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Abstract—Runtime Assurance (RTA) is a design-time archi-
tecture for safety-critical systems where an internal monitor acts
upon detecting a violation of a property. The simplex architecture
is an instance of RTA, where the action taken is to hand control
of the overall system to a trusted controller when an untrusted
one violates a safety property. Simplex RTA is emerging as a
method for allowing AI/ML and other unverified software to be
integrated into safety-critical applications like aircraft. To this
end, the American Society for Testing and Materials (ASTM)
and NASA have each published guidelines on the use of RTA in
such systems.

In the simplex RTA framework, a system has an advanced
controller (AC) and a reversionary controller (RC). The system
is allowed to operate with the AC until a runtime monitor detects
that some property has been violated and then the RC takes
over. Assuming that the sample rate of the monitor will detect
improper functioning with enough time for the RC to correct the
impending problem, and that the RC is trusted, the system will
operate as intended. This use of the simplex RTA framework
can allow for the integration of untrusted, but possibly more
performant, controllers in a safe way.

This paper presents a formalization of a simplex RTA frame-
work in the Prototype Verification System (PVS) theorem prover
using an embedding of differential dynamic logic (DDL) called
Plaidypvs. A novel feature of this framework is that it can be
instantiated at different levels of abstraction. This feature allows
for the formal verification of a system with an untrusted black
box component, such as an AI/ML controller.

This paper does not address the many difficulties in deploying
RTA in an industrial-level system. Instead, the focus is on the
formal verification of the simplex RTA framework in the language
of hybrid programs. Hybrid programs are programs that include
both discrete and continuous dynamics and can be used to model
complex cyber-physical systems. Plaidypvs is a tool that enables
formalization of hybrid programs in the PVS theorem prover.
Plaidypvs enables the verification of the general simplex RTA
framework and then, by specializing some components of the
hybrid program, verifying instances of the framework while
treating the untrusted component as a black box.

A selection of Unmanned Aircraft Systems (UAS) operations
are shown as instances of the general RTA framework in PVS.
This offers the benefit of design time verification of relevant safety
properties to the system, and it also gives requirements on the
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sample rate of sensors that determine the time interval in which
the ‘switch’ property of the RTA framework is checked.

Index Terms—Runtime Assurance, Hybrid Programs,
Plaidypvs, PVS

I. INTRODUCTION

Runtime verification is an analysis done on cyber-physical
systems in which the system is monitored by extracting
information during runtime and performing a check on the data
to see if certain properties are satisfied or violated in order to
detect and possibly take action to correct the system. Runtime
Assurance is the design-time integration of runtime verification
into the specification of a system. This design choice ensures
there is a monitor for the system so that if necessary conditions
for an operation are violated, some action may be taken to
correct the behavior before a critical failure.

The focus of this work is on the application of a Runtime
Assurance framework called the simplex architecture. In this
architecture, a system is designed to have an advanced con-
troller (AC) and a reversionary controller (RC). The system
operates according to the AC until a runtime monitor detects
that some property has been violated, at which time the
RC takes over. Assuming that the monitor is able to detect
improper functioning with enough time for the RC to correct
the impending problem, and that the RC is trusted, this use
of RTA allows for the integration of untrusted controllers in a
safe way. Due to the ubiquity of the simplex RTA framework,
the term RTA will be used to refer to a simplex architecture
for the remainder of the paper.

With the rising interest in utilizing AI/ML components in
aviation, it is necessary to be able to verify the safety of
systems that rely on these types of black box components to
perform operations. Having these components monitored and
a trusted controller available to the system as a "plan b" is a
simple way to ensure there is a potential to safely operate.

As the reliance of software increases and its usage in
systems takes on safety-critical roles, there is an increasing
necessity to guarantee the reliability of these software sys-



tems. The verification of software systems is traditionally
done though human inspection, simulation, and testing. These
methods are lacking in either rigor or feasibility. Both human
error and the time required to fully test all cases of a system
output make these methods not reasonable avenues for systems
where reliance on their correct operation is essential for
safety. For these reasons, the approach of formal methods in
the verification described in this paper aims to show, with
mathematically rigorous techniques and tools, that the system
is guaranteed to have specific properties.

