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advancing Urban Air Mobility (UAM) operations. Although the success of UAM will likely
require a host of new technologies in aircraft design, airspace management, autonomy, and more,
operational innovations like ridesharing may also be key, especially to lower operating costs
and attract a broader market. The ridesharing algorithm introduced, termed the Passenger
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and passenger occupancy aboard particular aircraft within a UAM network in a metropolitan
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presented to demonstrate the algorithm and assess ridesharing potential.
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Variables:

𝑑Non-UAM Road distance for non-UAM trip
𝑑First/Last First- and last-mile road distance in a UAM trip
𝑘 Passenger capacity of aircraft
𝑃𝑁 Passenger number 𝑁
𝑃Non-UAM Non-UAM trip price per passenger
𝑃OC Price per person covering aircraft operating cost
𝑃UAM UAM trip price per passenger

𝑆𝑀RATE Standard mileage rate
𝑇ED Earliest departing time of a passenger
𝑇LA Latest arrival time of a passenger
𝑡Non-UAM Total non-UAM trip duration
𝑡UAM Total UAM trip duration
𝑊𝑇MAX Maximum wait time

I. Introduction
Advanced Air Mobility (AAM) has the potential to improve how people and cargo move over local and regional

distances by shifting trips typically performed on the ground into the air using novel, small aircraft. AAM is often
imagined to be similar to a ground-based ride-hailing service with an aerial component, in which users would travel to
their nearest aerodrome,∗ board an aircraft, fly to another aerodrome close to their final destination, and then travel
to their intended destination. The first-mile (from trip origin to origin aerodrome) and last-mile (from destination
aerodrome to final destination) journeys may be taken with different modes of transport, such as walking, biking, driving,
ground-based ride-hailing, or taxi. AAM promises the integration of faster aerial transport in everyday transport that
can significantly shorten travel times for passengers.

There are differing views on the scope of AAM, but there is a general consensus that there are at least two subsets
of AAM for passenger-carrying missions: Urban Air Mobility (UAM) and Regional Air Mobility (RAM). UAM
operations are generally flights up to 75 nautical miles (86 miles) within a single metropolitan area [1]. UAM is primarily
envisioned to use electric vertical takeoff and landing (eVTOL) aircraft operating from either novel or repurposed
infrastructure to reduce developmental cost, impacts on the existing transportation systems, and concerns about noise
and emissions. RAM is envisioned for trips between approximately 50 and 500 miles that primarily leverage existing
airports and electric aircraft, which are typically proposed to have conventional takeoff and landing or short takeoff and
landing capabilities. In this paper, our primary focus will be on UAM operations, but the methods presented may also
be applicable to RAM.

The potential transportation paradigm shift brought about with UAM is driven by advancements in technology, such
as materials engineering, battery technology, novel aircraft design, computing, and control theory [2]. These innovations
pave the way for a new era in both passenger and cargo transport by leveraging novel, electrified, highly automated
aircraft [3]. UAM flights present advantages over traditional mobility solutions, particularly in congested urban areas,
due to the possibility for significantly faster travel times and reduced environmental impact [4]. Long commute times
have been shown to negatively impact quality of life [5, 6] and productivity [7]. For example, the two most congested
cities in the US in 2022 were Chicago and New York, where the average driver spent approximately 155 hours and
117 hours in traffic, respectively. The impact of the time spent in traffic cost the cities $9.5 billion and $10.2 billion,
respectively, in lost productivity [7]. Given the projected speed advantage of aerial transport, UAM could reduce these
times and assist in increasing overall productivity.

In addition to potential transportation benefits for travelers, UAM could also have environmental benefits [8],
particularly when compared to gasoline-powered cars and considering direct vehicle “tailpipe" emissions; however,
evidence for such benefits has yet to emerge in a comprehensive fashion (and work continues to develop appropriate
metrics to make the assessment [9]). Many envision UAM leveraging electric aircraft with zero tailpipe emissions [3].
This is an attractive proposition in polluted and congested urban areas. As Mudumba et al. demonstrate, coupling
electric UAM aircraft with “green” electricity generation can provide reduced carbon dioxide emissions compared to
existing internal combustion engine (ICE) ground vehicles [10]. One potential way to reduce emissions via UAM is by
leveraging ridesharing.

Ridesharing is an attractive proposition for UAM operations because it can encourage broader UAM ridership,
mitigates economic challenges, and serves as an environmentally conscious transportation alternative. Ridesharing can
distribute operating costs and emissions among more passengers, making UAM more affordable and environmentally
friendly on a per-passenger basis. These advantages make it crucial to analyze the ridesharing potential of an area
and quantify these impacts, which can help identify the most suitable metro areas for UAM operations. The main

∗We use the term aerodrome to refer to any facility from which a UAM aircraft may take-off and land, including vertiports, conventional airports,
and heliports.
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contribution of this paper is to introduce an algorithm aimed at evaluating the feasibility of ridesharing for UAM
operations. This paper is organized as follows:

Section II covers a brief background and motivation behind the ridesharing algorithm proposed in this study, and
Section III illustrates the methodology behind the PANVEL algorithm. Section IV provides an example application of
the algorithm to trips within the Cleveland metro area. Section V highlights the conclusions of this study.

