
A Natural Language Understanding Approach for Digitizing
Aircraft Ground Taxi Instructions

Hillel Steinmetz ∗, Jacob Tao †, Stephen Clarke ‡ and Krishna M. Kalyanam §

NASA Ames Research Center, Moffett Field, California, 94035

Advancements in natural language processing (NLP) technologies offer a unique opportunity
to furnish aircraft crews, primarily pilots, with digital instructions for taxiing operations.
Digital taxi instructions, delivered either as text or graphics, can streamline taxiing procedures,
thereby reducing radio congestion, minimizing communication errors, and enhancing aircraft
monitoring. Techniques used for natural language understanding (NLU), a subset of NLP
focused on machine comprehension of natural language, can extract taxi instructions directly
from verbal radio communications. This capability paves the way for implementing a digital
taxi communication framework with minimal adjustments to the existing air traffic controller
operations. This paper delves into a novel application of NLU: the automated generation
of digital taxi instructions from air traffic controller speech. We detail the development of
an annotation scheme to represent aircraft ground traffic communications within the US
National Airspace System (NAS), employing intent classification (IC) and slot filling (SF) to
extract taxi instructions using NLU models. Several neural network models were trained on a
dataset annotated with our scheme, achieving notable accuracy and 𝐹1 scores. Our research
demonstrates the feasibility of using NLU to automatically generate digital taxi instructions,
showcasing its potential to streamline the implementation of digital taxi communications.

Nomenclature

𝐴𝑇𝐶 = Air Traffic Control
𝐴𝑇𝐶𝑜 = Air Traffic Controller
𝐴𝑇𝑀 = Air Traffic Management
𝐹𝐹𝑁 = Feed-Forward Network
𝐼𝐶 = Intent Classification
𝐿𝑆𝑇𝑀 = Long Short-Term Memory
𝑁𝐴𝑆 = (U.S.) National Airspace System
𝑁𝐿𝑃 = Natural Language Processing
𝑁𝐿𝑈 = Natural Language Understanding
𝑆𝐹 = Slot Filling

I. Introduction
In January 2023, Delta Flight 1943 was forced to abort its takeoff at John F. Kennedy International Airport (JFK)

when another aircraft began crossing its assigned runway. The taxiing aircraft, flight American Airlines Flight 106, was
initially instructed to cross runway 31L at taxiway J. Later, a controller instructed it to cross runway 4L at taxiway K.
The pilot, however, followed the controller’s initial instruction and crossed runway 31L at taxiway. An initial report
by the Federal Aviation Administration (FAA) found the American Airlines crew to be distracted and recommended
developing software to detect navigation errors [1]. Since then, several other notable taxiway and runway incursions
have occurred, including one in April 2024 at Ronald Reagan National Airport (DCA) after a ground controller cleared
a flight to cross the runway where another flight was cleared for takeoff [2]. These incidents underscore the importance
of developing new technologies that enhance the safety and surveillance of taxiing operations.
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Automatically generating digital taxi instructions from air traffic controller (ATCo) speech would enable controllers
to send instructions as digital communications with minimal changes to ATCo responsibilities and workload. The use
of digital taxi instructions can improve air traffic safety. Currently, ground controllers coordinate with multiple aircraft
crews, primarily pilots, over a single radio frequency to issue taxiing instructions. However, exclusive use of voice
communication for air traffic control operations is vulnerable to error. The human auditory processing channel is not
efficient at processing and memorizing information, especially over noisy channels with unfamiliar interlocutors [3, 4].
Digital taxi instructions can represent taxiing instructions as text or can be shown on a graphical display (similar to
a map application for road traffic) and enable an aircraft crew to refer back to instructions. Displaying a map in the
flight deck addresses issues of pilot auditory processing and memory. Digitizing taxi instructions also improves the
surveillance of aircraft movements and can even be used by downstream systems to automatically detect deviations
from ATC instructions [5]. Digital instructions also reduce radio congestion, which decreases the likelihood of aircraft
crews mishearing communications or failing to hear their callsign [6]. Additional benefits of digital communications are
reductions in delays and fuel emissions [7]. For these reasons, digital taxi instructions are likely to improve air traffic
management (ATM) systems.