Plaidypvs (Properly Assured Implementation of Differential
Dynamic Logic for Hybrid Program Verification and
Specification) [1] is a formal embedding of Differential Dy-
namic Logic [2]–[4] that allows for the formal specification
of, and reasoning about, hybrid programs within the Prototype
Verification System (PVS) interactive theorem prover [5]. Hy-
brid programs are used to model hybrid systems, i.e., systems
with both continuous and discrete behavior, which often arise
in safety- and mission-critical applications [6]. The details on
how these models are constructed are not the focus of this
work and are therefore omitted. Simply put, Plaidypvs allows
a hybrid system to be specified using the syntax of hybrid
programs. These hybrid programs can be proven to satisfy a
given property, such as a safety requirement, in a rigorous
way. This proof is done by manipulating the statement in a
logically sound way using a variety of rules that relate the truth
value of a statement with another, ideally simpler, statement.
Therefore, the goal of proving properties in Plaidypvs is to
use rules to reduce the complexity of statements until they are
either trivially true, or there is a simple argument to be made
as to why the statement holds. A novel feature of Plaidypvs as
compared to other formal verification tools for hybrid systems
is that Plaidypvs is able to reason about hybrid systems that
do not have their components explicitly defined. This is an
essential feature in order to reason about systems that rely on
AI/ML components in their controller.

This paper presents the application of a formally verified
specification for the RTA simplex framework in Plaidypvs
to verify safety requirements in three examples of UAS
operations with AI/ML controls. A brief introduction to the
RTA simplex framework in Plaidypvs is given along with
rules necessary for the proof of the statements found in the
examples.

II. NOTATION

In order to model hybrid systems, hybrid programs are
defined by components given in Table I. Note that hybrid
programs can also be built out of the composition of other
hybrid programs, also defined in the table. To check properties
of hybrid systems and impose requirements for a system it is
also important to have a notion of a Boolean expression on
the inputs/outputs of a system and a sequent for the logical
statements. True and False in Plaidypvs will be denoted ⊤ and
⊥.

Representation Definition
x := ℓ Discrete assignment of variable x to the

value ℓ
x′ := ℓ&P Differential system symbolizing the con-

tinuous evolution of the variable x with
domain P

?P Test if the system output at the given
moment satisfies P

α;β Sequential execution of two subprograms
α ∪ β Nondeterministic choice between two

subprograms
α∗ Fixed but unknown number of repetitions

of a hybrid program
α ≡ β Hybrid program equivalence
[α]P allruns asserts that all runs of a program

α ends an a state that satisfies P
⟨α⟩P someruns asserts that some run of a pro-

gram α ends an a state that satisfies P
Γ ⊢ ∆ The dL-sequent predicate with lists of

Boolean expressions Γ,∆

TABLE I
RELEVANT NOTATION FOR HYBRID PROGRAMS WHERE α, β ARE HYBRID

PROGRAMS AND P IS A BOOLEAN EXPRESSION ON THE STATE OF THE
SYSTEM AT A GIVEN MOMENT.

III. RELATED WORK

The underlying of idea of the simplex architecture is long
established in the development of safety-critical control sys-
tems, [7]–[9] The paper [10] models the simplex architecture
using hybrid systems, and is focused on computing barrier
certificates, which help separate recoverable and unrecoverable
states. A recoverable state is a state in which the reversionary
system takes over, and is guaranteed to i) be safe and ii)
eventually give control back to the advanced system. The
general technique of barrier certificates is used for safety
verification of hybrid systems [11]. Reachability conditions
and guarantees for the simplex architecture are considered in
[12]. The simplex architecture for flight control systems is
discussed in [13], which is also where Figure 4 is adapted
from. The simplex architecture has recently been applied to
systems where the advanced controller is machine learning
and artificial intelligence based [14]. Simplex architecture
is examined as a method of non-traditional assurance for
a cube sat example in [15]. The simplex architecture has
been extended and expanded to more complex architectures,
including a distributed simplex architecture for multi-agent
systems where separate components are each an instance of
the basic simplex architecture [16]. A multi-level version
of the simplex architecture for flight planning is studied in
[17], where multiple reversionary options are available. More
generally, the simplex architecture is a specific example of
runtime assurance, where there is a large body of research
apply it to cyber-physical systems [18]. Both ASTM and
NASA have guidance documents intended to help practitioners



in the proper application of runtime assurance [19], [20]. This
paper does not address the many difficulties in deploying
runtime assurance to an industrial-level system [21]. Instead,
the focus is on the formal verification of the simplex runtime
assurance framework in the language of hybrid programs, and
applications to the airspace domain.