II. Background and Motivation
The concept of integrating routine aerial transport in urban and regional settings is an idea that has been explored

previously in the US in the 1960s and 70s in the form of helicopter airlines in metropolitan areas such as Chicago, New
York, Los Angeles, and San Francisco [11, 12]. Due to various factors, such as government withdrawal of subsidies,
rising fuel prices, noise concerns, and high-profile accidents, helicopter airlines did not survive, and the industry all
but went bankrupt by 1975 [13]. Recently, advancements in aircraft design, autonomous operations, policy changes,
etc. have created interest in looking once again at air mobility in urban settings. For instance, advances in electric
propulsion technologies hold promise for improvements in noise, safety, and sustainability. Research has followed
targeting strategies for the successful implementation and integration of UAM in widespread adoption [14–17]. Previous
studies exploring potential UAM implementations have shown that feasibility depends on many factors, such as weather
patterns [18], traffic congestion, income, geography, population size [19], airport or vertiport throughput [20] and air
traffic management. Many of these factors have been evaluated and quantified in previous literature [19, 21].

For many types of UAM operations, it is anticipated that the UAM transportation mode will be more expensive than
traditional mode choices, but the added expense for UAM may be preferable to some in order to benefit from more
rapid transportation. Thus, individuals with higher value of time (VoT) are more likely to leverage UAM services than
those with a lower VoT because individuals with higher VoT would theoretically be willing to incur additional cost to
save time. Due to relatively high operational expenses that are anticipated in the near term, the potential customer base
for UAM services may be limited. For UAM operations to become practically accessible to many individuals, efforts
to reduce costs and increase ridership are crucial. UAM operations will not be economically sustainable without a
consistent ridership. High prices reduce the level of ridership, and low ridership can lead to cost increases, such as
through increasing non-revenue-generating repositioning flights. Conversely, lower prices will attract more passengers
leading to better utilization of resources and, consequently, increased revenue.

Research by Maheshwari et al. [19] suggests that lower per-passenger UAM fares, made possible by increasing
the number of passengers per aircraft trip, can increase the number of passenger-trips favoring the UAM mode of
transportation, termed UAM-preferred trips hereafter. However, the work in Ref. [19] estimated simple fare reductions
for all passengers and did not consider the practicality of ensuring a sufficient number of passengers could be aggregated
on aircraft to meet the general fare reduction assumptions. Therefore, we seek to overcome these limitations by
investigating factors related to route networks, passenger travel patterns, and VoT to quantify the feasibility of ridesharing
in a given area.

Although several ridesharing models exist in literature, few have been found to be suitable for large-scale analysis of
an entire metropolitan area. Each area has its unique set of characteristics, such as aerodrome locations, congestion
levels, travel patterns, etc., which can add variability to UAM implementation in that region. For instance, Yang et
al. [22] developed a Mixed Integer Bi-linear Programming (MIBLP) model to optimize wait times for ridesharing in
an UAM network leveraging four-passenger aircraft. This approach uses a theoretical dataset of passengers within a
conceptual vertiport network. The model accounts for various transportation modes, including bicycles, buses, subways,
cars, and walking. Furthermore, the research incorporates control laws and algorithms to simulate operational flight
paths. There is also a module that uses a real-time aircraft path planning algorithm to calculate an air route. This model
focuses on a possible deployment method for UAM service considering additional parameters like vehicle availability,
idle time, etc. Although this model was found to be too complex for our purposes, it represents a possible starting point
for extending our ridesharing model and enhancing the operational realism of our UAM operation simulations.

Previous work by Maheshwari et al. [23] implemented a reinforcement-learning-based ridesharing algorithm in
conjunction with an on-demand air service trip generator to assess ridesharing feasibility from an operational standpoint.
This method considers aerial ridesharing on two-passenger aircraft for a hypothetical vertiport network, and it integrates
penalty functions to maximize ridesharing operations. Given the machine learning model it implements, the algorithm
is computationally too expensive to be deployed over large datasets encompassing a complete metro area as are the
focus of our work.

Bennaceur et al. [24] proposed another mixed-integer linear programming model for on-demand air-taxi services,
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focusing on passenger pooling and aircraft scheduling. They suggested different service classes, similar to Uber’s
ride-hailing model, in which higher fares result in shorter wait times, aiming to enhance affordability and accessibility.
Unlike their approach, which only considers travelers desiring to travel via air taxis, our study analyzes all commute
trips, assigning mode preferences for each passenger.

