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Abstract— Demand capacity balancing is a key mechanism for 
maintaining safe and efficient Urban Air Mobility (UAM) 
operations. However, uncertainties such as departure delays and 
flight time variation may reduce the effectiveness of algorithms 
used for balancing and detrimentally impact the safety and 
efficiency of UAM operations. In this paper, the effects of these 
uncertainties on UAM operations are quantified by modeling a 
distribution of departure and flight time errors. A route network 
in the Dallas/Fort Worth metropolitan area was used to simulate 
traffic demand with and without uncertainty. Simulations were 
conducted with three main models of uncertainty – first 
uncertainty in departure time delay resulting in late takeoffs, 
second with uncertainty in flight times in addition to departure 
delays, and finally, uncertainty in departure times that cause 
either late or early takeoffs. Each of these simulations were 
performed using varied standard deviations to fully understand 
the effects of uncertainties. Results from these simulations were 
compared to a baseline simulation using the same parameters, but 
without any uncertainty. The results suggest that both safety and 
efficiency are significantly impacted by uncertainty even with 
relatively low uncertainty introduced. These results work towards 
quantifying the effects of uncertainty in flight scheduling for 
UAM. They will also aid in the further development of the demand 
capacity balancing algorithms for UAM operations and associated 
air traffic management. 

I. INTRODUCTION 
      Forecasts for the next few years predict that there will be a 
substantial number of aerial systems including unmanned 
aircraft systems (UAS) and various types of other small aircraft 
such as electric vertical takeoff and landing (eVTOL) vehicles 
operating in cities all over the world [1]. Existing infrastructure 
and air traffic management (ATM) procedures were designed 
to accommodate demand from commercial aviation and general 
aviation. As the National Airspace System (NAS) continues to 
experience increasing demand coming from new types of aerial 
systems, these current systems will be difficult to scale, making 
them insufficient to meet this expected demand. This was 
demonstrated through simulations performed by NASA 
referred to as the X-Series simulations [2,3,4] . To meet this 
demand, a new system to manage air traffic of this type, beyond 
what the current ATM system can offer, needs to be developed. 

      The Advanced Air Mobility (AAM) initiative has been 
envisioned by the Federal Aviation Administration (FAA), 
National Aeronautics and Space Administration (NASA), and 
industry partners to meet the demand and new challenges posed 
by integrating all these vehicles into the current ATM system. 
The goal of the AAM initiative is to develop an air 
transportation system that moves cargo and people between 
local, regional, and urban locations that have not been served or 
have been underserved by aviation using modern aircraft, 
technologies, and operations [5]. UAM is one of the AAM air 
transportation service concepts to carry passengers or cargo in 
and around metropolitan areas. The future of UAM market is 
envisioned with low cost, efficient, and high-density 
transportation in urban areas using new technologies, 
autonomy, and operational procedures [5]. Currently, 
development of the UAM ecosystem is moving at a swift pace 
with dozens of companies designing, building, and testing 
vehicles for commercial use. 
      In support of one of the AAM missions to accelerate the 
integration of UAM operations in the NAS, NASA planned a 
series of test activities focused on flight tests and simulations 
called the National Campaign (NC) [6]. The flight test series 
were intended to guide the collective community and 
stakeholders through a series of scenario-based test activities 
that involve vehicles and airspace management services 
operating in a live test environment. The Urban Air Mobility 
(UAM) subproject of NASA’s Air Traffic Management – 
eXploration (ATM-X) project supported the NC flight test 
activities by conducting simulation test activities with NC 
airspace partners each of whom demonstrated their airspace 
services’ capabilities prior to NC flight activities [7]. 
      To handle the proposed density of operations, UAM 
architectures have been proposed by many organizations and 
industry partners around the world [5]. Each system has both 
merits and downsides. However, they all have key features in 
common. They all contain vertiports to handle the physical air 
traffic. They also utilize strategic deconfliction to manage 
demand for a given capacity at airspace resources, as well as 
supporting services needed for safe and efficient UAM 
operations. Vertiports are like airports for UAM flights which 