The work here represents a continuation of the ongoing
work presented in [22]. Here, the focus is on the application
to formal verification of example situations or controllers for
autonomous UAS systems. These applications use Plaidypvs
[1], which is an operational embedding of differential dy-
namic logic (dL) [2]–[4] in the theorem prover Prototype
Verification System (PVS) [5]. Differential dynamic logic has
been used in the formal verification of several safety-critical
systems, including airborne collision avoidance systems [6],
[23], navigation of ground robotic systems [24], [25], train
controllers [26], [27], control with reinforcement learning [28],
and others.

IV. RTA AS HYBRID PROGRAMS

This section presents a general framework for RTA in
Plaidypvs where the entire system, including trusted and
untrusted components, are modeled as hybrid programs. In this
architecture, it is assumed the monitor does not instantaneously
detect when the switch condition is violated, but rather samples
at least every τ ∈ R≥0 amount of time. This assumption
models real-world systems where the monitor is checked with
discrete samples.

To model this sampling, the notion of a monitored hybrid
program is introduced. This monitored hybrid program can
be defined as a function mτ,M , where τ is the maximum
allowed amount of time between samples and M is the
switch condition. This function takes a hybrid program α and
produces a hybrid program that has the same dynamics as α,
but is restricted to the runs where M has been true within τ
units of time of the final state. For a hybrid program defined by
the differential system x′ = ℓ&P , the associated monitored
hybrid program is defined as:

mτ,M (x′, ℓ, P ) = (?M ; t := 0;

(x′ = ℓ, t′ = 1&P ∧ t ≤ τ)
∗
,

(1)

where t does not appear in x. For brevity, the specifics of
this function are omitted, but they can be found in the PVS
development of this work1.

A. Simplex RTA

Let the advanced and reversionary components be modeled
by hybrid programs α and β, respectively, and let S be the
Boolean expression describing the safety property that must
be always satisfied by the RTA system, where the function
mτ,M enforces that the hybrid program does not evolve for
more than τ ∈ R≥0 units of time without the property M
being checked.

1The general RTA framework and examples presented in this paper are
specified and verified in Plaidypvs. The development is available at https:
//github.com/nasa/pvslib/tree/master/dL/dL_RTA/.
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Fig. 1. The simplex RTA framework. In this work the advanced and
reversionary systems are denoted by hybrid programs α and β respectively.

In this system, the RTA framework can be written as the
hybrid program:

((?M ;mτ,M (α)) ∪ (?¬M ;β))
∗ (2)

This RTA structure enforces the switch to β when the property
M is not satisfied, but note that the switch back to the
advanced system α is not specified; β is allowed to run for as
long as it wants regardless of the value of M . Extensions to
handle a switch back within Plaidypvs are discussed shortly.
For an RTA system, it is desired to show that the safety
property S is always satisfied, written in Plaidypvs as:[

((?M ;mτ,M (α)) ∪ (?¬M ;β))
∗]

S.

1) A Rule for Simplex RTA: To prove this invariant property,
a general rule was specified and proven in Plaidypvs that re-
lates the safety of the overall system to safety of its individual
components:

Γ ⊢ S ∧ (M ∨G) S ⊢ [mτ,M (α)](S ∧ (G ∨M))

G ⊢ [β∗]S

Γ ⊢ [((?M ;mτ,M (α)) ∪ (?¬M ;β))
∗
]S

(RTA)

where G ∈ B is a user-instantiated condition that represents
a property that carries over when switching between the
advanced system to the reversionary system.

The rule RTA takes the RTA system in Formula (2) and
generates three subgoals. The first subgoal Γ ⊢ S ∧ (M ∨
G) corresponds to the initial state of the system, the safety
property S must be true to start, and either the monitoring
condition M or the switch property G must also hold. The
second subgoal S ⊢ [mτ,M (α)](S ∧ (G ∨ M)) is the proof
condition that if the system is in a safe initial point, every
monitored run of the advanced system will satisfy S, and have
the property that when the monitoring condition M is not true,
then the switch condition G holds (note G∨M ⇐⇒ ¬(M →
G)). The third subgoal G ⊢ [β∗]S requires proving that when
starting from the switch condition, the reversionary system
may run any finite number of times and the safety property S
is satisfied.

