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Measurements of the heat loads experienced by atmospheric entry spacecraft are critical 
to evaluate the performance of thermal protection systems (TPS), investigate aerothermal 
phenomena, and validate computational models. Recent space exploration missions have 
flown both heat flux and temperature sensors embedded in the TPS to measure surface 
heating values, either directly (via heat flux sensors) or indirectly (via temperature sensors). 
While heat flux sensors can provide a direct transduction of the surface heat flux, their 
application in convective environments requires the use of correction factors to recover hot-
wall TPS heat flux values from the cold-wall sensor measurement. These correction factors 
are calculated using computationally inefficient time-marching methods that rely on estimated 
atmospheric entry parameters. In this paper, a hot-wall heat flux reconstruction algorithm is 
developed to recover TPS surface heating values directly from collocated heat flux and 
temperature sensor instrumentation via an inverse heat transfer formulation. The algorithm 
leverages Green’s functions to efficiently model the heat conduction within the heat flux sensor 
and surrounding TPS and stabilizes the recovery of hot-wall heat flux values using the direct 
heat flux sensor as a regularization mechanism. The reconstruction framework is applied on 
1D and 3D computational model systems to verify the accuracy of the approach and evaluate 
its sensitivity to varying input parameters. In a variety of heating scenarios, the algorithm can 
resolve both steady and fast-changing features in the surface heat flux, even in the presence of 
measurement noise. Compared with a conventional regularization approach, the 
reconstruction algorithm described herein demonstrates a significant robustness to sub-
optimal choice of the user input regularization parameter and better resolves important 
features in the surface heat flux profile, such as the magnitude and temporal location of peak 
heating. These results demonstrate the viability of Green’s functions to model heat conduction 
in highly insulating TPS systems and establish the use of a surrogate measurement to stabilize 
the solution as a promising tool for inverse heat transfer problems. 

I. Nomenclature 
𝐴, 𝐵 = Cole-Hopf transformation constants 
𝐶, 𝐶! = proportionality constants between hot- and cold-wall heat flux values 
𝐶" = specific heat %𝐽/(𝑘𝑔 ⋅ 𝐾). 
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𝐶# =  proportionality constant between 𝜆$ and 𝜆$
(!) 

𝑓(𝜃) = Cole-Hopf transformation 
𝑔(𝒙, 𝑡) = internal source term (𝑊/𝑚') 
𝑔((𝒙, 𝑡) = modified internal source term (𝑊/𝑚') 
𝐺 = Green’s function (1/𝑚')	 
𝑘 = thermal conductivity %𝑊/(𝑚 ⋅ 𝐾). 
𝐿 = thickness (𝑚) 
𝐿$ = 2nd derivative finite difference operator  
𝑀,𝑁 = basis function order  
𝑛= = surface normal vector 
𝑁) = number of sampled measurements 
𝑞 = heat flux (𝑊/𝑚$) 
𝒙 = general position coordinates (𝑚) 
𝒙𝟎 = dummy position coordinates (𝑚) 
𝒙𝑻 = temperature probe coordinates (𝑚) 
𝒙𝑯𝑭𝑺 = heat flux sensor coordinates (𝑚) 
𝑆 = surface (𝑚$) 
𝑑𝑆! = differential surface element in dummy coordinates 
𝑇B  = absolute temperature (°𝐶) 
𝑇 = temperature relative to initial conditions or a reference temperature (°𝐶) 
𝑡 = time (𝑠) 
𝑉 =  volume (𝑚') 
𝑑𝑉! = differential volume integral in dummy coordinates 
𝜏 = dummy time variable (𝑠) 
𝜏/01 = heat flux sensor response time (𝑠)  
𝛼 = thermal diffusivity (𝑚$/𝑠) 
𝛿 = Dirac delta function %1/(𝑚' ⋅ 𝑠). 
𝜖 = integrated effects of temperature-dependent material properties (°𝐶) 
𝛾 = integrated effects of measured quantities (°𝐶) 
𝜆 = Tikhonov regularization coefficient 
𝜆$, 𝜆$

(!) = regularization coefficient for 𝐶 and 𝐶! 
Λ = Eigenvalues 
𝜙 = Eigenfunctions 
𝜓 = Eigenvectors 
𝜌 = density (𝑘𝑔/𝑚') 
𝜃 = transformed temperature 
𝜎 = standard deviation of measurement noise 
𝜒, 𝜇, 𝜈 = basis functions 
∇ = gradient operator 
∇$ = Laplacian operator 

II. Introduction 
Embedded thermal measurements are critical to enable the evaluation of heat loads on spacecraft thermal protection 

systems (TPS) and the near-surface aeroheating environment during atmospheric entry. In recent space exploration 
missions, heat flux sensors were embedded within the backshell and forebody TPS alongside conventional temperature 
sensors to measure atmospheric entry heat rates [1–3]. While heat flux sensors provide a direct transduction of the 
heat flux near the surface of the spacecraft, the interpretation of these measurements in unsteady, convective 
environments requires a correction factor to account for local heating augmentations at the heat flux sensor surface 
[2]. Current efforts to estimate cold-wall correction factors, and thus recover the hot-wall TPS heat flux, rely on time-
marching computational fluid dynamics (CFD) simulations. Simulation-based cold-wall correction methods are 
susceptible to large uncertainties, however, as they require estimations of vehicle trajectory, gas kinetics, wall catalysis 
models, and other flight conditions as input parameters [2,4]. In addition, time-marching-based methods are generally 
computationally expensive and cannot efficiently survey all possible entry scenarios, exacerbating the uncertainty of 
the recovered hot-wall heat flux. 
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Inverse heat transfer (IHT) techniques using TPS-embedded temperature measurement instrumentation can recover 
surface heat flux values which may better represent the thermal loads on the TPS experienced by entry spacecraft 
[5,6]. While not a direct measurement of the surface heat flux, these methods have been used to recover hot-wall heat 
flux values by modeling the thermal response of the TPS subject to iteratively-refined entry heating profiles [5]. 
Integration of IHT-based results into CFD-based cold-wall correction schemes and Kalman filter-based sensor fusion 
methodologies—combining measurements from total heat flux sensors, radiometers, and thermocouple plugs via 
IHT—have also generated better agreement of predicted and measured entry heat flux values [2,7]. IHT-based 
methods, however, are characteristically ill-posed, and susceptible to large instabilities if the input temperature 
measurement contains small errors or noise. Regularization techniques, such as Tikhonov regularization or truncated 
singular value decomposition, can be used to damp the amplification of measurement errors; however, doing so often 
incurs a tradeoff between solution noise and the retention of sharp features [8]. These drawbacks to current CFD- and 
IHT-based methods motivate the development of more efficient and robust algorithms to recover TPS hot-wall heat 
flux values directly from on-board instrumentation. 

This work details the development of a Green’s function sensor fusion approach to recover hot-wall TPS heat flux 
values from embedded heat flux sensor and temperature measurement instrumentation. Green’s functions have been 
leveraged in the aerothermodynamics community to efficiently model heat conduction in complex systems [9–12]. 
Non-linear adaptations of the Green’s function formulation in systems where the effects from temperature-dependent 
material properties are significant [9,11] have also demonstrated the approach as a viable candidate to model the 
thermal response of common TPS materials. Most significantly, the Green’s function formalism allows for collocated 
heat flux and temperature measurements to be integrated into a single solution formulation, providing an efficient 
platform to directly reconstruct hot-wall heat flux values solely from measurement inputs. Furthermore, the integration 
of the heat flux sensor in the problem formulation allows for the use of a measurement surrogate to stabilize the IHT-
generated solution, leading to a more robust regularization mechanism with fewer tradeoffs compared to conventional 
methods. 

The remainder of this paper is organized as follows. The Green’s function approach used to recover TPS surface 
heat flux values from collocated heat flux and temperature measurements (herein referred to as the hot-wall heat flux 
reconstruction algorithm) is presented in Section III. In Sections IV.A and IV.B, the hot-wall heat flux reconstruction 
algorithm is evaluated on 1D and 3D axisymmetric model systems, respectively. The sensitivity of the algorithm to 
varying input parameters is analyzed, and its robustness to noisy input measurements is compared against a 
conventional IHT regularization approach. 

III. Hot-Wall Heat Flux Reconstruction Algorithm 
A schematic of the heat flux sensor (HFS) and surrounding TPS (herein referred to as the TPS-sensor system) is 

shown in Fig. 1. During transient heating scenarios, the disparate thermal properties between the heat flux sensor and 
the TPS drives a large divergence between the surface temperatures of each component; while the surface of the 
insulating TPS becomes hot, the heat flux sensor surface remains cold, close to initial conditions. As a result, a 
difference arises in the net heat flux absorbed into the heat flux sensor and TPS through various heat transfer 
mechanisms, such as convection and radiative dissipation. 