Additionally, we reviewed ridesharing models for ground transport. Kuehnel et al. [25] introduced the Flow-Inflated
Selective Sampling (FISS) method, which simulates ground trips within a city, with tracking limited to 500 rideshared
vehicles to save on computational effort. This method tracks the vehicles through a region, as compared to our approach
of tracking individual passengers. Tracking passengers is important because UAM trip feasibility depends on the
first- and last-mile journeys and not just on the aerial segment. Furthermore, the computational cost of leveraging the
FISS method to track millions of passengers, as is our goal, would be impractically high. Liu et al. [26] examined
agent-based models for carpooling in Austin, comparing shared autonomous vehicles (SAVs) and private human-driven
vehicles (HVs) across different fares and distances, aiming to maximize utility for all passengers. Their results indicate
the preference for SAVs over HVs for multiple fare classes. Utilizing agent-based simulation methods delivers high
fidelity, but at considerable computational expense, which would make simulating UAM operations in large metro areas
prohibitively expensive and time-consuming. Furthermore, this work focused more on vehicular ridesharing preferences
rather than on ridesharing potential and feasibility. In road transport, passengers have greater flexibility in determining
pick-up and drop-off locations compared to UAM trips. Mode changes are less of an issue since road travel is better
suited for door-to-door service.

We aim to develop an algorithm capable of operating on large, passenger-based datasets to assess the theoretical
potential for ridesharing in specific metropolitan areas. This algorithm will integrate with the strategic analysis
framework we developed in prior work [19, 27]. Our current and previous work frames the development of UAM as a
System of Systems (SoS) problem [28]. As an SoS problem, UAM implementation involves different hierarchical levels
of organization ranging from strategic at the highest levels of hierarchy to operational at the lowest level.

On the strategic level, our research focuses on identifying factors that could limit UAM operations, especially
those with significant impacts. Such factors could lie in economic, environmental, regulatory/policy, or operational
domains. Essentially, we seek to understand in what circumstances a UAM service should even be considered, given
particular market and demand scenarios in individual metro areas. This strategic analysis can be considered a precursor
to developing lower-level operational innovations and technological infusion as discussed in the referenced literature.
Using the analogy from the verification and validation (V&V) process described in Ref. [29], we first aim to answer
whether a UAM system should be built and then determine what the UAM system should look like.

This paper introduces a model capable of quantifying the potential impact of ridesharing on UAM operations,
analyzing economic attractiveness regarding potential passenger utilization while being computationally efficient in
order to analyze operations in large metro areas. The algorithm is named Passenger Aggregation Network with Very
Efficient Listing (PANVEL), and through it we aim to compute an upper limit on the total possible trips enabled by
ridesharing in particular metro areas.

PANVEL is integrated within a larger computational framework workflow for UAM analysis that includes the input
datasets listed in Fig. 1. Within this framework, the cost of a transportation mode includes both the direct fare and the
cost of the time spent on that mode, considering every passenger’s VoT. This metric, termed the "effective cost," is used
by PANVEL to make decisions regarding ridesharing. Fig. 1 shows the integration of the PANVEL algorithm within the
wider computational framework. The framework utilizes data obtained from diverse sources as described in Ref. [19].
These sources generate passenger trips considering various factors, such as household income and congestion patterns,
which serve as an input.

The computational framework determines the nearest available vertiport and computes the travel times for each
passenger via car-only travel and multi-mode UAM travel. The framework also calculates costs for UAM and car
travel, and, by combining travel time and cost into a single effective cost metric, individual passenger mode choices
are determined. Additionally, the framework leverages supplementary modules to assess operational limits related
to weather, emissions, aerodrome throughput and capacity, and cost analysis. Readers are encouraged to refer to
[19, 20, 27, 30–34] for a comprehensive understanding of the computational framework. The next section provides a
detailed explanation of how the PANVEL algorithm functions within this framework.
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Fig. 1 The PANVEL ridesharing model situated within the larger UAM operations computational framework,
including the major input and output categories of the framework.

III. Methodology
The PANVEL algorithm aggregates passengers traveling from one location to another based on estimates of their

values of time and their arrival times at the origin aerodrome. The algorithm’s unit of analysis is an individual passenger
trip requiring mode changes, and its execution is integrated with the computational framework referenced previously,
which determines individual passenger mode choices based on the effective cost metric. The computational framework
generates a list of all passenger trips in a given metro area and identifies opportunities where a segment of each trip
could be substituted with an aerial mode. A subset of trips is generated for which the traveler would experience reduced
travel time from the UAM mode. The PANVEL algorithm analyzes this subset of trips that provide a time advantage
via UAM to estimate which passengers may prefer to share an aircraft with others to reduce the fare they pay for the
flight. Generally, passengers’ travel times will increase with ridesharing, so PANVEL considers passengers’ arrival
times to aerodromes and their values of time to determine if ridesharing is practical and preferable for each traveler.
Ultimately, the PANVEL algorithm estimates the unconstrained total number of UAM flights with ridesharing as well as
the associated total number of passengers and the cost for each passenger.† Figure 2 illustrates the three different trip
mode choices considered in this paper.

