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The edm aerotec CoAX 600 rotorcraft was converted to an uncrewed aerial vehicle at the Technical University of
Munich. In this work, a higher-order physics-based model of the system was identified based on flight test data and
blade element momentum theory (BEMT). The paper describes the higher-order model structure and the system
identification techniques used in the process. The validated model was used for control design and pilot training
purposes. The simulation model consists of a physics-based model structure developed by coupling a dynamic rotor
model with a rigid-body fuselage. Aerodynamic models for both the fuselage and the coaxial rotors contain unknown
parameters that were estimated based on flight test data using a Maximum-Likelihood parameter estimation method
in the time domain. The nonlinear model was linearized in hover, and the linearized model was used for control design
and stability analysis. The design and validation of the flight controller are also discussed in the paper. The physics-
based model allows for the comprehensive interpretation of the estimated parameters and the involved aerodynamic

phenomena. Furthermore, it reduces the number of parameters estimated from flight data.

Nomenclature R = rotor radius, m
C,,Cp,Cyp = wind-axis nondimensional aerodynamic Ilift, S = aerodﬂpe;(mlc ref er?lr.lce surl'(face ?r ea (chosen as
drag, and side force coefficients T B rotor ﬁs areI:\in in this work), m
c,C,,C, = body-axis nondimensional aerodynamic roll-, = Totor thrust, . .
pitch-, and yaw-moment coefficients U,, Ur = perpendicular and tangential velocity compo-
cp = correction factor for rotor model cyclic inputs nents at .the local rotor b}ade section, m/s .
. . . . \4 = kinematic or aerodynamic velocity (depending
Cg, = rotor blade section (two-dimensional) lift coef- on the index), m/s
ficient . .
Cg, = rotor blade section drag coefficient (vl,- _ ﬁggg th?lghm
gT i hetllcocg)_ter t}tlrust coefficient oy = aerodynamic angle of attack, rad
FR = ord 1ameter, m tor f 4 di th Pa = aerodynamic angle of sideslip, rad
= ?Iirizxg/n;mlc or rotor forces (depending on the i = rotor flapping angle, rad
G oD . . A = rotor induced inflow ratio
(I%)pp = hehcopter inertia matrix (exc21ud1ng the blades) A, —  rotor inflow ratio due to the climb rate
in body-fixed frame, kg —m w = angular rates, rad/s
M = aerodynamic or rotor moments (depending on Q —  rotor rofafi on,al velocity, rad/s
M _ thf 1n§§x), N-m LN ¢ = rotor blade section inflow angle, rad
p = rotor unge moment, N-m . ¥ = rotor blade azimuth angle, rad
p.q,r = roll, pitch, and yaw rate of the helicopter, rad/s 0 = rotor blade pitch angle, rad
at _ . 5 )
q = dynamic pressure, N/m u = helicopter advance ratio
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G = indicating the acting point of a force or the
reference point as the center of gravity
OB = of an angular rate: measured between the north-

east-down frame O and the body fixed frame of
the rotorcraft B

index indicating the forces act at the rotor 1 or 2
coordinate frame origins

= derivative with respect to time

R1/R2

I. Introduction

HIGH-ORDER physics-based model was identified for a
coaxial rotorcraft with a maximum takeoff weight (MTOW)
of 600 kg based on flight test data and the blade element momentum
theory (BEMT). The findings of this work supported a research
project at the Technical University of Munich in which the CoAX
600 rotorcraft [1] was converted to the uncrewed aerial system
(UAS) shown in Fig. 1 [2]. The CoAX 600 is a two-seater coaxial
rotorcraft developed by edm aerotec GmbH. The rotorcraft obtained
its type certificate under the ultralight class by the German Ultralight
Association (Deutscher Ultraleichtflugverband e.V.). The simula-
tion model developed in this study was used as a basis for the
development of flight control functions, pilot training, and hard-
ware-in-the-loop testing of avionics.

The model structure is nonlinear and consists of a rotor system
coupled to a six-degree-of-freedom (6-DOF) rigid-body model.
The model structure included unknown parameters relating
mostly to the aerodynamics (forces and moments acting on the
dynamic system) but also some of the mass properties of the
rotorcraft, such as the moments of inertia. The unique features of
the teetering rotor system were exploited for the simultaneous
estimation of both the aerodynamic and mass property-related
parameters, which is normally not feasible due to correlation
issues. Maximum-Likelihood-based parameter estimation meth-
ods [3] were applied to estimate the unknown parameters in
the time domain. A flight test campaign was performed on an
instrumented CoAX 600 rotorcraft in its original crewed config-
uration to gather the flight data for parameter estimation. The
instrumented crewed rotorcraft used for system identification can
be seen in Fig. 4 and in the background of Fig. 2.

Two different common approaches have been used in the past for
modeling rotorcraft. The first approach is the development of a
rotorcraft simulation model based on first principles. The majority
of these first-principle approaches model the forces and moments
generated by the rotor system using BEMT [4,5]. The rotor system
models vary in their level of fidelity and can include models of the
different aspects of the rotor acromechanics (e.g., flapping, lead-lag
motion, and elasticity) and inflow dynamics. The rotor system
model is coupled with a dynamic model of the fuselage and other
aerodynamic surfaces, which can also vary based on the fidelity of
the simulation model. Such physics-based models of specific rotor-
craft are typically developed by using existing rotorcraft simulation

Fig. 1 CoAX 600 UAS.

and modeling frameworks such as FLIGHTLAB®! [6-8], RCAS®
[9], and CAMRAD e[ 10,11]. The parameters and underlying data
in such models (e.g., geometry data and aerodynamic lookup tables)
can be adjusted for a specific rotorcraft. If flight data are available,
the model parameters can be adjusted such that the model outputs
more accurately match flight data. However, the model development
process is not primarily data-driven. Models of this kind are espe-
cially favorable if no or limited flight data are available during the
modeling. Such models can be used in flight simulators, hardware-
in-the-loop testing of avionics, and the development of initial flight
control law structures.

In the second common approach for developing rotorcraft simu-
lation models, flight data containing the pilot inputs and the aircraft
response during dynamic maneuvers can be used to identify models
of the rotorcraft via system identification techniques. Extensive
work in this field has been done using frequency domain system
identification methods, mostly using the frequency response meth-
ods described in Ref. [12] and the CIFER® (Comprehensive Iden-
tification from FrEquency Responses) toolbox [13] developed based
on the methods of Ref. [12]. Linear models of the rotorcraft at the
trim points where flight data are available can be identified using
these methods. References [14—18] are a subset of numerous pub-
lications where the CIFER® toolbox has been used to identify
dynamic systems of rotorcraft. Such linear models of the helicopter
at different trim points can be stitched together as done in
Refs. [12,19,20] to cover the full or an extended section of the
flight envelope. Besides the helicopter system identification work in
the frequency domain using CIFER®, important work on system
identification of rotorcraft of different sizes has been done by
the German Aerospace Center (Deutsches Zentrum fiir Luft- und
Raumfahrt, DLR) in the time and frequency domains [21-24] and by
other authors in Refs. [25-27].

A review of the cited literature reveals that most of the rotorcraft
system identification work is performed in the frequency domain.
This is in part because the rotorcraft dynamics are unstable in hover,
which results in divergence problems when numerical optimization
is applied to estimate the unknown system parameters in the time
domain [28]. Furthermore, mostly simplified and linear model
structures are used for parameter estimation. A physics-based non-
linear model structure of a helicopter involving a rotor system model
(e.g., implemented based on BEMT) has so far not been used as a
basis for rotorcraft parameter estimation. Such a model structure
would rely on numerical methods to compute the external forces and
moments on the rotorcraft at each time step. Therefore, embedding a
physics-based model structure in the numerical optimization proc-
ess, which requires repeated propagation of the model at each
optimization iteration step, is a complex task and has not been
performed for rotorcraft in the past. However, estimating parameters
in a nonlinear physics-based model structure has been done for
multiple fixed-wing aircraft in the past [29,30]. Such models offer
arange of advantages when compared to linear models, such as their
global nature over the flight envelope and the direct involvement of
the flight physics and aerodynamics in the modeling process. The
latter allows for easier interpretation of the parameter values and the
observed model behavior, as well as a simpler comparison with
wind tunnel data and aerodynamic prediction methods.

