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The edm aerotec CoAX 600 rotorcraft was converted to an uncrewed aerial vehicle at the Technical University of

Munich. In this work, a higher-order physics-based model of the system was identified based on flight test data and

blade element momentum theory (BEMT). The paper describes the higher-order model structure and the system

identification techniques used in the process. The validated model was used for control design and pilot training

purposes. The simulation model consists of a physics-based model structure developed by coupling a dynamic rotor

model with a rigid-body fuselage. Aerodynamic models for both the fuselage and the coaxial rotors contain unknown

parameters that were estimated based on flight test data using a Maximum-Likelihood parameter estimation method

in the time domain. The nonlinear model was linearized in hover, and the linearized model was used for control design

and stability analysis. The design and validation of the flight controller are also discussed in the paper. The physics-

based model allows for the comprehensive interpretation of the estimated parameters and the involved aerodynamic

phenomena. Furthermore, it reduces the number of parameters estimated from flight data.

Nomenclature

CL, CD, CQ = wind-axis nondimensional aerodynamic lift,
drag, and side force coefficients

Cl, Cm, Cn = body-axis nondimensional aerodynamic roll-,
pitch-, and yaw-moment coefficients

cβ = correction factor for rotor model cyclic inputs

CRl
= rotor blade section (two-dimensional) lift coef-

ficient
CRd

= rotor blade section drag coefficient

CT = helicopter thrust coefficient
DR = rotor diameter, m
F = aerodynamic or rotor forces (depending on the

index), N

�IG�BB = helicopter inertia matrix (excluding the blades)
in body-fixed frame, kg −m2

M = aerodynamic or rotor moments (depending on
the index), N-m

Mβ = rotor hinge moment, N-m

p; q; r = roll, pitch, and yaw rate of the helicopter, rad/s
�q = dynamic pressure, N∕m2

R = rotor radius, m
S = aerodynamic reference surface area (chosen as

rotor disk area in this work), m2

T = rotor thrust, N
Up, UT = perpendicular and tangential velocity compo-

nents at the local rotor blade section, m/s
V = kinematic or aerodynamic velocity (depending

on the index), m/s
vi = inflow velocity, m/s
α = inflow state, rad
αA = aerodynamic angle of attack, rad
βA = aerodynamic angle of sideslip, rad
β = rotor flapping angle, rad
λi = rotor induced inflow ratio
λv = rotor inflow ratio due to the climb rate
ω = angular rates, rad/s
Ω = rotor rotational velocity, rad/s
ϕ = rotor blade section inflow angle, rad
Ψ = rotor blade azimuth angle, rad
θ = rotor blade pitch angle, rad
μ = helicopter advance ratio

Subscripts

A = indicating the aerodynamic nature of a velocity
or force

��B = indicating that the vector in the brackets is given
in the body-fixed frame

K = indicating the kinematic nature of a velocity or
angular rate vector

R1∕R2 = index indicating the nature of the force being the
rotor 1 or 2

Superscripts

��B = the coordinate frame (body-fixed) with respect
to which the value in the bracket has been
differentiated
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G = indicating the acting point of a force or the
reference point as the center of gravity

OB = of an angular rate: measured between the north-
east-down frame O and the body fixed frame of
the rotorcraft B

R1∕R2 = index indicating the forces act at the rotor 1 or 2
coordinate frame origins

⋅ = derivative with respect to time

I. Introduction

A HIGH-ORDER physics-based model was identified for a
coaxial rotorcraft with a maximum takeoff weight (MTOW)

of 600 kg based on flight test data and the blade element momentum
theory (BEMT). The findings of this work supported a research
project at the Technical University of Munich in which the CoAX
600 rotorcraft [1] was converted to the uncrewed aerial system
(UAS) shown in Fig. 1 [2]. The CoAX 600 is a two-seater coaxial
rotorcraft developed by edm aerotec GmbH. The rotorcraft obtained
its type certificate under the ultralight class by the German Ultralight
Association (Deutscher Ultraleichtflugverband e.V.). The simula-
tion model developed in this study was used as a basis for the
development of flight control functions, pilot training, and hard-
ware-in-the-loop testing of avionics.
The model structure is nonlinear and consists of a rotor system

coupled to a six-degree-of-freedom (6-DOF) rigid-body model.
The model structure included unknown parameters relating
mostly to the aerodynamics (forces and moments acting on the
dynamic system) but also some of the mass properties of the
rotorcraft, such as the moments of inertia. The unique features of
the teetering rotor system were exploited for the simultaneous
estimation of both the aerodynamic and mass property-related
parameters, which is normally not feasible due to correlation
issues. Maximum-Likelihood-based parameter estimation meth-
ods [3] were applied to estimate the unknown parameters in
the time domain. A flight test campaign was performed on an
instrumented CoAX 600 rotorcraft in its original crewed config-
uration to gather the flight data for parameter estimation. The
instrumented crewed rotorcraft used for system identification can
be seen in Fig. 4 and in the background of Fig. 2.
Two different common approaches have been used in the past for

modeling rotorcraft. The first approach is the development of a
rotorcraft simulation model based on first principles. The majority
of these first-principle approaches model the forces and moments
generated by the rotor system using BEMT [4,5]. The rotor system
models vary in their level of fidelity and can include models of the
different aspects of the rotor aeromechanics (e.g., flapping, lead-lag
motion, and elasticity) and inflow dynamics. The rotor system
model is coupled with a dynamic model of the fuselage and other
aerodynamic surfaces, which can also vary based on the fidelity of
the simulation model. Such physics-based models of specific rotor-
craft are typically developed by using existing rotorcraft simulation

and modeling frameworks such as FLIGHTLAB®¶ [6–8], RCAS®

[9], and CAMRAD II® [10,11]. The parameters and underlying data
in such models (e.g., geometry data and aerodynamic lookup tables)
can be adjusted for a specific rotorcraft. If flight data are available,
the model parameters can be adjusted such that the model outputs
more accurately match flight data. However, the model development
process is not primarily data-driven. Models of this kind are espe-
cially favorable if no or limited flight data are available during the
modeling. Such models can be used in flight simulators, hardware-
in-the-loop testing of avionics, and the development of initial flight
control law structures.
In the second common approach for developing rotorcraft simu-

lation models, flight data containing the pilot inputs and the aircraft
response during dynamic maneuvers can be used to identify models
of the rotorcraft via system identification techniques. Extensive
work in this field has been done using frequency domain system
identification methods, mostly using the frequency response meth-
ods described in Ref. [12] and the CIFER® (Comprehensive Iden-
tification from FrEquency Responses) toolbox [13] developed based
on the methods of Ref. [12]. Linear models of the rotorcraft at the
trim points where flight data are available can be identified using
these methods. References [14–18] are a subset of numerous pub-
lications where the CIFER® toolbox has been used to identify
dynamic systems of rotorcraft. Such linear models of the helicopter
at different trim points can be stitched together as done in
Refs. [12,19,20] to cover the full or an extended section of the
flight envelope. Besides the helicopter system identification work in
the frequency domain using CIFER®, important work on system
identification of rotorcraft of different sizes has been done by
the German Aerospace Center (Deutsches Zentrum für Luft- und

Raumfahrt, DLR) in the time and frequency domains [21–24] and by
other authors in Refs. [25–27].
A review of the cited literature reveals that most of the rotorcraft

system identification work is performed in the frequency domain.
This is in part because the rotorcraft dynamics are unstable in hover,
which results in divergence problems when numerical optimization
is applied to estimate the unknown system parameters in the time
domain [28]. Furthermore, mostly simplified and linear model
structures are used for parameter estimation. A physics-based non-
linear model structure of a helicopter involving a rotor system model
(e.g., implemented based on BEMT) has so far not been used as a
basis for rotorcraft parameter estimation. Such a model structure
would rely on numerical methods to compute the external forces and
moments on the rotorcraft at each time step. Therefore, embedding a
physics-based model structure in the numerical optimization proc-
ess, which requires repeated propagation of the model at each
optimization iteration step, is a complex task and has not been
performed for rotorcraft in the past. However, estimating parameters
in a nonlinear physics-based model structure has been done for
multiple fixed-wing aircraft in the past [29,30]. Such models offer
a range of advantages when compared to linear models, such as their
global nature over the flight envelope and the direct involvement of
the flight physics and aerodynamics in the modeling process. The
latter allows for easier interpretation of the parameter values and the
observed model behavior, as well as a simpler comparison with
wind tunnel data and aerodynamic prediction methods.
This paper demonstrates that the advantages of physics-based

nonlinear models, as previously discussed, are applicable to rotor-
craft as well. Furthermore, it is shown that the number of estimated
parameters is smaller when physics-based rotorcraft model struc-
tures are used. The nonlinear model can be linearized at any trim
point for system analysis and control design, in addition to being
utilized in flight simulators in its original nonlinear form.
The paper starts with the description of the nonlinear physics-

based model structure in Sec. III and continues with the application
of parameter estimation methods to determine the unknown param-
eter values in the system in Secs. IV and V. It follows with a

Fig. 1 CoAX 600 UAS.