 
Fig. 1 Schematic of the TPS-sensor system. The heat flux absorbed by the cold-wall heat flux sensor 𝒒𝑪𝑾 is 
augmented compared to the heat flux absorbed by the hot-wall TPS 𝒒𝑯𝑾. Temperature probes are embedded 
within the TPS near the heat flux sensor to obtain discrete temperature measurements. 

Applied to the TPS-sensor system, the reconstruction framework aims to recover the hot-wall heat flux absorbed 
into the TPS (𝑞/4) using the time history of the cold-wall heat flux (𝑞54), measured by the heat flux sensor, and 
temperature measurements from sensors embedded in the surrounding TPS. The reconstruction approach consists of 
two main technical steps. First the TPS-sensor system is modeled using Green’s functions to establish a relationship 
between the hot- and cold-wall heat flux boundary conditions and the subsurface temperature distribution. When the 
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thermal properties of the components are temperature-dependent, an additional step precedes the formulation of 
Green’s function to linearize the heat conduction equation. Second, the Green’s function representation of the TPS-
sensor system is inverted to recover the hot-wall TPS heat flux, leveraging the heat flux sensor measurement to 
stabilize the solution. 

A. Nonlinear Heat Conduction 
The temperature distribution within a solid is governed by the heat conduction equation 
 
 

𝜌𝐶"%𝑇B.
𝜕𝑇B
𝜕𝑡 = ∇ ⋅ W𝑘%𝑇B.∇𝑇BX + 𝑔(𝒙, 𝑡) (1) 

 
To model the heat transfer in a system with temperature-dependent material properties using Green’s functions, Eq. 
(1) must be linearized. To eliminate nonlinear terms produced by expansion of the divergence operator in Eq. (1), a 
Cole-Hopf transform 𝑇 = 𝑓(𝜃) is employed, where 𝑇 represents the temperature change from an initial reference 
temperature 𝑇 = 𝑇B − 𝑇B!. Following [13], the Cole-Hopf transformation 𝑓(𝜃) is the solution to the following 
homogeneous differential equation 

 
 𝑑

𝑑𝜃 [𝑘
(𝑓)

𝑑𝑓
𝑑𝜃\ = 0 (2) 

 
such that Eq. (1) may be recast as 
 

 1
𝛼(𝑓)

𝜕𝜃
𝜕𝑡 = 𝛻$𝜃 +

𝑔(𝒙, 𝑡)
𝐴  (3) 

 
where 𝐴 is an integration constant from the solution of Eq. (2), to be defined for each material separately. To further 
linearize Eq. (3), 𝛼(𝑓) is separated into constant and temperature-dependent components [13,14] 
 

 𝛼(𝑓) = 𝛼! + 𝛼6(𝑓) (4) 
 
where 𝛼! is the thermal diffusivity at the reference temperature 𝑇B! and 𝛼6(𝑓) is a general function of temperature 
relative to 𝑇B!. Substituting Eq. (4) into Eq. (3) and simplifying yields 
 

 1
𝛼!
𝜕𝜃
𝜕𝑡 − 𝛻

$𝜃 =
𝛼6(𝑓)
𝛼!

𝛻$𝜃 +
𝛼(𝑓)
𝛼!

𝑔(𝒙, 𝑡)
𝐴  (5) 

 
noting that the right-hand side of Eq. (5) may be collapsed into a single energy generation term 𝑔(/𝐴 
 

 𝑔((𝒙, 𝑡)
𝐴 =

𝛼6(𝑓)
𝛼!

𝛻$𝜃 +
𝛼(𝑓)
𝛼!

𝑔(𝒙, 𝑡)
𝐴  (6) 

 
Eq. (5) is now reduced to a linearized expression of the heat conduction equation 
 

 1
𝛼!
𝜕𝜃
𝜕𝑡 − 𝛻

$𝜃 =
𝑔((𝒙, 𝑡)
𝐴  (7) 

 
where the effects of temperature-dependent material properties are captured by the inhomogeneous source term. When 
the material properties are temperature-dependent, 𝜃 = 𝑇, 𝐴 = 𝑘, and 𝑔( reduces to 𝑔. 

B. Green’s Function Representation of the TPS-Sensor System 
Green’s function models the impulse response of a linear system and is applied to the heat conduction problem via 

an analogous auxiliary equation [15] 
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 1
𝛼!
𝜕𝐺
𝜕𝑡 − 𝛻

$𝐺 =
1
𝛼!
𝛿(𝒙 − 𝒙𝟎, 𝑡 − 𝜏) (8) 

 
Equation (8) models Green’s function 𝐺(𝒙, 𝑡, 𝒙𝟎, 𝜏	) as the response to a Dirac delta heat pulse 𝛿(𝒙 − 𝒙𝟎, 𝑡 − 𝜏) 
occurring at location 𝒙𝟎 and time 𝜏. Combining Eq. (7) and Eq. (8), rearranging terms, and integrating over the domain 
volume, as per [15], leads to an integral representation of the transformed temperature distribution subject to time-
dependent boundary conditions 
 

 𝜃(𝒙, 𝑡) = `𝜃(𝒙𝟎, 0)𝐺(𝒙, 𝑡, 𝒙𝟎, 0)
7

 𝑑𝑉!	

+` `
𝛼!
𝐴7
𝑔((𝒙𝟎, 𝜏)𝐺(𝒙, 𝑡, 𝒙𝟎, 𝜏)

8

!
 𝑑𝑉! 𝑑𝜏	

+` `𝛼!
1

8

!
∇!𝜃(𝒙𝟎, 𝜏)𝐺(𝒙, 𝑡, 𝒙𝟎, 𝜏) ⋅ 𝑛= 𝑑𝑆! 𝑑𝜏	

−` `𝛼!𝜃(𝒙𝟎, 𝜏)∇!𝐺(𝒙, 𝑡, 𝒙𝟎, 𝜏)
1

8

!
⋅ 𝑛= 𝑑𝑆! 𝑑𝜏 

(9) 

 
In Eq. (9), the first volume integral represents the effects of initial conditions. The second volume integral captures 
the effects of temperature-dependent material properties and internal heat sources. The third integral accounts for the 
effects of Neumann boundary conditions acting on the external boundaries of the domain. The last integral term in 
Eq. (9) accounts for Dirichlet boundary conditions. 

Within the Cole-Hopf transformation, Fourier's law relates the gradient of 𝜃 normal to the system boundary with 
the absorbed heat flux into the solid 𝑞 via [13] 
 

 𝑞 = −𝐴∇𝜃 ⋅ 𝑛b (10) 
 
and allows the third integral term in Eq. (9) to be expressed as a function of 𝑞 
 

 −` `
𝛼!
𝐴 𝑞(𝒙𝟎, 𝜏)𝐺(𝒙, 𝑡, 𝒙𝟎, 𝜏)

1

8

!
𝑑𝑆! 𝑑𝜏 (11) 

 
Because the only inhomogeneous boundary condition in the TPS-sensor system is captured by the third term in Eq. 
(9) and the initial conditions are zero by definition of 𝑇 = 𝑇B − 𝑇B!, the first and last integral terms in Eq. (9) vanish. 
Expanding the remaining volume and surface integrals to separate the heat flux sensor and TPS domains, the 
transformed temperature distribution within the TPS can be modeled via 
 

 𝜃(𝒙, 𝑡) = −` `
𝛼!,6:1
𝐴6:1

𝑞/4(𝜏)𝐺6:1,6:1(𝒙, 𝑡, 𝒙𝟎, 𝜏)
1!"#

8

!
𝑑𝑆! 𝑑𝜏	

−` `
𝛼!,/01
𝐴/01

𝑞54(𝜏)𝐺6:1,/01(𝒙, 𝑡, 𝒙𝟎, 𝜏)
1$%#

8

!
𝑑𝑆! 𝑑𝜏	

+` `
𝛼!,6:1
𝐴6:1

𝑔6:1( (𝒙𝟎, 𝜏)𝐺6:1,6:1(𝒙, 𝑡, 𝒙𝟎, 𝜏)
7!"#

8

!
 𝑑𝑉! 𝑑𝜏	

+` `
𝛼!,/01
𝐴/01

𝑔/01( (𝒙𝟎, 𝜏)𝐺6:1,/01(𝒙, 𝑡, 𝒙𝟎, 𝜏)
7$%#

8

!
 𝑑𝑉! 𝑑𝜏	

(12) 