However, digital taxi instructions can be difficult to implement. Data communications cannot entirely replace voice
communications. ATCos and aircraft crews can communicate faster using verbal instructions. Verbal instructions
also enable aircraft crews and ATCos to convey non-linguistic information (for example, urgency or emotion) that
can be critical for successful communication [8]. Earlier research on replacing voice communication with digital
taxi instructions has led to mixed results, with some ATCos indicating that voice communications may continue to
be necessary for routine communications [9, 10]. For these reasons, many proposed implementations of digital taxi
instructions recommend mixed-mode communication, such as a 2020 proposal by FAA [5]. The continued importance
of voice communications provides compelling opportunities to use NLU to incorporate digital taxi communications into
ATM.

II. Related Work
Several human factors studies have explored the impact of digital taxi instructions on ATCo and aircraft crew

workload. In one simulation, ground controllers issued digital instructions to aircraft using a touchscreen. The
touchscreen displayed a map of airport taxiways that ground controllers could interact with by pressing or dragging
elements of the map to issue or alter taxi instructions. The study found that pilots preferred digital taxi communications
to voice communications because it lessened communication responsibilities and reduced readback and hearback errors
[9]. Another study examined the feasibility of pilots using navigation maps in simulations with a prescribed area to
remain inside. The study found that pilots in the large tolerance area condition perceived the map to be safer than those
who did not use a map, with no effect on workload [11]. A recent FAA study outlined the procedural changes, benefits,
and scope of implementing digital taxi instructions [5]. While there are clear benefits to digital taxi communications,
it remains difficult to replace verbal communications; the FAA study still proposed requiring that ATCos and pilots
establish radio contact.

Recent advancements in natural language processing (NLP) have sparked interest in its potential applications in
aviation. Language models specifically tailored to the aerospace vocabulary have been trained and deployed to classify
narrative reports for safety investigations [12, 13]. Other studies over the past decade have shown that automatic speech
recognition (ASR) and NLU can be used to detect readback errors [14, 15], automatically file pilot weather reports [16],
pre-fill radar label entries [17], and alert ground controllers that they instructed pilots to use a closed runway [18]. A
recent Single European Sky ATM Research (SESAR) study used ASR to pre-fill radar labels, and found that ASR had
reduced ATCo workload ratings and improved ATCo performance on situational awareness measures [17].

At the time of publication, there are no publicly available datasets that label taxiing instructions in ATC communica-
tions. However, previous work produced ontologies or taxonomies that can be used to label ATC communications.
The German Aerospace Center (DLR) and the MITRE Corporations developed ontologies for classifying ATCo
communications [19, 20]. Both ontologies define command types for desired actions to be taken by pilots or ATCos,
such as requesting a pilot to descend or provide clearance. Each command type has several associated qualifiers;
for instance, a descend command is associated with altitude measurement in feet. Only the DLR ontology contains
representations for taxiing operations [19]. The DLR ontology was later used to develop a rules-based algorithm for
extracting taxiing instructions, as detailed in Helmke et al. [21]. However, a rules-based approach may not successfully
adapt to non-standard phraseology and is sensitive to errors in speech transcriptions. It also needs to be revised for
different airspaces that use other terminology. NLU models, which are probabilistic, are more likely to successfully
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extract taxi instructions from text that employs non-standard phraseology (or contains transcription errors).