are strategically placed in cities at designated areas that allow 
eVTOL aircraft to land and takeoff. Strategic deconfliction 
algorithms determine how to manage traffic throughout the 
entire route network to reduce the need of tactical separation 
provisions and increase adherence to safety constraints, while 
maintaining traffic flow volume. Lastly, the supporting services 
allow flights to be scheduled and be given clearance for takeoff 
and landing at vertiports. 
      Research and development work on these systems is 
ongoing, including work on the development of new airspace 
services for UAM operations. Work on the airspace services 
includes efforts toward the development of strategic conflict 
management of operations. However, there is a significant gap 
in current studies of airspace services of incorporating 
operational uncertainties. Operational uncertainties can be 
observed in all areas of transportation including commercial 
aviation. In UAM operations, uncertainties can include pre-
departure delays that may occur due to late arriving passengers, 
technical issues, passenger boarding delays, communication 
delays, and even traffic congestion at the vertiport They also 
include flight time variation which can be caused by wind or 
other environmental factors, resulting in a change in the aircraft 
predicted flight time. These delays negatively impact the safety 
and efficiency of air traffic, and can lead to conflicts, if not 
managed properly. Therefore, the strategic conflict 
management algorithms for UAM will need to account for these 
operational uncertainties to mitigate expected effects. 
However, how to incorporate these delays in an accurate 
manner within existing UAM architecture is still an open 
question. Effects of this uncertainty need to be incorporated into 
flight planning and strategic deconfliction to accurately 
quantify their affects. 
      This research study aims to quantify the impact of departure 
time uncertainty and flight time uncertainty on the safety and 
efficiency of UAM operations. Departure time uncertainty is 
the variance between the time at which aircraft depart and their 
expected departure times while flight time uncertainty is the 
variance in expected flight times on the different segments of a 
mission profile. The insights from this study can help aid 
further development of UAM services and operational 
capabilities.  
      Section II of this paper provides an overview of relevant 
work in this area thus far. Section III explains the simulation 
architecture used to conduct the study and details on its 
implementation. Section IV gives an overview of the approach 
and methodology of this study. Finally, Section V will present 
the fast-time simulation results for uncertainty. Section VI will 
provide a brief discussion of these results. 

II. BACKGROUND 
      Flight scheduling and planning has been studied extensively 
for several years [3,4,5]. Researchers have proposed methods 
of studying uncertainty in the form of departure time delays and 

airborne delays. One method proposed to understand 
uncertainty for cases with limited real-world data is by 
modeling uncertainties using normal distributions [8]. These 
authors studied uncertainty for UAM departure error (delays 
before takeoff) by modeling takeoff time deviations using a 
normal distribution with a mean of zero and standard deviation 
varied between 0 to 5 minutes. The authors of [8] conducted 
this uncertainty study using a scenario of the San Francisco Bay 
Area to quantify the impact of departure and airborne delays on 
early-stage demand levels. They estimated the impact of 
uncertainty by adding departure error to the flight after it was 
scheduled to simulate real life conditions. This delay was added 
under multiple variations of traffic demand. The scenario 
consisted of a simplified network of three vertiports at early-
stage UAM demand levels and once uncertainty was added they 
ran each simulation 10 times.  
      This paper aims to extend this work by building on the 
shortcomings of that work. This includes simulating a larger 
urban network of seven vertiports all around a single city and 
running each scenario simulation 100 times rather than 10 to 
provide more reliable results. The paper will also focus on the 
effects of uncertainty at peak network traffic to compare the 
real-life limitations of the network with the theoretical limits 
without uncertainty.  
      The simulations presented in this paper use a fast-time 
simulation tool that NASA has been developing to support the 
testing and verification of new airspace services and platforms 
that may be used in UAM operations. This simulation capability 
is necessary due to the lack of real-world performance data for 
UAM operations. The UAM Simulation Tool for Airspace 
services Research (USTAR) is a Python-based object-oriented 
fast-time simulation tool. Each of the components of the UAM 
system such as fleet operators, airspace services, and demand 
capacity balancing services are defined as separate classes. This 
allows users to separately test any new system or capability. 
The developers envisioned the next step in the development of 
this simulation tool to be the capability to model uncertainty in 
UAM operational environments. This will create the capability 
to quantify the effects of uncertainty on scheduling and 
performance of the system and assess how to accommodate for 
these uncertainties during operations planning. The next section 
presents a brief overview of the simulation tool. 

III. A FAST-TIME SIMULATION TOOL: USTAR 
This section provides an overview of USTAR, the tool used 

for uncertainty modeling and simulation. USTAR has three 
components that are important for this study: Fleet Operator 
(FO), Provider of Services for UAM (PSU), and Demand-
Capacity Balancing (DCB) algorithm. Below are definitions of 
these components. 