This paper demonstrates that the advantages of physics-based
nonlinear models, as previously discussed, are applicable to rotor-
craft as well. Furthermore, it is shown that the number of estimated
parameters is smaller when physics-based rotorcraft model struc-
tures are used. The nonlinear model can be linearized at any trim
point for system analysis and control design, in addition to being
utilized in flight simulators in its original nonlinear form.

The paper starts with the description of the nonlinear physics-
based model structure in Sec. Il and continues with the application
of parameter estimation methods to determine the unknown param-
eter values in the system in Secs. IV and V. It follows with a
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discussion of the identified model and some of the unique character-
istics of the flight dynamics and aerodynamics of coaxial rotorcraft,
which is a rotorcraft configuration not well studied by western
countries. The model was linearized at different trim points and
used to discuss the characteristics of the coaxial rotorcraft flight
dynamics. The nonlinear and linearized models were utilized to
develop the flight control laws for the rotorcraft (see Sec. VI).
Finally, the influence of the developed flight control functions on
the flight dynamics and handling qualities is discussed.

II. Nonlinear Model Structure

The CoAX 600 nonlinear model structure is developed around a
6-DOF rigid-body model, representing the fuselage and other aero-
dynamic surfaces but excluding the rotor blades. The equations of
motion for a rigid body with its center of mass (CG) as reference
point, and assuming a flat, nonrotating earth are the following [28]:

. G
(V) = =8 (o) x (vE):
(@)% = U054 2 (MO0 = @82) X (19) 5y (@82),] (1)

where (V)% is the kinematic (index K) velocity of the fuselage
(rotorcraft excluding the rotor blades) at its center of gravity (G),
(@?8),, is the rotational velocity, (I9)p is the inertia tensor, and m
is the mass of the rotorcraft fuselage. Bold symbols in the equations
represent vectors and matrices. The index B indicates that vectors
are denoted in the rotorcraft body-fixed frame. The coordinate
frames used in this work are described in Sec. IILA. > (F)g
and > (M) are the sum of the external forces and moments
acting on the fuselage at its center of gravity as denoted by the
superscript G. In this study, they are the sum of the aerodynamic
forces directly acting on the rotorcraft body (F$), (M$), and the
forces and moments exerted by the rotor system (F$), (M%),

Z(FG)B = (FE)B + (Fg)B

Z (MG)B = (ME\;)B + (Mlce;)s @

The superscripts of the velocity and the acceleration in Eq. (1)
indicate the coordinate frames, which were used as the reference for
derivation with respect to time. The superscript E in (V{)£ indicates
that the position was differentiated with respect to time in the Earth-
centered, Earth-fixed coordinate frame to obtain the velocity vector,
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and EB in the acceleration (V%)gB indicates that the mentioned
velocity was differentiated in the body-fixed frame. The external
forces and moments acting on the fuselage were computed sepa-
rately via a static aerodynamic model for the aerodynamic forces
acting directly on the fuselage and the rotor system. The following
subsections give an overview of the computation of these forces and
moments.

A. Coordinate Frames

Multiple coordinate frames were used to compute the rotor and
fuselage forces and moments and for setting up the equations of
motion. Figure 2 gives an overview of the coordinate frames defined
on the helicopter that were used throughout this work. The body-
fixed frame is centered at the reference point of the rotorcraft, which
was selected to be the center of mass in this study, as is the standard
for flight dynamics. The xp axis points out the nose of the helicopter
and the zp is parallel to the rotor shaft pointing downward. Note that
yp points toward right such that a right-hand coordinate frame is
formed. The rotor forces and moments are first computed in the
rotor coordinate frames denoted by index R1 for the lower rotor and
R2 for the upper rotor. Each rotor coordinate is centered at the teeter
joint of the respective rotor. In the absence of rotor flapping, xg;
(i € 1,2) axes are parallel to xp pointing backward, z; is parallel to
the rotor shaft, pointing upward, and yg; are parallel to the body-
fixed yp and point to the same direction. When the rotor flapping
angle is nonzero, the rotor coordinate frame tilts together with the
rotor, such that the tip-path-plane of each rotor coincides with the
respective plane spanned by the xz, and yg, axes of the rotor
coordinate frames. Each blade also has its own coordinate frame,
in which the local forces and moments of the blade element are
computed. They are denoted by the index bij, where i € 1,2
specifies the rotor and j € 1,2 specifies the blade on the rotor.
The z,,; is parallel to zg, also pointing upward; x;; is tangential
to the in-plane motion of the blade and points in the same direction;
Ypij forms a right-hand coordinate frame with x;,;; and z;;;. The
center of this coordinate frame can be moved across the blade.
However, if not stated otherwise, the rotating blade coordinate
frames are also centered at the teeter joint.

B. Rotor System Model

The rotor system forces are computed via a discrete implementa-
tion of the BEMT as described in Ref. [4]. In this setup, each blade is
divided into discrete sections along its radius. The forces and
moments at each of the radial sections can be computed using the
aerodynamic coefficients of the two-dimensional blade airfoil
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Fig. 2 The body-fixed, rotor, and blade coordinate frames on the helicopter.



(Cg,, Cg,, - - -) at each of the respective radial sections. The lift and
drag coefficients are modeled as

CRI = CRID + (IACR[“, CRJ = CR:IO + aACR(,a + (lchdz (3)

where ay, = 6 — ¢ is the local angle of attack of the blade element. It
is influenced by the local blade pitch angle @ and the local inflow
angle ¢ outlined in Eq. (5). CRIO’ Cr,,» CRIIO’ Cr,,» and Cg, | are

among the unknown aerodynamic parameters that are estimated
based on flight data. In this study, only the vertical and horizontal
forces at each blade section were considered, and the local pitch
moment was not explicitly modeled. This simplification will affect
other model parameter values, much like other unmodeled phenom-
ena discussed in Sec. IIl.C. The vertical dF, and horizontal dF,
force increments in the blade coordinate frame were calculated as
follows [4]:

1
dF,=dLcos¢ —dDsingg ~dL = EchR,u(GU% —UpUyp)dy
(4a)

dF, =dLsing + dD cos ¢ =~ ¢pdL + dD

1 C
= 3pcCr, (QUP Up— U2 + C—Rd U%) dy  (4b)
R,“Y

where dL and dD are the lift and drag increments, dy is the
incremental blade section length, ¢ is the blade chord length, and
Up and Uy are perpendicular and tangential local blade velocities,
respectively. Note that the small-angle approximation was applied in
the above equation since Uy > Up. ¢ is the relative inflow angle:

¢ =tan™" (Up/Ur) = Up/Ur )]
The local blade pitch angle 8 was computed as follows:

{ 00 + Orwist (1) + Oco1 + 40, cos ¥ + c 0, sin ¥ Lower Rotor

T g 4 Ot () + Oeos — cp0.cos¥ —cpf, sin¥ + 0, Upper Rotor
(6)