III. Annotating Ground Control Communications
To train NLU models to classify ATCo/pilot speech utterances, we developed an annotation scheme and annotated

3.7 hours of transcribed speech (audio) files. The annotation scheme was developed in collaboration with subject-matter
experts (SMEs) at the National Aeronautics and Space Administration (NASA) and the FAA. To create the dataset,
we obtained speech (audio) files from LiveATC.net∗ containing radio communication between ground controllers and
pilots at Dallas-Fort Worth Airport (DFW) that occurred on August 28th, 2022. The audio files were segmented using a
voice activity detector (VAD), dividing long audio segments into shorter ones. The resulting segments were transcribed
using the Microsoft Azure Speech-to-Text service [22] before being validated and corrected by trained annotators.
Subsequently, the utterances in the transcriptions were manually labeled with speaker IDs that also mark whether the
speaker is a pilot or ATCo. Two trained annotators used the annotation scheme described below to label pilot and ATCo
utterances with intent and slot labels. Prodigy [23], a Python-based annotation tool, was used to create the interface the
annotators used to label the data.

A. Digital Taxi Annotation Scheme
Using the terminology adopted by MITRE and DSR to describe their ontology [19], our annotation scheme

categorizes utterances as containing command types and extracts qualifiers that modify command types. Command
types describe the instructions or requests, such as “go to”, “hold”, or “provide information”. Qualifiers represent the
details critical to an instruction or request, such as “taxiway Bravo” in the instruction “hold at taxiway Bravo”.

The annotation scheme utilizes intent classification (IC) and slot filling (SF) to annotate command types and
qualifiers in an utterance. The IC-SF scheme is effective for representing task-oriented dialog, where the speaker (or
user) aims to have another agent perform a specific action. Intents describe what the speaker requires from the agent,
while slots provide information in the utterance related to that intent [24]. Typically, intent labels are assigned to the
entire utterance. An utterance can also be divided into a sequence of tokens: a token represents a word, punctuation, or
meaningful sub-words (such as “-n’t” in the words “doesn’t” or “wouldn’t”). SF labels a sequence of tokens, also known
as a span, with zero, one, or multiple slot labels. An illustration of an annotated utterance is shown in Figure 1.

Speaker Utterance and slots Intents

Controller [American 2621]to_whom [DFW Ground]from_whom. Good morning. Taxi via Go to

[Echo-Sierra-Kilo to the ramp]taxi_route

Fig. 1 An example of an annotated utterance

In our annotation scheme, IC was used to label each utterance with zero or more command types, and SF was
used to label the spans that qualify the command types. A single utterance was labeled with one or more intents
(command types). Pilot readbacks were labeled with an “acknowledge” intent alongside any intents contained in the
instructions repeated by the pilot. The slot labels (qualifiers) consist of identifiers—such as “DFW Ground” or an
aircraft callsign—and other information relevant to the intents, such as a taxi route or apron entry point. Utterances
were split into lists of tokens using spaCy’s whitespace tokenizer for English [25]. Each token is labeled with zero, one,
or more slots. A complete list of intents and slots used by our annotation scheme can be found in tables 2-3 in the
Appendix. The resulting annotations are not taxiing instructions, but are intended to be utilized by a downstream dialog
manager to generate taxi instructions.

Our annotation scheme differs in a few ways from the DLR ontology described in Helmke et al. [20]. First, our
annotation scheme was developed using phraseology commonly employed in the NAS, with particular attention to
the phraseology discussed in the FAA’s Order JO 7110.65 [26]. As a result, our command types (intents) include
instructions such as give way and pass. We also included questions as intents because ATCos frequently asked pilots
where they were going or for the callsign of an aircraft at a particular location. Finally, we annotate command qualifiers
as slots; phrases that qualify a command are annotated at the word level rather than at the sentence level.

∗https://www.liveatc.net
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An advantage of using an IC and SF annotation scheme is that it captures taxiing instructions at both the word level
and sentence level. This multi-level representation allows for training an NLU model to focus on specific linguistic
contexts. Moreover, it supports multitask learning, where models are trained on both IC and SF tasks simultaneously,
enhancing their ability to understand the relationship between span-level slots and sentence-level intents [24]. However,
an IC-SF annotation scheme does not explicitly define the relationships between particular slots and intents. Therefore,
extracting taxi instructions from model predictions requires a downstream dialog manager to connect intents (command
types) to particular slots (qualifiers). We mitigated this issue by implicitly defining relationships between intents and
slots. For example, the slot label at <location> give way associates a location to the command give way. These
relationships should help models implicitly learn the association between certain commands and qualifiers.