 
The surface integral terms on the right-hand side of Eq. (12) represent individual contributions of 𝑞/4 and 𝑞54 on the 
transformed temperature rise measured within the TPS. The additional volume integral terms capture the effects of 
the temperature-dependence of the material properties within each domain on the transformed temperature rise in the 
TPS. 𝐺 represents the Green’s function of the TPS due to a heat flux boundary condition or source term imposed on 
the TPS %𝐺6:1,6:1. or on the heat flux sensor %𝐺6:1,/01.. In the hot-wall heat flux reconstruction framework, Green’s 
functions are constructed for the TPS-sensor system using the Galerkin method to approximate the linear heat 
conduction eigenfunctions 𝜙;. Adapted from [9,15], 
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𝐺<,=(𝒙, 𝑡, 𝒙𝟎, 𝜏) = c
𝑘!,=
𝛼!,=

𝜙;
(<)(𝒙)𝜙;

(=)(𝒙𝟎)𝑒>?&,&	(8>@)
A

;BC

																		𝑙, 𝑚 = 𝑇𝑃𝑆	𝑜𝑟	𝐻𝐹𝑆 (13) 

 
where the eigenfunctions are expressed as an 𝑁-ordered sum of scaled basis functions 𝜒D 
 

 
𝜙;
(<) =c𝜓D,;𝜒D

(<)
A

DBC

														𝑙 = 𝑇𝑃𝑆	𝑜𝑟	𝐻𝐹𝑆 (14) 

 
In Eq. (13), the temperature-of-interest is located in domain 𝑙 and the heat flux boundary condition or heat source is 
imposed on domain 𝑚. The variable Λ;,; represents the eigenvalue accompanying each eigenfunction 𝜙;. In Eq. (14), 
basis functions 𝜒D are required to satisfy the homogeneous boundary conditions imposed on the system and are defined 
separately for each domain. These basis functions are then scaled by the eigenvector 𝜓; accompanying the respective 
eigenfunction 𝜙;. Eigenvalues Λ;,; and eigenvectors 𝜓; are solved using the approach described in [11]. 

C. Recovery of the Hot-Wall TPS Heat Flux 
In the second step of the reconstruction algorithm, the hot-wall heat flux is recovered from the Green’s function 

representation of the TPS-sensor system. The hot-wall heat flux is first isolated from all other quantities in Eq. (12). 
For tractability, measured quantities are combined into a single parameter 𝛾(𝒙, 𝑡) 
 

 𝛾(𝒙, 𝑡) = 𝜃(𝒙, 𝑡) + ` `
𝛼!,/01
𝐴/01

𝑞54(𝜏)𝐺6:1,/01(𝒙, 𝑡, 𝒙𝟎, 𝜏)
1$%#

8

!
𝑑𝑆! 𝑑𝜏 (15) 

 
Likewise, the source terms which capture the effects of temperature-dependent material properties are collapsed into 
a separate parameter 𝜖(𝒙, 𝑡) 
 

 𝜖(𝑥, 𝑡) = ` `
𝛼!,/01
𝐴/01

𝑔/01( (𝒙𝟎, 𝜏)𝐺6:1,/01(𝑥, 𝑡, 𝑥!, 𝜏)
7$%#

8

!
 𝑑𝑉! 𝑑𝜏

+ ` `
𝛼!,6:1
𝐴6:1

𝑔6:1( (𝒙𝟎, 𝜏)𝐺6:1,6:1(𝑥, 𝑡, 𝑥!, 𝜏)
7!"#

8

!
 𝑑𝑉! 𝑑𝜏	

(16) 

 
It should be noted that, because 𝑔′ is an implicit function of ∇$𝜃, 𝜖 must be calculated simultaneously with 𝑞/4. Eq. 
(12) can then be expressed as  
 

 𝛾(𝒙, 𝑡) − 𝜖(𝒙, 𝑡) = −` `
𝛼!,6:1
𝐴6:1

𝑞/4(𝜏)𝐺6:1,6:1(𝒙, 𝑡, 𝒙𝟎, 𝜏)
1!"#

8

!
𝑑𝑆! 𝑑𝜏 (17) 

 
Eq. (17) explicitly defines the relationship between measured quantities, nonlinear sub-surface effects, and the 
unknown hot-wall heat flux. Because heat flux and temperature measurements are sampled at a finite rate of 1/Δ𝑡, 
Eq. (17) is recast as a discrete linear system [12] 
 

 {𝛾} − {𝜖} = −
𝛼!,6:1
𝐴6:1

[𝐺]{𝑞/4} (18) 

 
In Eq. (18), for 𝑁) measurement samples, 𝛾 is now represented as an 𝑁) − 1  ×  1 vector, discarding the temperature 
measurement at 𝑡 = 0, and Green’s function becomes an 𝑁) − 1	 × 𝑁) − 1 lower triangle matrix where each element 
represents an incremental integration of Green’s function 

 
 𝐺E,D = ` ` 𝐺(𝒙, 𝑡E , 𝒙𝟎, 𝜏)

1!"#

8)

8)*+
𝑑𝑆! 𝑑𝜏 (19) 
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To mitigate the amplification of measurement noise present in 𝛾, inversion of Eq. (18) requires solution regularization 
[8,12,16–18]. Typically, regularization is implemented by minimizing a penalty function of 𝑞/4. In conventional 
regularization techniques, e.g., Tikhonov regularization, the solution of Eq. (18) seeks to simultaneously minimize the 
squared 𝑙$-norms of the measurement residual and the squared 𝑙$-norm of the solution [8], such that 
 

 min wx{𝛾} − {𝜖} +
𝛼!,6:1
𝐴6:1

[𝐺]{𝑞/4}x
$

$
+ ‖𝜆𝑞/4‖$$z (20) 

 
where 𝜆 tunes the strength of the penalty function embedded in the second 𝑙$-norm. While an effective mechanism to 
damp noise-induced measurement instabilities, this method requires optimization of regularization parameters for each 
application and leads to a tradeoff between the resolution of sharp features in the heat flux and solution stability (see 
Sections IV.A2 and IV.B2) [8,12,19]. In the reconstruction framework described herein, the cold-wall heat flux sensor 
is used instead as a measurement surrogate to regularize the solution by enforcing smoothness between the hot- and 
cold-wall heat flux time histories 
 

 𝑞/4 = 𝐶(𝑡)𝑞54 + 𝐶!(𝑡)𝑞{54 (21) 
 
where 𝐶(𝑡) is an unknown, smooth, time-varying function with a continuous 2nd derivative in time. An additional 
time-dependent coefficient 𝐶!(𝑡) is incorporated in Eq. (21) to avoid singularities that occur in 𝐶(𝑡) when the ratio 
𝑞54/𝑞/4 is small. These singularities may develop in pulsed heating scenarios or when the TPS-sensor system is 
subject to discontinuous boundary conditions. The coefficient 𝐶!(𝑡) scales the quantity 𝑞{54, which represents the 
average value of 𝑞54 up to time 𝑡 + 𝜏/01, where 𝜏/01 is the response time of the heat flux sensor. Additional details 
regarding the effects of singularities on the reconstruction algorithm and the impact of 𝐶!(𝑡) in Eq. (21) are included 
in the appendix. In discretized form, 𝐶(𝑡) and 𝐶!(𝑡) are two 𝑁) − 1 length vectors to-be-determined 
 

 𝑞/4 = [𝑑𝑖𝑎𝑔(𝑞54)	𝑑𝑖𝑎𝑔(𝑞{54)] ~
𝐶
𝐶!
� (22) 

 
where 𝑑𝑖𝑎𝑔(𝑞54) and 𝑑𝑖𝑎𝑔(𝑞{54) are square matrices with 𝑞54 and 𝑞{54, respectively, arranged along the diagonal 
elements. Eq. (18) is then recast as a function of 𝐶 and 𝐶!, yielding 
 

 {𝛾} − {𝜖} = −
𝛼!,6:1
𝐴6:1

[𝐺][𝑑𝑖𝑎𝑔(𝑞54)	𝑑𝑖𝑎𝑔(𝑞{54)] ~
𝐶
𝐶!
� (23) 

 
The regularized solution of 𝐶 and 𝐶! aims to simultaneously minimize the squared 𝑙$-norms of the measurement 
residual and the 2nd derivatives of 𝐶	and 𝐶!, in effect enforcing smoothness in 𝐶 and 𝐶!. The minimization statement 
can be expressed explicitly as 
 

 
min �x{𝛾} − {𝜖} +

𝛼!,6:1
𝐴6:1

[𝐺]	[𝑑𝑖𝑎𝑔(𝑞54)	𝑑𝑖𝑎𝑔(𝑞{54)] ~
𝐶
𝐶!
�x

$

$
+ �w

𝜆$
𝜆$
(!)z ⋅ [

𝐿$
𝐿$
\ ~ 𝐶𝐶!

��
$

$

� (24) 

 
In Eq. (24) the regularization coefficients 𝜆$ and 𝜆$

(!) are introduced to tune the magnitude of the 2nd derivative penalty 
term, where 𝐿$ is a discrete 2nd derivative finite difference operator acting on 𝐶 and 𝐶!. The coefficient 𝜆$

(!) is defined 
relative to 𝜆$, such that 𝜆$ remains the sole user-input parameter in Eq. (24). 
 

