

The 37th International Geological Congress 2024 Lunar, Mars, and Asteroid Exploration for Space Resources

Sang H. Choi, Ph.D. Senior Scientist AMPB/RD NASA Langley Research Center

August 28, 2024

Excavation & Regolith Processing for H₂ & O₂ Production, Binders & Aggregates

All Images credit: NASA

Resource Prospecting – Looking for Resources

Propellant Processing with Lander & Pad Infrastructure

Habitat, Hangars, Dust Free Zones, Landing Pads, Berm, and Road Construction Thermal Energy Storage Construction

Construction of Consumables Depots for Crew & Power (O_2 , H_2)

Lunar Dust Composition - Elemental Analysis

Composition Data:

Turkevich, A. L., "The Average Chemical Composition of the Lunar Surface", Proceedings of the Lunar Science Conference, Vol. 4, pp.1159-1168, 1973.

Probes for Survey and Assay - **Microspectrometer (MSM)** -

Spectrometer technology: Fresnel diffraction grating

Resolution:< 5 nm with resolving power 100 lines</td>Targeted spectral range:Addressable pixelBullet configuration:Remotely deployableCost of MSM:< \$200 ea</td>

Spectrometer Chip

Spectral Data & Resolution of Differential Line Fresnel Grating

Bullet Micro-Spectrometer

Bullet Micro-Spectrometer

Micro-Spectrometer

- Principle of Fresnel diffraction
- Light source: Deep or vacuum UV from burst-mode LED
- Pulse mode power feed from super-capacitor
- Bullet-like consumable microspectrometers (< \$100)
- Shooting by compressed air gun

Gas Gun for Bullet Micro-Spectrometer

Micro-Spectrometer for Lunar & Mars Exploration

Lunar Soil Assay by Bullet Micro-Spectrometer

Penetration of Bullet Micro-Spectrometer into Steep Hillside and Bottom of Crater

Asteroid Soil Assay by Bullet Micro-Spectrometer

Penetration of Bullet Micro-Spectrometer into Asteroid

Lunar Volatiles Collector (LVC) - Bessel Tube (BT) -

Volatiles:

- Helium-3 in dangling bond on lunar surface: Assaying, collecting, and storing
- Oxygen (processed from ice-water or oxides)
- CO₂ on Mars for oxygen and propellant production
- Mechanical, chemical, or electrical processors for splitting oxides, H₂O, or CO₂, collecting, and storing

Volatile: Helium-3 Mining

<u>Helium-3</u>

Neutrons	1
Protons	2
Parent Isotopes	³ H (β-decay)
Isotope Mass	3.016 u
Half Life	stable
Spin	1/2+
Availability	0.000137% in Atm
Helium-3 in regol	lith
Dangling bond –	van der Waals
	Electrostatic
	Trapped
<u>Resources</u>	
Earth Mantle	~ 10 ⁶ tons
Ocean Floor	4000 tons
Lunar Regolith	~ 10 ⁶ tons
<u>Needs</u>	
U.S.A.	20 tons/vr (\$60B worth)
Others together	80 tons/yr
Drica:	¢2D/tan
	99D/1011

Rationale

Fusion reactions involving Helium-3						
Reactants		Products	Q			
First Generation Fuels						
${}^{2}_{1}H + {}^{2}_{1}H$	\rightarrow	³ ₂ He + ¹ ₀ n	3.268 MeV			
² ₁ H + ² ₁ H	\rightarrow	³ ₁ H + ¹ ₁ p	4.032 MeV			
² ₁ H + ³ ₁ H	\rightarrow	⁴ ₂ He + ¹ ₀ n	17.571 MeV			
Second Generation Fuel						
² ₁ H + ³ ₂ He	\rightarrow	⁴ ₂ He + ¹ ₁ p	18.354 MeV			
Third Generation Fuel						
³ ₂ He + ³ ₂ He	\rightarrow	⁴ ₂ He+ 2 ¹ ₁ p	12.86 MeV			

Aspiration (Richard B. Bilder, Fordham International Law Journal, Vol. 33, Iss. 2, 2009)

U.S.A.	One of the justifiable space expeditions (2015)
China	Officially stated goal of Chinese lunar exploration program
Russia	Helium-3 mining plan by Russia's RKK Energia by 2020
Japan	???
India	Officially, but no details

Bessel Tube (BT) Concept for Volatile Collection

Electron Accelerating Cavity

Cylindrical harmonic generator in a hypocycloidal mode used for accelerating electrons in electron Accelerator laboratory.