B. Dataset Description

Fig. 2 Counts of the 30 most-frequent tokens.
Fig. 3 A log10-scaled plot of token frequencies
(counts) versus token rank

Our dataset contained 1978 utterances and 32,243 tokens. Of the 32,243 tokens in the data, there are 651 unique
tokens. The token frequencies formed an interesting distribution. While the distribution is near-Zipfian like most
distributions in natural language [27], the token frequency first decreases gently along with rank before decreasing
steeply. This pattern implies that tokens tend to fall into two categories: common or uncommon, indicating that
ATCo-pilot communications are more restricted than other forms of speech. This pattern is illustrated in Figure 2 and 3,
which shows the log-scaled plot of token frequencies vs. rank.†

The distribution of intent and slot labels in the annotated dataset was imbalanced (see tables 2-3 in the Appendix for
label frequencies), reflecting the fact that most ATC communications are routine instructions. While the annotation
scheme was designed to capture most facets of ATC communications and taxiing instructions, we removed some
low-frequency labels from the dataset, which we determined to be labels with fewer than 30 annotations. However, we
did not filter the pass intent given its importance as a taxiing instruction, despite having fewer than 30 annotations. This
filtering procedure avoids overfitting the data to a small set of occurrences at training time.

Using canonical correlation analysis [28], we found a number of our intents and slots to be correlated. Some
correlations reflected the annotation scheme design: the frequency slot and change frequency intent had a correlation
coefficient of 0.9. Others, such as spot, were strongly correlated with several intents, such as pilots informing ATCos of
their destination or ATCos asking for the callsign of an aircraft at a particular location.

IV. Methods
To evaluate the quality of the dataset and annotation scheme, we trained and evaluated baseline feedforward

neural networks (FFNs) and multitask long short-term memory (LSTM) networks, a type of recurrent neural network
†Token rank assigns the most frequent token is assigned a rank of 1, the second most frequent token is assigned a rank of 2 and so on.
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(RNN) model. The baseline models were trained separately on IC and SF tasks. These baseline FFNs were used to
investigate whether our small dataset accurately captures intents and slots, as well as identify several areas for potential
improvements. The LSTM models were trained simultaneously on IC and SF tasks and were used to determine whether
a model can leverage the systematic relationships between slots and intents.

We trained and evaluated models on both ATCo and pilot utterances. Pilot utterances can augment ATCo data
since they contain similar phraseology. Readbacks, in particular, can be helpful since they were annotated with nearly
the same intents and slots as the preceding instruction. However, pilot speech was likely to deviate from prescribed
phraseology, which could diminish overall IC performance. Therefore, we also trained models on data exclusively
consisting of ATCo utterances to serve as a point of comparison. In total, we trained and evaluated six models. We
trained two LSTMs to predict both IC and SF labels: one was trained on ATCo and pilot data and the other was trained
on ATCo-only data. Separate FFNs were trained on IC or SF tasks. Therefore, we trained a total of four FNNs: two
were trained on ATCo and pilot data and two were trained on ATCo-only data.

The dataset was split into training and evaluation sets using a ratio of 4:1. Intents were stratified proportionally
across the training and evaluation sets. Because intents were correlated with slots, we used intent labels as a proxy
for both label types when stratifying the data. All tokens that appeared fewer than two times in the training set were
transformed into an “unknown” token, [𝑈𝑁𝐾]. We performed this transformation to train models to generalize to
unseen tokens. Similarly, tokens not seen in the training set are transformed into the [𝑈𝑁𝐾] token.

A. Baseline models
For our baseline models, we trained separate FFN classifiers to predict intents and slots. Each classifier consisted of

3 hidden layers with 100 neurons, with the rectified linear unit (ReLU) functions as activation functions. Both FFN
classifiers were trained using the Adam optimizer, a variant of stochastic gradient descent (SGD) [29]. Cross-entropy
(CE) loss was used as the loss function for both IC and SF tasks.