 𝜆$
(!) = 𝐶#𝜆$ (25) 

 
Finally, it is important to emphasize that the minimization statement in Eq. (24) may be calculated directly without 
requiring the use of time marching or optimization schemes. Even in scenarios where temperature-dependent effects 
are present, Eq. (24) may be calculated simultaneously with Eq. (16), a well-posed operation, to reach an accurate 
solution. The efficiency of the hot-wall heat flux reconstruction algorithm also positions it well for computationally 
expensive parametric analyses, such as stochastic uncertainty quantification, which may be resource limited when 
using time-marching methods. 
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IV. Results 

A. Verification of the Reconstruction Algorithm using a 1D Test Case 
 A computational verification test case was constructed to analyze the accuracy of the reconstruction algorithm and 
evaluate its sensitivity to varying input parameters. The verification test case models a one-dimensional linear system 
with constant material properties subject to step heat flux boundary conditions [12]. A schematic of the 1D test case 
is shown in Fig. 2. A rod (labeled 𝑇𝑃𝑆) of thickness 𝐿 = 10	𝑚𝑚, thermal conductivity 𝑘 = 0.05	𝑊/𝑚 ⋅ 𝐾, and 
thermal diffusivity 𝛼 = 2 × 10>F	𝑚$/𝑠, representative of SLA-561 at -73°C [20], is embedded into a perfectly 
insulating housing adjacent to, but thermally isolated from, a heat flux sensor. The rod has an initial temperature of 𝑇B! 
and is exposed to a step heat flux 𝑞/4 = 1	𝑘𝑊/𝑚$ at 𝑥 = 𝐿 and 𝑡 = 𝑡!. The rod is held at a constant temperature of 
𝑇B! at 𝑥 = 0. The heat flux sensor is exposed to the same step heat flux profile, but with a larger amplitude of 𝑞54 =
1.5 × 𝑞/4 to simulate a cold-wall boundary condition. A temperature probe is embedded in the rod at 𝑥 = 𝑥6. 

 
Fig. 2 Schematic of the 1D verification test case. A 1D rod (labeled TPS) is exposed to a step heat flux and the 
temperature response is measured by a temperature probe at 𝒙𝑻. The face at 𝒙 = 𝟎	is held at a constant 
temperature 𝑻�𝟎. A collocated heat flux sensor (labeled HFS) measures an augmented heat flux step. 

The temperature probe measurement is simulated using an analytical solution to the transient heat conduction 
problem. The heat flux sensor measurement 𝑞/01 is simulated with a first order exponential rise to 𝑞54 with a time 
constant of 𝜏/01 
 

 𝑞/01 = 𝑞54[1 − exp	(−𝑡/𝜏/01)] (26) 
 
In the reconstruction algorithm (Section III), 𝑞/01 is used in place of 𝑞54 to simulate the application of the algorithm 
in a measurement scenario with a finite-rate heat flux sensor response. Temperature and heat flux measurement inputs 
are shown in Fig. 3 for multiple temperature probe positions 𝑥6 and heat flux sensor response times 𝜏/01, calculated 
up to 20 seconds after initiation of the step. Unless otherwise noted, a heat flux sensor response time of 𝜏/01 = 0.2𝑠 
was used in all reconstructions. 

 
Fig. 3 Hot-wall heat flux reconstruction algorithm inputs in the 1D test case. a) Simulated temperature probe 
measurements. b) Simulated heat flux sensor measurements. 

 In the reconstruction algorithm, Green’s function is approximated using an 𝑁-order set of monomial basis 
functions [9] 
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 𝜒D = 𝑥D (27) 
 

The heat flux absorbed by the rod at 𝑥 = 𝐿 was recovered using the reconstruction algorithm described in Section 
III and compared with the imposed step heat flux boundary condition. The algorithm was tested using various 
measurement (𝑥6 , 𝜏/01) and reconstruction (𝑁, 𝜆$) parameters. The quality of the reconstruction was quantified by 
calculating the root-mean-squared-error (RMSE) of the reconstructed heat flux profile  
 

 

RMSE = � 1
𝑙𝑒𝑛𝑔𝑡ℎ(𝑞/4)

c �𝑞/4	
(E) − 𝑞/4,HIJ

(E) �
$

<I;K8L(M$,)

EBC

	 (28) 

 
where 𝑞/4 is the reconstructed heat flux profile and 𝑞/4,HIJ is the exact heat flux profile imposed on the surface of 
the rod. In all scenarios, RMSE values were calculated for the duration of the measurement beginning 2s after the heat 
flux step, excluding fluctuations near the step region. 
 
1. Reconstruction Algorithm Convergence 

First, the accuracy and convergence of the reconstruction algorithm is investigated as a function of measurement, 
material, and system parameters. In the following analysis, temperature and heat flux measurements are sampled at a 
rate of 20 Hz. To damp out oscillations near the step region caused by the finite rate heat flux sensor response (relative 
to the instantaneous cold-wall heat flux step) a regularization coefficient of 𝜆$ = 10N was used to stabilize the 
reconstruction. 

Figure 4 shows a family of reconstructed heat flux profiles of varying basis function order for two locations of the 
temperature probe measurement, 𝑥6 = 0.7𝐿 (Fig. 4a) and 𝑥6 = 0.9𝐿 (Fig. 4b). Notably, the speed of convergence 
varies significantly depending on where the temperature measurement is sampled in the solid. Close to the surface, 
the algorithm converges within only a few basis function terms, while deep into the structure, a larger basis function 
order is required to recover the step heat flux profile satisfactorily. 

 
Fig. 4 Reconstructed heat flux profiles using a temperature measurement from a) 𝒙𝑻 = 𝟎. 𝟕𝑳 and b) 𝒙𝑻 = 𝟎. 𝟗𝑳 
for various basis function orders. 

To generalize regions of convergence as a function of system parameters, a parametric sweep was performed by 
simultaneously varying the basis function order 3 ≤ 𝑁 ≤ 15, temperature measurement location 0.6𝐿 ≤ 𝑥6 ≤ 0.9𝐿, 
and measurement duration 5𝑠 ≤ 𝑡= ≤ 45𝑠. The sweep was repeated for two additional thermal diffusivity values, 
𝛼 = 4.5 × 10>F	𝑚$/𝑠 and 𝛼 = 1 × 10>O	𝑚$/𝑠, to sample a wide range of system response times. RMSE values are 
plotted in Fig. 5a as a function of the dimensionless parameter 𝛼𝑡=/(𝐿 − 𝑥6)$, typically referred to as the 
dimensionless thermal penetration depth [12] or diffusion number, and the basis function order 𝑁. 

In Fig. 5a, a notable region of reconstructed hot-wall heat flux profiles with RMSE values of less than 25	𝑊/𝑚$ 
(2.5% of full-scale 𝑞/4) appears in the upper right-hand portion. The boundary of this region can be approximated by 
a line superimposed in Fig. 5a with the equation 

 
 logC! [

𝛼𝑡=
(𝐿 − 𝑥6)$

\ +
𝑁
20 = 0.25 (29) 
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Fig. 5 Parametric analysis of hot-wall heat flux reconstruction convergence in the 1D test case. a) Colored 
heatmap of the RMSE of reconstructed hot-wall heat flux profiles as a function of measurement and 
reconstruction algorithm parameters. Note the logarithmic color scale and y-axis. The black boundary denotes 
a region in the upper right portion in which the RMSE is less than 𝟐𝟓	𝑾/𝒎𝟐 (𝟐. 𝟓% of full-scale 𝒒𝑯𝑾). b) 
RMSE results as a function of the diffusion number for datapoints sampled from the upper right portion of 
Fig. 5a. Each data series corresponds to a constant basis function order. 

for all 𝑁 ≥ 5. Within this region, increasing the accuracy of the reconstruction algorithm becomes dependent on 
increasing the value of the parameter 𝛼𝑡=/(𝐿 − 𝑥6)$, with diminishing or no improvements observed from increasing 
the basis function order (Fig. 5b). These bounds given by Eq. (29) can be used to determine the minimum value of 𝑁 
required to adequately reconstruct hot-wall surface heat flux values given a pre-defined value of 𝛼𝑡=/(𝐿 − 𝑥6)$. 
Applied to the 1D model system for a measurement duration of 20𝑠, the reconstruction algorithm is projected to 
generate accurate results when using a basis function order of 𝑁 ≥ 12	and 𝑁 ≥ 5 for a temperature probe placed at 
𝑥 = 0.7𝐿 and 𝑥6 = 0.9𝐿, respectively, in good agreement with the results shown in Fig. 4. 
 