¶The use of trademarks or names of manufacturers in this report is for
accurate reporting and does not constitute an official endorsement, either
expressed or implied, of such products or manufacturers by NASA.
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discussion of the identified model and some of the unique character-
istics of the flight dynamics and aerodynamics of coaxial rotorcraft,
which is a rotorcraft configuration not well studied by western
countries. The model was linearized at different trim points and
used to discuss the characteristics of the coaxial rotorcraft flight
dynamics. The nonlinear and linearized models were utilized to
develop the flight control laws for the rotorcraft (see Sec. VI).
Finally, the influence of the developed flight control functions on
the flight dynamics and handling qualities is discussed.

II. Nonlinear Model Structure

The CoAX 600 nonlinear model structure is developed around a
6-DOF rigid-body model, representing the fuselage and other aero-
dynamic surfaces but excluding the rotor blades. The equations of
motion for a rigid body with its center of mass (CG) as reference
point, and assuming a flat, nonrotating earth are the following [28]:

_VG
K

EB
B � �FG�B

m
− ωOB

K B × VG
K

E
B

_ωOB
K

B
B � �IG�−1BB �MG�B − ωOB

K B × IG BB ωOB
K B (1)

where �VG
K�EB is the kinematic (index K) velocity of the fuselage

(rotorcraft excluding the rotor blades) at its center of gravity (G),

�ωOB
k �B is the rotational velocity, �IG�BB is the inertia tensor, and m

is the mass of the rotorcraft fuselage. Bold symbols in the equations
represent vectors and matrices. The index B indicates that vectors
are denoted in the rotorcraft body-fixed frame. The coordinate

frames used in this work are described in Sec. III.A. �FG�B
and �MG�B are the sum of the external forces and moments
acting on the fuselage at its center of gravity as denoted by the
superscript G. In this study, they are the sum of the aerodynamic

forces directly acting on the rotorcraft body �FG
A �B; �MG

A �B, and the

forces and moments exerted by the rotor system �FG
R �B; �MG

R �B
FG

B � FG
A B � FG

R B

MG
B � MG

A B � MG
R B (2)

The superscripts of the velocity and the acceleration in Eq. (1)
indicate the coordinate frames, which were used as the reference for

derivation with respect to time. The superscript E in �VG
K�EB indicates

that the position was differentiated with respect to time in the Earth-
centered, Earth-fixed coordinate frame to obtain the velocity vector,

and EB in the acceleration � _VG
K�EBB indicates that the mentioned

velocity was differentiated in the body-fixed frame. The external
forces and moments acting on the fuselage were computed sepa-
rately via a static aerodynamic model for the aerodynamic forces
acting directly on the fuselage and the rotor system. The following
subsections give an overview of the computation of these forces and
moments.

A. Coordinate Frames

Multiple coordinate frames were used to compute the rotor and
fuselage forces and moments and for setting up the equations of
motion. Figure 2 gives an overview of the coordinate frames defined
on the helicopter that were used throughout this work. The body-
fixed frame is centered at the reference point of the rotorcraft, which
was selected to be the center of mass in this study, as is the standard
for flight dynamics. The xB axis points out the nose of the helicopter
and the zB is parallel to the rotor shaft pointing downward. Note that
yB points toward right such that a right-hand coordinate frame is
formed. The rotor forces and moments are first computed in the
rotor coordinate frames denoted by index R1 for the lower rotor and
R2 for the upper rotor. Each rotor coordinate is centered at the teeter
joint of the respective rotor. In the absence of rotor flapping, xRi
(i ∈ 1; 2) axes are parallel to xB pointing backward, zRi is parallel to
the rotor shaft, pointing upward, and yRi are parallel to the body-
fixed yB and point to the same direction. When the rotor flapping
angle is nonzero, the rotor coordinate frame tilts together with the
rotor, such that the tip-path-plane of each rotor coincides with the
respective plane spanned by the xRi

and yRi
axes of the rotor

coordinate frames. Each blade also has its own coordinate frame,
in which the local forces and moments of the blade element are
computed. They are denoted by the index bij, where i ∈ 1; 2
specifies the rotor and j ∈ 1; 2 specifies the blade on the rotor.
The zbij is parallel to zR, also pointing upward; xbij is tangential

to the in-plane motion of the blade and points in the same direction;
ybij forms a right-hand coordinate frame with xbij and zbij. The
center of this coordinate frame can be moved across the blade.
However, if not stated otherwise, the rotating blade coordinate
frames are also centered at the teeter joint.

B. Rotor System Model

The rotor system forces are computed via a discrete implementa-
tion of the BEMTas described in Ref. [4]. In this setup, each blade is
divided into discrete sections along its radius. The forces and
moments at each of the radial sections can be computed using the
aerodynamic coefficients of the two-dimensional blade airfoil

Fig. 2 The body-fixed, rotor, and blade coordinate frames on the helicopter.
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(CRl
; CRd

; : : : ) at each of the respective radial sections. The lift and
drag coefficients are modeled as

CRl
� CRl0

� αACRlα
; CRd

� CRd0
� αACRdα

� α2CRd
α2

(3)

where αA � θ − ϕ is the local angle of attack of the blade element. It
is influenced by the local blade pitch angle θ and the local inflow
angle ϕ outlined in Eq. (5). CRl0

, CRlα
, CRd0

, CRdα
, and CRd

α2
are

among the unknown aerodynamic parameters that are estimated
based on flight data. In this study, only the vertical and horizontal
forces at each blade section were considered, and the local pitch
moment was not explicitly modeled. This simplification will affect
other model parameter values, much like other unmodeled phenom-
ena discussed in Sec. III.C. The vertical dFz and horizontal dFx

force increments in the blade coordinate frame were calculated as
follows [4]:

dFz � dL cosϕ − dD sinϕ ≈ dL � 1

2
ρcCRlα

�θU2
T −UPUT�dy

(4a)

dFx � dL sinϕ� dD cosϕ ≈ ϕdL� dD

� 1

2
ρcCRlα

θUPUT −U2
p � CRd

CRlα

U2
T dy (4b)

where dL and dD are the lift and drag increments, dy is the
incremental blade section length, c is the blade chord length, and
UP and UT are perpendicular and tangential local blade velocities,
respectively. Note that the small-angle approximation was applied in
the above equation since UT ≫ UP. ϕ is the relative inflow angle:

ϕ � tan−1 �UP∕UT� ≈ UP∕UT (5)

The local blade pitch angle θ was computed as follows:

θ� θ0�θtwist�r��θcol�cβθc cosΨ�cβθs sinΨ Lower Rotor

θ0�θtwist�r��θcol−cβθc cosΨ−cβθs sinΨ�θyaw Upper Rotor

(6)

Here, θcol, θc and θs, and θyaw represent the collective, cyclic, and

yaw commands; θtwist describes the effect of the linear twist; and
θ0 � �CRl0

∕CRlα
� accounts for the blade lift coefficient at zero angle

of attack CRl0
. It should be noted that the yaw input θyaw only affects

the upper rotor on the CoAX 600, as in Eq. (6). This input affects the
torque of the upper rotor to induce a net yaw moment on the
fuselage. The parameter cβ scales the cyclic pilot inputs since it

was observed that the effective cyclic input of the local blade pitch
angle was smaller than the estimated inputs, according to the
measurements at the swashplate, as described in Sec. V.C. The local
blade velocities at each blade section were computed for the lower
rotor as follows:

UTR1
�y;Ψ� � Ωy� VA cos αA sinΨ (7)

UP�y;Ψ� � �λv � λi�ΩR� y_β�Ψ� � μΩRβ�Ψ� cos�Ψ� (8)

The tangential rotor blade velocity on the upper rotor varies
because of the reversed rotation direction:

UTR2
�y;Ψ� � Ωy − VA cos αA sinΨ (9)

The local aerodynamic velocity of each blade section depends on
the azimuth angle of each blade Ψ and the radial position of the
blade section y. Furthermore, VA is the total aerodynamic velocity, α
the aerodynamic angle of attack, and Ω the rotational speed of the
rotor. The nondimensional vertical velocity λv and the advance ratio
μ were computed as

λv �
VA sin αA

ΩR
; μ � VA cos αA

ΩR
(10)

The induced inflow of the rotor λi � �vi∕ΩR� at each blade
section was modeled using a finite state inflow model for coaxial
helicopters that was developed in Ref. [31] and implemented in
Ref. [32]. The inflow model is reviewed in Sec. III.B.1 of this paper.
Each rotor, which contains two blades, was modeled as a rigid

body. The flapping motion of these blades was modeled using the
following differential equation [5]:

1

Ω2
�β� λ2ββ � 2

Ω
�p cosΨ − q sinΨ� � 1

IβΩ2
Mβ (11)

where Mβ is the rotor hinge moment around the flapping hinge and
λβ represents the overall torsion spring stiffness of the flapping

hinge, which is λβ � 1 for a teetering rotor with no flapping springs

[5]. Iβ is the moment of inertia of both blades around the flapping

hinge. It is assumed that flapping motion is described by the
following equation:

β�t� � βc�t� cos�Ωt� � βs�t� sin�Ωt� (12)

which reformulates the time-periodic differential equation of
Eq. (11) as two different time-invariant systems.
The first and second time derivatives of the above equation were

calculated and substituted into Eq. (11). The comparison of similar
terms and simplification for a teetering rotor results in the following
coupled differential equations:

�βc � −2_βsΩ� 2Ωp� cβc
Iβ

Mβc (13)

�βs � 2_βcΩ − 2Ωq� cβs
Iβ

Mβs (14)

where Mβc and Mβs are the cosine and sine terms of the periodic
flapping moment Mβ � Mβc cos�Ωt� �Mβs sin�Ωt�. The parame-

ters cβc and cβs are empirical correction factors and represent the

loss effects and nonlinear load distribution over the rotor blade that
result in a different flapping hinge moment, as compared with the
ideal values computed via BEMT. They also allow for considering
the inaccuracies in the CAD-based value of the rotor blades moment
of inertia around the flapping hinge. The mentioned parameters will
be treated as unknowns and will be estimated in the system identi-
fication process. Note that the small effects of the rotor shaft angular
accelerations were neglected in the flapping equations of motion, as
suggested in Ref. [5].
The forces of each rotor blade element, computed by Eq. (4a), are

summed in Eq. (15) to determine the overall loads of each rotor in its
blade coordinate frame. The indices b1 and b2 indicate the notation
of the vectors in the blade coordinate frames of rotors 1 and 2
(cf. Fig. 2). The forces of each rotor (indices R1 and R2) act on the
origin of each rotor coordinate frame (superscripts R1 and R2), i.e.,
at the rotor shaft with an offset to the rotorcraft CG.

FR1
R1 b1 �

Ns

i�1 �dFxR1b1�i − Ns

i�1 �dFxR1b2�i
0

Ns

i�1 �dFzR1b1�i � Ns

i�1 �dFzR1b2 �i
(15)

FR2
R2 b2 �

− Ns

i�1 �dFxR2b1�i � Ns

i�1 �dFxR2b2�i
0

Ns

i�1 �dFzR2b1�i � Ns

i�1 �dFzR2b2�i
(16)

with Ns being the number of blade element sections on each blade,
selected as 10 in this study. Reference [33] shows that 10 sections is
sufficient to adequately compute the rotor forces and moments for
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flight dynamics purposes. In the next step, the rotor forces are
transformed into the rotor coordinate frame

FR1
R1 R1 �

Ns

i�1 dFxR1b1 i −
Ns

i�1 dFxR1b2 i cos�ψ�
Ns

i�1 dFxR1b1 i −
Ns

i�1 dFxR1b2 i sin�ψ�
Ns

i�1 dFzR1b1 i � Ns

i�1 dFzR1b2 i

(17)

FR2
R2 R2 �

− Ns

i�1 dFxR2b1 i � Ns

i�1 dFxR2b2 i cos�ψ�

− Ns

i�1 dFxR2b1 i � Ns

i�1 dFxR2b2 i

sin ψ Ns

i�1 dFzR2b1 i � Ns

i�1 dFzR2b2 i

(18)

The first two elements of the rotor force vectors of Eq. (17) are the
in-plane components of the rotor force, and the third element is the
rotor thrust T. The superscripts R1 and R2 indicate that the forces
are exerted at the lower and upper rotor positions, respectively. Note
that Eq. (17) computes the rotor forces as a function of the blade
azimuth angle ψ . In this study, a full rotor rotation is computed at
each simulation time step, and the rotor forces and moments are
averaged over a full revolution. For this purpose, the rotor disk was
split into 20 azimuthal sections (i.e., angular increments of 18 deg).
These are reasonable approximations because the rotor rotational
velocity is significantly faster than the rotorcraft dynamics. This
approach was adopted to simplify the problem structure for param-
eter estimation. The yaw moment (torque) that each rotor exerts on
the fuselage can be computed based on the in-plane force of the
blade sections from Eq. (15) as follows:

NR1
R1 b1;z � NR1

R1 R1;z �−
Ns

i�1

yi dFxR1b1 i−
Ns

i�1

yi dFxR1b2 i (19)

NR2
R2 b2;z � NR2

R2 R2;z �
Ns

i�1

yi dFxR2b1 i �
Ns

i�1

yi dFxR2b2 i (20)

where yi is the distance of the center of the respective blade section
from the rotor hub. The resulting yaw moment of the full rotor
system, consisting of the upper and lower rotors

N
R1∕2
R1∕2 B;z

� − N
R1∕2
R1∕2 R1∕2;z

� − NR1
R1

R1
− NR2

R2
R2

(21)

is zero at hover and otherwise used to control the yaw motion of the
rotorcraft by changing the collective pitch of the upper rotor θyaw
[see Eq. (6)].
The pitch and roll moments directly acting on the rotorcraft from

the rotors were neglected in light of the teetering rotor system.
Because the rotors are offset from the CG, the teetering rotor
configuration can exert pitch and roll control moments on the air-
frame. The direction of the thrust and drag vector of each rotor can
be controlled via the flapping motion. The rotor forces of Eq. (17)
are projected onto the rotorcraft body-fixed frame coordinate direc-
tions. The components of the rotor forces in the body frame of the

rotorcraft �FR1∕2
R1∕2�B become

FR1∕2
R1∕2 x;B

� FR1∕2
R1∕2 z;R1∕2

sin βR1∕2c cos βR1∕2s

− FR1∕2
R1∕2 x;R1∕2

cos βR1∕2c (22)

FR1∕2
R1∕2 y;B

� − FR1∕2
R1∕2 z;R1∕2

sin βR1∕2s cos βR1∕2c

− FR1∕2
R1∕2 y;R1∕2

cos βR1∕2c (23)

FR1∕2
R1∕2 z;B

� − FR1∕2
R1∕2 z;R1∕2

cos βR1∕2c (24)

The above rotor forces and the rotor yaw moment (torque) are
resolved to the CG of the helicopter. This results in the rotor forces
and moments, which are used in the equations of motion [Eq. (1)].

