

Comparing Methods for Estimating Marginal Likelihood in Symbolic Regression

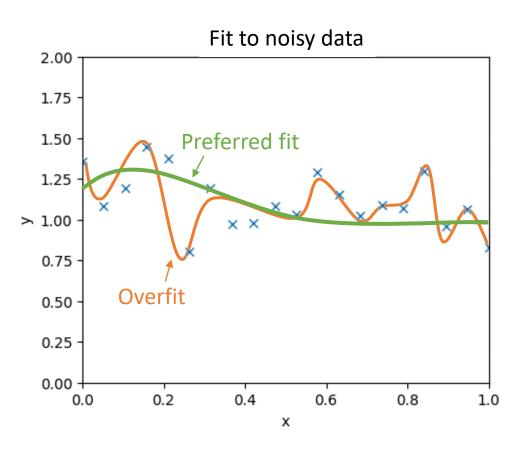
Patrick Leser, Geoffrey Bomarito NASA Langley Research Center

Gabriel Kronberger University of Applied Sciences Upper Austria

> Fabrício Olivetti De França Universidade Federal do ABC

Motivation

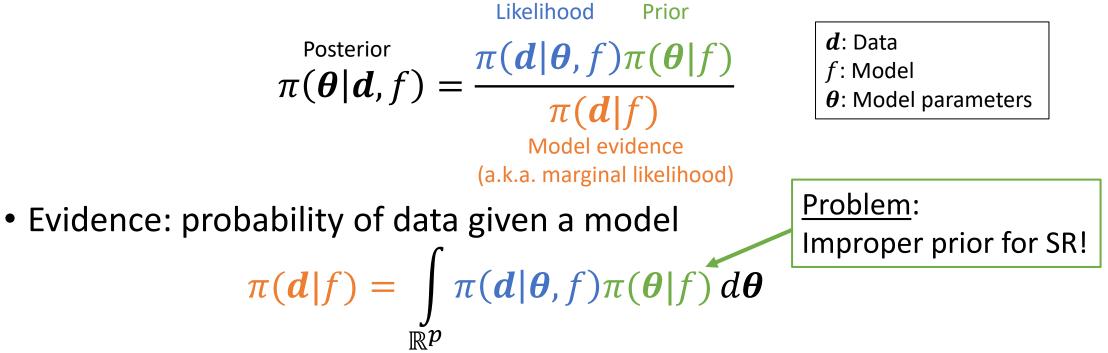
- Symbolic Regression (SR) has a proclivity for overfitting when data is <u>scarce</u> and <u>noisy</u>
- Bayesian model selection has been shown to help reduce bloat and improve generalizability in Genetic Programming based SR (GPSR)¹
 - Quantifies uncertainty due to scarce, noisy data
 - Is based on <u>model evidence</u>, which implicitly penalizes parametric complexity
- How can model evidence be estimated in practice?
 - Laplace approximation
 - Sequential Monte Carlo (SMC) sampling



1. Bomarito, Leser, Strauss, Garbrecht, and Hochhalter. 2022. Bayesian model selection for reducing bloat and overfitting in genetic programming for symbolic regression. GECCO '22

What is model evidence?

Anatomy of Bayes' theorem



• Bayes Factor: relative probability of two models given the data

$$B = \frac{\pi(f_0|\mathbf{d})}{\pi(f_1|\mathbf{d})} = \frac{\pi(\mathbf{d}|f_0)\pi(f_0)}{\pi(\mathbf{d}|f_1)\pi(f_1)}$$

Д

Fractional Bayes Factor

A normalized version of the Bayes Factor that works with improper priors

Bayes Factor:
$$B = \frac{c_1 \int_{\mathbb{R}^p_1} \pi(\boldsymbol{d}|\boldsymbol{\theta}_1, f_1)h(\boldsymbol{\theta}_1|f_1)d\boldsymbol{\theta}}{c_2 \int_{\mathbb{R}^p_2} \pi(\boldsymbol{d}|\boldsymbol{\theta}_2, f_2)h(\boldsymbol{\theta}_2|f_2)d\boldsymbol{\theta}}$$

Fractional Bayes Factor¹:
$$B_{\gamma} = \frac{q_0(\gamma)}{q_1(\gamma)}$$

Normalized Marginal Likelihood (NML):

For uniform improper priors $\pi(\theta|f) \propto 1$, unspecified normalizing constants appear in the standard Bayes Factor.