2. Reconstruction Algorithm Stability 

The purpose of the regularization coefficient is to tune the damping of amplified measurement noise and stabilize 
the inversion of Green’s function. In conventional spectral regularization techniques, such as Tikhonov regularization, 
the value of the regularization coefficient 𝜆 which provides high quality solutions is often confined to a very narrow 
region [8]. Because these techniques penalize certain features of the solution directly, sub-optimal values of 𝜆 may 
either obscure solution features with significant oscillations or remove sharp features entirely. In contrast, the hot-wall 
heat flux reconstruction algorithm insulates the reconstructed solution from adverse regularization effects by instead 
penalizing non-smooth behavior in the ratio 𝑞/4/𝑞54. Physically, this penalty is justified due to the finite rate at 
which the surface temperatures of the heat flux sensor and TPS develop towards cold- and hot-wall conditions. In this 
section, the impacts of both regularization methods on the reconstructed hot-wall heat flux are analyzed and compared. 

In the following series of tests, reconstructed hot-wall heat flux profiles were calculated using a range of 𝜆$ values 
spanning from 𝜆$ = 4 × 10Q to 𝜆$ = 2 × 10R. 𝜆$

(!) was defined as a large multiple of 𝜆$ 
 
 𝜆$

(!) = 10' × 𝜆$ (30) 
 
In each scenario, the temperature measurement was sampled from 𝑥6 = 0.8𝐿. A basis function order of 𝑁 = 10 was 
used to construct Green’s function. To simulate errors in the measurements, three levels of gaussian noise were added 
directly to the input measurements (Fig. 6). Noise parameters are tabulated in Table 1, where 𝜎6 and 𝜎/01 represent 
the standard deviations of the noise applied to the temperature probe and heat flux sensor measurements, respectively. 
Each measurement was sampled at a rate of 100 Hz (2500 total measurement points) to achieve reproducible noise 
distributions for all reconstructions. RMSE values were calculated for each level of input measurement noise and 
value of 𝜆$. This calculation was repeated 50 times using independently generated noise inputs for each sweep to 
produce a range of RMSE values. 

Results of the parametric sweeps of 𝜆$ are shown in Fig. 7a for all three noise levels. Individual datapoints 
represent the mean RMSE values from the 50 repeat sweeps per measurement noise level, with the shaded regions 
enveloping two standard deviations of calculated RMSE values for all sweeps. In the hot-wall heat flux reconstruction 
algorithm, the effect of increasing 𝜆$ from small values is a gradual increase in the accuracy and stability of the 
reconstruction (Fig. 7a). At regularization coefficient values of approximately 𝜆$ = 3 × 10O and 𝜆$ = 5 × 10O, 
RMSE values become insensitive to variations in the regularization coefficient for the low/medium and high input 
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measurement noise scenarios, respectively. The reconstruction accuracy remains high as the regularization coefficient 
is increased to a value of 𝜆$ = 4 × 10F, with all mean RMSE values falling below 105	𝑊/𝑚$ (10.5% full-scale heat 
flux). 

Table 1. Input temperature and heat flux sensor measurement noise parameters. 

Noise Level 𝝈𝑻	(°𝑪	) 𝝈𝑯𝑭𝑺	(𝑾/𝒎𝟐) 
Low 0.1 + 0.025 × %𝑇B − 𝑇B!. 37.5 

Medium 0.2 + 0.05 × %𝑇B − 𝑇B!. 75 
High 0.4 + 0.1 × %𝑇B − 𝑇B!. 150 

 
Fig. 6 Measurement inputs with added noise, plotted at 20 Hz. a) Examples of temperature probe 
measurements. b) Examples of heat flux sensor measurements. 

The stratification of RMSE values by input measurement noise level is the result of the smooth coupling between 
𝑞/4 and 𝑞54, via the heat flux sensor measurement (Eq. (21)); while the reconstructed solution is stable, noise from 
the heat flux sensor measurement proportional to 𝑞/4/𝑞54 is propagated into the reconstruction. As such, the 
uncertainty of the reconstructed hot-wall heat flux profile due to the input heat flux sensor measurement can be 
expected to be linear to the uncertainty of the input heat flux sensor measurement itself. Finally, increasing the 
regularization coefficient beyond 𝜆$ = 4 × 10F leads to a sharp increase in the reconstruction error for all levels of 
measurement noise, indicating that the solution has become overregularized. 

 
Fig. 7 RMSE values for low, medium, and high noise measurement inputs as a function of the regularization 
coefficient using a) the hot-wall heat flux reconstruction algorithm and b) Tikhonov regularization. 

Results from a parallel series of sweeps using the same temperature measurement inputs (Fig. 6a), but stabilized 
using Tikhonov regularization, are presented in Fig. 7b. Increasing 𝜆 from small values leads to a sharp decrease in 
the RMSE of the reconstructed heat flux profile. RMSE values continue to decrease to a local minimum at separate 
locations for each level of input measurement noise before increasing thereafter. Minimal RMSE values occur for the 
low, medium, and high measurement noise levels with regularization coefficient values of 𝜆 = 37, 60,	and 90, 
respectively. With large values of 𝜆, the reconstructed heat flux profiles coalesce towards the same RMSE values. In 
this region, all noise-induced instabilities have become damped, however increasing the value of 𝜆 results in over-
smoothing of the step discontinuity and an increase in error at the edge of the reconstruction (𝑡 − 𝑡! = 20𝑠). 

A juxtaposition of the results shown in Fig. 7a and 7b illustrates the stability that may be achieved with a 
regularization surrogate. When using Tikhonov regularization (Fig. 7b), and, more broadly, conventional spectral 
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regularization techniques, the regularization coefficient must be tailored for each measurement condition to achieve 
optimal results. In contrast, when using the hot-wall heat flux reconstruction algorithm, optimal results may be 
accessed using a range of 𝜆$ spanning from 𝜆$ = 5 × 10O to 𝜆$ = 4 × 10F for all levels of measurement noise. This 
level of robustness alleviates the need to define an optimal value of 𝜆$ for each measurement case, as would be required 
when using conventional regularization techniques, and generalizes the reconstruction algorithm for many different 
measurement conditions. 

To analyze the quality of the reconstructions in both approaches, reconstructed heat flux profiles using both the 
hot-wall heat flux reconstruction algorithm (Fig. 8) and Tikhonov regularization (Fig. 9) are presented using optimal 
values of 𝜆$ and 𝜆, respectively, for each level of measurement noise. A value of 𝜆$ = 10F was used for the former 
approach for all levels of measurement noise. 

 
Fig. 8 Selected reconstructed heat flux profiles for different values of measurement input noise using the hot-
wall heat flux reconstruction algorithm. An optimal regularization coefficient 𝝀𝟐 = 𝟏 × 𝟏𝟎𝟕 is used for all 
scenarios. a) Low noise. b) Medium noise. c) High noise. The data is plotted at a rate of 20 Hz. 

 
Fig. 9 Selected reconstructed heat flux profiles for different values of measurement input noise using Tikhonov 
regularization. Optimal regularization coefficients of 𝝀 = 𝟑𝟕, 𝟔𝟎,	and 𝟗𝟎 were used for the a) Low noise, b) 
Medium noise, and c) High noise scenarios, respectively. The data is plotted at a rate of 20 Hz. 

For all levels of measurement noise, the hot-wall heat flux reconstruction algorithm can resolve the step 
discontinuity at 𝑡 = 𝑡! with minimal errors in the steady region of the heat flux profile (Fig. 8). Immediately following 
the step, a slight overshoot in the reconstruction is present due to the finite-rate heat flux sensor response. In each 
reconstruction, the level of noise increases commensurate with the level of input measurement noise; however, the 
solution remains stable for the entire step duration (Fig. 8). 

Results for the reconstructed heat flux profiles using Tikhonov regularization (Fig. 9) illustrate the effects of 
increasing input measurement noise on the optimized solutions. While the instabilities are sufficiently damped in all 
scenarios, sharp features are lost near the step region. As the measurement input noise increases, the increasing value 
of 𝜆 that is required to produce optimal results induces significant over-smoothing near the step region. Furthermore, 
in all scenarios, the reconstructed heat flux profile near the end of the measurement (𝑡 − 𝑡! > 15𝑠) diverges from the 
steady state value. 

B. 3D Axisymmetric Heat Pulse 
To evaluate the performance of the hot-wall heat flux reconstruction algorithm in a more complex system, an 

axisymmetric model of the TPS-sensor system is analyzed subject to a convective heat pulse. A schematic of the 
model system is shown in Fig. 10. A heat flux sensor of radius 𝑅C = 4	𝑚𝑚 is embedded in a TPS with outer radius of 
𝑅$ = 16	𝑚𝑚 and a thickness of 𝐿 = 10	𝑚𝑚.  
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Fig. 10 3D axisymmetric model of the TPS-sensor system. The heat flux sensor is labeled as domain 1 and the 
TPS is labeled as domain 2. a) 3D isometric view of the model system. b) 𝒓 − 𝒛 cross-section view of the model 
system. The top surface is exposed to a convective heat pulse. The bottom surface is held at a constant 
temperature 𝑻�𝟎. Simulated heat flux and temperature measurements, 𝒒𝑯𝑭𝑺 and 𝑻�, respectively, are sampled 
from the finite element analysis heat conduction solution at 𝒙𝑯𝑭𝑺 = [𝟎, 𝟎. 𝟗𝟓𝑳] and 𝒙𝑻 = [𝟎. 𝟒𝑹𝟐, 𝟎. 𝟗𝑳]. 