FG
R1∕2 B

� FR1∕2
R1∕2 B

(25)

MG
R1∕2 B

� rGR1∕2
B × FR1∕2

R1∕2 B
� 0; 0; N

R1∕2
R1∕2 B;z

T

(26)

where �rGR1∕2�B is the position of each rotor with respect to the

center of gravity G. The sum of the forces �FG
R �B and moments

�MG
R �B of rotors 1 and 2 from Eq. (25) are then inserted in Eq. (2) to

be used in the equations of motion [Eq. (1)].

1. Finite State Dynamic Inflow Model

The finite state dynamic inflow model was derived from funda-
mental aerodynamic principles such as the momentum and continu-
ity equations under certain assumptions. The detailed derivation can
be found in Refs. [31,32]. This approach for modeling the rotor
inflow is also called the Pressure Potential Superposition Inflow

Model (PPSIM). The inflow model can be stated as follows:

M11 M12

M21 M22

_α1

_α2

� Vm1
0

0 Vm2

L11 L12

L21 L22

−1 α1

α2

� 1

2

τ1
τ2

(27)

The inflow states αi and their time derivatives _αi for each rotor
consist of a uniform part and a defined number of cosine and sine
terms. In this study, only the uniform part and the first-order
harmonic terms were considered, as it is common for rotorcraft
flight dynamics models because the higher-order harmonics do not
significantly contribute [34]. The indices “1” and “2” represent the
lower and upper rotor disks of the coaxial rotor system, respectively.
Furthermore, the inflow states describe the rotor inflow along the zRi
axis of the rotor coordinate frame. The matrices M and L are often
referred to as the inflow mass and gain matrices, which depend on
the inflow velocity, the advance ratio, and the wake skew angle
[5,34]. The values for the M- and L-matrices were computed in
advance for multiple forward flight velocities and are stored in
lookup tables. The matrix elements are interpolated between the
discrete advance ratios at which the matrices were computed. The
matrices also account for the interaction of the rotors with each
other. Primarily, the inflow velocity of the lower rotor is signifi-
cantly affected by the induced inflow velocity of the upper rotor, as
the lower rotor operates in the downwash of the upper rotor.
The τi vectors for the lower and upper rotor i ∈ f1; 2g represent

the external forces and moments. In the special case of considering

only the first harmonics, the elements of τi � �τ0ci ; τ1ci ; τ1si � for each
rotor can be written down as

τ0ci � 3
p

4πρΩ2R4
Ti (28)

τ1ci � 15

8

1

πρΩ2R5
Mβi cosΨi (29)

τ1si � 15

8

1

πρΩ2R5
Mβi sinΨi (30)

by solving the original integrals for the generic case from
Refs. [31,32]. The rotor hinge moment Mβ and thrust T are com-

puted using BEMT, as described above. The mass flow parameters
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Vmi
for the lower and upper rotors �i ∈ f1; 2g� can be computed as

follows:

Vmi
� diag VTi

; Vi; : : : ; Vi (31)

Vi �
μ2 � �λmi

� λi�λi
VTi

(32)

VTi
� μ2 � λ2i (33)

λi � λmi
� λv (34)

where λmi
is the momentum theory equivalent inflow of each rotor

and can be computed based on the uniform part of the inflow states

(i.e., the first element in the inflow state vectors αi1 ) as described in

Refs. [31,32]:

λmi
� 3

p
αi1 (35)

C. Fuselage Static Aerodynamic Model

The forces and moments acting on the fuselage were modeled in a

similar way to the fixed-wing aircraft, as described in Ref. [28]. The

aerodynamic forces acting on the fuselage are modeled as

�FG
A �B � MBA �qS

−CD

CQ

−CL

(36)

where �q is the dynamic pressure; S is chosen as the rotor disk area;

CL, CD, and CQ are the lift, drag, and side force coefficients,

respectively, and

MBA �
cos αA cos βA − cos αA sin βA − sin αA

sin βA cos βA 0

sin αA cos βA − sin αA sin βA cos βA

(37)

is the transformation matrix from the aerodynamic coordinate frame

to the body-fixed frame. The aerodynamic moments acting on the

fuselage, with the CG as a reference point, are computed as follows:

MG
A B � �qS

RCl

DRCm

RCn

(38)

where the characteristic length DR is the rotor diameter. The param-
eters Cl, Cm, and Cn are roll, pitch, and yaw moment coefficients.
The nondimensional aerodynamic parameters involved in the equa-
tions above are a function of the flight condition [28] and the pilot
rudder input ζ, which is a linear function of the rotor yaw input
ζ � cθyaw. This dependency is modeled as follows:

CL � CL0
� CLαA

αA (39)

CD � CD0
� CDαA

αA (40)

CQ � CQ0
� CQβA

βA � CQr

rDR

2VA

� CQζ
ζ (41)

Cl � Cl0 � ClβA
βA � Clp

pDR

2VA

� Clr

rDR

2VA

� Clζ ζ (42)

Cm � Cm0
� CmαA

αA � Cmq

qR

2VA

(43)

Cn � Cn0 � CnβA
βA � Cnr

rDR

2VA

� Cnp

qDR

2VA

� Cnζ ζ (44)

The model structure above was chosen based on previous expe-
rience and was validated in the system identification process. The
model structure allows for adding further terms. In the above
equations, VA is the absolute value of the aerodynamic velocity.
Any unmodeled phenomena and interaction between the rotor
forces and moments will be lumped into the numerical values for
the rotor and fuselage aerodynamic parameters as they are not
accounted for explicitly.

D. Integrated Simulation Model

The different subsystems of the CoAX 600 rotorcraft simulation
model and their interaction with each other are shown in Fig. 3. The
environment was modeled according to the U.S. standard atmos-
phere [35]. The unsteady behavior between the different layers of
the atmosphere was modeled via a continuous approximation using
the hyperbolic tangent tanh [36], which is commonly used as a

Fig. 3 Overview of the model structure for the CoAX 600 coaxial helicopter.
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differentiable switching function. The full simulation model has the
following inputs, states, and outputs:

u � �θcol; θc; θs; θyaw�T (45)

x � �uK; vK; wK; p; q; r;ϕ; θ;ψ ; λ; μ; h;

βR1c ;
_βR1c ; βR1c ;

_βR1c ; βR2c ;
_βR2c ; βR2c ;

_βR2c ;

αR10 ;αR1c ; αR1s ; αR20 ; αR2c ; αR2s �T (46)

y � �VA; αA; βA; p; q; r;ϕ; θ;ψ ; λ; μ; h; nx; ny; nz�T (47)

where nx, ny, and nz are the load factors in the xB, yB, and zB
direction of the body-fixed frame at the position of the inertial
measurement unit (IMU) installed onboard. The correction of the
accelerations to account for the offset between the CG and the IMU,
as well as the computation of the load factors from rigid-body
accelerations (e.g., accounting for Earth gravity), is discussed in
Ref. [37]. The resulting model structure of the helicopter, described
by the above equations, takes the following form:

_x � f�x; u; θ� (48)

y � g�x; u; θ� (49)

where θ is the vector of the model parameters. This is a system of
nonlinear ordinary differential equations describing the rotorcraft
dynamics over its flight envelope. The original time-periodic differ-
ential equation of the flapping motion [Eq. (11)] was replaced with
the ordinary differential equations of Eq. (13) and Eq. (14) such that
Eq. (48) does not involve any time-periodic components.