B. RTA with switchback

To allow a system to switch back to the advanced controller,
β may be monitored for another property N such that ¬N →

https://github.com/nasa/pvslib/tree/master/dL/dL_RTA/
https://github.com/nasa/pvslib/tree/master/dL/dL_RTA/


M , which ensures that when a switch back to the advanced
controller is available (up to the sampling rate), the dynamics
can be specified as

(?M ;mτ,M (α)) ∪ (?¬M ;mτ,N (β)) . (3)

Analogous to the standard case, it is desired to show that the
safety property S is always satisfied, written in Plaidypvs as[

((?M ;mτ,M (α)) ∪ (?¬M ;mτ,N (β)))
∗]

S.

For the switchback system, an additional property can be
shown that there is some execution of the program that takes
unsafe inputs and returns the system to a safe state. This
property is written as

¬S ⊢ ⟨((?M ;mτ,M (α)) ∪ (?¬M ;mτ,N (β)))
∗⟩S.

1) A safety rule for RTA switchback: The following rule
was specified and proven in Plaidypvs for the RTA system
with switchback:

Γ ⊢ S ∧ (M ∨G)

S ⊢ [mτ,M (α)](S ∧ (G ∨M))

G ⊢ [mτ,N (β)
∗
]S ¬N ⊢ M

Γ ⊢ [((?M ;mτ,M (α)) ∪ (?¬M ;mτ,N (β)))
∗
]S

(RTASB)

Where just as in the RTA rule G ∈ B is a user-instantiated
condition that represents a property that carries over when
switching between the two systems.

The rule RTASB takes the RTA system in Formula (3) and
generates four subgoals. The first three subgoals are equivalent
to the subgoals appearing in the RTA rule with an additional
final subgoal that when the switchback monitor condition N
is false the monitor condition M holds.

2) A regain rule for RTA switchback: The following rule
was specified and proven in Plaidypvs for the RTA system
with switchback:

¬M ⊢ ⟨mτ,N (β)⟩M ¬N ⊢ M

¬M ⊢ ⟨((?M ;mτ,M (α)) ∪ (?¬M ;mτ,N (β)))
∗⟩M

(RTAR)

The rule RTAR takes the RTA system in Formula (3) and
generates two subgoals. The first subgoal asserts that when
the system begins in an unsafe state, there is some run of
the monitored reversionary system that leads to a safe state.
The second subgoal asserts that when the switchback monitor
condition N is false the system satisfies the safety property.

V. EXAMPLES

A. Following the leader

The first example presented is a simple hysteresis controller
applied to one ‘follower’ UAS following another ‘leader’ UAS,
with a RTA switch mechanism that prevents the follower drone
from getting too close to the leader, see Figure 2. This is
an extension of the example in [22] that has a single UAS
braking to a complete stop. In this model, the leader UAS
is not controlled and is assumed to maintain a velocity that
is bounded above and below by two non-negative constants
Vmin, Vmax. The follower UAS is controlled by a black box

Fig. 2. Follow the leader dynamics.

controller when the distance is sufficiently far from the leader.
This advanced controller is given by

α ≡ (F ′
s = fv, L

′
s = ℓs), (4)

where fv , ℓs are real functions dictated by current state values.
The reversionary system is given by braking dynamics, that
brake the following UAS to the minimal velocity Vmin. This
is given by the hybrid program

βinit ≡ (?(fv <= Vmin);F
′
x = fv, L

′
x = ℓs, )∪

(?(fv > Vmin);L
′
s = ℓs, f

′
v = −A,L′

x = ℓs)
(5)

similarly, the advanced system controlling the follower UAS
is modeled by generic dynamics as well

β = mτ,⊤(βinit). (6)

Suppose a monitored system must be constructed so that the
property

Lx − Fx > D, (7)

is satisfied, where the spacing constant D ≥ 0 specifies the
minimal distance between the follower and the leader. This
safety property, the sampling rate τ , and the velocities of the
follower and leader determine the switch property, M , defined
by

(Ls − Fs) ≥ D − At2τ
2

+ Fvtτ + Fs, (8)

where
tτ = (Fv − Vmin)/A− τ (9)

is the time it would take the follower to slow down to a speed
less that Vmin, including the delay from the sampling rate,
while maintaining a distance of D from the leader UAS. Note
that because tτ is a time value and therefore positive, the
requirement that τ ≤ (Fv −Vmin)/A must be introduced. This
gives a practical requirement on the sampling rate τ for this
RTA system to behave correctly.