The heat flux sensor and TPS are modeled using temperature-dependent thermal properties representative of 
copper [21,22] and SLA-561 [20], respectively. In the reconstruction algorithm, the Cole-Hopf transformation is used 
to linearize the heat conduction equation when the material properties are temperature-dependent. A polynomial 
approximation is used to model the thermal conductivity of each material 
 

 𝑘<(𝑇) = 𝑘! + 𝑘6,<𝑇 + 𝑘66,<𝑇$ +⋯  𝑙 = 𝐻𝐹𝑆	or	𝑇𝑃𝑆  (31) 
 
where 𝑘! is the thermal conductivity at the reference temperature 𝑇B!, and 𝑘6 , 𝑘66 , … are higher order polynomial 
coefficients. Using Eq. (31) in Eq. (2), the transformed temperature becomes 
 

 𝜃< =
1
𝐴𝑙
µ𝑘!,<𝑇 +

𝑘6,<𝑇$

2 +
𝑘66,<𝑇'

3 +⋯¶ +𝐵𝑙 (32) 

 
In Eq. (32), 𝐴< and 𝐵< are derived from the boundary and interface conditions of the model, as detailed in the appendix. 
In the reconstruction algorithm, input temperature measurements are transformed via Eq. (32). In addition, a numerical 
solution of the inverse of Eq. (32) is used to calculate the variation of the thermal properties within the TPS-sensor 
system (Eq. (4)) to model the effects of temperature-dependent material properties in Eq. (24) (via Eq. (16)). 

The model system has an initial temperature of 𝑇B! = −73°𝐶 and is exposed to a 40𝑠 duration sinusoidal convective 
heat pulse at 𝑡! through variation of the freestream temperature 𝑇BT at the top surface (Fig. 11a). To simulate a boundary 
layer transition event, the convective heat transfer coefficient ℎ undergoes a sharp increase (three-fold over 0.25𝑠) 
prior to the peak of the freestream temperature (Fig. 11b). The bottom surface of the model is maintained at the initial 
temperature 𝑇!0, such that the temperature rise 𝑇 is equal to 0. The 𝑟 = 𝑅$ face is insulated, which can be interpreted 
as enforcing 1D heat flow through the TPS when sufficiently far away from the TPS-sensor interface. To construct 
Green’s functions, a Galerkin basis function set which satisfies the boundary and interface conditions imposed on the 
TPS-sensor system was used, as detailed in the appendix. 

To recover hot-wall heat flux values using the reconstruction algorithm, input temperature and heat flux 
measurements are generated from finite element analysis (FEA) simulations (Ansys Mechanical TM). The temperature 
measurement (Fig. 12a) is simulated using the FEA-generated nodal temperature solution located at 𝒙𝑻 =
[0.4𝑅$, 0.9𝐿]. The heat flux sensor measurement 𝑞/01 (Fig. 12b) is retrieved from the FEA-generated heat flux 
solution along the center axis of the model at 𝒙𝑯𝑭𝑺 = [0,0.95𝐿]. Both measurements are sampled at a rate of 8 Hz. 

The heat flux sensor measurement is used directly to represent the cold-wall heat flux 𝑞54 absorbed at the heat 
flux sensor surface. The location 𝒙𝑯𝑭𝑺 is sufficiently close to the surface such that the lag between 𝑞/01 and 𝑞54 is 
governed by a time constant of ~40	𝑚𝑠, far less than the interval between datapoints (see, for example, [23]). 
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Fig. 11 Convective heat flux boundary conditions. a) Sinusoidal pulse of the freestream temperature relative to 
𝑻�𝟎. b) Convective heat transfer coefficient with sharp ramp at 𝒕 − 𝒕𝟎 = 𝟏𝟓𝒔. 

 
Fig. 12 FEA-generated measurement inputs for the 3D axisymmetric model system. a) Simulated temperature 
probe measurement. b) Simulated heat flux sensor measurement. 

1. Verification of the Reconstruction Algorithm on the 3D Axisymmetric Model System 
 The hot-wall heat flux reconstruction algorithm is first evaluated on the 3D axisymmetric model system with noise-
free measurement inputs. A basis function order of 𝑀 = 5 and 𝑁 = 5, corresponding to the radial and axial 
components, respectively, was used to construct Green’s function. Regularization coefficient values of 𝜆$ = 10' and 
𝜆$
(!) = 10' × 𝜆$ were used to stabilize the solution. 

 
Fig. 13 Reconstructed hot-wall heat flux using noise-free input measurements (solid blue line). The dashed 
black line represents the FEA-generated TPS surface heat flux. 

 In the FEA-generated hot-wall heat flux profile, the increase in the heat transfer coefficient during the simulated 
boundary layer transition event at 𝑡 − 𝑡! = 15𝑠 introduces a proportional increase in the surface heat flux. Directly 
following the transition event, the TPS surface temperature increases rapidly towards the freestream temperature, 
reducing the magnitude of the heat flux. The heat flux continues to decrease following the peak in the freestream 
temperature (Fig. 11a) and changes sign as the freestream temperature falls below the TPS surface temperature. 
 In the reconstructed hot-wall heat flux profile, the sharp jump in heating during the simulated boundary layer 
transition event is resolved to within 9% of the FEA-generated value (13.3	𝑘𝑊/𝑚$ reconstructed (solid blue line) vs.	
14.5	𝑘𝑊/𝑚$ FEA (dashed black line)) with a delay of 0.375𝑠 in the temporal location of peak heating. Following 
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peak heating, and through the remainder of the heat pulse, the reconstruction algorithm closely predicts the FEA-
generated hot-wall heat flux profile with a maximum error of 0.4	𝑘𝑊/𝑚$ at 𝑡 − 𝑡! = 16.75𝑠. 
 
2. Robustness of the Reconstruction Algorithm 

In Section IVA, the robustness of the reconstruction algorithm was demonstrated on a 1D model system subject to 
a step heat flux boundary condition. The sensitivity of the reconstructed hot-wall heat flux to varying measurement 
and user input parameters is now analyzed in the 3D axisymmetric model system. Measurement inputs were perturbed 
using three levels of noise (Fig. 14), tabulated in Table 2. Reconstructed hot-wall heat flux profiles were calculated 
using a range of regularization coefficient values spanning from 𝜆$ = 10O to 𝜆$ = 2 × 10V for each level of 
measurement noise. 

Table 2. Measurement noise input parameters for the 3D axisymmetric model system. 

Noise Level 𝝈𝑻	(°𝑪) 𝝈𝑯𝑭𝑺	(𝒌𝑾/𝒎𝟐) 
Low 1 + 	0.025 × %𝑇B − 𝑇B!. 0.2 + 0.025 × 𝑞/01 

Medium 2	 + 	0.05 × %𝑇B − 𝑇B!. 0.4 + 0.05 × 𝑞/01 
High 4	 + 	0.1 × %𝑇B − 𝑇B!. 0.8 + 0.1 × 𝑞/01 

 
Fig. 14 3D axisymmetric model system measurement inputs with added measurement noise. a) Examples of 
simulated temperature probe measurements. b) Examples of simulated heat flux sensor measurements. 

In addition to the RMSE of the reconstruction (calculated for the entire measurement duration: 𝑡 − 𝑡! = −10𝑠	to 
𝑡 − 𝑡! = 50𝑠), errors in the reconstructed peak heat flux and temporal location of peak heating were calculated for 
each value of input measurement noise and the regularization coefficient 𝜆$. All sweeps of 𝜆$ were repeated 50 times 
to generate a distribution of results and remove the influence of local noise fluctuations on the interpretation of the 
magnitude and temporal location of peak heating. 

Consistent with the 1D results shown in Fig. 7a, the results from the axisymmetric model system outline a region 
of regularization coefficient values where the RMSE, peak heat flux error, and delay in the temporal location of peak 
heating are insensitive to variations in 𝜆$. This region of stability is bounded by approximately 𝜆$ = 2 × 10F and 
𝜆$ = 2 × 10R for all levels of measurement noise (Fig. 15). Within these bounds, the peak heat flux error remains 
small, within 1	𝑘𝑊/𝑚$ on average (7% of peak heat flux) (Fig. 15b) and the temporal location of peak heating is 
predicted to within 2𝑠 for all levels of measurement noise (Fig. 15c), with larger variations in the high noise scenario 
compared to the low and medium noise scenarios. Beyond a value of 𝜆$ = 2 × 10R, an increase in the RMSE—caused 
in-part by an increase in the delay of the temporal location of peak heating, notably at 𝜆$ = 3 × 10R (Fig. 15c)—and 
magnitude of the peak heating error (Figs. 15a and 15b) suggest that the solution has become over-regularized. 