III. Parameter Estimation Method

The unknown parameters in the helicopter model structure were
estimated in the time domain using an optimal control-based imple-
mentation of the Maximum-Likelihood method with the output-
error formulation. The details of the Maximum-Likelihood param-
eter estimation can be found in Refs. [28,38], and for a summary of
the specific implementation used in this study, Refs. [3,39] can be
consulted. The optimal control and parameter estimation toolbox
that was used in this study, falcon.m, is released by the Institute
of Flight System Dynamics of Technical University of Munich** and
is free for noncommercial use.
The Maximum-Likelihood method minimizes the cost function

J�θ� � 1

2

N

i�1

�z�ti� − y�ti; θ��TR−1�z�ti� − y�ti; θ�� �
N

2
ln �jRj�

(50)

over N time samples, where z is the measurement vector, y the
output vector, and θ the parameter vector. The matrix R is the
measurement noise covariance matrix, which is also unknown and
estimated alongside the model parameters in a two-step relaxation
strategy [28]. An update for the optimal noise covariance matrix R,
given a fixed set of model parameters, is computed by solving the
equation �∂J∕∂R� � 0 for R. This can be done analytically and
results in the following closed-form update for the noise covariance
matrix R after each parameter update step during the numerical
optimization of the cost function [Eq. (50)]:

R̂ � 1

N

N

i�1

�z�ti� − y�ti; θ���z�ti� − y�ti; θ��T (51)

Application of the time-domain parameter estimation methods
to unstable dynamic systems is known to be associated with
convergence issues and therefore challenging [28,38]. This is part

of the reason that frequency-domain methods are more widely used
for helicopter parameter estimation [12]. However, the optimal
control-based implementation of the parameter estimation method
[39] used in this study alleviates this issue and increases the con-
vergence radius. The mentioned implementation replaces the inte-
gration of the dynamic system over time with the full discretization
of the trajectory and enforces the system dynamics in Eq. (48) via
optimization constraints. The optimization constraints include sys-
tem dynamics and additional constraints defined by the user (e.g.,
parameter constraints).
Note that falcon.m also computes an estimate for the param-

eter covariance matrix, which can be used by the user to assess the
accuracy of the estimated parameters and is helpful in the context of
model validation. This is determined by falcon.m based on the
Hessian of the cost function of Eq. (50). The diagonal elements of
the parameter covariance matrix are the parameter variances σ2θ used
to compute the parameter standard error σθ. The off-diagonal ele-
ments of the covariance matrix are used to compute the correlation
indices of each parameter pair. The correlation index for each of the
two parameters in the model is calculated as follows [28]:

corr�θi; θj� � �ρij� �
cov�θi; θj�
σ�θi�σ�θj�

(52)

where σ�θi� and σ�θj� are the standard deviations of the parameters

θi and θj. The correlation indices can be collected in a matrix ρ,
calculated as

ρ �

1
σ�θ1� : : : 0

..

. . .
. ..

.

0 : : : 1
σ�θnp �

cov�θ�

1
σ�θ1� : : : 0

..

. . .
. ..

.

0 : : : 1
σ�θnp �

(53)

with np being the number of the parameters in the system. Some of

the noise dealt with in this study is colored and contains serial
correlations. In this case, the corrections suggested in Ref. [28]
should be applied when interpreting the computed estimates for
the parameter uncertainties in this study.

IV. Parameter Estimation Results

The flight data recorded during the test campaign of 2021 in
Obermehler, Germany [40] (Fig. 4), were used for estimating the
rotorcraft model parameters in this study. These data were collected
in hover and forward flight velocities (indicated airspeeds) of
approximately 60, 80, and 120 km/hr. The flown maneuvers were
a collection of multistep signals designed based on an a priori
model of the rotorcraft, as described in Ref. [38]. Such methods
rely on linear system analysis to effectively select the step sizes in
multistep signals such as doublets and 3-2-1-1s and were manually
executed by a test pilot. The test data were recorded with a sampling

Fig. 4 Instrumented CoAX 600 during manned flight tests.**Data available online at https://www.fsd.ed.tum.de/software/falcon-m/.
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rate of 50 Hz. The inertial measurement unit was equipped with an

internal anti-aliasing filter. No additional filtering was applied to the

flight data.

A. CoAX 600

The two blades of each rotor of the CoAX 600 rotorcraft are

connected to each other (modeled as the rigid body) and are

mounted on the rotor shaft with a teetering mechanism. The rotor

system is powered by a single UL Power 390iS power plant, and a

governor keeps the motor RPM constant. The helicopter does not

have a tail rotor because the counter-rotating rotors provide the

torque balance.
In hover, the pilot controls the yaw motion of the helicopter by

adjusting the collective pitch of the upper rotor via the pedals. This

adjustment causes a torque imbalance between the rotors, generat-

ing a net yaw moment that acts on the fuselage. Additionally, the

vertical stabilizer houses a rudder ζ (also controlled by the pedals)

that assists the rotor system to generate additional yaw moment

during forward flight. Some of the important design parameters of

the helicopter are provided in Table 1.
The position of the CG has also been estimated using flight data

supported by the study of Ref. [41]. The CG position can vary

slightly between the maneuvers. This has been estimated alongside

the parameters discussed in Sec. V.C for each maneuver. The values

of the inertia matrix were also estimated using flight data in hover by

exploiting the characteristics of the teetering rotor system. This

process is described in Sec. V.C. The mass of the rotor blades is

included in the calculation of the overall mass of the helicopter m
and the CG position. However, the blade contributions are excluded

from the computation of the helicopter roll and pitch moments of

inertia. The blade inertia is explicitly accounted for in the flapping

equations of motion [Eqs. (13) and (14)].

B. Instrumentation and Measurement of Flight Parameters

The rotorcraft was equipped with a wide array of aerospace-grade

sensors for the flight tests. The linear accelerometer outputs, angular

rates, and attitude angles were measured by an Archangel Systems

attitude heading reference system (AHRS) AHR150A [42] with an

integrated air data computer. Three additional remote inertial meas-

urement units were used to validate the AHRS data (cf. Fig. 5a). An

air data probe, which is gimbal-mounted on a boom extending out of

the rotor radius to avoid the influence of the rotor downwash, was

used to measure the aerodynamic velocity and the angles of attack

αA and sideslip βA (Figs. 2 and 5b).
A NexNav GPS SBAS sensor unit [43] was used for the primary

measurement of the rotorcraft position and the kinematic velocity.

The three experimental remote IMUs also had integrated GPS

receivers. The antennas of the four independent GPS receivers were

positioned at front and aft locations of the helicopter to allow for the

computation of the GPS heading.
Tension cable potentiometers (see Fig. 6) were used to measure

the position of the three pushrods of the swashplate of the lower

rotor. The pushrod measurements were translated to collective and

cyclic pitch angles of Eq. (6) via a kinematics model of the rotor

mechanical control system. This kinematic model was developed

using measurements of the nonrotating rotor on the ground. For this

purpose, the rotor blade pitch angles were measured manually at

different azimuth angles for both the lower and upper rotors for

multiple combinations of the collective lever position and stick

forward and aft positions. The blade pitch angles were measured

manually using a handheld inclinometer that could be magnetically

attached to each blade. The three swashplate pushrod potentiometer

readings were also recorded at each test point.
A linear mapping of the following form has been identified based

on the measurement data described above to determine the collec-

tive and cyclic blade pitch angles of Eq. (6):

Table 1 Configuration parameters of the CoAX 600

Parameter Value

Gross weight 570 kg
Maximum takeoff weight 600 kg
Number of blades 2 upper, 2 lower
Blade flapping inertia Iβ (incl. the hub) 24 kg ⋅m2

Rotor radius 3.25 m
Airfoil NACA 23012
Linear twist −7.65 deg
Chord length 0.22 m
Nominal rotor speed 455 RPM
Reference CG position in the body-fixed frame �rCG�B �0; 0; 0�T m

Position of the lower rotor with respect to the CG �rGR1�B �0; 0;−0.72�T m

Position of the upper rotor with respect to the CG �rGR2�B �0; 0;−1.364�T m

Reference helicopter inertia without rotors

180.203 0 −52.085
0 342.746 0

−52.085 0 254.334

kg ⋅m2

Fig. 5 Instrumentation onboard the helicopter.
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θcol � kcol0 � kcol1P1 � kcol2P2 � kcol3P3 (54)

θc � kc1P1 � kc2P2 � kc3P3 (55)

