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Motivation
• Symbolic Regression (SR) has a proclivity for 

overfitting when data is scarce and noisy

• Bayesian model selection has been shown to help 
reduce bloat and improve generalizability in 
Genetic Programming based SR (GPSR)1

• Quantifies uncertainty due to scarce, noisy data

• Is based on model evidence, which implicitly penalizes 
parametric complexity

• How can model evidence be estimated in practice? 
• Laplace approximation

• Sequential Monte Carlo (SMC) sampling
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1. Bomarito, Leser, Strauss, Garbrecht, and Hochhalter. 2022. Bayesian model selection for reducing bloat and overfitting in genetic programming for symbolic regression. GECCO '22

Overfit

Preferred fit

Fit to noisy data



What is model evidence?
• Anatomy of Bayes’ theorem

𝜋 𝜽 𝒅, 𝑓 =
𝜋 𝒅 𝜽, 𝑓 𝜋(𝜽|𝑓)

𝜋(𝒅|𝑓)

• Evidence: probability of data given a model

𝜋(𝒅|𝑓) = න

ℝ𝑝

𝜋 𝒅 𝜽, 𝑓 𝜋(𝜽|𝑓) 𝑑𝜽

• Bayes Factor: relative probability of two models given the data

𝐵 =
𝜋 𝑓0 𝒅

𝜋 𝑓1 𝒅
=
𝜋 𝒅 𝑓0 𝜋 𝑓0
𝜋 𝒅 𝑓1 𝜋 𝑓1
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𝒅: Data
𝑓: Model
𝜽: Model parameters

Likelihood Prior

Model evidence
(a.k.a. marginal likelihood)

Posterior

Problem:
Improper prior for SR!



Fractional Bayes Factor
A normalized version of the Bayes Factor that works with improper priors

Bayes Factor:   𝐵 =
𝑐1 ℝ𝑝1׬ 𝜋 𝒅 𝜽1, 𝑓1 ℎ(𝜽1|𝑓1)𝑑𝜽

𝑐2 ℝ𝑝2׬ 𝜋 𝒅 𝜽𝟐, 𝑓2 ℎ(𝜽𝟐|𝑓2)𝑑𝜽

Fractional Bayes Factor1:     𝐵𝛾 =
𝑞0(𝛾)

𝑞1(𝛾)

Normalized Marginal Likelihood (NML): 

𝑞𝑗 𝛾 =
ℝ𝑝׬ 𝜋 𝒅 𝜽, 𝑓𝑗 𝜋 𝜽 𝑓𝑗 𝑑𝜽

ℝ𝑝׬ 𝜋 𝒅 𝜽, 𝑓𝑗
𝛾
𝜋 𝜽 𝑓𝑗 𝑑𝜽

=
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Evidence

Evidence w/ 𝛾 ∈ [0, 1]
(Simulates using a portion of 

data for normalization)

• For uniform improper priors 
𝜋 𝜃 𝑓 ∝ 1, unspecified normalizing 
constants appear in the standard 
Bayes Factor.

• The fractional Bayes Factor results in 
these constants canceling, enabling 
model comparison.

1. O'Hagan, Anthony. "Fractional Bayes factors for model comparison." Journal of 

the Royal Statistical Society: Series B (Methodological) 57.1 (1995): 99-118.



Estimating NML – Laplace Approximation 
• Approximates posterior with a multivariate Gaussian distribution

𝜋 𝜽 𝒅, 𝑓 ≈ ො𝜋 𝜽 𝒅, 𝑓 = 𝒩 𝜽∗, Σ

• The mean vector is the maximum a posteriori (MAP) estimate, 
which is equivalent to maximum likelihood in our case:

𝜽∗ = argmax
𝜽

𝜋 𝒅 𝜽, 𝑓 𝜋(𝜽|𝑓)

• The normalized marginal log likelihood (NMLL) is:

log ො𝑞𝑗(𝛾) = 1 − 𝛾 log𝜋 𝒅 𝜽∗, 𝑓𝑗 +
𝑝

2
log 𝛾

5

Constant
Example:
𝒅 = 1 +𝒩 0, 𝜎2

𝑓 = 𝜃

1. What if posterior is not represented well with 
a Gaussian? (e.g., multimodal, nonlinear 
posteriors)

2.     Do these cases occur in GPSR?

Driving 
Questions

True posterior
Laplace Approx.