Fig. 3. Productive conflict avoidance dynamics.

With all components defined, the safety property being
shown takes the form

Vmin ≤ ℓs ≤ Vmax, Lx − Fx > D,⊢[
((?M ;mτ,M (α)) ∪ (?¬M ;mτ,N (β)))

∗]
.

Applying the RTA rule with G given by

Fs ≤ (Fv − Vmin)/A ∧ Vmin ≤ ℓs ≤ Vmax (10)

results in the three subgoals

Vmin ≤ ℓs ≤ Vmax, Lx − Fx > D,

⊢ Lx − Fx > D ∧ (M ∨G)
(11)

Lx − Fx > D

⊢ [mτ,m (α)] (Lx − Fx > D ∧ (M ∨G))
(12)

Fs ≤ (Fv − Vmin)/A ∧ Vmin ≤ ℓs ≤ Vmax

⊢ [β∗] (Lx − Fx > D) ,
(13)

the first of which is trivial, and the second two can be proven
using a mixture of classical dL rules and real number reasoning
in PVS.

B. Productive conflict avoidance

The next example is a two-dimensional verification of what
is called productive conflict avoidance, see Figure 3. Here
the UAS being controlled operates with a general black box
controller, until an intruder vehicle gets too close, heading in
the opposite direction. One application of this scenario would
be package delivery within an urban canyon. The reversionary
system causes the UAS to travel laterally to a safe distance
away from the intruder, and then the advanced controller
is given control of the UAS again. It is assumed that both
the own-ship and intruder are travelling at the same lateral
coordinate, with the own-ship going in a positive direction,
and the intruder going in the negative direction.

Here the advanced system is given by

α ≡ (S′
x = Vx, I

′
x = Iv). (14)

The reversionary system is a lateral movement of the UAS,
while maintaining the velocity in the forward direction

α ≡ (S′
x = Vx, S

′
y = Vy, V

′
y = −A, I ′x = Iv). (15)

The safety requirement on this system is that the maximum
of the horizontal and lateral distance between the UAS is
always greater than some distance parameter D, i.e.

max(|Sx − Ix| , |Sy − Iy|) ≥ D (16)

The switching condition is defined such that the horizontal
distance between the two UAS is guaranteed to be greater than
or equal to D, until the lateral distance is greater than or equal
to D, at which time the UAS pass each other

(Ix − Sx)− (Iv + V x) ∗ (
√

2D

A
− τ) ≥ D, (17)

where τ , the sampling rate is required to be less than 2D
A .

In this system, the advanced controller may switch back
once the intruder is a horizontal distance greater than D away
from the own-ship, defining N as

(Sx − Ix) ≤ D. (18)

Putting together the advanced and reversionary controller,
with the monitoring and switchback condition results in the
system defined in (3).

For this system it is advantageous to show both that the sys-
tem is safe, which can be done using the RTASB rule, and that
in the event of a violation of the switch condition, eventually
regaining the condition is obtained through the reversionary
controller, which can be shown using the RTAR rule. When
applying the RTAR rule two subgoals are generated:

¬M ⊢ ⟨mτ,N (β)⟩ (19)

Sx − Ix > D

⊢ (Ix − Sx)− (Iv + V x) ∗ (
√

2D

A
− τ) > D.

(20)

The second subgoal can be proven trivially, and the first
subgoal can be shown by solving the differential equation
defining β and selecting a point in time where the two UAS
have flown far enough past each other.

C. Return-to-safe dynamics

For this example we consider a fixed wing craft moving
through a cylindrical airspace. Within a given region, the
aircraft operates with non-specified dynamics, e.g., moving
by some AI generated flight path, where position and speed
at sample points may be known but the dynamics are not
explicitly defined. To guarantee the craft does not fully exit
the prescribed airspace O, the RTA system will be defined
such that there is a safe region G where the low confidence
controller lc is the default, a warning region W where the
craft will revert to the high confidence controller hc, and a
no-fly area. The goal of this example will be to show that



the dynamics and design of the system keep the craft in the
operational airspace O.