• The fractional Bayes Factor results in these constants canceling, enabling model comparison.

1. O'Hagan, Anthony. "Fractional Bayes factors for model comparison." *Journal of the Royal Statistical Society: Series B (Methodological)* 57.1 (1995): 99-118.

Evidence

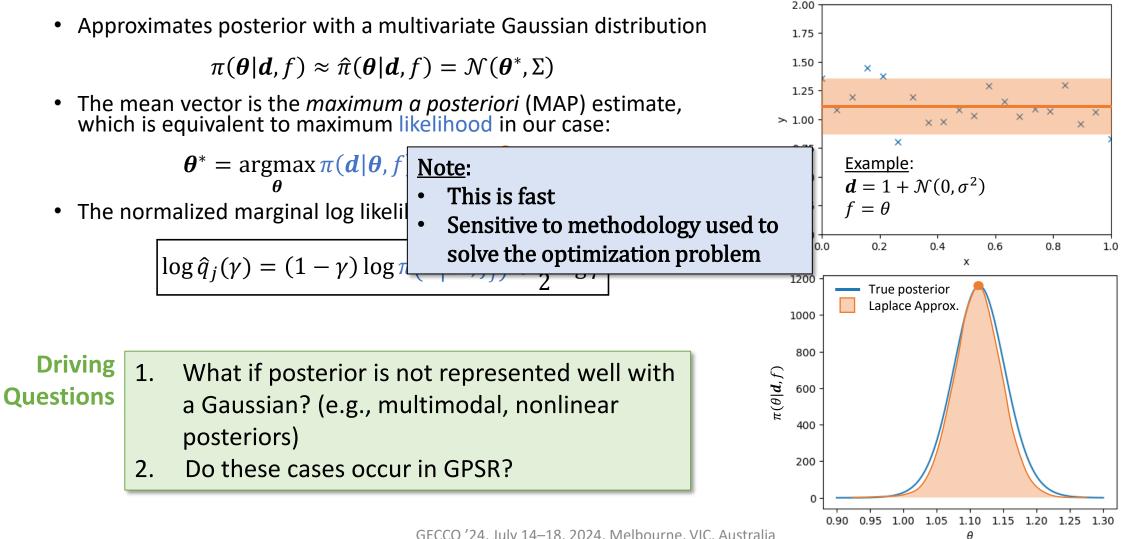
Evidence w/ $\gamma \in [0, 1]$

(Simulates using a portion of data for normalization)

$q_{j}(\gamma) = \frac{\int_{\mathbb{R}^{p}} \pi(\boldsymbol{d}|\boldsymbol{\theta}, f_{j}) \pi(\boldsymbol{\theta}|f_{j}) d\boldsymbol{\theta}}{\int_{\mathbb{R}^{p}} \pi(\boldsymbol{d}|\boldsymbol{\theta}, f_{j})^{\boldsymbol{\gamma}} \pi(\boldsymbol{\theta}|f_{j}) d\boldsymbol{\theta}} =$

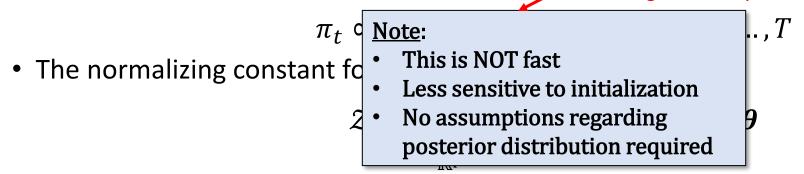
Data

Estimating NML – Laplace Approximation



Estimating NML – Sequential Monte Carlo (SMC)

