using CFIs with observed contrails over the elevation dimension. As 
discussed above, one of the drawbacks of the observed contrails dataset used in this study was its 3-dimensional, 
rather than 4-dimensional, structure, which prevented any comparisons to be made between elevations. There would 
be value in a future observed contrail dataset being built to differentiate between contrails at different elevation levels 
to allow for these comparisons to be made. This would provide valuable insight into the accuracy of the CFI method. 

Despite this shortcoming, this study’s novel comparison of the accuracy of CFI-based algorithms that make use of 
large amounts of nowcast weather data, recorded flight tracks, and ground truth, human-labeled GOES-16 contrail 
masks further strengthens the case for the broader adoption of the CFI method. This study’s results showing the 
accuracy of CFIs lays the groundwork for future research, which can focus on determining the accuracy of the 
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method’s near future forecasting abilities. If further work indicates that CFIs are consistently capable of making 
accurate predictions, then this algorithm can be applied to predict the contrails formed by upcoming commercial 
flights and reroute planes as necessary to mitigate each flight’s environmental impact. 

With the impacts of climate change growing more apparent and the speed at which the aviation industry is 
expanding, it is essential to develop methods that can decrease the significant environmental impact of contrails. By 
continuing to develop the CFI method – which, as evidenced by this study, produces results that align with ground 
truth data – the aviation field has the ability to propel itself into a global leader in climate change mitigation and help 
preserve the skies for years to come. 
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