The following are taken as assumptions of the system. The
height of the craft off of the ground is ignored for this example,
therefore for simplicity only two dimensional movement will
be discussed and all operational volumes will be described by
their projected down form. For example, a cylindrical region
with the vertical height off of the ground would project down
to a circle so further discussion will refer to the region as a
circle. In this example the two dimensions will be referred to
as the x and y directions. A depiction of the region is given
in Figure 4. Second, it is assumed that the low confidence
black-box controller has bounded velocity in both the x and
y dimensions, i.e. the velocity is bounded above by constants
Vx and Vy for the x and y directions respectively.

Fig. 4. The operational airspace O for the craft given as the union of the
safe region G where the low confidence controller is allowed to operate and
the warning region W where the RTA system switches to the high confidence
controller.

The region in which the low confidence, black-box con-
troller lc is used for the system is a circle G centered at the
origin. Once the craft leaves this region it enters a warning
region where the high confidence controller hc is engaged. The
high confidence controller is defined by a Dubins turn (see,
[29]) followed by a straight line path to the origin. The high
confidence controller is intended to have the craft execute a
counter-clockwise turn until such a time that the craft is facing
the center of G, at which point the dynamics will switch such
that the craft travels in a straight line to the center of G and
finally the high confidence controller will cease. The operation
either ends at this point or the low confidence controller can
be reengaged.

Let xd, yd, vxd
, vyd

be the position and velocity values given
for the moment the high confidence controller is engaged. Also

let td be the time required to execute the turn so that the
craft is facing the center of the region G. Assuming there is a
prescribed turn rate ω for the craft, the Dubins turn dynamics
are given by

turn(xd, yd,vxd
, vyd

, td) ≡
(x′ := −ω(y − yd) + vxd

,

y′ := ω(x− xd) + vyd
& t ≤ td).

(21)

Let vxL
, vyL

be the velocity of the craft at the moment it faces
the center of the region G and tL be the time it takes for the
craft to travel in a linear path from the point at which it ends
turning to the center of G. The dynamics for the linear path
to the center is given by

line(vxL
, vyL

, tL) ≡ (x′ := vxL
, y′ := vyL

& t ≤ tL) (22)

Then the dynamics of the high confidence controller is mod-
eled by the hybrid program

hc ≡ (turn(xd, yd, vxd
, vyd

, td); line(vxL
, vyL

, tL)). (23)

The first consideration to explore is the possibility of the
craft overshooting the boundary of the safe region. Note that
because of the sampling time of the monitor there is a case
where the craft is arbitrarily close to the boundary of the safe
region and moves freely for τ time before the monitor detects
the monitored property fails. Since the velocity of the craft
is bounded in both cardinal directions by Vx, Vy , the distance
covered in τ time is bounded above by dlc = τ

√
V 2
x + V 2

y .
This result gives a restriction of the minimum distance for the
radius of the warning region.

The second consideration is to ensure the warning region
is wide enough for a craft to complete the turn specified in
the high confidence controller. For any turn, the radius of the
solution curve is a function of the velocity upon entering the
turn, as well as the turn rate. Since the velocity is bounded in
the low confidence controller, there is a maximum radius R
for the circular path. This gives a generous bound of dlc+2R
as the distance between the boundaries of the safe region and
the warning region.

The third consideration involves the specification of the high
confidence controller. In order to not have to rely on sampling
to determine when a switch between turning and traveling on
a line, which would cause a host of issues due to either having
a high chance of missing the moment the craft faces the center
of G or create the necessity of determining bands in which the
craft can exit a turn and still reach some point in G, the time
values td, tL are computed explicitly. Part of this work involves
finding the lines that intersect both the center of the region G,
for simplicity this is set to the origin, and the boundary of the
circular solution of the Dubins turn dynamics. This exploration
requires finding the slopes m for a line of the form y = mx
that satisfy the circular solution of the Dubins turn

(x− cx)
2 + (y − cy)

2 = r2. (24)