θs � ks1P1 � ks2P2 � ks3P3 (56)

where P1, P2, and P3 are the potentiometer measurements at the
three pushrods of the lower swashplate, and the ks are the param-
eters of this static model that were estimated using the least-squares
method described in Ref. [28]. Note that the cyclic and collective
pitch controls determined above are applied to both the upper and
lower rotors [via Eq. (6)], as the lower rotor swashplate controls the
upper rotor swashplate using a set of pushrods. The yaw input, θyaw,
which is additional collective input on the upper rotor, was modeled
as a linear function of a potentiometer P4 measuring the motion of
the single pushrod, which affects the θyaw rotor input:

θyaw � kyawP4 (57)

C. Practical Parameter Estimation Approach and Results

The estimated model parameters, as well as their standard devia-
tions, are provided in Table 2. Figures 7 and 8 show the applied
inputs in hover and the corresponding model outputs and flight data
for hover. The inputs and outputs for maneuvers performed in
forward flight are presented in Figs. 9 and 10. Roll, pitch, yaw,
and collective maneuvers are provided for the hover flight condi-
tions and doublet maneuvers for the roll, pitch, and yaw directions
for forward flight. A total of eight maneuvers were used for param-
eter estimation in hover, of which only a subset are visualized in
Figs. 7 and 8. Similarly, six maneuvers at a subset of the velocities
mentioned in the beginning of this section were used for forward
flight parameter estimation, of which three are presented in Figs. 9
and 10. The forward flight maneuvers used for parameter estimation
were conducted at indicated airspeeds of 60 and 80 km/hr. The roll
and pitch maneuver inputs in Figs. 7 and 9 show an off-axis
excitation component as the flight tests were piloted, and controlling
the stick purely in one direction could not be achieved by the pilot.
The simultaneous estimation of all of the model parameters was

not feasible due to their high correlation in some flight regimes.
Furthermore, it is not practical to estimate the aerodynamic param-
eters of the helicopter fuselage in the hover flight condition because
of the small effects of these parameters at low aerodynamic veloc-
ities compared with the rotor system.
As a solution, a two-step process was used to estimate the

aerodynamic parameters of the rotorcraft. In a first step, the aero-
dynamic parameters of the rotor system were estimated using hover
flight data. The rotor-specific parameters were then fixed, and
forward flight data were used to estimate the remaining parameters.
This two-step process is justified since the fuselage aerodynamic
forces can be neglected when the rotorcraft aerodynamic velocity is
limited due to the dependency of these forces and moments on the
dynamic pressure [see Eqs. (36) and (38)]. Therefore, in flight

conditions near hover, the rotor can be considered as the sole source
of the external forces and moments. Any influence of the forward
flight on the rotor parameters, as well as the rotor–fuselage inter-
actions, was lumped into the aerodynamic parameters attributed to
the fuselage and the remainder of the aerodynamic (control)
surfaces.
The deviations of the cyclic and pedal controls (δθctrim , δθstrim , and

δθyawtrim
) at the trim points were also considered as further unknown

parameters. The trim controls in the simulation can deviate from
flight data due to different trim conditions, such as wind [28] or a
slightly different CG. Similarly, the longitudinal (xB direction) and
lateral (yB direction) offsets of the CG with respect to the rotor shaft
of the helicopter were estimated for each maneuver. Ref. [37]
provides details of the Archangel Systems AHRS model, which
was also used in this study. This model includes a gravity compen-
sation in the nz measurement when the sensor is stationary and level.
Furthermore, the initial rotor flapping and inflow states (in case of
forward flight) were also estimated together with the other
parameters.
The position of the CG for the rotorcraft and the moments of

inertia were initially determined based on a CAD model of the
rotorcraft with simple 3D geometries representing the pilot and
the instrumentation onboard. The CG position along the zB axis
and the moments of inertia were adjusted using hover flight data.
The teetering rotor system does not allow the direct transfer of
moments from the blades to the rotor shaft, except in the zB direction
(i.e., the rotor torque). Therefore, the roll and pitch moments acting
at the CG of the helicopter are caused by the offset between the CG
and the position of the teetering joint of each rotor along the zB axis.
If the aerodynamic parameters of the rotor system are kept

constant, the roll and pitch responses of the helicopter are a function

Table 2 Estimated rotor and airframe model parameters

Component Parameter Value Standard error

Rotor CRl0
0.0200 0.0006

CRlα
5.4700 0.0025

CRd0
0.0068 0.0003

CRdα
0 0.0049

CRd
α2

0.2490 0.0024

cβ @ Hover 0.618a — —

cβ @ Forward Flight 0.73a — —

CLαA
0.1650 0.0086

CD0
0.0304a — —

CDαA
−0.0615a — —

CQ0
0a — —

CQβA
−0.0689 0.0076

CQr
0.1640 0.0360

CQζ
2.0600 0.1282

Cl0 0a — —

Airframe ClβA
0.0000 0.0002

Clp −0.0266 0.0007

Clr 0.0044 0.0015

Clζ 0.0154 0.0045

Cm0
−0.0052a — —

CmαA
−0.0097 0.0001

Cmq
−0.4690 0.0058

Cn0 0a — —

CnβA
0.0035 0.0001

Cnr −0.0397 0.0012

Cnζ −0.2140 0.0037

aParameter was fixed during the final optimization run, and no standard error was

computed.

Fig. 6 Measurement of the control rod positions at the swashplate via
tensioned cable potentiometers.
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of the location of the CG and the roll and pitch moments of inertia of
the helicopter fuselage. Since the mass of the helicopter was known,
the rotor aerodynamic parameters of the rotor were initially esti-
mated to ensure that the linear load factors nx, ny, and nz (and
therefore the forces produced by the rotor) were accurately repre-
sented by the model. It should be noted that while the rotor aero-
dynamic parameters do not change between different experiments,
the CG position and the moments of inertia can vary due to different
fuel tank fill levels. This fact was used to correct the CG position, as
well as the roll and pitch moments of inertia, via different hover
flight experiments. The estimation of the CG was additionally

supported by the studies of Refs. [37,41], which use flight path
reconstruction using multiple accelerometers and simple kinematics
equations to determine CG positions. The moment of inertia in the
yaw direction was reduced with respect to the CAD model accord-
ing to the same reduction factor as the moment of inertia values in
the roll and pitch directions. This assumption relies on the observation
that the same value was estimated for the reduction factors of Ixx and
Iyy moments of inertia. Therefore, it was assumed that the actual Izz
will also have the same linear relation to its value from CAD. This has
resulted in significant improvement of the model compared with the
authors’ previous work in Ref. [44]. This adjustment of the moments

a) Pitch maneuver b) Roll maneuver c) Yaw maneuver d) Heave maneuver

Fig. 7 Measured pilot inputs for the longitudinal and lateral maneuvers in hover.

a) Pitch maneuver b) Roll maneuver c) Yaw maneuver d) Heave maneuver

Fig. 8 Model response (black dash-dotted) and flight test data (red solid) in hover.
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of inertia and the CG was based on the rotorcraft rate and linear

acceleration response. While keeping the aerodynamic parameters of

the rotor constant, the moments of inertia were estimated such that the

rotorcraft rate response matched its acceleration response. Due to the

teetering rotor system, the relation between the rate and the accel-

eration responses is only set by the moments of inertia and the

position of the center of gravity. The two-step strategy of estimating

the moments of inertia while keeping the aerodynamic parameters

fixed (and vice versa) was adopted since the simultaneous estimation

of all parameters was not practical.