Particle capture by cylindrical harmonic generator in a hypocycloidal mode.

Helium-3 Mining Technology

Regolith

O₂ Separation

Three Types of Bessel Tube Device

- High Power Density -

To date, power usage:

- Lifting by rockets
- Electronic processes mostly probing and telecommunication

Under Artemis:

- Lifting by rockets
- Electronic processes probing and telecommunicating
- <u>Mechanical processes</u> mining, hauling, hauling, storing, fabricating, and constructing
- More power required > 100 kW
- Specific power > 100 W/kg

Power Need for Scientific Missions and Habitats

Sample Drilling (~10kW)

Rover Exploration (~3kW)

Inflatable Habitat (~1kW)

Fixed Habitat (~2kW)

Sojourner (~500W)

Opportunity (~500W)

Apollo Rover (~1kW)

Spirit (~500W)

Power for Earth and Space Science

Galaxy Evolution Explorer (290W)

285 W Active Cooling System (ACS) Manifold Aluminum Outer Shell Assembly Cooling Tubes Pressure Heat Source General Purpose **Relief Device** Gas Management Support Heat Source (GPHS) Assembly Midspan Heat **RTG Mounting** Silicon-Germanium (Si-Ge) Unicouple Source Support Multi-Foil Flange Insulation

Radioisotope Thermoelectric Generators (RTG)

All images Credit: NASA

History of Space Radioisotope Thermoelectric Generator (RTG) Applications

Image & Data Credit: NASA

Name & Model	RTG used	Max Power (watts)	Max Heat Output (Watts)	Radioisoto pe	Fuel Mass (kg)	Total Mass (kg)
SRG	Prototype phase	~110	~500	Pu238	~1	~27
MMRTG	Prototype phase	~110	~2000	Pu238	~4	26-34
GPHS-RTG	Cassini (3) Galileo (2) Ulysses (1)	300	4400	Pu238	7.8	55.5
MHW-RTG	Voyager 1 (3) Voyager 2 (3)	160	2400	Pu238	~4.5	39
SNAP-19	Viking (2) Pioneer 10 (4) Pioneer 11 (4)	35	525	Pu238	~1	???
SNAP-27	Apollo 12-17 ALSEP (1)	73	1480	Pu238	3.8	20
Beta-M	Soviet unmanned lighthouse	10	230	Sr90	0.26	560

RTG: Radioisotope Thermoelectric Generator

http://en.wikipedia.org/wiki/radioisotope thermoelectric generator

Element	Half-life (years)	Watts/g (thermal)	\$/Watt (thermal)
Polonium-210	0.378	141	570
Plutonium-238	86.8	0.55	3000
Cesium-144	0.781	25	15
Strontium-90	28.0	0.93	250
Curium-242	0.445	120	495

Current and Planned **Power Sources for Deep Space Exploration**

GPHS-RTG Compared with MMRTG Images credit to NASA NASA Goal > 100 W_e/kg NTAC > 1 kW/kgGPHS-RTG MMRTG ASRG ARTG TPV MJ-TE MJ-TE Past Present In Development Future Future 600~740 Electric Output, BOM, W_e ~140-150 ~38-50 1125~1350 285 125 ~280 to 420 Heat Input, BOM, W 2000 500 3000 250 4500 2000 4500 RPS System Efficiency, BOM, % 6.3 6.3 ~28-30 ~15-20 25~30 30~37 ~9-14 56 44.2 ~19-21 ~7 ~ 30 ~ 18 Total System Weight, kg ~40 33 ~ 41 Specific Power, W₂/kg 5.1 2.8 ~7-8 ~7-10 ~6-7 37.5 ~ 45 Number of GPHS Modules 18 8 2 12 18 8 1 GPHS Module Weight, kg 25.7 12.9 3.2 19.3 1.6 < 15 < 7 ²³⁸Pu Weight, kg 7.6 3.5 0.88 5.3 0.44 7.6 3.5