Here, 6., 0. and 6, and 0, represent the collective, cyclic, and
yaw commands; 6, describes the effect of the linear twist; and
6y = (CR,O /Cg, ) accounts for the blade lift coefficient at zero angle

of attack C . It should be noted that the yaw input 6,,, only affects

the upper rotor on the CoAX 600, as in Eq. (6). This input affects the
torque of the upper rotor to induce a net yaw moment on the
fuselage. The parameter cj scales the cyclic pilot inputs since it
was observed that the effective cyclic input of the local blade pitch
angle was smaller than the estimated inputs, according to the
measurements at the swashplate, as described in Sec. V.C. The local
blade velocities at each blade section were computed for the lower
rotor as follows:

Ur,, (y,¥) = Qy + V,cosa, sin¥ (7

Up(y,¥) = (A + 4)QR + yp(¥) + uQRH(P) cos(¥)  (8)

The tangential rotor blade velocity on the upper rotor varies
because of the reversed rotation direction:

Ur,,(,¥) = Qy -V, cosay sin¥ )

The local aerodynamic velocity of each blade section depends on
the azimuth angle of each blade W and the radial position of the
blade section y. Furthermore, V4 is the total aerodynamic velocity, o
the aerodynamic angle of attack, and Q the rotational speed of the
rotor. The nondimensional vertical velocity 4, and the advance ratio
41 were computed as

_ Vasinay _ V4cosay
"“Taor C FT T ar

y) (10)

The induced inflow of the rotor 4; = (v;/QR) at each blade
section was modeled using a finite state inflow model for coaxial
helicopters that was developed in Ref. [31] and implemented in
Ref. [32]. The inflow model is reviewed in Sec. IIL.B.1 of this paper.

Each rotor, which contains two blades, was modeled as a rigid
body. The flapping motion of these blades was modeled using the
following differential equation [5]:

1. 2 . 1
ﬁﬂ-i—ﬂ%ﬁ:ﬁ(pcosq’—qsmll’)+WMﬁ an

where M is the rotor hinge moment around the flapping hinge and
Ap represents the overall torsion spring stiffness of the flapping
hinge, which is 45 = 1 for a teetering rotor with no flapping springs
[3]. I; is the moment of inertia of both blades around the flapping
hinge. It is assumed that flapping motion is described by the
following equation:

B(1) = Be(1) cos(Q1) + f(1) sin(Qr) (12)

which reformulates the time-periodic differential equation of
Eq. (11) as two different time-invariant systems.

The first and second time derivatives of the above equation were
calculated and substituted into Eq. (11). The comparison of similar
terms and simplification for a teetering rotor results in the following
coupled differential equations:

. . c
B. = —2p.Q +2Qp + I/’f’ My, (13)
B
. . Cp,
By =2p.2-20q + M, (14)
p

where My and M are the cosine and sine terms of the periodic
flapping moment My = My cos(Qt) + My sin(Q¢). The parame-
ters ¢y and ¢y are empirical correction factors and represent the
loss effects and nonlinear load distribution over the rotor blade that
result in a different flapping hinge moment, as compared with the
ideal values computed via BEMT. They also allow for considering
the inaccuracies in the CAD-based value of the rotor blades moment
of inertia around the flapping hinge. The mentioned parameters will
be treated as unknowns and will be estimated in the system identi-
fication process. Note that the small effects of the rotor shaft angular
accelerations were neglected in the flapping equations of motion, as
suggested in Ref. [5].

The forces of each rotor blade element, computed by Eq. (4a), are
summed in Eq. (15) to determine the overall loads of each rotor in its
blade coordinate frame. The indices b1 and b2 indicate the notation
of the vectors in the blade coordinate frames of rotors 1 and 2
(cf. Fig. 2). The forces of each rotor (indices R1 and R2) act on the
origin of each rotor coordinate frame (superscripts R1 and R2), i.e.,
at the rotor shaft with an offset to the rotorcraft CG.

vazl (deRm)i - Zivzl (deRmz)i

(FR1)y = 0 (15)
| X (dF,,,) + Yk (dF ),

[ =Y @F ), + Y0 @Fy,,,),

(F2) = 0 (16)
| X @F,,) o+ Y dF,,),

with N being the number of blade element sections on each blade,
selected as 10 in this study. Reference [33] shows that 10 sections is
sufficient to adequately compute the rotor forces and moments for



flight dynamics purposes. In the next step, the rotor forces are
transformed into the rotor coordinate frame

i (Zi\il (dFXm;,l)i - Zi\il (dFXRm)i) cos(y)
<Zf\il (dele)‘ - Zl\él (dFXRmz)i) Sil’l(l//)
Z (dF'thl) + Zz 1 (dFZRmz)

(Fllgi)m =

an

i (_ Zi\il (dFXRzm)i + Zf\él (dFthz)i) COS(W)
(_ Zi\él (dFXszl)' + Zf\él (dFXRZbZ)i)
Sin(y,) Z (dF~RZ);l) + ngl (dFZRZhZ)i

(Fid)w =

(18)

The first two elements of the rotor force vectors of Eq. (17) are the
in-plane components of the rotor force, and the third element is the
rotor thrust 7. The superscripts R1 and R2 indicate that the forces
are exerted at the lower and upper rotor positions, respectively. Note
that Eq. (17) computes the rotor forces as a function of the blade
azimuth angle y. In this study, a full rotor rotation is computed at
each simulation time step, and the rotor forces and moments are
averaged over a full revolution. For this purpose, the rotor disk was
split into 20 azimuthal sections (i.e., angular increments of 18 deg).
These are reasonable approximations because the rotor rotational
velocity is significantly faster than the rotorcraft dynamics. This
approach was adopted to simplify the problem structure for param-
eter estimation. The yaw moment (torque) that each rotor exerts on
the fuselage can be computed based on the in-plane force of the
blade sections from Eq. (15) as follows:

N,
(Ng{)bl z Rl 2 _Zy' dF’CRlbl Z XRIIZ (19)

Ny
(Ng%)blz = R2 R2,z Zyl dFVRzm Z i(deRZbZ)i (20)
i=1

where y; is the distance of the center of the respective blade section
from the rotor hub. The resulting yaw moment of the full rotor
system, consisting of the upper and lower rotors

R1/2 _ R1/2 _
(NRI/Z)B,Z - _(NRI/Z)RI/Z‘Z - —<N§{)Rl - (N§%>R2 @b

is zero at hover and otherwise used to control the yaw motion of the
rotorcraft by changing the collective pitch of the upper rotor 6y,
[see Eq. (6)].

The pitch and roll moments directly acting on the rotorcraft from
the rotors were neglected in light of the teetering rotor system.
Because the rotors are offset from the CG, the teetering rotor
configuration can exert pitch and roll control moments on the air-
frame. The direction of the thrust and drag vector of each rotor can
be controlled via the flapping motion. The rotor forces of Eq. (17)
are projected onto the rotorcraft body-fixed frame coordinate direc-
tions. The components of the rotor forces in the body frame of the

rotorcraft (F giﬁ) R become

RU2\ _ (RL2 .
(FRI/Z)X.B - (FRI/Z)Z,RI/Z sin figi 2, 08 Bria,

R1/2
- (FRl/z)X_Rl/2 cos friya, (22)
RI/2\  _ R1/2 .
(Fm/z)y‘B = _(FR1/2)z_R1/z sinfig1a, €08 friy2,
R1/2
- (Fm/z)y,m/z cos fir1 2, (23)

R12\ R1/2
(FR]/z)z.B - _(FRI/Z)Z,R1/2 cos frifa, 24

The above rotor forces and the rotor yaw moment (torque) are
resolved to the CG of the helicopter. This results in the rotor forces
and moments, which are used in the equations of motion [Eq. (1)].

G _ R1/2
(Fm/z)B = (Fm/z)B (25)
T
R1/2 R1/2
(015,0), = o), x (FE), + [0.0.(v817), | o
where (r¢R1/2), is the position of each rotor with respect to the

center of gravity G. The sum of the forces (F$), and moments
(M) of rotors 1 and 2 from Eq. (25) are then inserted in Eq. (2) to
be used in the equations of motion [Eq. (1)].