It was observed that the model overestimated the xB and yB linear

acceleration responses of the rotorcraft as a response to the roll and

a) Pitch maneuver b) Roll maneuver c) Yaw maneuver

Fig. 9 Measured pilot inputs for the longitudinal and lateral maneuvers in forward flight.

a) Pitch maneuver b) Roll maneuver c) Yaw maneuver

Fig. 10 Model response (black dash-dotted) and flight test data (red solid) in forward flight.
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pitch maneuvers (cyclic inputs). The significant part of the aerody-
namic force in hover, resulting in these accelerations, is caused by
the tilting of the rotor tip path plane due to blade flapping. For a
teetering rotor, the βc and βs flapping angles of each blade are
equivalent to the cyclic inputs, i.e., βs � θc and βc � θs. Since the
mass of the rotorcraft was known, the overshoot in the linear
accelerations meant that the two rotors tilted less than the theoretical
value in response to a cyclic input by the pilot. A potential reason for
this may be the fact that the rotor blades achieve a smaller cyclic
pitch angle under load, meaning that the kinematic model that maps
the control rod positions to the rotor pitch angles was not accurate
while the rotor was rotating and under aerodynamic load. This
phenomenon may come from the elasticity of the rotor blades
around their torsion axis that was not modeled. The average change
in the pitch angle over the blade radius during flight due to a cyclic
input via the blade pitch links may be smaller than the static
measurements of the blade pitch due to the stick inputs. The
kinematic mapping of the stick to the blade pitch is described by
Eq. (54), with parameters estimated from measurements on the
nonrotating rotor. Since no flapping angles were measured in this
study, the above physical reasoning could not be confirmed. This
disagreement between the data and the model outputs was corrected
by adjusting the pilot inputs via a linear factor cβ in Eq. (6). The

rotorcraft moments of inertia were corrected subsequently for
the rotational dynamics to also match the flight data. The values
of the cβ parameter in hover and in forward flight are provided in

Table 2.
The correction of the pilot inputs by the parameter cβ is warranted

since the flight dynamics model inputs (rotor pitch angles according
to cyclic commands) were estimated based on the measurement of
the pushrod positions at the swashplate. The pushrod measurements
are mapped to blade pitch angles via a static linear model discussed
in Sec. V.B. This model was identified using static measurements on
the nonrotating rotor. It is feasible that the effective cyclic rotor pitch
angles during flight are lower due to aerodynamic and elastic effects
at the rotor that were not explicitly modeled.
Leveraging the flight data in this study to estimate both the

aerodynamic rotor parameters and the moments of inertia of the
rotorcraft may result in inaccuracies in the estimated parameters
despite the carefully selected method, as discussed above. These
potential correlation effects were not quantified. The relaxed view of
the moments of inertia in this study renders some of the estimated
parameters physically less meaningful. Inaccuracies in the estimated
values for the moments of inertia (e.g., due to violated assumptions)
will result in physically incorrect aerodynamic parameter values.
However, the nonlinear model still accurately models the rotorcraft
(see Figs. 8 and 10) and can (together with the linearized models)

serve the control design and pilot training purposes well. Refer-
ence [45] gives a comprehensive overview of the consequences of
parameter estimation using a nonlinear model structure with
unknown mass properties.
The blade airfoil aerodynamic parameters CRd0

, CRdα
, and CRd

α2

were estimated from flight data in this study. This is in contrast to
other physics-based rotorcraft modeling frameworks, where aero-
dynamic look-up tables, developed via theoretical methods or wind
tunnel tests, are used in the model to represent the blade aerody-
namics. The feasibility of the blade airfoil aerodynamic parameter
estimates was verified by comparing the computed engine power
during hover and collective lever step maneuvers (see Fig. 8d) with
the available engine power onboard the helicopter. The maximum
engine power during the collective step input was used as a con-
straint during the collective step maneuver while estimating the
rotor profile drag parameters. Figure 11 compares the estimates of
the airfoil parameters in this study with the measurements of the
NACA 23012 airfoil, digitized from Ref. [46]. The figure includes
two sets of lift and drag measurements, at the chord Reynolds

numbers of 3 × 106 and 6 × 106. The measurements at the higher
chord Reynolds numbers were conducted at standard roughness,
where 0.011 in carborundum grains were applied to the surface of
the model at the leading edge over a surface length of 0.08 c
measured from the leading edge on both sides, where c refers to
the chord length of the airfoil. The CoAX 600 rotor blades operate at

an average chord Reynolds number of 1.133 × 106.
The lift and drag curves are mostly in agreement with the NACA

measurements. It can be seen that both the lift curve slope Clα and
the lift at zero angle of attack Cl0 are slightly lower than the NACA

measurements. This is reasonable since the effects, such as the finite
blade length, rotor–body interactions, and stall, were not explicitly
modeled in this study. The loss of the effective lift produced by the
rotor system is therefore reflected in the parameter estimates.
The drag curve with the estimated CoAX 600 rotor blade param-

eters lies between the two NACA measurements. The real-world
effects mentioned above will also cause the estimated drag for a
given lift coefficient Cl to be higher. It can be inferred from Fig. 11
that the lower chord Reynolds number and the mentioned unmod-
eled aerodynamic effects do not cause drag as much as the standard
roughness of NACA measurements. However, it should be noted
that the drag coefficient estimates mostly depend on the yaw
maneuvers and therefore also on the yaw moment of inertia of the
airframe. Inaccuracies of the values for the moments of inertia result
in biased estimates of the drag parameters.
As mentioned before, not all of the parameters in Table 2 were

estimated simultaneously. The rotor-system-related parameters were
estimated using hover data, while the remainder of the parameters

a) Lift coefficient vs. airfoil angle of attack b) Drag coefficient vs. lift coefficient

Fig. 11 Airfoil lift and drag estimates with NACA measurements.
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were estimated using forward flight data. This should be kept in

mind when interpreting the standard deviation values provided in
Table 2. The parameters CD0

, CDαA
, and Cm0

were determined

separately by matching the model trim inputs and states during

forward flights of different velocities over the runway (with no
excitations) to flight data.
The correlations between the parameters of each parameter group

estimated together is visualized in Fig. 12. Each plot visualizes the
absolute values of the respective parameter correlation matrices. The

parameter correlations remain below the 0.9 rule of thumb [28].
Figures 8 and 10 also show that the initial nx, ny, and nz of the

rotorcraft is inaccurate for some of the experiments. The deviation
from the overall trend in the beginning of the maneuver mostly

results from the terms in Eq. (1) not related to aerodynamic forces
and moments. Estimating the initial states together with the model

parameters theoretically solves this issue. However, it led to con-
vergence issues during the numerical optimization. The high-

frequency oscillations in the nx, ny measurements are attributed to

the vibrations in the mounting platform of the IMU on the rotorcraft.
These vibrations, which were induced by the rotor at its rotational

frequency, were not modeled since the rotor forces and moments
were averaged over a full rotor revolution at each simulation time

step, as explained in Sec. III. No standard deviation is provided for

the parameters that were set as fixed in the final optimization setup

or determined via a constraint. The coefficient of determination R2

as described in Ref. [28] was computed for the on-axis rate
responses in hover. The coefficient of determination can be inter-
preted as the ratio of the part of the system response variation that
the model covers to the total variation of the measured system
response. For each rate response, it was computed using the maneu-
vers in Fig. 8 and an additional maneuver that was not included for
system identification but from the same maneuver batch, executed
immediately after each other. The coefficient of determination is

R2
roll � 0.937 for the roll maneuvers, R2

pitch � 0.949 for the pitch

maneuvers, and R2
yaw � 0.994 for the yaw maneuver.

The nonlinear simulation model can be linearized at any trim
point of the flight envelope. The rotor flapping motion and the
inflow were considered as quasi-static systems for the purpose of
linearization such that the linear model only includes the rigid body
states. The poles of the current linear rigid body models in hover are
visualized in Fig. 13. As expected, the helicopter is unstable in
hover. The linearization results were verified in a parallel study [37]
in which a linear model of the rotorcraft was estimated from the
same flight data set. The linearized model shows good agreement
with the linear model of [37].
In summary, the parameter estimation steps were the following:
1) The first step is the estimation of the rotor system aerodynamic

parameters CRl0
, CRlα

, CRd0
, CRdα

, and CRd
α2

from flight data while

keeping the correction factors of the moments of inertia fixed. The
fuselage aerodynamic parameters were also set as fixed.
2) While keeping all other parameters fixed, the pilot input

correction factor cβ was estimated such that the model linear accel-
erations matched the flight data. Other outputs were not considered
at this step.
3) Correction factors for the moments of inertia were estimated

using hover flight data such that the rotorcraft rate response matched
the flight data as well. This was done while keeping the aerody-
namic rotor system parameters and the pilot input correction factor
cβ fixed.