GPHS-RTG: general-purpose heat source — radioisotope thermoelectric generator MMRTG: Multi-Mission Radioisotope Thermoelectric Generator ASRG: Advanced Stirling Radioisotope Generator ARTG: Advanced RTG

TPV: Thermo-photovoltaic MJ-TE: Metallic junction thermoelectrics

VS.

Semiconductor TE

O

- p-n Junction limits electrons (~1 C/cm³) from 10¹⁸~10¹⁹ dopant atoms/cm³
- Requires high σ , low κ
- $ZT \sim 0.8 \ (\eta \approx 6 \%)$

Metallic Junction TE

- Many electrons (~10³ C/cm³) from 10²³ atoms/cm³
- No need for high σ , low κ
- Higher carrier mobility
- ZT ~ 2 (η ≈ 12 %)

Customary Band (Wave) Energy and Grade

NA	SA

Band	Frequency	Wavelength	Energy	Color Temperature	Grade X
HF VHF UHF L S C X Ku K Ku K Ka Q U V V V F D	3 ~ 30 MHz 30 ~ 300 MHz 0.3 ~ 3 GHz 1 ~ 2 GHZ 2 ~ 4 GHz 4 ~ 8 GHz 8 ~ 12 GHz 12 ~ 18 GHz 18 ~ 27 GHz 26.5 ~ 40 GHz 33 ~ 50 GHz 40 ~ 60 GHz 50 ~ 75 GHz 75 ~ 110 GHz 90 ~ 140 GHz	$10 \sim 100 \text{ m}$ $1 \sim 10 \text{ m}$ $0.1 \sim 1 \text{ m}$ $0.15 \sim 0.3 \text{ m}$ $0.075 \sim 0.15 \text{ m}$ $0.037 \sim 0.075 \text{ m}$ $0.025 \sim 0.037 \text{ m}$ $0.017 \sim 0.025 \text{ m}$ $0.011 \sim 0.017 \text{ m}$ $0.0075 \sim 0.0113 \text{ m}$ $0.006 \sim 0.0091 \text{ m}$ $0.0075 \sim 0.005 \text{ m}$ $0.004 \sim 0.006 \text{ m}$ $0.0027 \sim 0.004 \text{ m}$ $0.00214 \sim 0.00333 \text{ m}$ $0.00176 \sim 0.00273 \text{ m}$			Extremely Low
Tera (TH)	700 ~ 1700 GHz	42.8 ~ 17.6 μm	0.003 eV ~ 0.007 eV	35 ~ 80 K	Lowest GradeLow GradeCurrentLow GradePower systemsLow GradeAnchored
Far IR (FIR)	6 ~ 15 THz	50 ~ 20 μm	0.025 eV ~ 0.06 eV	300 ~ 700 K	
Mid IR (MIR)	15 ~ 30 THz	20 ~ 10 μm	0.06 eV ~ 0.12 eV	700 ~ 1400 K	
IR	30 ~ 100 THz	10 ~ 3 μm	0.12 eV ~ 0.3 eV	1400 ~ 3500 K	
Near IR (NIR)	100 ~ 430 THz	3 ~ 0.7 µm	0.3 eV ~ 1 eV	3500 ~ 11600 K	Low Medium Grade
Visible (Vis)	430 ~ 1000 THz	0.7 ~ 0.3 µm	1 eV ~ 4 eV	11600 ~ 46420 K	Low Medium Grade
UV (UV)	750 ~ 1000 THz	0.4 ~ 0.3 µm	3 eV ~ 4 eV	34800 ~ 46420 K	Low Medium Grade
Deep UV (DUV)	850 ~ 1200 THz	0.35 ~ 0.25 µm	4 eV ~ 6 eV	46420 ~ 69600 K	Medium Grade
Vacuum UV (VUV)	1.2 ~ 3 PHz	0.25 ~ 0.1 µm	6 eV ~ 12 eV	69600 ~ 139200 K	Medium Grade
Extreme UV (EUV)	3 ~ 300 PHz	100 ~ 1 nm	12 eV ~ 300 eV	139200 ~ 3480000 K	Medium Grade
Soft X-ray (SXR)	300 ~ 600 PHz	1 ~ 0.5 nm	300 eV ~ 2 keV	3.48 ~ 23.2 MK	High Grade
Hard X-ray (HXR)	0.6 ~ 24 EHz	0.5 ~ 0.0125 nm	2 keV ~ 100 keV	23.2 ~ 1160 MK	High Grade
Gamma ray (γ-ray)	> 25 EHz	< 0.0125 nm	> 100 keV	> 1.16 BK	Extreme High Grade