1. Finite State Dynamic Inflow Model

The finite state dynamic inflow model was derived from funda-
mental aerodynamic principles such as the momentum and continu-
ity equations under certain assumptions. The detailed derivation can
be found in Refs. [31,32]. This approach for modeling the rotor
inflow is also called the Pressure Potential Superposition Inflow
Model (PPSIM). The inflow model can be stated as follows:

|:M11 M12]|:d1:| n |:le 0 :||:L11 L12:|_1|:al:|
My My lla, 0 VullLy Lxn a
1 T
_ = 27
2[72] @7

The inflow states a; and their time derivatives ¢; for each rotor
consist of a uniform part and a defined number of cosine and sine
terms. In this study, only the uniform part and the first-order
harmonic terms were considered, as it is common for rotorcraft
flight dynamics models because the higher-order harmonics do not
significantly contribute [34]. The indices “1” and “2” represent the
lower and upper rotor disks of the coaxial rotor system, respectively.
Furthermore, the inflow states describe the rotor inflow along the zg;
axis of the rotor coordinate frame. The matrices M and L are often
referred to as the inflow mass and gain matrices, which depend on
the inflow velocity, the advance ratio, and the wake skew angle
[5,34]. The values for the M- and L-matrices were computed in
advance for multiple forward flight velocities and are stored in
lookup tables. The matrix elements are interpolated between the
discrete advance ratios at which the matrices were computed. The
matrices also account for the interaction of the rotors with each
other. Primarily, the inflow velocity of the lower rotor is signifi-
cantly affected by the induced inflow velocity of the upper rotor, as
the lower rotor operates in the downwash of the upper rotor.

The 7; vectors for the lower and upper rotor i € {1, 2} represent
the external forces and moments. In the special case of considering
only the first harmonics, the elements of 7; = [¢)¢, 7)<, 7}*] for each
rotor can be written down as

OC _ \/g

= 4zpQ2R* (28)
15 1

Tl = gmMﬂf cos ¥, (29)
15 1

1}“ = ?WM/’[ sin'¥; 30)

by solving the original integrals for the generic case from
Refs. [31,32]. The rotor hinge moment M and thrust 7 are com-
puted using BEMT, as described above. The mass flow parameters



V., for the lower and upper rotors (i € {1,2}) can be computed as
follows:
V,, =diag(Vy,.Vi....V;) (31

,"{2 + u’m + Ai)ﬂ'i

Yl e T e e 2
Vi vy (32)
Vi = >+ 27 (33)

A =, + Ay (34)

where 4,, is the momentum theory equivalent inflow of each rotor
and can be computed based on the uniform part of the inflow states
(i.e., the first element in the inflow state vectors @; ) as described in
Refs. [31,32]:

A, = 3a; (35)

C. Fuselage Static Aerodynamic Model

The forces and moments acting on the fuselage were modeled in a
similar way to the fixed-wing aircraft, as described in Ref. [28]. The
aerodynamic forces acting on the fuselage are modeled as

—Cp
(F$)p = MpagS| Co (36)
-,

where g is the dynamic pressure; S is chosen as the rotor disk area;
Cp, Cp, and Cy are the lift, drag, and side force coefficients,
respectively, and

cosaycosfly —cosayusinff, —sinay
Mg, = sin 4 cos iy 0 37)
sinay cosfiy —sinaysinff,  cospf,

is the transformation matrix from the aerodynamic coordinate frame
to the body-fixed frame. The aerodynamic moments acting on the
fuselage, with the CG as a reference point, are computed as follows:

RC,
(MS), = GS| DxC,, (38)
RC,

where the characteristic length Dy, is the rotor diameter. The param-
eters C;, C,,, and C,, are roll, pitch, and yaw moment coefficients.
The nondimensional aerodynamic parameters involved in the equa-
tions above are a function of the flight condition [28] and the pilot
rudder input £, which is a linear function of the rotor yaw input
{ = cby,- This dependency is modeled as follows:

CL=Cr+Cp a4 (39)
Cp = Cp, +Cp, ay (40)
rD
Co = Cg, + Co, s+ Co, 5+ + Co ¢ (41)

i v, e
C=C,+C, fa+ Cz,) 2V Ry Cz, 2V R+ C.C (42)
gR
C,=0C, +C,, 04 +C,, m, 2VA 43)
— qDR
Cn - Cno + Cn/; ﬂA + C n, 2V C n, 2V + C,,{C (44)

The model structure above was chosen based on previous expe-
rience and was validated in the system identification process. The
model structure allows for adding further terms. In the above
equations, V, is the absolute value of the aerodynamic velocity.
Any unmodeled phenomena and interaction between the rotor
forces and moments will be lumped into the numerical values for
the rotor and fuselage aerodynamic parameters as they are not
accounted for explicitly.

D. Integrated Simulation Model

The different subsystems of the CoAX 600 rotorcraft simulation
model and their interaction with each other are shown in Fig. 3. The
environment was modeled according to the U.S. standard atmos-
phere [35]. The unsteady behavior between the different layers of
the atmosphere was modeled via a continuous approximation using
the hyperbolic tangent tanh [36], which is commonly used as a
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Fig. 3 Overview of the model structure for the CoAX 600 coaxial helicopter.



differentiable switching function. The full simulation model has the
following inputs, states, and outputs:

u= [acol’ gw 0.\" Hyaw]T (45)

x = [ug, vg, wg, p, g, 7, 0.y, A, p, b,
ﬂRll. ) /),Rl(. ) ﬁRlc s ﬂRll. ) ﬂR2(. 7ﬁR20 s ﬂRZl. ’ ﬂR2(. )

T
AR1ys AR1,.» AR1, s AR2s AR2, > akzx] (46)

y=1[Va.as.fa.p.q.r.¢.0,y, 4, 5. h,ng ny ] 47)

where n,, n,, and n, are the load factors in the xz, yz, and zp
direction of the body-fixed frame at the position of the inertial
measurement unit (IMU) installed onboard. The correction of the
accelerations to account for the offset between the CG and the IMU,
as well as the computation of the load factors from rigid-body
accelerations (e.g., accounting for Earth gravity), is discussed in
Ref. [37]. The resulting model structure of the helicopter, described
by the above equations, takes the following form:

x=f(x,u,0) (48)

y=2g(x,u,0) (49)

where @ is the vector of the model parameters. This is a system of
nonlinear ordinary differential equations describing the rotorcraft
dynamics over its flight envelope. The original time-periodic differ-
ential equation of the flapping motion [Eq. (11)] was replaced with
the ordinary differential equations of Eq. (13) and Eq. (14) such that
Eq. (48) does not involve any time-periodic components.

III. Parameter Estimation Method

The unknown parameters in the helicopter model structure were
estimated in the time domain using an optimal control-based imple-
mentation of the Maximum-Likelihood method with the output-
error formulation. The details of the Maximum-Likelihood param-
eter estimation can be found in Refs. [28,38], and for a summary of
the specific implementation used in this study, Refs. [3,39] can be
consulted. The optimal control and parameter estimation toolbox
that was used in this study, falcon.m, is released by the Institute
of Flight System Dynamics of Technical University of Munich= and
is free for noncommercial use.