In the following subsections, we describe the PANVEL algorithm’s assumptions, pre-processing, and execution.
These subsections reference a sample, simplistic UAM mission between the Midway International (MDW) and DuPage
(DPA) airports in the Chicago, IL metro area to help illustrate the various features of the PANVEL algorithm. This
example assumes a notional, four-passenger eVTOL aircraft taken from Roy et al. [32] with an operating cost of $605/hr,
which is derived from Uber Elevate’s “launch cost” scenario [35].

†In this context, the term “unconstrained” is used to acknowledge that there are other operational factors, such as aerodrome throughput limits
and air traffic management constraints, that may ultimately reduce the number of practically realizable flights from those predicted.
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Fig. 2 Three different trip mode choices analyzed with the PANVEL algorithm.

A. Assumptions
The PANVEL algorithm includes the following assumptions:
• The full-aircraft operating costs remain constant regardless of load factor.
• The full-aircraft operating costs are divided evenly among all the passengers aboard the aircraft.
• Passengers select the travel mode with the least effective cost.
• Passenger arrival times at the gate at origin aerodromes are known; thus, passengers arrive and progress through

the aerodrome without any delays.
• The trip cost by car is determined by a fixed cost per mile multiplied by the mileage driven.‡

B. PANVEL Pre-processing Step
The pre-processing required to execute the PANVEL algorithm is conducted within the computational framework.

The computational framework calculates the projected cost and travel time for each potential travel mode (see Figure 2).
Travel time calculations consider ground traffic based on road congestion data [37].

PANVEL also requires the data for each passenger trip listed in the column headings of Table 1. The data points
under each column heading are for a sample case in the Chicago metro area. The initial six columns of this table
are directly derived from other elements the computational framework and serve as inputs to PANVEL. The Lowest
Non-UAM Trip Cost denotes the lowest expense associated with traveling by a mode other than UAM. For our current
modeling, this cost is that by traveling via car since no additional modes are considered. The Max Wait Time for each
passenger represents the maximum duration they are willing to wait at an aerodrome for the UAM flight to begin. This
wait time is determined by a function involving a passenger’s VoT, the anticipated trip duration, and the effective cost
they would incur as shown in Eq. (1).

𝑊𝑇MAX = (𝑡Non-UAM − 𝑡UAM) − 𝑃UAM − 𝑃Non-UAM
𝑉𝑜𝑇

(1)

In the above equation, 𝑊𝑇MAX represents a passenger’s maximum waiting time, 𝑡Non-UAM stands for the duration of
a trip completed entirely using the non-UAM mode with the lowest trip cost, 𝑡UAM signifies the trip duration utilizing
the aerial mode and associated first- and last-mile segments, 𝑃UAM is the price to a passenger for the entire UAM trip

‡For this analysis, we assume costs at the Internal Revenue Service (IRS) standard mileage rate of $0.58 per mile [36].
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(including first-mile, air, and last-mile segments), and 𝑃Non-UAM is the price to the passenger for a trip via the non-UAM
mode with the lowest trip cost.

Table 1 Excerpt of the input file used for the Midway-DuPage case study

Data # Arrival Time at Origin
Aerodrome Gate (hh:mm)

Origin
Aerodrome

Destination
Aerodrome

Lowest Non-UAM
Trip Cost ($)

Value of
Time ($/hr)

Maximum
Wait Time (min)

1 06:04 MDW DPA 29 46 10
2 07:04 MDW DPA 261 204 5
3 07:13 MDW DPA 291 224 15
4 08:34 MDW DPA 300 236 16
• • • • • • •
• • • • • • •

95 17:29 MDW DPA 68 74 11

For our sample case that considers only a car mode as an alternate to UAM and leverages cars for the first- and
last-mile segments of a UAM trip, Eq. (1) can be written as Eq. (2).

𝑊𝑇MAX = (𝑡Non-UAM − 𝑡UAM) − 𝑃OC − 𝑆𝑀RATE (𝑑Non-UAM − 𝑑First/Last)
𝑉𝑜𝑇

(2)

In Eq. (2), 𝑃OC stands for the per passenger fare for the aircraft, 𝑑Non-UAM denotes the distance covered on the trip
when travelled in its entirety by car, 𝑑First/Last denotes the distance travelled by road during the UAM first- and last-mile
segments, and 𝑆𝑀RATE denotes the cost per mile of ground transport.

These equations reflect the assumption that a passenger has the flexibility to wait longer in the UAM mode at the
aerodrome if the following two criteria are fulfilled:

1) The UAM trip’s total effective cost, inclusive of the wait time, is lower than the most economical available
alternative (which is the car mode in our example).