The baseline IC model used vectors of token counts in an utterance as inputs. Each index of the vector corresponds to
a token in the training set’s vocabulary. The values assigned to each index are the counts of the times the token appeared
in the utterance. More formally, for the set of utterances in the data,𝑈 = {𝑢1, ..., 𝑢𝑛}, the input was a vector x, of length
|𝑉 | where 𝑉 = {𝑡0, ..., 𝑡𝑛} is the set of unique tokens in the training data and x = [count(𝑡0, 𝑢 𝑗 ), ..., count(𝑡𝑛, 𝑢 𝑗 )] and
count(𝑡𝑖 , 𝑢 𝑗 ) is the number of times 𝑡𝑖 occurred in the utterance 𝑢 𝑗 .

For the baseline SF model, our inputs were concatenated one-hot vectors of the current token and the previous 𝑛
tokens. More formally, the inputs were vectors of size 𝑛 · |𝑉 |, where 𝑛 is the number of previous words encoded as
features and |𝑉 | is the size of the training set vocabulary. For our experiments, we set 𝑛 to 5. The resulting input vector
looked like: [0, 0, 1, ..., 0, 1, 0, ..., 0, 0, 1] = [𝑂𝐻 (prev𝑛), ..., 𝑂𝐻 (prev1), ..., 𝑂𝐻 (token)] where 𝑂𝐻 is a function
that generates a one-hot vector from the token text. Any [𝑈𝑁𝐾] tokens in the training data were ignored (and were
mapped to a vector of zeros). If the token index 𝑖 is less than the number of preceding tokens 𝑛 (i.e., if the current token
is one of the first tokens in the sentence), then all preceding tokens greater than 𝑖 were set to a beginning of the sentence
token, [𝐵𝑂𝑆].

B. Multitask model
The LSTM models were trained to simultaneously predict IC and SF labels, a training scheme known as multitask

models [30–32]. When tasks are sufficiently similar, multitask models perform better than independently trained
models and have fewer parameters [33]. In several IC-SF datasets, slots and intents tend to be correlated, but their
performance might relies on different linguistic information (for example, SF may be more dependent on syntactic
information). A model trained on both tasks can utilize more varied linguistic information and perform better than models
independently trained on IC and SF tasks [24]. The restricted syntax and vocabulary of ATCo/pilot communications
are information-dense, suggesting that tokens carry information relevant to both slots and intents. Therefore, we
hypothesized that training a multitask model on IC and SF was the optimal approach for classifying digital taxi data.

The multitask model architecture consisted of a bidirectional LSTM (BiLSTM) and that branches into two FFN
networks. One branch serves as an intent classifier and the other a slot classifier. We represented tokens as one-hot
vectors. The LSTM generated a sequence of hidden states from the sequence of one-hot vectors. The outputs of the
hidden layers were fed to the FFN slot classifier as a batched input, outputting slot probabilities for each token. The FFN
intent classifier took the max-pooled values of hidden states. The max-pool operation obtained the maximum value at
each index of the hidden states. So, for hidden state vectors of length 𝑚, often represented as a matrix 𝐻 = [h1, ..., h𝑛],
then, maxpool(𝐻) = [max(ℎ1,1, ...ℎ1,𝑚), ...,max(ℎ𝑛,1, ...ℎ𝑛,𝑚)], where ℎ𝑖, 𝑗 is the value of hidden state 𝑖 at index 𝑗 .
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Fig. 4 An overview of the proposed multitask learning LSTM model

The intent classifier used this pooled value as its input to produce an output of intent probabilities. Our resulting
multitask model was lightweight, with only approximately half a million parameters. In comparison, BERT, a typical
transformer-based model, boasts around 110 million parameters [34]. The model architecture is shown in Figure 4.