The Maximum-Likelihood method minimizes the cost function

J(6) =

0| —

N
> [20) — 30 OF R[2(0) — (1, 0)] + 5 b (R
i=1
(50)

over N time samples, where z is the measurement vector, y the
output vector, and @ the parameter vector. The matrix R is the
measurement noise covariance matrix, which is also unknown and
estimated alongside the model parameters in a two-step relaxation
strategy [28]. An update for the optimal noise covariance matrix R,
given a fixed set of model parameters, is computed by solving the
equation (0J/0R) = 0 for R. This can be done analytically and
results in the following closed-form update for the noise covariance
matrix R after each parameter update step during the numerical
optimization of the cost function [Eq. (50)]:

N
R= %Z [2(t;) = y(t:.0)][z(t;) — y(t:.0)]" 1)
i=1

Application of the time-domain parameter estimation methods
to unstable dynamic systems is known to be associated with
convergence issues and therefore challenging [28,38]. This is part

**Data available online at https://www.fsd.ed.tum.de/software/falcon-m/.

of the reason that frequency-domain methods are more widely used
for helicopter parameter estimation [12]. However, the optimal
control-based implementation of the parameter estimation method
[39] used in this study alleviates this issue and increases the con-
vergence radius. The mentioned implementation replaces the inte-
gration of the dynamic system over time with the full discretization
of the trajectory and enforces the system dynamics in Eq. (48) via
optimization constraints. The optimization constraints include sys-
tem dynamics and additional constraints defined by the user (e.g.,
parameter constraints).

Note that falcon.m also computes an estimate for the param-
eter covariance matrix, which can be used by the user to assess the
accuracy of the estimated parameters and is helpful in the context of
model validation. This is determined by falcon.m based on the
Hessian of the cost function of Eq. (50). The diagonal elements of
the parameter covariance matrix are the parameter variances o3 used
to compute the parameter standard error o4. The off-diagonal ele-
ments of the covariance matrix are used to compute the correlation
indices of each parameter pair. The correlation index for each of the
two parameters in the model is calculated as follows [28]:

. cov(6;,0))

corr(0;,6;) = [p;;] = Wg(ej) ©2

where ¢(6;) and 5(6;) are the standard deviations of the parameters
0; and 0;. The correlation indices can be collected in a matrix p,
calculated as

1 1
a(6,) o(01)
p= : o o fcov(@)]| . (53)

1
0 o s

J
0,,)
with 7, being the number of the parameters in the system. Some of
the noise dealt with in this study is colored and contains serial
correlations. In this case, the corrections suggested in Ref. [28]
should be applied when interpreting the computed estimates for
the parameter uncertainties in this study.

IV. Parameter Estimation Results

The flight data recorded during the test campaign of 2021 in
Obermehler, Germany [40] (Fig. 4), were used for estimating the
rotorcraft model parameters in this study. These data were collected
in hover and forward flight velocities (indicated airspeeds) of
approximately 60, 80, and 120 km/hr. The flown maneuvers were
a collection of multistep signals designed based on an a priori
model of the rotorcraft, as described in Ref. [38]. Such methods
rely on linear system analysis to effectively select the step sizes in
multistep signals such as doublets and 3-2-1-1s and were manually
executed by a test pilot. The test data were recorded with a sampling

Fig. 4 Instrumented CoAX 600 during manned flight tests.
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rate of 50 Hz. The inertial measurement unit was equipped with an
internal anti-aliasing filter. No additional filtering was applied to the
flight data.

A. CoAX 600

The two blades of each rotor of the CoAX 600 rotorcraft are
connected to each other (modeled as the rigid body) and are
mounted on the rotor shaft with a teetering mechanism. The rotor
system is powered by a single UL Power 390iS power plant, and a
governor keeps the motor RPM constant. The helicopter does not
have a tail rotor because the counter-rotating rotors provide the
torque balance.

In hover, the pilot controls the yaw motion of the helicopter by
adjusting the collective pitch of the upper rotor via the pedals. This
adjustment causes a torque imbalance between the rotors, generat-
ing a net yaw moment that acts on the fuselage. Additionally, the
vertical stabilizer houses a rudder ¢ (also controlled by the pedals)
that assists the rotor system to generate additional yaw moment
during forward flight. Some of the important design parameters of
the helicopter are provided in Table 1.

The position of the CG has also been estimated using flight data
supported by the study of Ref. [41]. The CG position can vary
slightly between the maneuvers. This has been estimated alongside
the parameters discussed in Sec. V.C for each maneuver. The values
of the inertia matrix were also estimated using flight data in hover by
exploiting the characteristics of the teetering rotor system. This
process is described in Sec. V.C. The mass of the rotor blades is
included in the calculation of the overall mass of the helicopter m
and the CG position. However, the blade contributions are excluded
from the computation of the helicopter roll and pitch moments of
inertia. The blade inertia is explicitly accounted for in the flapping
equations of motion [Eqs. (13) and (14)].

B. Instrumentation and Measurement of Flight Parameters

The rotorcraft was equipped with a wide array of aerospace-grade
sensors for the flight tests. The linear accelerometer outputs, angular
rates, and attitude angles were measured by an Archangel Systems
attitude heading reference system (AHRS) AHR150A [42] with an
integrated air data computer. Three additional remote inertial meas-
urement units were used to validate the AHRS data (cf. Fig. 5a). An
air data probe, which is gimbal-mounted on a boom extending out of
the rotor radius to avoid the influence of the rotor downwash, was
used to measure the aerodynamic velocity and the angles of attack
ay, and sideslip f, (Figs. 2 and 5b).

A NexNav GPS SBAS sensor unit [43] was used for the primary
measurement of the rotorcraft position and the kinematic velocity.
The three experimental remote IMUs also had integrated GPS
receivers. The antennas of the four independent GPS receivers were

. Remote IMUS 5 =

o

b) Air data boom

Fig. 5 Instrumentation onboard the helicopter.

positioned at front and aft locations of the helicopter to allow for the
computation of the GPS heading.

Tension cable potentiometers (see Fig. 6) were used to measure
the position of the three pushrods of the swashplate of the lower
rotor. The pushrod measurements were translated to collective and
cyclic pitch angles of Eq. (6) via a kinematics model of the rotor
mechanical control system. This kinematic model was developed
using measurements of the nonrotating rotor on the ground. For this
purpose, the rotor blade pitch angles were measured manually at
different azimuth angles for both the lower and upper rotors for
multiple combinations of the collective lever position and stick
forward and aft positions. The blade pitch angles were measured
manually using a handheld inclinometer that could be magnetically
attached to each blade. The three swashplate pushrod potentiometer
readings were also recorded at each test point.

A linear mapping of the following form has been identified based
on the measurement data described above to determine the collec-
tive and cyclic blade pitch angles of Eq. (6):

Table 1 Configuration parameters of the CoAX 600
Parameter Value
Gross weight 570 kg
Maximum takeoff weight 600 kg
Number of blades 2 upper, 2 lower
Blade flapping inertia /; (incl. the hub) 24 kg - m?
Rotor radius 325 m
Airfoil NACA 23012
Linear twist —7.65 deg
Chord length 0.22 m
Nominal rotor speed 455 RPM
Reference CG position in the body-fixed frame (rcg)p [0,0,0" m
Position of the lower rotor with respect to the CG (rgg1)p [0,0,-0.72]" m
Position of the upper rotor with respect to the CG (rgg2) g [0,0,-1.364]" m

180.203 0 —52.085

Reference helicopter inertia without rotors

0 342.746 0
—52.085 0 254.334

kg -m




Fig. 6 Measurement of the control rod positions at the swashplate via
tensioned cable potentiometers.

gcol = kcolo + kcol|P1 + kc012P2 + kcol_; P3 (54)
gc = kclpl + kc'2P2 + kC3P3 (55)
es =ks]P1 +k52P2+k53P3 (56)

where P, P,, and P are the potentiometer measurements at the
three pushrods of the lower swashplate, and the ks are the param-
eters of this static model that were estimated using the least-squares
method described in Ref. [28]. Note that the cyclic and collective
pitch controls determined above are applied to both the upper and
lower rotors [via Eq. (6)], as the lower rotor swashplate controls the
upper rotor swashplate using a set of pushrods. The yaw input, 0,
which is additional collective input on the upper rotor, was modeled
as a linear function of a potentiometer P, measuring the motion of
the single pushrod, which affects the 6y,,, rotor input:

ayaw = kyawP4 (57)