𝜋
(𝜃
|𝒅
,𝑓
)

Note:  
• This is fast
• Sensitive to methodology used to 

solve the optimization problem
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Estimating NML – Sequential Monte Carlo (SMC)

• A method for drawing samples from posterior (like Markov chain Monte Carlo)

• SMC targets a series of distributions transitioning from the prior (easy to sample from) to 
the posterior (unknown):

𝜋𝑡 ∝ 𝜋 𝒅 𝜽, 𝑓 𝜙𝑡𝜋 𝜽 𝑓 for 𝑡 = 1,… , 𝑇

• The normalizing constant for each target is given by:

𝒵𝑗
𝜙𝑡 = න

ℝ𝑝

𝜋 𝒅 𝜽, 𝑓𝑗
𝜙𝑡
𝜋 𝜽 𝑓𝑗 𝑑𝜽

• Noting the similarity to NML formula, set:

𝝓 = 𝜙𝑡 𝑡=1
𝑇 = {0,… , 𝛾, … , 1}

• Therefore, the NMLL is a natural byproduct of a single SMC run:

log ത𝑞𝑗(𝛾) = 𝒵𝑗
𝜙𝑇 − 𝒵𝑗

𝛾
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Note:  
• This is NOT fast
• Less sensitive to initialization
• No assumptions regarding 

posterior distribution required

Transition governed by likelihood annealing
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Numerical Experiments: Multimodal Toy Problem
𝑓0 = 𝜃0

Li
ke

lih
o

o
d

1 × 1014

SMC
Laplace (DO)
Laplace (SMC)

1 × 1014 𝑓1 = 𝜃0
2 + 𝜃0

3

DO=Deterministic Optimization

Li
ke

lih
o

o
d

NMLL estimation using various methods (+/- standard deviation)

Reference
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Numerical Experiments: Multimodal Toy Problem

• Laplace produces very consistent results 
if correct mode is found

• The correct mode is found more often 
when using a global optimizer like SMC

• SMC is consistently accurate but has 
larger estimator variance than Laplace

• Laplace based on deterministic 
optimization (DO) can be biased if a 
local optima is used instead of MAP

𝑓0 = 𝜃0

Li
ke

lih
o

o
d

1 × 1014

SMC
Laplace (DO)
Laplace (SMC)

1 × 1014 𝑓1 = 𝜃0
2 + 𝜃0

3

DO=Deterministic Optimization

Li
ke

lih
o

o
d

NMLL estimation using various methods (+/- standard deviation)



Numerical Experiments: Nonlinear Toy Problem
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Reference

NMLL estimation using various methods (+/- standard deviation)

𝑓0 = 𝜃0
2𝑥0 + 𝜃1

2𝑥1 𝑓1 = 𝜃0𝑥0 + 𝜃1𝑥1
2

SMC
Laplace (DO)
Laplace (SMC)



Numerical Experiments: Nonlinear Toy Problem
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𝑓0 = 𝜃0
2𝑥0 + 𝜃1

2𝑥1 𝑓1 = 𝜃0𝑥0 + 𝜃1𝑥1
2

• Laplace approximates the ring distribution 
with a tangent gaussian

• Laplace is very consistent but biased

• SMC is again more accurate albeit with larger 
variance than Laplace

• Laplace is less accurate even in a case that is 
unimodal and approximately Gaussian

Reference

SMC
Laplace (DO)
Laplace (SMC)

NMLL estimation using various methods (+/- standard deviation)



Real World Examples

• Expressions produced by GPSR (Operon) applied to the Feynman 
benchmarks in SRBENCH1,2,3

• Results presented:
1. Single example highlighting existence of non-Gaussian, nonlinear posteriors

2. Summary of NMLL predictions across entire set of 43 expressions
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1. La Cava, et al. "Contemporary symbolic regression methods and their relative performance." arXiv:2107.14351 (2021)
2. Orzechowski, et al. "Where are we now? A large benchmark study of recent symbolic regression methods." Proc. of GECCO (2018)
3. Udrescu and Tegmark. "AI Feynman: A physics-inspired method for symbolic regression." Science Advances, (2020)
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Real World Example: Single Expression

SMC
Laplace (DO)
Laplace (SMC)

• True posterior is both multimodal and 
nonlinear

• No Monte Carlo reference available 
due to computational expense

• New initialization approach introduced

• SMC produces most consistent results 
for this case

• Laplace approximation exhibits:
• Higher variance than SMC 
• Sensitivity to initial optimization

NMLL estimation using various methods (+/- standard deviation)

𝑓 = 𝜃0𝑥1 + 𝜃1 𝜃2𝑥2 − 1 2 + 𝜃3

1 × 105

1 × 105



Real World Example: Aggregated Results
• Operon’s maximum likelihood optimization is very close to the 

MAP produced by SMC
• This is likely due to local optima lost to evolution (cost hidden by GPSR)

• NMLL produced by SMC and Laplace are correlated but different
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Conclusions
• Sequential Monte Carlo (SMC):

• More accurate, robust NMLL estimates
• More computationally expensive
• Tunable precision/cost tradeoff

• Laplace Approximation:
• Fast and consistent NMLL estimates
• Potential for biased estimates in non-Gaussian 

cases (e.g., nonlinear, multimodal posteriors)
• Dependent upon parameter optimization

• The types of expressions that exacerbate 
differences are present in GPSR

➢A filtering-based approach could be useful 
in practice
• Spend the extra time on SMC only when needed
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SMC useful for 
comparison 
(fine tune)

SMC not needed for 
comparison; use Laplace

Contact: patrick.e.leser@nasa.gov

mailto:patrick.e.leser@nasa.gov
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