4) The first three steps were repeated until all of the model outputs
were in agreement with the flight data, while making sure that the
rotor power in hover was reasonable when compared with the
engine settings.
5) The fuselage aerodynamic parameters were estimated using

forward flight data.
It is evident from the above summary that the applied relaxation

strategies may result in biased and physically less meaningful
parameter values. However, the overall behavior of the model still
remains valid as seen from the model match. Furthermore, a more
accurate model of the mass properties and the measurement of the
rotor flapping angles would have eliminated the need for the relax-
ations and simplifications applied in this study.

V. Control Design

Figure 13 shows that the CoAX 600 rotorcraft simulation model
is unstable in the hover flight condition. A human pilot sitting in the
helicopter is capable of controlling the helicopter using only the
mechanical controls, despite the instability of the system. However,
the observations during the hardware-in-the-loop tests reported in
[2] showed that controlling the rotorcraft remotely using the
onboard actuator system was very difficult in open loop. The
actuator dynamics and the signal transport delays in the sensor
signals and actuator commands make the operation of the CoAX
600 rotorcraft barely possible for the remote pilot. Pilot-in-the-loop
oscillations are easily induced due to the delays.
A linear attitude controller was developed in this study as an

intermediate step toward a fully automatic flight control system. The
control law for the roll and pitch motion of the rotorcraft is visual-
ized in Fig. 14. The roll and pitch angles (ϕ, θ), as well as the roll
and pitch rates (p, q), are used as feedback signals to stabilize the
helicopter. The yaw control law (depicted in Fig. 15) is slightly
different. In this case, a proportional-integral (PI) control law wasFig. 12 Absolute values of the correlation matrices.
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applied to the yaw feedback to increase the damping in the yaw
dynamics and allow for steady-state accuracy of the yaw rate. All of
the inertial measurements were low-pass-filtered with a cutoff fre-
quency lower than the rotor RPM.
The control laws from Figs. 14 and 15 are

θc � θcp − kpp − kϕϕ (58)

θs � θsp − kqq − kθθ (59)

θyaw � θyawp
− krr�

1

s
kψ �θyawp

− krr� (60)

A linear mapping exists between the remote controller stick
deflections and the pilot inputs θcp , θsp , and θyawp

at the swashplate.

All of the nonlinearities in the mechanical linkages and the actuators

were canceled via look-up tables (LuTs) as described in [2].
The feedback gains were designed based on a truncated version of

the linear model. The translational velocity and the position states

were omitted because the inner-loop controller only addresses the

rotational motion of the rotorcraft. The state and input vectors of the

truncated model are

x � �p; q; r;ϕ; θ�T (61)

u � �θc; θs; θyaw�T (62)

The linearized model of the CoAX 600 in hover (with its pole-

zero-map shown in Fig. 13) was used to determine the truncated

Fig. 13 Poles of the CoAX 600 rotorcraft simulation model, linearized in hover.

Fig. 14 CoAX UAS flight control law for the roll and pitch rotational motions.

Fig. 15 CoAX UAS flight control law for yaw rotation.
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model mentioned above. Consequently, the rotor and inflow dynam-

ics were considered as steady state. The low-pass filters as depicted

in Figs. 14 and 15 are second-order linear time-invariant systems,

implemented to filter the rotor vibrations. The dynamics of the

actuators and the inertial sensors (AHRS) were modeled as first-

order linear systems with signal transport delays as follows:

Y�s� � k

1� Tfs
e−Tds (63)

The time constants and the input delays of the mentioned transfer
functions were chosen to account for the worst-case phase and dead-

time delays caused by the sensor internal dynamics and filters and

the actuator and rotor dynamics. The Archangel ADARHS was

modeled as a first-order filter based on test data captured on a

turntable. Reference [2] also describes the estimation of the actuator

models. Both the input delays and the time constants for the

mentioned transfer functions were increased by a safety margin

factor to account for the rotor dynamics and possible inaccuracies

in the estimated actuator parameters. The time delays are caused by

the avionics system.
The stability and robustness analysis was performed by means of

loop transfer functions at the actuator cuts, as shown in Figs. 14 and

15. The closed-loop system was cut at each of the actuator command

signals to create the SISO transfer functions Glθcθc
, Glθsθs

, and

Glθyawθyaw
. The closed-loop system poles of the rotational motion

are given in Fig. 16. The fast poles and zeros resulting from the

actuator and rotor dynamics are excluded from the plot. The struc-

ture of the poles related to the closed-loop rate response of the

rotorcraft as seen in Fig. 16 differs from the open-loop rate

responses. Specifically, new poles are added due to the introduced

actuator and sensor dynamics, together with the feedback loops.

Each pole in Fig. 16 is noted with the significant states prevalent in

the respective eigendynamics.
The response of the system to a unit step input is shown in Fig. 17.

The gain and phase margin as provided in Table 3 satisfy and exceed

the 6 dB gain margin and the 45 deg phase margin limits required by

ADS-33 [47]. It should be noted that the values in Table 3, espe-

cially the phase margins, are pessimistic since safety factors were

applied to the input delays and the time constants of the transfer

functions in the control loops of Figs. 14 and 15.
It can be seen that the closed-loop poles of the truncated system

[with the states of the Eq. (61)] have faster and well-damped poles.

The faster dynamics with the increased damping resulted in signifi-

cantly improved handling qualities for a human pilot. Furthermore,

the attitude control and the ability of the helicopter to maintain its
attitude for a short time after external disturbances reduced the
remote pilot’s workload. The flight control laws developed in this
work were tested in a flight test campaign at the Magdeburg-
Cochstedt Airport (EDBC) in Germany, as reported in Ref. [2]. A
total of four unmanned flight hours were accumulated.

VI. Conclusions

A physics-based nonlinear model of the full-scale CoAX 600
rotorcraft was developed. Parameter estimation techniques were
applied to estimate the values of the unknown model parameters
using flight test data. The model was used for the design and tuning
of an attitude controller for hover and slow forward flight. The
nonlinear model was linearized at the hover trim point for this
purpose. The linear model was first simplified by considering the
rotor and inflow states as steady state, such that only the rigid-body
states, excluding the geographic longitude and latitude, were
included in the linear model. The model was further truncated for
the purpose of control design such that only the rotational dynamics
were considered.
The values for the aerodynamic parameters of the nonlinear

model were estimated from flight data using an optimal control-
based implementation of the Maximum-Likelihood parameter esti-
mation method in the time domain. Proof of matches was provided
for hover and forward flight in the time domain. Accurate measure-
ments of the helicopter mass properties were not available. There-
fore, these were determined from flight data, and their accuracy
cannot be independently validated. This should be kept in mind for
any physical interpretation of the estimated aerodynamic parameters
of the rotorcraft. The main advantages of the rotorcraft modeling
and system identification approach in this study, which relies on a
physics-based model structure and parameter estimation in the time
domain, are the following:
1) Fewer unknown parameters to be estimated from flight test

data, especially in hover, when compared with traditional linear
model identification methods
2) Global nature of the model and the possibility of model

linearization at different points of the flight envelope
3) A more realistic feel when deployed to manned flight simu-

lators due to the simulation of the rotor rotation and the rotor inflow
4) Easier physical interpretation of the parameters based on the

knowledge of the helicopter flight physics
5) Modularity of the model and the possibility to further extend its

fidelity, e.g., by including a more sophisticated inflow model or a
blade aeroelastic model

Fig. 16 Closed-loop dynamic system poles.
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The main disadvantage of the developed rotorcraft modeling and
parameter estimation method in this study is the high implementa-
tion burden compared to other more common methods.
A linear attitude controller, as described in Sec. VI, was devel-

oped and tuned using the developed flight dynamics model to
reduce the remote pilot workload. The remote operation of the
rotorcraft via the developed flight control system was not possible
without a feedback controller due to the actuator dynamics and the
dead-time delays in the system caused by the avionics. The aircraft
with the closed-loop attitude controller showed excellent flying
qualities and robustness during the uncrewed flight tests, even in

windy weather with significant gusts. The proofs of matches for the
model, as well as the successful unmanned flight tests, demonstrated
the effectiveness of the approaches used in this study.
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