C. Practical Parameter Estimation Approach and Results

The estimated model parameters, as well as their standard devia-
tions, are provided in Table 2. Figures 7 and § show the applied
inputs in hover and the corresponding model outputs and flight data
for hover. The inputs and outputs for maneuvers performed in
forward flight are presented in Figs. 9 and 10. Roll, pitch, yaw,
and collective maneuvers are provided for the hover flight condi-
tions and doublet maneuvers for the roll, pitch, and yaw directions
for forward flight. A total of eight maneuvers were used for param-
eter estimation in hover, of which only a subset are visualized in
Figs. 7 and 8. Similarly, six maneuvers at a subset of the velocities
mentioned in the beginning of this section were used for forward
flight parameter estimation, of which three are presented in Figs. 9
and 10. The forward flight maneuvers used for parameter estimation
were conducted at indicated airspeeds of 60 and 80 km/hr. The roll
and pitch maneuver inputs in Figs. 7 and 9 show an off-axis
excitation component as the flight tests were piloted, and controlling
the stick purely in one direction could not be achieved by the pilot.

The simultaneous estimation of all of the model parameters was
not feasible due to their high correlation in some flight regimes.
Furthermore, it is not practical to estimate the aerodynamic param-
eters of the helicopter fuselage in the hover flight condition because
of the small effects of these parameters at low aerodynamic veloc-
ities compared with the rotor system.

As a solution, a two-step process was used to estimate the
aerodynamic parameters of the rotorcraft. In a first step, the aero-
dynamic parameters of the rotor system were estimated using hover
flight data. The rotor-specific parameters were then fixed, and
forward flight data were used to estimate the remaining parameters.
This two-step process is justified since the fuselage aerodynamic
forces can be neglected when the rotorcraft aerodynamic velocity is
limited due to the dependency of these forces and moments on the
dynamic pressure [see Eqs. (36) and (38)]. Therefore, in flight

Table 2 Estimated rotor and airframe model parameters

Component Parameter Value Standard error
Rotor Cr, 0.0200 0.0006
Cr, 5.4700 0.0025
CRM0 0.0068 0.0003
Cr,, 0 0.0049
Cr, , 0.2490 0.0024
cp @ ﬁover 0.618* ——
¢z @ Forward Flight 0.73% —_——
Cr, 0.1650 0.0086
Cp, 0.0304* —_—
Cp,, —-0.0615 ——
Co, 0* ——
Co,, —0.0689 0.0076
Co, 0.1640 0.0360
Co, 2.0600 0.1282
G, 0? ——
Airframe G, 0.0000 0.0002
G, —0.0266 0.0007
C, 0.0044 0.0015
C, 0.0154 0.0045
C, —0.0052* —_—
C,, —0.0097 0.0001
Ch, —0.4690 0.0058
Cy, 0* ——
Cy, 0.0035 0.0001
C,, —-0.0397 0.0012
C, —0.2140 0.0037

“Parameter was fixed during the final optimization run, and no standard error was
computed.

conditions near hover, the rotor can be considered as the sole source
of the external forces and moments. Any influence of the forward
flight on the rotor parameters, as well as the rotor—fuselage inter-
actions, was lumped into the aerodynamic parameters attributed to
the fuselage and the remainder of the aerodynamic (control)
surfaces.

The deviations of the cyclic and pedal controls (50, , 50, . ,and
08yaw,,,) at the trim points were also considered as further unknown
parameters. The trim controls in the simulation can deviate from
flight data due to different trim conditions, such as wind [28] or a
slightly different CG. Similarly, the longitudinal (xp direction) and
lateral (yp direction) offsets of the CG with respect to the rotor shaft
of the helicopter were estimated for each maneuver. Ref. [37]
provides details of the Archangel Systems AHRS model, which
was also used in this study. This model includes a gravity compen-
sation in the n, measurement when the sensor is stationary and level.
Furthermore, the initial rotor flapping and inflow states (in case of
forward flight) were also estimated together with the other
parameters.

The position of the CG for the rotorcraft and the moments of
inertia were initially determined based on a CAD model of the
rotorcraft with simple 3D geometries representing the pilot and
the instrumentation onboard. The CG position along the zp axis
and the moments of inertia were adjusted using hover flight data.
The teetering rotor system does not allow the direct transfer of
moments from the blades to the rotor shaft, except in the z direction
(i.e., the rotor torque). Therefore, the roll and pitch moments acting
at the CG of the helicopter are caused by the offset between the CG
and the position of the teetering joint of each rotor along the zp axis.

If the aerodynamic parameters of the rotor system are kept
constant, the roll and pitch responses of the helicopter are a function
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Fig. 8 Model response (black dash-dotted) and flight test data (red solid) in hover.
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of the location of the CG and the roll and pitch moments of inertia of
the helicopter fuselage. Since the mass of the helicopter was known,
the rotor aerodynamic parameters of the rotor were initially esti-

mated to ensure that the linear load factors n,, ny,

and n, (and

therefore the forces produced by the rotor) were accurately repre-
sented by the model. It should be noted that while the rotor aero-
dynamic parameters do not change between different experiments,
the CG position and the moments of inertia can vary due to different
fuel tank fill levels. This fact was used to correct the CG position, as
well as the roll and pitch moments of inertia, via different hover
flight experiments. The estimation of the CG was additionally
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supported by the studies of Refs. [37,41], which use flight path
reconstruction using multiple accelerometers and simple kinematics
equations to determine CG positions. The moment of inertia in the
yaw direction was reduced with respect to the CAD model accord-
ing to the same reduction factor as the moment of inertia values in
the roll and pitch directions. This assumption relies on the observation
that the same value was estimated for the reduction factors of /., and
I,, moments of inertia. Therefore, it was assumed that the actual I,
will also have the same linear relation to its value from CAD. This has
resulted in significant improvement of the model compared with the
authors’ previous work in Ref. [44]. This adjustment of the moments
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Fig. 9 Measured pilot inputs for the longitudinal and lateral maneuvers in forward flight.
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Fig. 10 Model response (black dash-dotted) and flight test data (red solid) in forward flight.

of inertia and the CG was based on the rotorcraft rate and linear
acceleration response. While keeping the aerodynamic parameters of
the rotor constant, the moments of inertia were estimated such that the
rotorcraft rate response matched its acceleration response. Due to the
teetering rotor system, the relation between the rate and the accel-
eration responses is only set by the moments of inertia and the

position of the center of gravity. The two-step strategy of estimating
the moments of inertia while keeping the aerodynamic parameters
fixed (and vice versa) was adopted since the simultaneous estimation
of all parameters was not practical.

It was observed that the model overestimated the xp and yp linear
acceleration responses of the rotorcraft as a response to the roll and
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pitch maneuvers (cyclic inputs). The significant part of the aerody-
namic force in hover, resulting in these accelerations, is caused by
the tilting of the rotor tip path plane due to blade flapping. For a
teetering rotor, the p. and f; flapping angles of each blade are
equivalent to the cyclic inputs, i.e., f; = 6. and f. = 6. Since the
mass of the rotorcraft was known, the overshoot in the linear
accelerations meant that the two rotors tilted less than the theoretical
value in response to a cyclic input by the pilot. A potential reason for
this may be the fact that the rotor blades achieve a smaller cyclic
pitch angle under load, meaning that the kinematic model that maps
the control rod positions to the rotor pitch angles was not accurate
while the rotor was rotating and under aerodynamic load. This
phenomenon may come from the elasticity of the rotor blades
around their torsion axis that was not modeled. The average change
in the pitch angle over the blade radius during flight due to a cyclic
input via the blade pitch links may be smaller than the static
measurements of the blade pitch due to the stick inputs. The
kinematic mapping of the stick to the blade pitch is described by
Eq. (54), with parameters estimated from measurements on the
nonrotating rotor. Since no flapping angles were measured in this
study, the above physical reasoning could not be confirmed. This
disagreement between the data and the model outputs was corrected
by adjusting the pilot inputs via a linear factor ¢4 in Eq. (6). The
rotorcraft moments of inertia were corrected subsequently for
the rotational dynamics to also match the flight data. The values
of the ¢ parameter in hover and in forward flight are provided in
Table 2.