The LSTMs were trained using the AdamW algorithm [35], a variant of Adam that uses a different method for
applying weight decay. The loss function for both IC and SF tasks is binary cross entropy (BCE) loss. BCE loss was
calculated for each label type (or class), with the total loss corresponding to the mean class loss. The loss function as
applied to a single batched element is shown in (1), where 𝑖 is a label, 𝑥𝑖 is the logit predicted for the label 𝑖, 𝑦𝑖 is the
true value of the label 𝑖, 𝜎 is the sigmoid function, 𝑁 is the total number of labels, and 𝑤𝑖 is a weight applied to positive
instances of label 𝑖 to improve recall.

𝐿𝐵𝐶𝐸 =
1
𝑁

𝑁∑︁
𝑖=0

𝑤𝑖 · 𝑦𝑖 · log𝜎(𝑥𝑖) + (1 − 𝑦𝑖) · log(1 − 𝜎(𝑥𝑖)) (1)

Because SF losses were calculated for each token, the model’s parameters were updated using the mean loss of the
slot predictions of all tokens in an utterance. The total loss for an utterance, L, was calculated using (2), where 𝛼 is a
hyperparameter, LSF,𝑡 𝑗 is the BCE loss calculated for token 𝑡 𝑗 the sequence of tokens in the utterance, 𝑇 = (𝑡1, ...𝑡𝑛).
The total loss for all utterances in a batch was calculated as the mean loss of the utterances in the batch.

L𝑖 = 𝛼LIC + (1 − 𝛼) 1
𝑛

𝑛∑︁
𝑗=0

LSF,𝑡 𝑗 (2)

C. Evaluation
Our NLU models were evaluated using three measures: macro 𝐹1 score, micro 𝐹1 score, and accuracy. 𝐹1 and

accuracy scores were used to evaluate performance on both IC and SF tasks. Accuracy was defined as the number of
correctly labeled utterances or tokens as a fraction of the total number of utterances or tokens. 𝐹1 score was calculated
according to (3):

𝐹1 =
𝑡 𝑝

𝑡 𝑝 + 1
2 ( 𝑓 𝑝 + 𝑓 𝑛)

(3)

where 𝑡 𝑝, is the number of true positives, 𝑓 𝑝 is the number of false positives, and 𝑓 𝑛 is the number of false negatives. A
micro 𝐹1 score is the weighted average of the 𝐹1 score for all the labels, with the weights corresponding to the number of
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times the label occurs in the evaluation set. A macro 𝐹1 score is the uniformly-weighted average 𝐹1 score of the labels.

V. Results
Table 1 contains the 𝐹1 scores of our independently trained FFN classifiers and multitask LSTM model. The tables

show the scores of each model architecture when trained on datasets containing solely ATCo utterances or both ATCo
and pilot utterances. The highest performance score for each metric is in bold text.

Macro 𝐹1 Micro 𝐹1 Accuracy

Intent Classification
FFN

ATCO+Pilot 74.6 89.3 77.8
ATCO-only 77.2 90.1 80.4

Multitask LSTM
ATCO+Pilot 81.4 90.4 80.3
ATCO-only 84.1 94.3 86.6

Slot Filling
FFN

ATCO+Pilot 77.7 93.0 93.4
ATCO-only 75.1 93.6 94.3

Multitask LSTM
ATCO+Pilot 85.5 94.3 94.5
ATCO-only 79.2 93.5 93.4

Table 1 𝐹1 and accuracy scores for baseline FFN classifiers separately trained on IC and SF tasks and multitask
LSTM trained simulatenously on IC and SF tasks. The Multitask LSTM models are the same model across SF
and IC tasks, while the FFNs are distinct model across tasks.

The baseline FFN classifiers achieved commendable performance on the tasks, with micro-𝐹1 scores approaching
90% on both IC and SF tasks. As hypothesized, the multitask LSTMs generally outperforms the baseline models.
However, SF performance degraded slightly when the multitask model was trained exclusively on ATCo utterances. The
largest performance improvements were observed in the IC task, whose accuracy scores were 2.5% and 6.2% higher than
baseline models when trained on the ATCo+Pilot and ATCo-only data respectively. Overall, the results demonstrate that
the multitask model surpasses the baseline models.