2) The passenger arrives at their destination earlier than the most economical alternative to the UAM mode.

Equation (2) leads to an interesting finding. The wait time comprises two competing terms. The first term
[𝑡Non-UAM - 𝑡UAM] refers to the time savings from the UAM mode of travel. The numerator of the second term
[𝑃OC − 𝑆𝑀RATE (𝑑Non-UAM − 𝑑First/Last)] represents the cost difference between the UAM mode and the Non-UAM
mode. Dividing this cost difference by 𝑉𝑜𝑇 yields the time savings required to justify the higher costs. In other
words, the second term can be thought of as the time penalty associated with the cost increase due to the UAM
mode. The second term is then subtracted from the first term (total trip time savings) to yield the maximum wait time.
Given the current nature of UAM costs, the term 𝑃OC has been observed to be higher than the value obtained from
𝑆𝑀RATE (𝑑Non-UAM − 𝑑First/Last), primarily due to the 𝑆𝑀RATE being relatively low. This ultimately contributes to the
numerator of the second term being positive, which reduces the max wait time when it is subtracted from the time
savings. Consequently, the higher a traveler’s VoT is, the greater that traveler’s Maximum Wait Time is. This leads to
the finding that though the VoT is inversely proportional to the discounted operating cost, VoT and the max wait time are
positively correlated. Although it may seem counter-intuitive at first, by making mode choice a function purely of the
effective cost, individuals with a higher VoT can still prefer the UAM mode with longer waiting periods, as long as the
total effective cost is lower than the alternative mode, which typically results from a reduction in the overall door-to-door
travel time. In other words, despite the wait time, the total trip duration is still less than the alternative mode. The trip
time saved through UAM holds significantly more value for those with a higher VoT. Therefore, even though the wait
time may erode some of these time savings, it remains preferable to a certain extent. For individuals with a higher VoT,
waiting longer for an UAM trip outweighs spending more time driving when considering the door-to-door time savings
based on our effective cost model.

To illustrate this concept, we applied Eq. (2) to a hypothetical scenario involving a trip from Midway International
Airport (MDW) to DuPage Airport (DPA) in the Chicago metro area. This trip could be completed either by aircraft or
by car, without including any first- or last-mile ground segments for the UAM mode. First- and last-mile ground journeys
were deliberately excluded to focus on the relationship between wait times and VoT without additional variables, such as
distance between the origin and origin aerodrome or the destination aerodrome and destination.
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The flight duration between MDW and DPA is 15 minutes, whereas driving times vary between 41 and 110 minutes
based on traffic conditions. Thus, UAM offers a time savings of 26 to 95 minutes. However, this time savings is often
reduced in ridesharing due to the need to wait on other passengers to arrive.§ Longer wait times result in less time
savings, making it less likely that a passenger would be willing to pay given their VoT. Thus, the maximum time a
passenger would be willing to wait is a function of their VoT. The variation of the maximum wait time for passengers as
a function of their value of time is plotted in Fig. 3, where Fig. 3(a) shows the case of free-flow road conditions and
Fig. 3(b) shows the case with highly congested roads representative of “rush hour” conditions.

(a) Free-flow traffic conditions on route between MDW-DPA (b) Typical peak congestion on route between MDW-DPA

Fig. 3 Maximum wait times for UAM flights between MDW and DPA as a function of passenger value of time
with various numbers of passengers sharing an aircraft and varying ground traffic conditions.

In Fig. 3, the x-axis of both plots represents the VoT of potential riders, while the y-axis shows the maximum wait
time in minutes that a passenger with a given VoT would be willing to wait for a UAM flight. There are three colored
lines on each plot indicating the maximum wait time for a passenger to prefer the UAM mode based on ridesharing with
four, three, or two passengers on board the aircraft. These lines are distinct because a single passenger would bear 25%,
33%, or 50% of the full cost of operating the aircraft, respectively, in these different scenarios. In moving from four
passengers (shown with the green solid line) to three passengers (shown with the blue dashed line), there is a decrease in
the maximum wait time due to the increased fare; another decrease in maximum wait time occurs in moving from three
passengers to two (shown in the red dotted line) for the same reason. The black horizontal broken line represents the
time saved by UAM assuming zero wait time, which is also the theoretical maximum wait time. If wait times reach this
limit, the total transit time for the UAM and car modes becomes the same, and a hypothetical passenger with an infinite
VoT would be indifferent to the mode choice. However, because the UAM mode has an increased cost compared to the
ground mode and no passenger has infinite VoT, the practical maximum wait time does not ever reach the theoretical
maximum wait time.