The correction of the pilot inputs by the parameter cy is warranted
since the flight dynamics model inputs (rotor pitch angles according
to cyclic commands) were estimated based on the measurement of
the pushrod positions at the swashplate. The pushrod measurements
are mapped to blade pitch angles via a static linear model discussed
in Sec. V.B. This model was identified using static measurements on
the nonrotating rotor. It is feasible that the effective cyclic rotor pitch
angles during flight are lower due to aerodynamic and elastic effects
at the rotor that were not explicitly modeled.

Leveraging the flight data in this study to estimate both the
aerodynamic rotor parameters and the moments of inertia of the
rotorcraft may result in inaccuracies in the estimated parameters
despite the carefully selected method, as discussed above. These
potential correlation effects were not quantified. The relaxed view of
the moments of inertia in this study renders some of the estimated
parameters physically less meaningful. Inaccuracies in the estimated
values for the moments of inertia (e.g., due to violated assumptions)
will result in physically incorrect aerodynamic parameter values.
However, the nonlinear model still accurately models the rotorcraft
(see Figs. 8 and 10) and can (together with the linearized models)
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serve the control design and pilot training purposes well. Refer-
ence [45] gives a comprehensive overview of the consequences of
parameter estimation using a nonlinear model structure with
unknown mass properties.

The blade airfoil aerodynamic parameters Cp i CRda’ and Cy ”

were estimated from flight data in this study. This is in contrast to
other physics-based rotorcraft modeling frameworks, where aero-
dynamic look-up tables, developed via theoretical methods or wind
tunnel tests, are used in the model to represent the blade aerody-
namics. The feasibility of the blade airfoil acrodynamic parameter
estimates was verified by comparing the computed engine power
during hover and collective lever step maneuvers (see Fig. 8d) with
the available engine power onboard the helicopter. The maximum
engine power during the collective step input was used as a con-
straint during the collective step maneuver while estimating the
rotor profile drag parameters. Figure 11 compares the estimates of
the airfoil parameters in this study with the measurements of the
NACA 23012 airfoil, digitized from Ref. [46]. The figure includes
two sets of lift and drag measurements, at the chord Reynolds
numbers of 3 X 10 and 6 x 10°. The measurements at the higher
chord Reynolds numbers were conducted at standard roughness,
where 0.011 in carborundum grains were applied to the surface of
the model at the leading edge over a surface length of 0.08 ¢
measured from the leading edge on both sides, where ¢ refers to
the chord length of the airfoil. The CoAX 600 rotor blades operate at
an average chord Reynolds number of 1.133 x 109.

The lift and drag curves are mostly in agreement with the NACA
measurements. It can be seen that both the lift curve slope C; and
the lift at zero angle of attack C,, are slightly lower than the NACA
measurements. This is reasonable since the effects, such as the finite
blade length, rotor-body interactions, and stall, were not explicitly
modeled in this study. The loss of the effective lift produced by the
rotor system is therefore reflected in the parameter estimates.

The drag curve with the estimated CoAX 600 rotor blade param-
eters lies between the two NACA measurements. The real-world
effects mentioned above will also cause the estimated drag for a
given lift coefficient C; to be higher. It can be inferred from Fig. 11
that the lower chord Reynolds number and the mentioned unmod-
eled aerodynamic effects do not cause drag as much as the standard
roughness of NACA measurements. However, it should be noted
that the drag coefficient estimates mostly depend on the yaw
maneuvers and therefore also on the yaw moment of inertia of the
airframe. Inaccuracies of the values for the moments of inertia result
in biased estimates of the drag parameters.

As mentioned before, not all of the parameters in Table 2 were
estimated simultaneously. The rotor-system-related parameters were
estimated using hover data, while the remainder of the parameters

0.035
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Fig. 11 Airfoil lift and drag estimates with NACA measurements.



were estimated using forward flight data. This should be kept in
mind when interpreting the standard deviation values provided in
Table 2. The parameters Cp, CDuA’ and C,, were determined

separately by matching the model trim inputs and states during
forward flights of different velocities over the runway (with no
excitations) to flight data.

The correlations between the parameters of each parameter group
estimated together is visualized in Fig. 12. Each plot visualizes the
absolute values of the respective parameter correlation matrices. The
parameter correlations remain below the 0.9 rule of thumb [28].
Figures § and 10 also show that the initial n,, n,, and n, of the
rotorcraft is inaccurate for some of the experiments. The deviation
from the overall trend in the beginning of the maneuver mostly
results from the terms in Eq. (1) not related to aerodynamic forces
and moments. Estimating the initial states together with the model
parameters theoretically solves this issue. However, it led to con-
vergence issues during the numerical optimization. The high-
frequency oscillations in the n,, n, measurements are attributed to
the vibrations in the mounting platform of the IMU on the rotorcraft.
These vibrations, which were induced by the rotor at its rotational
frequency, were not modeled since the rotor forces and moments
were averaged over a full rotor revolution at each simulation time
step, as explained in Sec. III. No standard deviation is provided for
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the parameters that were set as fixed in the final optimization setup
or determined via a constraint. The coefficient of determination R>
as described in Ref. [28] was computed for the on-axis rate
responses in hover. The coefficient of determination can be inter-
preted as the ratio of the part of the system response variation that
the model covers to the total variation of the measured system
response. For each rate response, it was computed using the maneu-
vers in Fig. 8 and an additional maneuver that was not included for
system identification but from the same maneuver batch, executed
immediately after each other. The coefficient of determination is
R%,, = 0.937 for the roll maneuvers, R%,, = 0.949 for the pitch

rol pitc
maneuvers, and R%aw = 0.994 for the yaw maneuver.

The nonlinear simulation model can be linearized at any trim
point of the flight envelope. The rotor flapping motion and the
inflow were considered as quasi-static systems for the purpose of
linearization such that the linear model only includes the rigid body
states. The poles of the current linear rigid body models in hover are
visualized in Fig. 13. As expected, the helicopter is unstable in
hover. The linearization results were verified in a parallel study [37]
in which a linear model of the rotorcraft was estimated from the
same flight data set. The linearized model shows good agreement
with the linear model of [37].

In summary, the parameter estimation steps were the following:

1) The first step is the estimation of the rotor system aerodynamic
parameters CR1 Cr,,» CRd » Cg,,» and CRJ from flight data while

keeping the correction factors of the moments of inertia fixed. The
fuselage aerodynamic parameters were also set as fixed.

2) While keeping all other parameters fixed, the pilot input
correction factor c; was estimated such that the model linear accel-
erations matched the flight data. Other outputs were not considered
at this step.

3) Correction factors for the moments of inertia were estimated
using hover flight data such that the rotorcraft rate response matched
the flight data as well. This was done while keeping the aerody-
namic rotor system parameters and the pilot input correction factor
cp fixed.

4) The first three steps were repeated until all of the model outputs
were in agreement with the flight data, while making sure that the
rotor power in hover was reasonable when compared with the
engine settings.

5) The fuselage aerodynamic parameters were estimated using
forward flight data.