A. Fleet Operator (FO) 
      This component selects flights to propose to the PSU and 
then performs dispatch duties for the final schedule confirmed 
by the PSU. The proposed flights have a predetermined flight 



plan which consists of a set of waypoints the flight passes 
through to reach its destination. 

B. Provider of Services for UAM (PSU) 
This component supports the scheduling of flights by 

assigning estimated times of arrival at vertiports along the given 
route for each flight. Then, it calls the DCB algorithm to resolve 
any imbalances between capacity and the demand at those 
vertiports. If too many flights are planned at a vertiport during a 
certain time interval, the algorithm delays flights to alleviate this 
congestion. The final flight plan is then returned to the FO for 
execution. 

C. Demand-Capacity Balancing (DCB) 
The length of time for each scenario tested in this study can 

be evenly divided into a certain number of time bins. Each time 
bin has a maximum number of operations that are assumed to be 
handled safely. The demand-capacity balancing component 
contains an algorithm that delays a flight if there are too many 
flights projected to be operating at a certain waypoint or 
vertiport within a specific time bin. This allows safety 
assumptions to be met. 

Fig. 1. USTAR Simulation Flowchart 

Fig. 1 shows how these components work together during a 
simulation. Note that the brief descriptions given above are of 
the current implementation with USTAR, and they continue to 
evolve as the tool is under active development. Additional 
details of the tool will be published in subsequent technical 
reviews that are currently in writing [9].  

IV. APPROACH 
      In real-world operations, flights do not take off at the exact 
proposed departure time due to a variety of factors such as 
weather, late passengers, and technical issues. This section 
describes how operations uncertainties have been modeled in 
the USTAR environment, especially, the modeling of departure 
time and flight time uncertainty in UAM operations.  
      Departure time uncertainty occurs when flights are unable 
to take off at their designated time. Commercial aircraft have 
flight times of the order of a few hours. Meanwhile, UAM 

flights are typically on the order of tens of minutes. This means 
delays of just several minutes can significantly impact UAM 
operations. For example, a 10-minute flight delayed by just 5 
minutes is effectively delayed by 50% of its flight time. Flight 
time uncertainty may be caused by wind, precipitation, or other 
environmental factors. This can lead to slight increases or 
decreases in total flight time. To quantify the impact of these 
uncertainties on safety and efficiency of UAM operations, 
efficiency is measured by total departure delay and safety by 
demand capacity imbalances observed in the simulation results. 
      Uncertainty is added to the model after the PSU has 
provided the Fleet Operator with the final schedule to execute 
(see red box in Fig. 1). This uncertainty is modeled by a normal 
distribution with a standard deviation dependent on the average 
flight length of the flights within the scenario. A normal 
distribution is most commonly used when there is very limited 
data to model uncertainty [10,11]. Since UAM operations are 
not occurring today, no data is available that can be used to 
describe the nature of these uncertainties, though it may be 
possible to use data from other forms of transportation and 
extrapolate it for use in UAM scenarios. Normal distributions 
are widely used for modeling continuous data and are an 
effective way of modeling departure delays, especially when 
there are no significant external factors causing those delays. 
Fig. 2 shows an example normal distribution observed in our 
final trial with a mean of 0 and standard deviation of 120 
seconds.  

 
Fig. 2. Distribution of Departure Time Deviations from Final 

Trial. 
 

      To model uncertainties for flight time delays, a uniform 
distribution was used ranging from 0% to 5% of the flight time. 
This resulted in increasing or decreasing each flight time to 
within 5% of its original time. The motivation behind using 5% 
is that the proposed UAM flights are typically 20 minutes at 
most. Therefore, flight delays due to wind and aircraft type 
expected to be relatively small. 
      To quantify the effect of uncertainty on efficiency and 
safety a scenario with predetermined flights, waypoints, and 
vertiports was created. The scenario was designed for the  



 
Fig. 3. Scenario Map of Dallas-Fort Worth Area 

 
Dallas/Fort Worth Area which consisted of 7 vertiports, 10 
Origin-Destination routes, 5 crossing/merging waypoints, 8 
entry/exit waypoints into/out of controlled airspace shown – 
this is illustrated in Fig. 3. The scenario length was 120 minutes 
with 61 flights distributed over the route network. Each 
vertiport had a capacity of 2 flights per time bin and each 
waypoint had a maximum capacity of 4 flights per time bin. A 
time bin is defined as a period of 12 minutes with the 2-hour 
long scenario consisting of 10 time bins.  
      The number of flights in the scenario, 61, is based off the 
number of vertiports, seven, multiplied by the nine time bins 
(only nine since flights are not added flights at the very end of 
the scenario). Then two flights were removed due excessive 
scheduling conflicts. These flights were created to model a 
realistic scenario of high demand during morning or evening 
rush hour – more flights were scheduled in the beginning of the 
scenario and the amount tapers off towards the end of scenario. 
The traffic demand is illustrated in Fig. 4. The intention of this 
scenario is to evaluate the performance of the DCB algorithm 
in presence of uncertainty by inducing demand capacity 
imbalances. To provoke this situation, many flights were  