Additionally, the x-intercepts on these plots indicate the minimum VoT required for an individual to select a UAM
trip. The minimum VoT metric can serve as a filter to reduce computational time by screening out passengers whose
estimated value of time is not commensurate with choosing a UAM trip. The minimum VoT necessary for an individual
to prefer a UAM trip is determined by factors such as door-to-door time savings, and vehicle occupancy. This point
denotes a “break even” point at which the value a traveler places on the time saved by the faster speed precisely equals
the additional expense incurred for that saved time. For individuals with VoT at or below this minimum VoT, a car-based
trip would be preferable even if there was no waiting period for a UAM flight. For passengers with negative wait time
values, the time savings is not worth the expense; such passengers are thus not considered in ridesharing.

Longer wait times increase the likelihood of more passengers arriving in time for a shared trip while eroding
§There are also other time penalties in UAM, most notably the time associated with changing modes from ground to air and air to ground. In this

simplistic example, these additional time penalties are not included.
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potential time savings. Though the longer wait times offer greater flexibility to the operators assigning riders, the margin
on time savings will determine if travelers reconsider using the UAM segment. Wait time durations vary based on the
number of passengers being considered for the trip.

For our sample use case, the PANVEL algorithm considers a four-passenger aircraft. The algorithm aggregates trips
with four passengers, followed by trips with three passengers, and finally two passengers. As the number of passengers
in a ridesharing vehicle decreases, the cost per passenger increases accordingly. With these increased costs, passengers
expect greater time savings to justify the expense. Consequently, passengers are willing to wait for even less time with
fewer total passengers on the aircraft because of the diminishing time savings. The PANVEL algorithm prioritizes trips
with higher load factors and only rideshares trips with fewer passengers if higher load factor ridesharing alternatives are
not available because of limited wait times and passengers arriving to the aerodrome with the same desired destination
aerodrome.

C. PANVEL Ridesharing Algorithm Execution Step
The PANVEL algorithm flowchart is shown in Fig. 4. The algorithm operates chronologically based on each

passenger’s arrival time at the origin aerodrome gate (column 2 in Table 1). The parameter k defines the number of
passengers for the prospective flight. For our example problem, the algorithm begins with four passengers as a group
(i.e., 𝑘 = 4 initially).

Fig. 4 PANVEL algorithm execution logic.

For the group of 𝑘 passengers, the passenger who needs to depart first, referred to as the earliest departure, is
identified by adding each passenger’s maximum wait time¶ to their arrival time at the origin aerodrome gate and finding
the earliest time, 𝑇ED. Subsequently, this earliest departure time is compared to the arrival time, 𝑇LA, for the passenger
arriving last, who is referred to as the latest arrival. If these two passengers are compatible (i.e., 𝑇ED ≥ 𝑇LA), the
allocation proceeds successfully, and the algorithm moves on to the next unallocated passenger group. However, if these
two passengers (i.e., earliest departure and latest arrival) are incompatible (i.e., 𝑇ED < 𝑇LA), the current group of 𝑘
passengers cannot all rideshare in the same aircraft.

Assuming the original group of 𝑘 passengers are incompatible, the algorithm then verifies if the first passenger
to arrive at the aerodrome is the earliest departure. If so, this passenger will never prefer to wait long enough for a
compatible group of 𝑘 passengers to be found; therefore, the first passenger is eliminated from consideration, a new
group of 𝑘 passengers is formed starting with passenger 𝑃𝑁+1 through passenger 𝑃𝑁+𝑘 , and the process then begins

¶which is found from Eq. (2) with 𝑃OC at the appropriate value for a 𝑘 passenger flight
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again with this new group. If, however, the first passenger to arrive at the aerodrome is not the earliest departure,
then either the earliest departure or the latest arrival is eliminated from consideration for the current trip. Given the
large number of passengers at some origin aerodromes, some passengers arrive or need to leave at the same time.
Since the algorithm eliminates only a single passenger at a time from being considered for ridesharing, we leverage
the passenger VoT as another criterion on which to eliminate passengers from ridesharing consideration to deal with
simultaneous arrivals or departures. Specifically, PANVEL eliminates the passenger with the lower VoT between the
earliest departure and the latest arrival to serve as a “tie-breaker” between passengers. ‖

Ultimately, the PANVEL logic allocates a particular passenger to share a ride in a UAM flight only if the following
criteria are met:

1) Time Compatibility: A passenger will be assigned to a ridesharing trip only if the aircraft leaves the gate within
their maximum allowable wait time.

2) Effective Cost Compatibility: A passenger will take a UAM trip only if the effective UAM trip cost is lower
than the effective trip cost by car mode only (as before) [19].

The following narrative illustrates the PANVEL process (Fig. 4) with the input scenario outlined in Table 2. This
example considers a subset of trips for our sample simplistic mission between Chicago’s Midway (MDW) Airport and
DuPage Airport (DPA) introduced above (including in Table 1). The Pax # column represents the passenger ID. The
Arrival Time (hh:mm) column provides the passenger arrival time at the origin aerodrome gate, which represents the
earliest time at which a rider is available to take a ride. The Lowest Non-UAM Trip Cost ($) column represents the cost
if the trip were completed entirely in a car (car mode).