It is evident from the above summary that the applied relaxation
strategies may result in biased and physically less meaningful
parameter values. However, the overall behavior of the model still
remains valid as seen from the model match. Furthermore, a more
accurate model of the mass properties and the measurement of the
rotor flapping angles would have eliminated the need for the relax-
ations and simplifications applied in this study.

V. Control Design

Figure 13 shows that the CoAX 600 rotorcraft simulation model
is unstable in the hover flight condition. A human pilot sitting in the
helicopter is capable of controlling the helicopter using only the
mechanical controls, despite the instability of the system. However,
the observations during the hardware-in-the-loop tests reported in
[2] showed that controlling the rotorcraft remotely using the
onboard actuator system was very difficult in open loop. The
actuator dynamics and the signal transport delays in the sensor
signals and actuator commands make the operation of the CoAX
600 rotorcraft barely possible for the remote pilot. Pilot-in-the-loop
oscillations are easily induced due to the delays.

A linear attitude controller was developed in this study as an
intermediate step toward a fully automatic flight control system. The
control law for the roll and pitch motion of the rotorcraft is visual-
ized in Fig. 14. The roll and pitch angles (¢, 6), as well as the roll
and pitch rates (p, ¢), are used as feedback signals to stabilize the
helicopter. The yaw control law (depicted in Fig. 15) is slightly
different. In this case, a proportional-integral (PI) control law was
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applied to the yaw feedback to increase the damping in the yaw
dynamics and allow for steady-state accuracy of the yaw rate. All of
the inertial measurements were low-pass-filtered with a cutoff fre-
quency lower than the rotor RPM.

The control laws from Figs. 14 and 15 are

HL' = 01',, - kpp - k(/l¢ (58)
0, =6, —k,q kb (59)

1
ayaw = eyaw/, - krr + Ekx// (gyawl, - krr) (60)

A linear mapping exists between the remote controller stick
deflections and the pilot inputs 6’%, Gsp, and anwp at the swashplate.

All of the nonlinearities in the mechanical linkages and the actuators
were canceled via look-up tables (LuTs) as described in [2].

The feedback gains were designed based on a truncated version of
the linear model. The translational velocity and the position states
were omitted because the inner-loop controller only addresses the
rotational motion of the rotorcraft. The state and input vectors of the
truncated model are

x=[p.q.r¢0" (61)

u =100y, 0] (62)

The linearized model of the CoAX 600 in hover (with its pole-
zero-map shown in Fig. 13) was used to determine the truncated



model mentioned above. Consequently, the rotor and inflow dynam-
ics were considered as steady state. The low-pass filters as depicted
in Figs. 14 and 15 are second-order linear time-invariant systems,
implemented to filter the rotor vibrations. The dynamics of the
actuators and the inertial sensors (AHRS) were modeled as first-
order linear systems with signal transport delays as follows:

Y(s) = e Tas (63)

The time constants and the input delays of the mentioned transfer
functions were chosen to account for the worst-case phase and dead-
time delays caused by the sensor internal dynamics and filters and
the actuator and rotor dynamics. The Archangel ADARHS was
modeled as a first-order filter based on test data captured on a
turntable. Reference [2] also describes the estimation of the actuator
models. Both the input delays and the time constants for the
mentioned transfer functions were increased by a safety margin
factor to account for the rotor dynamics and possible inaccuracies
in the estimated actuator parameters. The time delays are caused by
the avionics system.

The stability and robustness analysis was performed by means of
loop transfer functions at the actuator cuts, as shown in Figs. 14 and
15. The closed-loop system was cut at each of the actuator command
signals to create the SISO transfer functions G Io,o, G,,}‘ 6 and

. The closed-loop system poles of the rotational motion

Loy 0yan
are given in Fig. 16. The fast poles and zeros resulting from the
actuator and rotor dynamics are excluded from the plot. The struc-
ture of the poles related to the closed-loop rate response of the
rotorcraft as seen in Fig. 16 differs from the open-loop rate
responses. Specifically, new poles are added due to the introduced
actuator and sensor dynamics, together with the feedback loops.
Each pole in Fig. 16 is noted with the significant states prevalent in
the respective eigendynamics.

The response of the system to a unit step input is shown in Fig. 17.
The gain and phase margin as provided in Table 3 satisfy and exceed
the 6 dB gain margin and the 45 deg phase margin limits required by
ADS-33 [47]. It should be noted that the values in Table 3, espe-
cially the phase margins, are pessimistic since safety factors were
applied to the input delays and the time constants of the transfer
functions in the control loops of Figs. 14 and 15.

It can be seen that the closed-loop poles of the truncated system
[with the states of the Eq. (61)] have faster and well-damped poles.
The faster dynamics with the increased damping resulted in signifi-
cantly improved handling qualities for a human pilot. Furthermore,
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the attitude control and the ability of the helicopter to maintain its
attitude for a short time after external disturbances reduced the
remote pilot’s workload. The flight control laws developed in this
work were tested in a flight test campaign at the Magdeburg-
Cochstedt Airport (EDBC) in Germany, as reported in Ref. [2]. A
total of four unmanned flight hours were accumulated.

VI. Conclusions

A physics-based nonlinear model of the full-scale CoAX 600
rotorcraft was developed. Parameter estimation techniques were
applied to estimate the values of the unknown model parameters
using flight test data. The model was used for the design and tuning
of an attitude controller for hover and slow forward flight. The
nonlinear model was linearized at the hover trim point for this
purpose. The linear model was first simplified by considering the
rotor and inflow states as steady state, such that only the rigid-body
states, excluding the geographic longitude and latitude, were
included in the linear model. The model was further truncated for
the purpose of control design such that only the rotational dynamics
were considered.

The values for the aerodynamic parameters of the nonlinear
model were estimated from flight data using an optimal control-
based implementation of the Maximum-Likelihood parameter esti-
mation method in the time domain. Proof of matches was provided
for hover and forward flight in the time domain. Accurate measure-
ments of the helicopter mass properties were not available. There-
fore, these were determined from flight data, and their accuracy
cannot be independently validated. This should be kept in mind for
any physical interpretation of the estimated aerodynamic parameters
of the rotorcraft. The main advantages of the rotorcraft modeling
and system identification approach in this study, which relies on a
physics-based model structure and parameter estimation in the time
domain, are the following:

1) Fewer unknown parameters to be estimated from flight test
data, especially in hover, when compared with traditional linear
model identification methods

2) Global nature of the model and the possibility of model
linearization at different points of the flight envelope

3) A more realistic feel when deployed to manned flight simu-
lators due to the simulation of the rotor rotation and the rotor inflow

4) Easier physical interpretation of the parameters based on the
knowledge of the helicopter flight physics

5) Modularity of the model and the possibility to further extend its
fidelity, e.g., by including a more sophisticated inflow model or a
blade aeroelastic model
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Table 3 Phase and gain margins

Loop transfer function Gain margin, dB  Phase margin, deg

o, 11.19 61.6
Gy, 11.1 57.54
11.21 61.94

loyawOyan

The main disadvantage of the developed rotorcraft modeling and
parameter estimation method in this study is the high implementa-
tion burden compared to other more common methods.

A linear attitude controller, as described in Sec. VI, was devel-
oped and tuned using the developed flight dynamics model to
reduce the remote pilot workload. The remote operation of the
rotorcraft via the developed flight control system was not possible
without a feedback controller due to the actuator dynamics and the
dead-time delays in the system caused by the avionics. The aircraft
with the closed-loop attitude controller showed excellent flying
qualities and robustness during the uncrewed flight tests, even in

windy weather with significant gusts. The proofs of matches for the
model, as well as the successful unmanned flight tests, demonstrated
the effectiveness of the approaches used in this study.
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