Results from the hot-wall heat flux reconstruction approach are compared next with results from a parallel series 
of sweeps using the same temperature measurement inputs (Fig. 14a), but stabilized using Tikhonov regularization 
(Fig. 16). Sweeps were performed using a range of regularization coefficient values spanning from 𝜆 = 100 to 𝜆 =
2000. In the reconstructed heat flux profiles, minimum RMSE values are optimized around a different regularization 
coefficient value for each level of input measurement noise, corresponding to 𝜆 = 330, 450,	and 700 for the low, 
medium, and high noise scenarios, respectively (Fig 16a). However, when only considering RMSE values for optimal 
results, significant errors emerge in the reconstructed peak heating value. At optimal values of 𝜆, as per the minimum 
RMSE, the peak heat flux is underpredicted by 3	𝑘𝑊/𝑚$ at best (21% of peak heat flux), with a delay of at least 1.5𝑠 
in the temporal location of peak heating (Figs. 16b and 16c). 
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Fig. 15 Hot-wall heat flux reconstruction algorithm results from sweeps of 𝝀𝟐 values. a) RMSE. b) Error in the 
magnitude of peak heating. c) Error in the temporal location of peak heating. 

 
Fig. 16 Results from sweeps of 𝝀 values using Tikhonov regularization. a) RMSE. b) Error in the magnitude of 
peak heating. c) Error in the temporal location of peak heating. 

To analyze the solution features from each reconstruction approach, Fig. 17 and Fig. 18 show families of 
reconstructed hot-wall heat flux profiles using the hot-wall heat flux reconstruction algorithm (Fig. 17) and Tikhonov 
regularization (Fig. 18). In each scenario, the average value of 𝑞/4 at each timestep (solid blue line) and the standard 
deviation of 𝑞/4	(blue shaded region) were calculated from the 50 repeat reconstructions. A regularization coefficient 
value of 𝜆$ = 4 × 10F was used in the former approach for all input measurement noise levels (Fig. 17). Optimal 
regularization coefficient values, as per the minimum RMSE, were used in the Tikhonov regularization-based 
reconstructions (Fig. 18). 

For all levels of input measurement noise, the hot-wall heat flux reconstruction algorithm can resolve the peak 
heat flux value to within 1.3	𝑘𝑊/𝑚$ (9%	of peak heat flux) with a delay equal to or less than 0.375𝑠 in the temporal 
location of peak heating, on average (Fig. 17). Qualitatively, all mean reconstructed hot-wall heat flux profiles in Fig. 
17 are similar. The effect of increasing the input measurement noise is an increase in the noise and variance of the 
reconstructed heat flux values, notably at, and directly following, the region of peak heating (Fig. 17c). This is 
primarily attributed to the increase in the heat flux sensor noise, as discussed in Section IVA. Prior to the sharp increase 
in heat flux at 𝑡 − 𝑡! = 15𝑠, a dip occurs in all reconstructed heat flux profiles. For large values of 𝜆$, which act to 
reduce the curvature in 𝐶(𝑡), features in 𝑞/4 that are not represented in 𝑞54, such as the sharp peak in the heat flux 
following the boundary layer transition event, may lead to reconstruction errors nearby in the time series. Yet, these 
errors do not have a demonstrable impact on other solution features, such as the sharp heating augmentation at 𝑡 −
𝑡! = 15𝑠	and smooth cool-down phase following 𝑡 − 𝑡! = 20𝑠, which are well-resolved in the reconstructed hot-wall 
heat flux profiles for all levels of input measurement noise (Fig. 17). 

In contrast, the reconstructed hot-wall heat flux profiles using Tikhonov regularization further illustrate the 
drawbacks associated with spectral regularization methods. When the regularization coefficient is optimized around a 
minimum RMSE value, all sharp solution features are attenuated. At best, the peak heating value is underestimated 
by 3.2	𝑘𝑊/𝑚$ (22% of peak heat flux) with a 1.875𝑠 delay in the temporal location of peak heating (Fig. 18a). With 
an increase to the highest measurement noise level and the respective optimal regularization coefficient, the peak 
heating value is attenuated by up to 4	𝑘𝑊/𝑚$ (28% of peak heat flux) with a delay of 2.875𝑠 in the temporal location 
of peak heating (Fig. 18c). 

Finally, it is worth noting that, while Tikhonov regularization is one of the most pervasive regularization 
techniques used in IHT problems, other novel regularization approaches are the subject of extensive research and may 
be better suited for resolving sharp features [17,24]. However, these approaches often involve assumptions of the 
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solution behavior a priori or the definition of extra regularization hyperparameters which need to be optimized for 
each measurement application. In contrast, the hot-wall heat flux reconstruction algorithm described herein only 
assumes that the relationship between the hot- and cold-wall heat flux values, driven by the evolution of the respective 
surface temperatures, varies at a finite rate. This physical justification lends the current approach to more general 
application to various measurement scenarios, with less guess work needed to obtain satisfactory results. 

 
Fig. 17 Selected heat flux profiles reconstructed using the hot-wall heat flux reconstruction algorithm. a) Low 
noise. b) Medium noise. c) High noise. 

 
Fig. 18 Selected heat flux profiles reconstructed using Tikhonov regularization with optimal regularization 
coefficient values. a) Low noise. b) Medium noise. c) High noise. 

V. Conclusion 
A Green’s function-based hot-wall heat flux reconstruction algorithm demonstrated an accurate computation of 

TPS surface heat flux values in 1D and 3D model systems solely using embedded thermal measurements. The 
algorithm leverages Green’s functions to model the temperature measured within the TPS subject to hot- and cold-
wall heat flux boundary conditions, and stabilizes the recovery of hot-wall heat flux values using the direct heat flux 
sensor as a surrogate regularization mechanism. The performance of the algorithm was evaluated on a 1D verification 
model subject to a step heat flux boundary condition. Analysis of the stability of the reconstruction algorithm subject 
to varying system parameters, such as temperature measurement location and duration, thermal properties of the 
conduction medium, and order of the Green’s function basis, highlighted a broad region of algorithm convergence. 
For measurement scenarios with a diffusion number 𝛼𝑡=/(𝐿 − 𝑥6)$ 	≥ 1, the algorithm can produce accurate results 
(RMSE of < 2.5%	full-scale heat flux) with a 5-term approximation of Green’s function. When subject to 
measurements perturbed with noise, the algorithm demonstrated a significant insensitivity to sub-optimal choice of 
the user input regularization parameter. Compared with the conventional Tikhonov regularization technique, the use 
of a surrogate measurement, i.e. the heat flux sensor, yielded accurate results for a much wider range of regularization 
coefficient values and demonstrated how the same regularization coefficient may be applied in different measurement 
conditions without a loss in solution quality. In a complex, nonlinear, 3D axisymmetric model system subject to a 
convective heating scenario, the algorithm can resolve sharp features and peak heating values following a simulated 
boundary layer transition event to within 9% of the FEA-generated reference value with a delay of 0.375𝑠 in the 
reconstructed temporal location of peak heating. Subject to significant noise in the input measurements, the 
reconstruction algorithm demonstrated a substantial resilience to sub-optimal choice of the user input regularization 
coefficient, consistent with the 1D results. Compared with the Tikhonov regularization technique, the hot-wall heat 
flux reconstruction algorithm can resolve sharp transient heating features near the quickly varying peak heating region 
without introducing amplified measurement instabilities in areas with more slowly varying heat flux values. This 
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robustness positions the algorithm for use in a vast range of measurement applications without the need to optimize 
algorithm parameters for a specific end-use case, and more broadly demonstrates the viability of stabilizing ill-posed 
systems using surrogate measurements. 