Energy-Releasing Reactions

Energy Source	Chemical	Nuclear Fission	Nuclear Fusion	γ-Photoionic				
Sample Reaction	$C + O_2 \rightarrow CO_2$	n + 235 U \rightarrow 143 Ba + 91 Kr + 2n	^{2}H + $^{3}\text{H} \rightarrow {}^{4}\text{He}$ + n	X-ray, γ -ray, β				
Typical Inputs	Coal or oil	UO ₂ (3% ²³⁵ U + 97% ²³⁸ U)	Deuterium & Tritium	Photons				
Typical Reaction Temp (K)	700	1000	10 ⁸	any temp				
Energy Released per gram (J/g)	3.3 x 10 ⁴	2.1 x 10 ⁹	3.4 x 10 ¹¹	1.4 x 10 ⁸				
Harnessable Efficiency (E/mc ²)	3 x 10 ⁻⁸ %	0.002 %	0.4 %	~ 20 %				
En contract of the second s	http://electron6.phys.utk.edu/phys250/modules/module%205/nuclear_energy.htm							

Energy Grade	Poorest	High	Highest	Highest
Specific Power	< 10 W/kg	< 25 W/kg	> 100 W/kg	> 1000 W/kg
System α, kg/kW	> 100	> 40	< 10	< 1
Refueling	Frequently	> 10 years	> 10 years	2.5 ~ 30 years
Challenges & Readiness	Pollution	γ & neutron shielding	Plasma fusion (???)	Radioisotopes

NASA Lunar Power- KRUSTY: A 40 kW_e system with 4-m diameter and 6-m long and Weight > 6,000 kgs

(KRUSTY: Kilowatt Reactor Using Sterling TechnologY)

Artemis Phase 1: To The Lunar Surface by 2024

Artemis II: First humans to orbit the Moon in the 21st century

Artemis I: First human spacecraft to the Moon in the 21st century Artemis Support Mission: First high-power Solar Electric Propulsion (SEP) system Artemis Support Mission: First pressurized module delivered to Gateway

Artemis Support Mission: Human Landing System delivered to Gateway

Artemis III: Crewed mission to Gateway and lunar surface

Sustainable Power (> 20 kW) Lunar Dust Mitigation <u>ISRU (water ice, volatiles)</u> Extreme Environments Extreme Access Surface Excavation and Construction

Commercial Lunar Payload Services - CLPS-delivered science and technology payloads

Early South Pole Mission(s)

- First robotic landing on eventual human lunar return and In-Situ Resource Utilization (ISRU) site

- First ground truth of polar crater volatiles

Large-Scale Cargo Lander

 Increased capabilities for science and technology payloads

Humans on the Moon - 21st Century First crew leverages infrastructure left behind by previous missions

2024

LUNAR SOUTH POLE TARGET SITE

2020

Power Technology Roadmap for Future Lunar Missions Alignment of Power Sources with Lunar Surface Systems Needs