Table 2 Test case for UAM operations between MDW and DPA airports

Pax #
Arrival

Time
(hh:mm)

Origin
Aerodrome

Destination
Aerodrome

Lowest
Non-UAM

Trip Cost ($)

Value of
Time
($/hr)

Maximum
Wait Time

(min)

Latest
Departure

Time (hh:mm)
P1 08:05 AM MDW DPA 98 164 33 08:38 AM
P2 08:12 AM MDW DPA 95 123 10 08:22 AM
P3 08:13 AM MDW DPA 105 132 6 08:19 AM
P4 08:20 AM MDW DPA 103 138 9 08:29 AM
P5 08:27 AM MDW DPA 100 104 1 08:28 AM
P6 08:30 AM MDW DPA 102 124 2 08:32 AM
P7 08:31 AM MDW DPA 101 142 22 08:53 AM
P8 08:37 AM MDW DPA 97 126 12 08:49 AM
P9 08:37 AM MDW DPA 101 177 29 09:06 AM
••• ••• ••• ••• ••• ••• ••• •••

The algorithm begins by grouping passengers P1 through P4 together. It then determines which passenger out of
these four needs to depart earliest. In this group, P3 is the earliest to leave at 08:19. However, this conflicts with the
arrival time of the last passenger in the group (P4), who arrives at the aerodrome at 8:20, rendering the initial group
unsuitable for ridesharing. The conflicting passengers are P3 and P4. The PANVEL algorithm eliminates P3 due to their
lower VoT and considers P5 as part of the group instead. This process repeats, with the earliest departing passenger
being P2 (at 8:22), who conflicts with passenger P5. P5, having a lower VoT than P2, is eliminated and replaced with P6.
The current group consisting of P1, P2, P4, and P6 is still not feasible, as passengers P2 and P6 are in conflict. P2 is
eliminated owing to their lower VoT, and P2 is replaced with P7. In this new group (P1, P3, P4, and P7), the earliest
departing passenger is P4 who is in conflict with P7. P4 has a lower VoT than P7; so, P4 is removed and replaced with P8.
Comparing among P1, P6, P7, and P8 results in a conflict between P6 and P8. Since P6 has the lower VoT out of the two,
P6 is eliminated and replaced with P9. This current group, consisting of P1, P7, P8, and P9, is time compatible and
allocated a trip.

‖The rationale behind VoT-based elimination is that passengers with lower VoT values also have shorter wait times based on our estimation
from Eq. (2), rendering them less flexible for ridesharing as defined in this model. Furthermore, removing one passenger from consideration will
introduce a new passenger, thereby increasing waiting times further. Consequently, passengers with higher VoT values are better equipped to tolerate
the now-increased waiting period according to our model that expresses wait time as a function of VoT.
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Now that P1, P7, P8 and P9 have been allocated a trip, the PANVEL algorithm moves on to P10 for the next round
of allocations, considering first the group of passengers P10, P11, P12, and P13. The process continues as above. If
a situation had arisen in which P1 was not able to be allocated to a shared flight, then the algorithm would restart,
beginning with P2 in a group with P3, P4, and P5.

Once the passenger list has been exhausted, the PANVEL algorithm outputs a list of all four-passenger flights.
Then, for unallocated passengers, it recalculates the wait times considering three-passenger flights in a four-passenger
aircraft. Since there are fewer riders among which to divide the costs, the per-passenger UAM costs are higher, and
the maximum wait times are lower. After exhausting the passenger list for three-passenger flights, passengers not
allocated in four-passenger or three-passenger trips are considered for two-passenger trips. Following two-passenger
trips, ridesharing is no longer possible. For single-passenger trips, which do not have any wait time, we refer to
the output of the computational framework, as described by Maheshwari et al. [19]. Following this, we assemble a
list of single-passenger riders by removing those passengers who have already been allocated to a four-, three-, or
two-passenger UAM trip from the list of all UAM-preferred trips.

IV. Results
A case study for the Cleveland Combined Statistical Area (CSA) was performed using the computational framework

in concert with the PANVEL algorithm. The results for this case study are presented in this section. A forthcoming paper
due to be published in the proceedings of the 34th Congress of the International Council of the Aeronautical Sciences
(ICAS) is planned to showcase ridesharing results for several other metro areas. The computational framework input
data sources match those detailed in Ref. [19], and results are based on operations with the same notional four-passenger
aircraft leveraged in Section III.

It is important to note that these results represent unconstrained operations considering ideal ridesharing conditions
assuming previously scheduled passenger movements. They do not take into account factors such as aerodrome
throughput capacities, pad/runway availability, weather conditions, etc. Thus, the results in this section present a near
upper bound on UAM passenger ridership in the Cleveland CSA within the assumptions of our modeling. Additionally,
we do not consider ridesharing in the road segments of either mode, which could impact results.