 
scheduled at a few vertiports. This concentrated flight demand 
is expected during peak travel times in metropolitan areas. Fig. 
5 shows the demand distribution heatmaps before and after the 
DCB algorithm is applied. In the heatmaps, the horizontal axis 

  
Fig. 4. Scenario Demand Over Time 



axis shows 12 time bins, where each bin represents a 12-minute 
interval, and the vertical axis shows vertiports. It is important 
to note this scenario was originally 2 hours long, with 10 time 
bins of 12 minute length. 12 time bins are shown because DCB 
resulted in delaying flights, lengthening the entire scenario. The 
number in each cell shows the number of flights assigned to a 
specific vertiport in each time bin. Once the scenario had a 
maximum number of flights that could be scheduled without 
causing demand capacity imbalances, added uncertainty was 
incorporated into the scenario. This approach provides 
significant insight into better understanding how uncertainty 
can affect high density routes. Another approach used to induce 
demand-capacity imbalances was by setting departure times 
near the end of each time bin. This caused the original flights to 
be pushed into to the next time bin when a departure time delay 
was added, resulting in a cascading affect throughout the 
scenario, which is the basis for this study. Collectively, these 
approaches allow for the study of how well the DCB algorithm 
can handle delays. 
      The same traffic scenario described earlier was used to 
simulate many different variations of uncertainty. The first set 
of simulations modeled the delay by implementing a departure 
time uncertainty using a one-sided normal distribution with a 
mean of 0 seconds and a standard deviation of 60, 90, or 120. 
A one-sided normal distribution was used to avoid early 
departures (which correspond to negative delay) and any 
negative values were set to zero (i.e., no delay). Each of these 
three scenarios were run 100 times and averaged out. The next 
set of simulations modeled the delay using a two-sided normal 
distribution using the same parameters which were also run 100 
times each. To be explicit, in this set of simulations, early 
departures were included (which correspond to negative 
delays). Early departures can occur because flights can be ready 
for take-off earlier than their scheduled departure times if all 
passengers and cargo are loaded early. It is necessary to 
understand if early departures could also create demand 
capacity imbalances and the magnitude of those affects as 
compared to no early departures. Finally, the last set of 
simulations involved including flight time uncertainty modeled 

by the uniform distributions and departure delays modeled by a 
two-sided normal distribution. 

V. RESULTS 
      Fig. 5(b) is the base scenario without uncertainty to which 
all the new simulation results are compared. All factors remain 
the same except for varying uncertainty in the following 
simulations. For Figs. 6-8, each of the 3 heatmaps in each figure 
represent the average traffic of 100 simulations. 

A. Baseline case with no uncertainties 
      Fig. 5(a) shows the initial demand distribution of the 
scenario before scheduling where all vertiports are overcapacity 
in at least one time bin; some of the overcapacity time bins are 
shown highlighted with red borders. Note that the vertiport 
capacity is assumed to be 2 vehicles per time bin. Fig. 5(b) 
shows the demand distribution after DCB is applied and delays 
certain flight before takeoff. This limits the number of vehicles 
at each vertiport to 2 for each time bin. From Fig. 5(b), we can 
see that the DCB algorithm successfully resolved all predicted 
imbalances, such that there are no overcapacity time bins post 
demand-capacity imbalance resolution.  

B. Departure time uncertainty with no early takeoff allowed 
      For these simulations, departure time uncertainty was 
incorporated by adding a delay value resulting from a one-sided 
normal distribution with a mean of zero and standard deviations 
of 60, 90, and 120 seconds and any negative departure values 
were set to zero (no delay).  
      Fig. 6 shows the average traffic distributions in each of the 
simulations after 100 runs. Comparing the vertiports in the base 
scenario, Fig. 5(b), and Fig. 6, there are clear demand capacity 
imbalances in the latter figure. Since each vertiport can only 
handle at most 2 operations within a time bin, multiple demand 
capacity imbalances are seen and highlighted in red. For the 60 
second standard deviation, there is a 11.16% increase in total 
delay due to uncertainty itself using the average experimental 
delay aggregated from 100 trials. There is a 15.55% increase in 
delay when standard deviation in delay uncertainty was 90 
seconds and 19.25% increase in delay when the standard 
deviation was 120 seconds. 