Location: Polar (near continuous light)

NASA Glenn Research Center | Jeremiah McNatt and Fred Elliott | November 04, 2019

Application / Capability			Power Source Suitability and Readiness							
		Power Level	Radioisotope Power	Fission Power	Photovoltaics	Batte	eries	Primary Fue Cells	el	Regen Fuel Cells
		< 500 W								
	Lander, Small Robotic, NET 2020	500 W – 1 kW								
	Lander, Mid-size Robotic, NET 2022	1 – 3 kW								
wed	Lander, Large Robotic, NET 2026	3 – 7 kW								
crev		< 500 W	NextGen RPS			Lunar nigh	it survival			
Ŋ	Mobile, Small Robotic Rover, NET 2022	500 W – 1 kW	Dynamic RPS			Lunar nigh	ıt survival			
•	Mobile, Large Robotic Rover, NET 2026	1 – 3 kW		Recharge Only		Lunar nigh	ıt survival			
	ISRU, NET 2027	3 – 7 kW				Lunar nigh	it survival			
		7 – 20 kW	NTAC							
	Lander, Advanced Exploration, NET 2026	3 – 7 kW								
σ	Rover (unpressurized), NET 2023	1 – 3 kW								
rewe	Rover (small pressurized)	3 – 5 kW		Recharge Only		Lunar nigh	ıt survival	ISRU Reactar	nts	Station Recharge
C	Rover (pressurized), NET 2026	7 – 20 kW	NTAC	Recharge Only				ISRU Reactar	nts	Station Recharge
	Ascent Stage, NET 2024	3 – 7 kW								
	Habitat, NET 2031	4 – 10 kW	NTAC							
	RPS: Radioisotope Power Systems NTAC: Nuclear Thermionic Avalanche Cell	Color key	SOA adaptable	Funded Development	Dev started – mo	ore needed	Develop	ment needed	No	t suitable/practical

Artemis Mission Architecture

NASA Glenn Research Center | Jeremiah McNatt and Fred Elliott | November 04, 2019

All Images Credit: NASA

Scientific Landers ~ 1 kW

Rovers, Crewed **Missions from** Lunar Gateway ~ 20 kW

Lunar Base (habitat, charging station, ISRU plant) > 100 kW

Propellant Production Process

Krieger, Kim, "Breaking carbon dioxide faster, cheaper, and more efficiently", Proceedings of the National Academy of Sciences (2019). DOI:10.1073/pnas.1915319116 Sang H. Choi and Robert W. Moses, "Integrated Dissociation Processing of Carbon Dioxide", NASA Case No. LAR-19916-1, e-NTR #: 1600455401, September 18, 2020.

CO₂ *Mining and Processing Power*

$2CO_2 + 4hv \rightarrow 2CO + O_2 \quad \text{E} = -4 \text{ } hv = -1.35 \text{ } eV = -130.26 \text{ } \text{kJ/mol}$

- Breakdown rate of CO_2 into CO + O: **1 kg/s of CO_2**
- 1 eV = 96.49 kJ/mol
- 1 kg of $CO_2 = 22.7$ moles
- E = 1.35 eV = 130.26 kJ/mol = 2957 kJ/kg

Power required:

 P_{CO2} = 2957 kJ/s ≈ 3 MW for breaking down 1 kg/s of CO₂

Dissociation Rate	E, kJ	Power, kW	System Power, kW	NTAC Power Source, MW	NTAC Dimension
1 g/s	- 2.957 kJ	2.96 kW	10 kW	3.844 MW	
100 g/s	- 295.7 kJ	296 kW	10 kW	3.844 MW	D: 1.2m, H: 1.5m W [:] 3 5 tons
300 g/s	- 887.1 kJ	888 kW	50 kW	3.844 MW	
500 g/s	- 1478.5 kJ	1.480 MW	200 kW	3.844 MW	System Alpha: 0.908
1 kg/s	- 2957 kJ	2.957 MW	200 kW	3.844 MW	