- A method for drawing samples from posterior (like Markov chain Monte Carlo)
- SMC targets a series of distributions transitioning from the prior (easy to sample from) to the posterior (unknown):



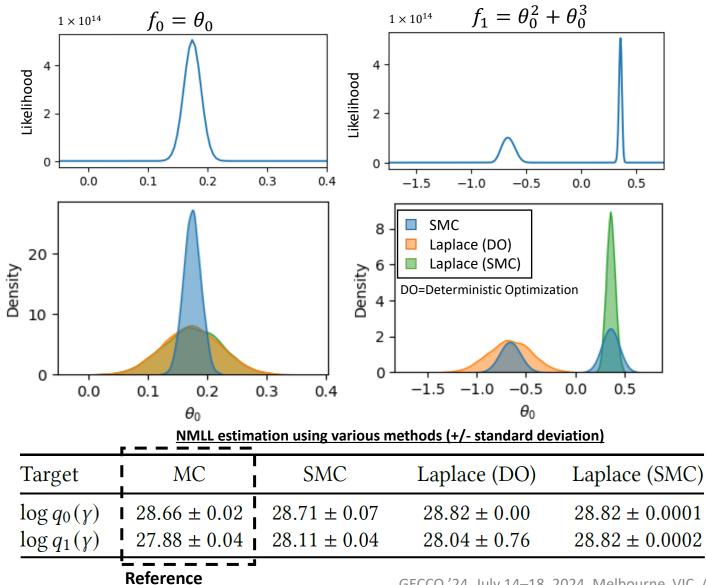
• Noting the similarity to NML formula, set:

$$\boldsymbol{\phi} = \{\phi_t\}_{t=1}^T = \{0, \dots, \gamma, \dots, 1\}$$

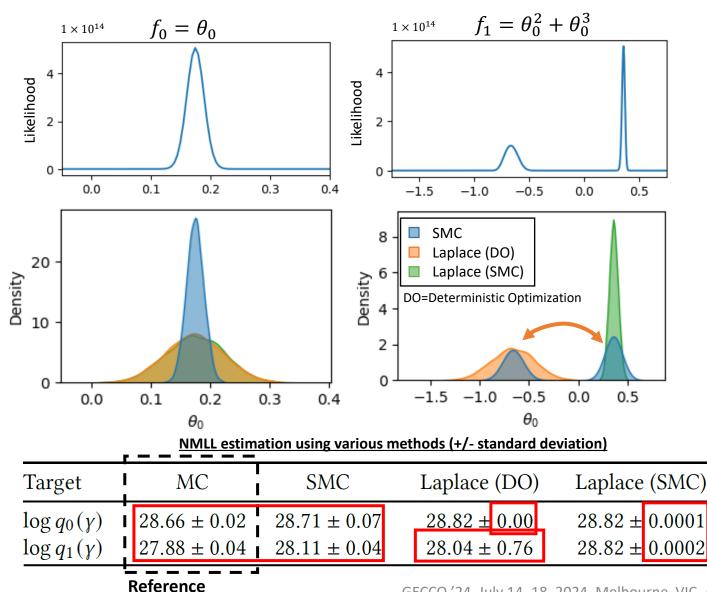
• Therefore, the NMLL is a natural byproduct of a single SMC run:

$$\log \bar{q}_j(\gamma) = \mathcal{Z}_j^{\phi_T} - \mathcal{Z}_j^{\gamma}$$

Numerical Experiments: Multimodal Toy Problem

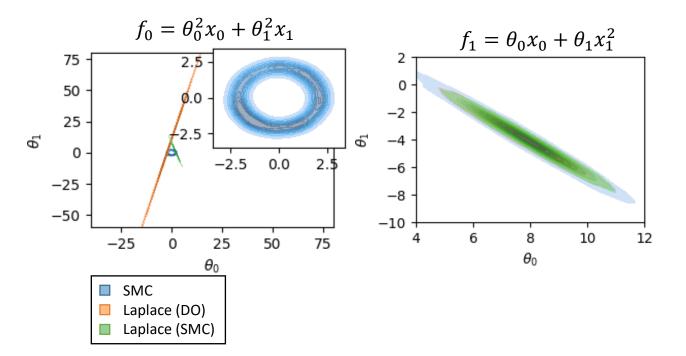


Numerical Experiments: Multimodal Toy Problem



- Laplace produces very consistent results if correct mode is found
- The correct mode is found more often when using a global optimizer like SMC
- SMC is consistently accurate but has larger estimator variance than Laplace
- Laplace based on deterministic optimization (DO) can be biased if a local optima is used instead of MAP

Numerical Experiments: Nonlinear Toy Problem

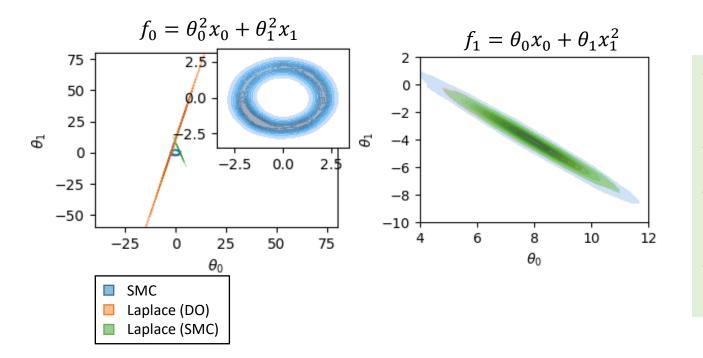


Target	МС	SMC	Laplace (DO)	Laplace (SMC)		
	-22.38 ± 0.02 -21.69 ± 0.04			$-22.62 \pm 0.0001 \\ -20.57 \pm 0.002$		

NMLL estimation using various methods (+/- standard deviation)

Reference

Numerical Experiments: Nonlinear Toy Problem



<u>NMLL estimation using various methods (+/- standard deviation)</u>							
Target	МС	SMC	Laplace (DO)	Laplace (SMC)			
$\log q_0(\gamma)$	-22.38 ± 0.02	-22.13 ± 0.12	-23.48 ± 6.11	-22.62 ± 0.0001			
$\log q_1(\gamma)$	-21.69 ± 0.04	-21.57 ± 0.18	-20.57 ± 0.00	-20.57 ± 0.002			
L ∠ Reference							

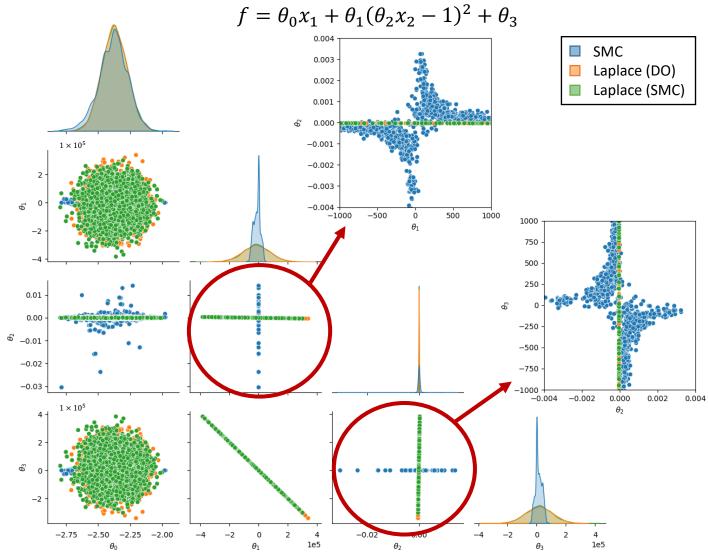
- Laplace approximates the ring distribution with a tangent gaussian
- Laplace is very consistent but biased
- SMC is again more accurate albeit with larger variance than Laplace
- Laplace is less accurate even in a case that is unimodal and approximately Gaussian