 

 
        (a)                   (b)  
Fig. 5. Heatmaps showing the traffic distribution within each bin at each vertiport. (a) Original Distribution before balancing, (b) 

Distribution after balancing. 
 



C. Departure time uncertainty with early takeoff allowed 
      In the next set of simulations, departure time uncertainty 
was incorporated using a two-sided normal distribution using 
the same parameters (mean zero and standard deviation values 
of 60, 90, and 120 seconds). Using a two-sided distribution 
implies that early departures were permitted. Fig. 7 shows the 
heatmaps for these trials with demand-capacity imbalances. 
Compared to the previous set of simulations discussed in Sec. 
V.A, they seem to appear at different locations and time bins. 
Moreover, compared with the baseline metrics without 
uncertainty from Fig. 5(b), there was an 8.67% increase in total 
delay from the 60 second standard deviation, 15.76% for 90 
seconds, and 22.15% for 120 seconds. It may seem 
counterintuitive that total delay increased, even when early 
departures were permitted. It is possible ignoring negative 

delays in the previous set of simulations lessened the variance 
in departure flight times. Since these effects can cascade, even 
variance from permitting early departures can affect scheduling 
of future flights and consequently, impact the total delay. 

D. Flight time uncertainty  
      These last set of simulations incorporated flight time 
uncertainties. The results of these simulations are shown in Fig. 
8. As compared with the baseline metrics without uncertainty 
from Fig. 5(b), there was a 9.97% increase in total delay from 
the 60 second standard deviation 14.83% for 90 seconds and 
21.01% for 120 seconds for these trials. A similar amount of 
demand capacity imbalances is seen at the vertiports to the 
simulations from subsection B. This suggests that modeling 
flight time uncertainty in this way may only have a minimal 
impact on flights as compared with departure time delay.

 

 
(a)            (b)                    (c) 

Fig.6 Heatmap of average observed demand with no early departures: (a) Standard deviation of 60 seconds, (b) Standard deviation 
of 90 seconds, (c) Standard deviation of 120 seconds 

 

 
(a)            (b)                    (c) 

Fig.7 Heatmap of average observed demand with early departures: (a) Standard deviation of 60 seconds, (b) Standard deviation of 
90 seconds, (c) Standard deviation of 120 seconds 

 
 

 
(a)            (b)                    (c) 

Fig.8 Heatmap of average observed demand with early departures and flight time uncertainty: (a) Standard deviation of 60 
seconds, (b) Standard deviation of 90 seconds, (c) Standard deviation of 120 seconds 



 
The results from this trial show a decrease in total delay for 
the 60 and 90 second standard deviation as compared to our 
initial trial with no early departures. 
     This seemingly inconsistent finding is due to the large 
range of values computed within each of the 100 trials. For 
the scenario with no early delays the range is only about 105 
minutes, with a minimum of 410 minutes and maximum of 
515 minutes.  However, the scenario with flight and departure 
time uncertainty has a range of about 255 minutes with a 
minimum of 380 minutes and maximum of 635 minutes. This 
highlights that the standard deviation for the trials with 
departure and flight time uncertainty are substantially higher 
as compared with the trials with no early departures, as shown 
in Table II below. This suggests that the final scenario 
presents even more challenges as the variance in outcomes is 
very large. Another reason for this finding is that positive 
departure time delay and reduced flight time would mitigate 
the impact of each other and vice versa. 
      Focusing on the trials a standard deviation of 120, Fig. 9 
describes the variance in the total delay from each of the 100 
runs of the scenario. This variance highlights how much of an 
impact uncertainty has on nominal operations of UAM. In the 
trial with no early departures (green), the highest total delay 
value is around 510 minutes. Whereas, for the trial with both 
departure and flight time delay (blue) it is around 640 
minutes. A one-way analysis of variance (ANOVA) test was 
done to identify if there were differences between the average 
delays observed in each of the three cases. Assuming that the 
three cases had similar average delay as the null hypothesis, 
the test failed to reject this null hypothesis at the 5% 
significance level, with a calculated p-value of 0.464. It is 
also important to note that the one-sided normal distribution 
from the first round of simulations reduces the number of 
flights directly delayed due to uncertainty. 
 