Solar Cell vs. NTAC

Device	ETS-VIII Solar Array	NTAC 7.5 kW ½ Life	NTAC 15 kW ½ Life
Туре	Rigid type	Solid – no moving part	Solid – no moving part
Size, m	L-18.8m, W-2.5m	D-0.282m, H-0.4m	D-0.307m, H-0.4m
Mass, kg	114.2kg/wing; Total 228.4 kg	126 kg	148 kg
Electrical Power, kW	$P_3 = 7.5 \text{kW} \rightarrow P_{10} = 6.7 \text{kW}$	P_{BoL} = 23 kW \rightarrow $P_{\frac{1}{2}}$ = 11.5 kW	P_{BoL} = 47 kW \rightarrow $P_{\frac{1}{2}}$ = 23.5 kW
Power Density, kW/kg	0.0328 ightarrow 0.0293	0.18 → 0.09	0.3 → 0.16
System α, kg/kW	30 ightarrow 34	5.5 → 11	3 ightarrow 6
Cell Structure/Materials	Mono Si	Co-60/ Cu-Al ₂ O ₃ -La	Co-60/ Cu-Al ₂ O ₃ -La
Circuits	48 for 524x88 array	7 into a modulation circuit	7 into a modulation circuit
Configuration	Flat panel	Cylindrical	Cylindrical
Sub-Structure	Al-honeycomb rigid panel	With Shielding & MJ-TE structure	With Shielding & MJ-TE structure

NTAC Power Rover

NTAC	Diameter	Height	Unit Weight	Units Onboard	Total Weight	Total Power	System α
100 kW _e	0.484 m	0.23 m	213 kg	4	852 kg	400 kW _e	1.87
200 kW _e	0.584 m	0.24 m	319 kg	4	1276 kg	800 kW _e	1.30

Comparison of Power Devices

Logistics

- Rocket Technology -

Chemical propulsion: MPD propulsion: Nuclear fission propulsion: Nuclear fusion propulsion: Support the Cis-Iunar activities Potential long-haul transportation Long-haul transportation Long-haul travel (out of planet)

Comparison of Rocket Propulsion System Characteristics

NASA

*Ratio of take-off to final mass

Propulsion Methods

Propulsion Technology	Exhaust Velocity (m/s)	Thrust (N)	Duration	ΔV (km/s)	TRL
Solid Propellant Rocket	< 2,500	< 10 ⁷	minutes	7	9
Liquid Propellant Rocket	< 4,400	< 10 ⁷	minutes	9	9
MPD Thruster	20,000 ~ 100,000	100	weeks	?	6
VASIMR	10,000 ~ 300,000	40 ~ 1200	days ~ months	> 100	5
Solar Thermal Rocket	7,000 ~ 12,000	1 ~ 100	weeks	> 20	4
Nuclear Thermal Rocket*	9,000	10 ⁷	minutes	> 20	6
Nuclear Pulse Propulsion (Orion Project)	20,000 ~ 100,000	10 ⁹ ~ 10 ¹²	days	30 ~ 60	3
Nuclear Pulse Propulsion (Daedalus Project)	20,000 ~ 1,000,000	10 ⁹ ~ 10 ¹²	years	15,000	2
Fusion Rocket	100,000 ~ 10,000,000	10 ¹⁰ ~ 10 ¹³	?	?	2
Antimatter Rocket	10,000,000 ~ 100,000,000	?	?	?	2

*currently in development

Source: http://en.wikipedia.org/wiki/Spacecraft_propulsion

- Bullet type micro-spectrometer and deployment gun were designed for space applications.
- Applications of micro-spectrometer bullets include mineral mapping on the Moon, Mars, and asteroids, especially hillsides and deepened bottom floor of craters.
- Lunar Volatiles Collector (LVC) based on Bessel Tube is in an infant stage.
- Portable high-density power technology of at least > 100 W/kg is essential for space, Lunar, and Planetary Applications.
- Current propulsion systems are only sufficient for cis-lunar activities. New propulsion systems with high Isp and high thrust are required.