Appendix 

Singularity Correction 
In the reconstruction algorithm, the solution is stabilized by enforcing a smooth relationship between the measured 

cold-wall heat flux and the unknown hot-wall heat flux, i.e., 𝐶(𝑡). In Eq. (21), an additional unknown parameter 𝐶!(𝑡) 
was introduced to correct for singularities which arise when the heat flux sensor measurement approaches zero. In the 
3D axisymmetric model system described in Section IVB, this singularity arises after the heat pulse as the TPS surface 
temperature converges to the steady freestream temperature at a much slower rate than the heat flux sensor. Fig. 19 
compares two reconstructed heat flux profiles with the singularity correction (Fig. 19a) and without the singularity 
correction (Fig. 19b), i.e., 𝐶!(𝑡) = 0, using low measurement noise inputs. Without the correction, the ratio 𝑞/4/𝑞54 
diverges to infinity as 𝑞54 approaches zero at approximately 𝑡 − 𝑡! = 40𝑠. However, because large values of the 2nd 
derivative of 𝐶(𝑡) are penalized, minimization of the solution residual (the first 𝑙$-norm in Eq. (24)) becomes favored, 
and instabilities develop in the reconstructed heat flux profile. Furthermore, as 𝐶(𝑡) becomes large, noise in the heat 
flux sensor measurement is amplified directly into the reconstructed hot-wall heat flux profile. The inclusion of the 
singularity correction allows the algorithm to revert to a temporary, but more stable, regularization mechanism to 
generate an accurate solution. 

 
Fig. 19 Reconstructed hot-wall heat flux profiles a) with the singularity correction and b) without the 
singularity correction. 

3D Axisymmetric Basis Functions 
In the reconstruction algorithm, Green’s function is approximated using a set of 3D axisymmetric basis functions 

which satisfy the homogeneous boundary conditions imposed on the system. These functions are first decomposed 
into components aligned along the orthogonal directions 𝑟̂ and 𝑧̂ 
 

 𝜒D
(<)(𝑟, 𝑧) = 𝜇D

(<)(𝑟)𝜈D
(<)(𝑧)  𝑙 = 𝐻𝐹𝑆	or	𝑇𝑃𝑆  (33) 

 
In the TPS-sensor system, the following physical boundary and interface conditions must be satisfied 
 

 𝜕𝑇/01
𝜕𝑟 ¾

HB!
= 0	 (34a) 

 
 𝜕𝑇6:1

𝜕𝑟 ¾
HBW-

= 0 (34b) 

 
 𝑇/01|HBW+ = 𝑇6:1|HBW+  (34c) 

 
 𝑘/01

𝜕𝑇/01
𝜕𝑟 ¾

HBW+
= 𝑘6:1

𝜕𝑇6:1
𝜕𝑟 ¾

HBW+
	 (34d) 
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 𝑇/01|XB! = 𝑇6:1|XB! = 0 (34e) 

 
Eq. (34a) enforces a smooth radial temperature distribution along the center axis within the heat flux sensor. Eq. 

(34b) enforces an adiabatic wall condition on the outer circumference of the TPS. Eq. (34c) and Eq. (34d) enforce 
continuity of temperature and heat flux across the shared TPS-sensor interface, respectively. Eq. (34e) enforces a 
homogeneous temperature boundary condition at 𝑧 = 0. 

Prior to constructing the basis functions, Eq. (34a-e) must be transformed via the Cole-Hopf transformation. To 
model the interface continuity condition, the thermal conductivity in each domain is first approximated with a linear 
temperature dependence 
 

 𝑘<((𝑇) = 𝑘!,< + 𝑘6,<( 𝑇  𝑙 = 𝐻𝐹𝑆	𝑜𝑟	𝑇𝑃𝑆 (35) 
 
where 𝑘!,< is the thermal conductivity of domain 𝑙 evaluated at the reference temperature 𝑇B! and 𝑘6,<(  approximates the 
linear variation of the thermal conductivity with respect to the reference temperature. Substituting the thermal 
conductivity profiles for each domain into Eq. (2) and integrating indefinitely yields the temperature transformation 
at the TPS-sensor interface 
 

 𝜃<( =
C
Y.
[𝑘!,<𝑇 +

Z!,.
/ 6-

$
\ + 𝐵<  (36) 

 
where 𝐴< and 𝐵< are integration constants. Setting 𝐵< = 0, such that the boundary condition defined by Eq. (34e) 
remains homogeneous, and 𝐴< = 𝑘!,<$ /2𝑘6,<( , the inverse transform becomes 
 

 𝑇< =
Z0,.
Z!,.
/ W−1 + À1 + 𝜃<(X  (37) 

 
where the interface continuity condition 𝑇/01(𝑅C, 𝑧) = 𝑇6:1(𝑅C, 𝑧) can be expressed as 
 

 𝑘!,/01
𝑘6,/01( �−1 +À1 + 𝜃/01( �Á

HBW+

=
𝑘!,6:1
𝑘6,6:1( �−1 +À1 + 𝜃6:1( �Á

HBW+

 (38) 

 
Expanding the √1 + 𝜃( terms in Eq. (39) and ignoring higher order terms, the transformed interface continuity 
condition reduces to 
 

 𝑘!,/01
𝑘6,/01(

𝜃/01(

2 Á
HBW+

=
𝑘!,6:1
𝑘6,6:1(

𝜃6:1(

2 Á
HBW+

		 (39) 

 
Enforcing continuity of heat flux over the domain interface can be expressed directly using Eq. (10) 
 

 𝐴/01∇𝜃/01( ⋅ 𝑛=/01 = −𝐴6:1∇𝜃6:1( ⋅ 𝑛=6:1 (40) 
 
It should be noted that, while 𝐴< was chosen specifically to simplify the inverse transform in Eq. (37), scaling may 

be applied to the general Cole-Hopf transformation in Eq. (32) to increase the accuracy of the reconstruction. Using 
the mean value of the temperature probe measurement 𝑇{, 𝜃 is scaled such that 

 
 𝜃<(𝑇{)

𝜃<((𝑇{)
= 1 (41) 

 
The transformed physical boundary and interface conditions of the TPS-sensor system are thus satisfied with the 

following constraints applied to the basis functions: 
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 𝜕
𝜕𝑟 𝜇D

(/01)¾
HB!

= 0 (42a) 

 
 𝜕

𝜕𝑟 𝜇D
(6:1)¾

HBW-
= 0 (42b) 

 
 𝑘!,/01
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HBW+
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𝑘6,6:1( 𝜇D

(6:1)Á
HBW+

 (42c) 
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𝜕
𝜕𝑟 𝜇D

(/01)Ã
HBW+

= 𝐴6:1
𝜕
𝜕𝑟 𝜇D
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	 (42d) 

 
 𝜈D

(/01)Ã
XB!

= 𝜈D
(6:1)Ã

XB!
= 0 (42e) 

 
The axial boundary conditions Eq. (42e) are satisfied using a monomial basis function set [9]. 
 

 𝜈D
(/01) = 𝜈D

(6:1) = 𝑧[)  (43) 
 
where 𝜉 is a set of integers up to order 𝑁. The radial interface conditions may be satisfied by recasting 𝜇D

(/01)and 
𝜇D
(6:1) in terms of a global basis function 𝜇D and perturbation 𝜇D( 	[15,25] 

 
 𝜇D

(/01) = 𝜇D (44) 
 

 𝜇D
(6:1) =

𝑘!,/01
𝑘6,/01(

𝑘6,6:1(

𝑘!,6:1
𝜇D + Γ𝜇D(  (45) 

 
where 𝜇D(  is designed to vanish at the 𝑟 = 𝑅C interface and Γ is specified to satisfy Eq. (42d). In this formulation, the 
global basis function must satisfy both adiabatic constraints given by Eqs. (42a) and (42b) while the perturbation basis 
function must only satisfy the adiabatic constraint given by Eq. (42b). The global basis function is defined as a 
polynomial expression which contains derivatives with respect to 𝑟 which vanish at 𝑟 = 0 and 𝑟 = 𝑅$, adapted from 
[15] 
 

 
𝜇D =

%2𝜂D − 2.𝑟$\)

𝑅$
$\)>C

−
2𝜂D𝑟$\)>$

𝑅$
$\)>'

 (46) 

 
where 𝜂 is a set of integers of order 𝑀	specified to compliment the set 𝜉, such that all permutations of the elements of 
𝜂 and 𝜉 are represented, e.g., 𝜂 = [1,2,3,1,2,3] and 𝜉 = [1,1,1,2,2,2]. The perturbation basis function 𝜇D(  must be 
designed to vanish at 𝑟 = 𝑅C, however its first derivatives must be non-zero for all terms at 𝑟 = 𝑅C to maintain 
continuity of heat flux across the domain boundary (Eq. (42d)). These constraints, along with the adiabatic conditions 
at 𝑟 = 𝑅$, are satisfied with the following polynomial modified from [25] 
 

 𝜇D( = 𝑅C𝑅$𝜂D µ1 − Ç
𝑟
𝑅C
È
\)]C

¶ − 𝑅$$%𝜂D + 1. [1 − Ç
𝑟
𝑅C
È
\)
\ (47) 

 
Substituting Eq. (46) and Eq. (47) into Eq. (44) and Eq. (45), differentiating with respect to 𝑟, and evaluating at the 
interface (Eq. (42d)) yields the definition of Γ 
 



21 
 

 

Γ =
Ç𝐴/01𝐴6:1

−
𝑘6,6:1(

𝑘!,6:1
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