Real World Examples

- Expressions produced by GPSR (Operon) applied to the Feynman benchmarks in SRBENCH^{1,2,3}
- Results presented:
 - 1. Single example highlighting existence of non-Gaussian, nonlinear posteriors
 - 2. Summary of NMLL predictions across entire set of 43 expressions

- 1. La Cava, et al. "Contemporary symbolic regression methods and their relative performance." arXiv:2107.14351 (2021)
- 2. Orzechowski, et al. "Where are we now? A large benchmark study of recent symbolic regression methods." Proc. of GECCO (2018)
- 3. Udrescu and Tegmark. "AI Feynman: A physics-inspired method for symbolic regression." Science Advances, (2020)

Real World Example: Single Expression

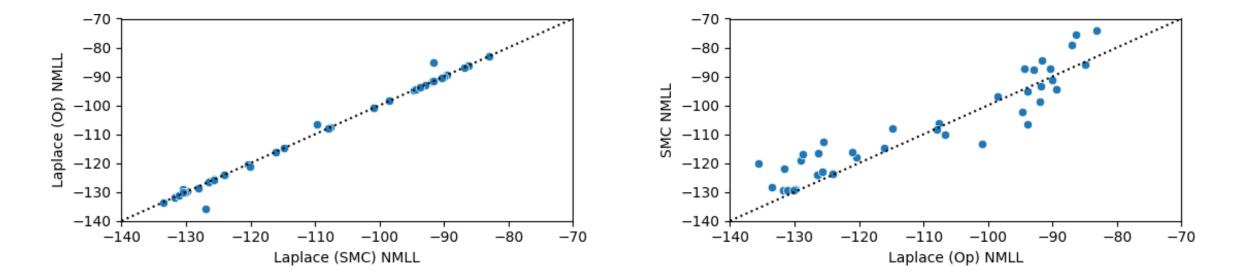


- True posterior is both multimodal and nonlinear
- No Monte Carlo reference available due to computational expense
- New initialization approach introduced
- SMC produces most consistent results for this case
- Laplace approximation exhibits:
 - Higher variance than SMC
 - Sensitivity to initial optimization

NMLL estimation using various methods (+/- standard deviation)						
Target	SMC	Laplace (DO)	Laplace (Op)	Laplace (SMC)		
$\log q(\gamma)$	-120.4 ± 4.1	-116.7 ± 9.2	-118.7 ± 8.9	-119.5 ± 8.6		

Real World Example: Aggregated Results

- Operon's maximum likelihood optimization is very close to the MAP produced by SMC
 - This is likely due to local optima lost to evolution (cost hidden by GPSR)
- NMLL produced by SMC and Laplace are correlated but different



GECCO '24, July 14–18, 2024, Melbourne, VIC, Australia

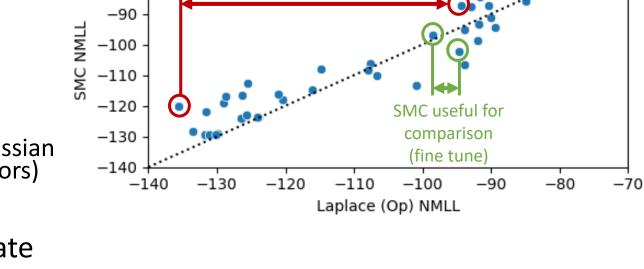
Contact: patrick.e.leser@nasa.gov

-70

-80

Conclusions

- Sequential Monte Carlo (SMC):
 - More accurate, robust NMLL estimates
 - More computationally expensive
 - Tunable precision/cost tradeoff
- Laplace Approximation:
 - Fast and consistent NMLL estimates
 - Potential for biased estimates in non-Gaussian cases (e.g., nonlinear, multimodal posteriors)
 - Dependent upon parameter optimization
- The types of expressions that exacerbate differences are present in GPSR
- A filtering-based approach could be useful in practice
 - Spend the extra time on SMC only when needed



SMC not needed for

comparison; use Laplace