 
Fig.9 Distribution of Total Delay from Each Trial with 

Standard Deviation of 120 seconds 
 

      Table I shows the first trial from each set of 100 
simulations that were run from all the different uncertainty 
types. It shows that the number of flights assigned uncertainty 
was greatly reduced with the one-sided normal distribution 
compared with the other 2 uncertainty types where negative 
values were included. The mean delay here is calculated by 
dividing the total delay by the number of flights delayed in 
the scenario. The number of flights delayed includes all 
delayed flights, not just flights that were directly assigned 
delay. 

TABLE I.  DELAY STATISTICS FOR UNCERTAINTY  

 
 
      Table II is a summary of the results from the simulation 
studies and shows the impact of uncertainty on performance. 
As compared with the baseline case (no uncertainties) where 
the total delay was 387.066 minutes, these cases with 
uncertainty took between 8 and 22% longer. Not only this, 
but this extra delay forces the scenario to continue running 
for two extra time bins as shown in Figs. 6, 7, and 8 as 
compared to the only 10 time bins initially needed as shown 
in Fig. 5(b).  
      Our results have quantified the uncertainty as a measure 
of total delay and show the magnitude of these effects through 
demand capacity imbalances. The results show how, as the 
variance in delay is increased, even if the average delay times 
are similar the standard deviations are very different. This 
shear range of possibilities needs to be planned for in UAM 
operations. 

VI. CONCLUSIONS 
      Operational uncertainties in the form of departure delays 
and flight time variation can be caused by early/late arriving 
passengers, communication errors, or environmental factors 
(i.e. wind). These uncertainties have the potential to cause 
problems for existing ATM algorithms. The research 
conducted quantifies the effects of these operational 
uncertainties resulting from departure time delay and flight 
time variation. Through multiple simulations, departure time 
delay was modeled as a one-sided or two-sided normal 
distribution and flight time variation was modeled as a 
uniform distribution. Incorporating these operational 
uncertainties provides insight into better understanding how 
they affect the safety and efficiency of UAM operations. 
      The departure and flight time uncertainty models can 
more closely capture the behavior of a realistic UAM 
architecture. Our results showed that both total delays and 
demand-capacity imbalances increased by the addition of  



TABLE II.  RESULTS SUMMARY 

Results of Departure Time Error Simulations 

Description 
 

Simulation 
 

Standard 
Deviation 
(seconds) 

With 
Negatives  

Mean of Total 
Delay (minutes) 

Standard 
Deviation of 

Delay (minutes) 

Increase in 
Total Delay 

 
 

No Uncertainty 
 

Base Scenario 
 

N/A 
 

N/A 
 

387.066 
 

N/A 
 

N/A 
 

 

Departure Time 
Uncertainty (no 
early departures) 

#1 60 No 430.28 18.832 11.16% 

#2 90 No 447.257 23.676 15.55% 

#3 120 No 461.591 28.865 19.25% 
 

Departure Time 
Uncertainty (with 
early departures) 

 

#4 60 Yes 420.627 24.36 8.67% 

#5 90 Yes 448.079 46.752 15.76% 
#6 
 

120 
  

Yes 
  

472.797 
  

56.463 
  

22.15% 
 

 

Departure + Flight 
Time Uncertainty 

#7 60 Yes 425.681 27.434 9.97% 

#8 90 Yes 444.458 43.559 14.83% 

#9 120 Yes 468.383 60.943 21.01% 
 

      

 
 

uncertainty to the model. Our results showed that efficiency, 
as measured by total delay, was significantly decreased in the 
presence of uncertainty. The decrease in efficiency will lead 
to higher costs of operation, longer wait times, and lower 
capacity. Our results showed that safety, measured by 
demand capacity imbalances, was also affected in the 
presence of uncertainty. These results work towards 
quantifying the effects of uncertainty in flight scheduling and 
allow for a better understanding of the impact of uncertainties 
in the form of departure time delay and flight variation on 
UAM operations. This research contributes towards 
improving current solutions to mitigate these effects and 
improving overall UAM simulation capabilities. 
      The next step of this study is using these results to 
propose, test, and implement mitigation strategies to help 
resolve efficiency and safety issues caused by departure time 
delays and flight time variation. For example, one possible 
mitigation strategy is En Route Conflict Management which 
can provide flights in transit with real-time information. This 
information can be used by flights to adjust their speed along 
the trajectory to satisfy demand capacity balancing 
requirements.  
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