The LSTM’s performance varied across specific intent and slot labels. In the LSTM trained on ATCo and pilot
data, the intent with the highest 𝐹1 score was hold (100); the intent with the lowest 𝐹1 score was inform (48.0); the slot
with the highest 𝐹1 score was frequency (97.5), and the slot with the lowest 𝐹1 score was <Vehicle> - pass (55.6). We
hypothesize that the labels with poor performance lack a restricted set of linguistic cues (for instance, <Vehicle> - pass
can take on spans such as “the babybus”, “A318”, “the airbus”, or “United”, among many others).

VI. Discussion
Our annotation scheme and experiments demonstrate the feasibility of using NLU to generate digital taxi instruction

directly from controller speech. The performance of the baseline FFN models was quite good, at nearly 90% micro-𝐹1
scores. The fact that baseline FFN models can achieve this performance indicates that the annotation scheme and dataset
are well-constructed.

Our multitask model performed better on both IC and SF tasks than the separately trained FFN models, achieving
higher 𝐹1 and accuracy scores. Our experiments also show that—for both model types—IC performance degraded while
SF performance improved when pilot utterances were included in the training and evaluation data sets. Performance
on IC task may have been lower when trained on ATCo+Pilot data since pilot speech tended to be more variable than
ATCo speech, making it more difficult to classify intents. This assumption is supported by the fact that 𝐹1 and accuracy
scores of ATCo-only utterances within ATCO+Pilot data were higher than 𝐹1 and accuracy scores of the whole dataset.
Concerning the improvements in SF performance across models trained on the ATCo+Pilot data compared to ATCo-only
data, we hypothesize that the inclusion of pilot data, particularly readbacks of instructions, provided more examples
for the model to learn to extract slots. We believe that pilot readbacks were particularly helpful for teaching models
low-frequency slots.

The multitask training method seemed to enhance performance on the IC task. It is unclear how much multitask
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learning improves model performance on the SF task: the accuracy scores of the multitask model are only 1.1% higher
than baseline models when trained on the ATCo+Pilot data, and 0.9% lower than baseline models when trained on
ATCo-only data. Perhaps this discrepancy implies that the benefits of multitask learning are asymmetric for our dataset:
the IC task benefits more from learning representations applicable to SF than the converse.

While there is room for improvement, our multitask BiLSTM model shows promise. The model achieved performance
scores similar to other NLU models that extract information from air traffic communications. For instance, Chen et al.
[16] trained an LSTM model that extracted pilot weather reports with a 𝐹1 score of 78.9. As a part of a larger digital taxi
system that incorporates contextual data, such as flight plans or surveillance data, we believe that overall performance is
likely to improve; similar performance boosts can be observed in Ahrenhold et al. [17], whose speech-to-text model’s
callsign recognition accuracy improved from 71.6% to 97.8% after providing their model with a set of possible callsigns
using surveillance data of aircraft movements.

Several challenges were identified pertaining to the use of NLU to generate digital taxi instructions. Misspoken
words, self-corrections, disfluencies, and noise in ATC speech are all potential roadblocks for dataset annotation and
model training. On several occasions in the recordings, controllers use disfluencies in the middle of an instruction (for
example, “via Kilo, uh, Kilo, Kilo six”), or were interrupted by crosstalk. While we successfully removed disfluencies
and noise from the data, the success of an NLU model depends on upstream capabilities to filter noise and disfluencies
from the data. Self-corrections, on the other hand, cannot as easily be identified and removed from the data. Additionally,
self-corrections may require a slot to be annotated twice in a single utterance; for example, in “gate Bravo eight, erm,
Bravo nine”, annotating only “Bravo nine” without sufficient data may result in a model failing to categorize Bravo eight
as a gate in other utterances. The presence of multiple annotated slots means that a downstream dialog manager is
needed to extract the best candidate from multiple slots.