The values cx, cy, r are computed explicitly and are func-
tions of the initial velocity when the craft begins turning, the



initial position, and the turn rate. This computation can be seen
in more detail in the RTA library in Nasalib. Note that for this
line to exist there must be a guarantee that the circular path
does not include the center of G in its interior. See Figure 5
for a visual representation of the case where there is no line
from the circular path to the origin. The requirement results in

Fig. 5. A representation of a craft moving along a Dubins path with no
straight line solution between the tangent to the circle and the center of the
safe region G.

the following condition for the radius of the safe region RG

RG >
2(Vx + Vy)

ω
. (25)

With this condition assumed as a requirement for the
system, there will be two lines that pass through the center of
G and the Dubins path but only one of these lines is a valid
choice of path for the craft. Figure 6 shows the craft moving
along the path defined by the reversionary dynamics. Note that
because the craft moves counter-clockwise there is only one
choice for the line that connects the circular path to the center
of G. Care is taken in the specification so that the correct line
is selected and therefore the correct point at which the Dubins
dynamics ends and the linear dynamics begins. From there,
the amount of time spent in each stage of the high confidence
controller can be computed explicitly.

For this example the system will be modeled using the RTA
with switchback architecture specified in Formula (3) with
advanced controller α := lc and its monitor M := G, rever-
sionary controller given by β := hc with monitor N := ¬G,
and the safety condition G to be maintained is staying within
the operational airspace O. This architecture allows the low
confidence, black box controller lc to regain control if the craft

Fig. 6. A representation of the two lines that pass through a valid Dubins
turn and the center of the safe region G. Note that only the bottom one is
valid since the craft moves counter-clockwise.

is returned to the inner part of the operational zone defined
by G. The safety property to be shown is given by

O ⊢ [((?G;mτ,G (lc)) ∪ (?¬G;mτ,¬G (hc)))
∗
]O.

Using the rule RTASB with the user instantiated condition
O, the operational airspace, results in needing to prove the
following three subgoals:

O ⊢ O ∧ (G ∨O) (26)
O ⊢ [mτ,G (lc)](O ∧ (O ∨G)) (27)
O ⊢ [mτ,¬G(hc)

∗]O. (28)

Note that since G is contained in the operational volume O
this results in the simplification O ∧ (G ∨ O) = O. The first
subgoal is trivially true using this simplification. The second
subgoal is the proof condition that if the system starts in the
operational airspace O, every monitored run of the advanced
system will stay in O. The third subgoal requires proving
that when starting from the switch condition, the monitored
reversionary system may run any finite number of times and
the craft will stay in the operational airspace O.

For the second condition an argument must be made that
even in the worst case of sampling, the craft cannot move
outside of the operational airspace O. This case would be
when the state is sampled arbitrarily close to the boundary of
the safe zone G. The arguments made in the first and second
consideration for the system design guarantees this property.

The third condition requires showing that in τ time the
reversionary controller given by hc does not leave the opera-
tional airspace O. Since the monitored reversionary controller



will at least let the system reach G, there may be the possibility
that the sampling occurs right before the craft enters G and
continues for τ time before sampling again. At that time we
know that the craft is RG distance from the center and the
boundary of the operational zone is at least dlc away. This
means there is no execution of the dynamics that would allow
the craft to leave the operational zone O.

VI. CONCLUSION AND FUTURE WORK

This paper presents the application of a general framework
for RTA, which has been formalized in Plaidypvs, to the
verification of safety properties for three examples in the
realm of UAS operations relying on AI/ML systems. The
formalization allows a designer of a system to verify properties
of a system in a mathematically rigorous way, reaching a high
level of assurance in shorter time compared to conventional
testing methods. Future work will include the continuing effort
to build a library of novel examples related to aerospace.
Another effort will be to utilize the temporal extension of
Plaidypvs that includes the trace semantics of hybrid programs
[30], which allows the analysis of temporal properties of the
system under study. Integrating the trace semantics of hybrid
programs will allow for a rigorous connection to be made
between a hybrid program and its analogous monitored hybrid
program. Additionally, the temporal extension allows for a
more robust representation of certain rules about reachability
such as the RTAR rule. Plaidypvs allows for more complicated
RTA structures to be modeled at a generic level. This could
include multiple components such as a secondary reversionary
controller or even a system made of several simplex RTA
structures, which creates the need for modeling concurrency
in Plaidypvs.
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