Our analysis has identified a total of approximately 1.98 million passenger trips daily among the Cleveland CSA’s
estimated 3.58 million residents. Within this region, we identified a total of 72 publicly accessible aerodrome locations
that could suitably be converted to support UAM operations. These 72 aerodromes correspond to 1,073 origin-destination
pairs potentially viable for UAM operations.∗∗ Leveraging this network of 72 aerodromes, the computational framework
calculates all possible passenger trips that could offer time savings with a UAM trip. For Cleveland, 158,371 passenger
trips were identified out of the 1.98 million passenger trips, wherein a portion of the car journey could be replaced by an
aerial segment to result in time savings. These 158,371 possible UAM trips serve as the input file to the PANVEL
algorithm.

Utilizing these parameters, the PANVEL algorithm generated results for implementing ridesharing in the Cleveland
metro area. Although our analysis suggests that, for Cleveland, UAM would not be preferred for any traveler without
ridesharing (i.e., no single-rider trips would be UAM-preferred in the area), a small number of trips would be
UAM-preferred trips with ridesharing enabled. The results are highlighted in Table 3.

Table 3 Cleveland UAM ridesharing-enabled results

# Passengers in Aircraft Four (4) Three (3) Two (2) Single (1) Total
# of UAM Trips 52 2 0 0 58
Passengers Ferried 208 6 0 0 214

Preliminary results for other metro areas indicate increases in UAM-preferred trips via ridesharing as well. The PANVEL
algorithm appears to reflect the potential for ridesharing by reducing the travel cost proportional to the number of people
flying together. Within Cleveland, we can further identify the aerodrome pairs best suited for ridesharing as seen in
Fig. 5. This leads us to summarize the busiest unidirectional flight routes in the Cleveland CSA:

∗∗These 1,073 origin-destination pairs represent aerodrome pairs through which at least one passenger could save time by taking the UAM mode.
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1) Cuyahoga County Airport (CGF) → Lansdowne Airport (O4G)
• 15 minute mode transition/embarkation time and 10 disembarkation/mode transition time
• 29.0 minute UAM flight duration
• 44 passengers out of 1,367 potential passengers have a UAM-preferred trip
• 11 daily flights

2) Galion Municipal Airport (GQQ) → Columbia Airport (4G8)
• 15 minute mode transition/embarkation time and 10 disembarkation/mode transition time
• 30.4 minute UAM flight duration
• 40 passengers out of 1,446 potential passengers have a UAM-preferred trip
• 10 daily flights

Fig. 5 Ridesharing-enabled UAM network for Cleveland. Aerodromes with UAM services are denoted by red
dots. Unserved aerodromes are represented by purple dots. The linewidth is a measure of the number of flights
between the two aerodromes, with a thicker line denoting more flights. (Background map data ©OpenStreetMap
contributors. Background Map Data available under the Open Database License [38])

Finally, we see a total of 25 possible aerodrome pairs, encompassing 20 aerodromes to support UAM operations.
This means that despite considering a total of 72 aerodromes, 47 of those do not have enough passenger demand to
support UAM operations within the bounds of our assumptions. Cuyahoga County and Lansdowne airports would see
the highest number of flights (15 and 14, respectively). We also observe that most aerodromes would have unbalanced
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arrival and departure rates that would necessitate a large number of repositioning flights.†† The current cost estimates
do not take into account these flights or repositioning costs, thus actual costs would likely be higher than the idealized
case presented here.

V. Conclusions
This paper introduces the Passenger Aggregation Network with Very Efficient Listing (PANVEL) algorithm designed

for examining the role of ridesharing in advancing Urban Air Mobility (UAM) operations. PANVEL is integrated with
a computational framework that analyzes the mode choices of passengers within a metropolitan area for daily trips.
The PANVEL algorithm estimates passenger-specific wait times based on their value of time and route to aggregate
passengers into aircraft yielding high load factors. PANVEL is a lightweight algorithm that captures meaningful
considerations regarding the economic attractiveness of ridesharing-enabled UAM trips for strategic analysis of particular
metro areas.

A demonstration case study is conducted to explore the workings of PANVEL. Using the computational framework
with the PANVEL algorithm activated, an increase in the number of passengers selecting the UAM option is estimated,
mainly due to cost reductions per passenger resulting from ridesharing. The algorithm places emphasis on maximizing
occupancy rates on board aircraft under the assumption that high load factors will ultimately lead to lower fares for
passengers.

There are many assumptions currently in the PANVEL algorithm that make results presented in this paper primarily
for demonstration purposes. At best, the results represent an “upper bound" on the benefits of ridesharing due to our
unconstrained modeling and assumptions of perfect knowledge about various parameters that in reality would come with
degrees of uncertainty. Ongoing and future work aims to refine these assumptions, develop improved estimates of UAM
operating costs, and obtain more reliable assessments of ridesharing and its role in enabling substantial UAM operations.
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