Another potential challenge is speech that deviates from the phraseology detailed in JO 7110.65 and the idiosyncratic
phraseology of certain airports. For instance, at DFW, pilots taxiing to their gates are typically told to travel to a
numeric Apron Entry Point (AEP) called “spots” rather than to a particular gate. This idiosyncrasy suggests that our
annotation scheme may need to be modified to reflect the differences across airports. Future research may be interested
in developing a large language model of ATC speech and finetuning on airport-specific annotations.

VII. Conclusion
The annotation scheme and models presented in this paper demonstrate the feasibility of using NLU to synthesize

digital taxi instruction directly from ATCo speech. Our research developed an annotation scheme for NAS that
labels whole utterances and spans of text to extract details necessary to generate taxi instructions. Our lightweight,
multitask LSTM demonstrates significant potential for using NLU to generate digital taxi instructions, which could
ultimately enhance the safety of ground traffic movements. Future work will investigate other NLU tasks such as
dialog state tracking (DST), and the use of transformer-based large language models (LLMs) like Bidirectional Encoder
Representations from Transformers (BERT) or Generative Pre-trained Transformer (GPT) to fine-tune the IC and SF
tasks, aiming to transform model predictions into taxi instructions.
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Appendix

Intent Count (utterances) Description

Answer 236 Provide an answer to a question.
Request 29 A request issued by a pilot or controller.
Get back to you 22 Will reply soon.
New frequency 101 Change to a different radio frequency.
Turn 124 Turn the aircraft.
Going where 196 Ask a pilot about the location they are scheduled to taxi toward.
Inform 92 Let the controller know that an aircraft is ready to receive instructions.
Hold 66 Do not move beyond a certain point.
Who at location 236 Provide the callsign of an aircraft at a location.
Who needs help 8 Ask if any aircraft/pilot is in need of instructions.
Give way 235 Do not proceed until another aircraft passes.
Question 27 A question raised by a pilot or controller.
Say again 26 Repeat your previous transmission.
Go to 1032 Taxi to a location.
Follow 15 Follow another aircraft.
Behind 54 Pass behind another aircraft.
Correction 22 Correct a previous miscommunication or error.
Ready? 54 Ask if an aircraft is ready to receive taxiing instructions.
Acknowledge 606 Taxi instructions were received.
Going to destination 129 Inform the controller of the destination the aircraft is scheduled to head towards.
Pass 16 Proceed with a taxi route in front of another aircraft.
Set squawk 6 Make sure the transponder is correctly set.
Check ATIS 88 Ask pilots to ensure they have the latest ATIS information.

Table 2 Descriptions of intents used by annotation scheme. (Models are trained on labels in bold text.)

Slot Count (spans) Description

Taxi route 1038 The route an aircraft should take to arrive at its destination.
From who 1336 The speaker’s identification (callsign or ground).
To whom 862 The identification (callsign or ground) of the intended listener.
Runway 471 A runway identifier.
Request 29 A request issued by a pilot or controller.
Question 27 A question raised by a pilot or controller.
Vehicle 301 A reference to a vehicle.
<Vehicle> - give way 208 An aircraft that should be given way.
<Vehicle> - follow 15 An aircraft that should be followed.
<Vehicle> - pass 13 An aircraft that should be passed.
<Vehicle> - behind 53 An aircraft the listener should be pass behind.
At <location> - hold 62 A location an aircraft should hold.
At <location> - give way 139 A location an aircraft should wait to give way to another aircraft.
Spot (AEP) 497 A surface marking that notes the entrance and exit to the apron.
Gate 14 An airport gate.
ATIS 246 Automatic terminal information service: a broadcast of weather conditions, open runways, and

other information.
Direction (L/R) 179 The direction an aircraft should turn.
Squawk code 6 The signal a transponder should emit.
Frequency 96 A radio frequency that aircraft should switch to.
Aircraft location 179 The aircraft’s current location at the airport.

Table 3 Descriptions of slots used by annotation scheme. (Models are trained on labels in bold text.)
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