Compendium of NASA Goddard Space Flight Center's Recent Radiation Effects Test Results

Martha V. O'Bryan¹, Seth S. Roffe², Edward P. Wilcox², Michael J. Campola², Jason M. Osheroff², Megan C. Casey², Matthew B. Joplin², Thomas A. Carstens², Jonathan D. Barth², Landen D. Ryder², Kaitlyn L. Ryder², Adia M. Wood², Jean-Marie Lauenstein², and Peter J. Majewicz²

> 1. Science Systems and Applications, Inc. (SSAI); 2. NASA Goddard Space Flight Center (GSFC)

Abstract: We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to heavy ion and proton induced single event effects (SEE), proton-induced displacement damage dose (DDD), and total ionizing dose (TID).

Introduction

NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of radiation. The performance of electronic devices in a space radiation environment is often limited by their susceptibility to single-event effects (SEE), total ionizing dose (TID), and displacement damage dose (DDD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical.

Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event SEE including single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DDD effects. All tests were performed between February 2023 and February 2024.

Summary

We have presented data from recent radiation tests on a variety of devices including several commercial parts. It is the authors' recommendation that this data be used cautiously as many tests were conducted under applicationor lot-specific test conditions. We also highly recommend that lot-specific testing be performed on any suspect or commercial device.

See full paper for:

- Test Techniques and Setup
- Acknowledgments
- References

Principal Investigator List

Principal Investigator (PI)	Abbreviation
Megan C. Casey	MCC
Matthew B. Joplin	MBJ
Jean-Marie Lauenstein	JML
Jason M. Osheroff	JMO
Seth Roffe	SR
Kaitlyn L. Ryder	KLR
Landen D. Ryder	LR
Edward (Ted) Wilcox	TW

Acronym List

Definition	Acronym	Definition	
section (cm²/device, unless specified n²/bit)	MGH FRIB	Massachusetts General Hospital (M Francis H. Burr Proton Therapy, Fa	
section at maximum measured LET	MSU	Michigan State University	
device, unless specified as cm²/bit)	NEDD	NASA Electropics Parts and Packa	
observed at lowest tested LE I		NASA Electionics Parts and Package	
E observed at highest tested LET	NOR	Non-volatile storage technology opt	
plementary Metal Oxide Semiconductor		for random access capabilities	
acement Damage Dose	NSRL	Brookhaven National Laboratory's N	
le Data Rate 3		Space Radiation Laboratory	
le Data Rate 4	n/a	Not Available	
e Under Test	PI	Principal Investigator	
Programmable Gate Array	REAG	Radiation Effects & Analysis Group	
gan State University's Facility for Rare	ROIC	Readout-Integrated Circuit	
be Beams	SCA	Sensor Chip Assembly	
hic Processing Unit	SEB	Single-Event Burnout	
ard Space Flight Center	SEE	Single-Event Effect	
ence Berkeley National Laboratory	SEFI	Single-Event Functional Interrupt	
d-Crystal Display	SEGR	Single-Event Gate Rupture	
ate Code	SEL	Single-Event Latchup	
Emitting Diode	SET	Single-Event Transient	
r Energy Transfer	SEU	Single-Event Upset	
r Energy Transfer threshold (the	SSD	Solid State Drive	
mum LET value at which no effect was	TAMU	Texas A&M University	
rved at an effective fluence of 1x10 ⁷	TID	Total Ionizing Dose	
eles/cm ² – in MeV•cm ² /mg	LICD	University of California at Davis Cro	
Power Double Data Rate	005	Nuclear Laboratory	
fluence to failure	V _{DS}	Drain-Source Voltage	

SDBPTP

MT25Ql

ocessing

ZYNQ XC7Z0

Compendium of NASA Goddard Space Flight Center's Recent Radiation Effects Test Results

Summary of SEE Test Results

umber	Manufacturer	LDC (REAG ID#)	Device Function	Technology	PI	Sample Size	Supply Voltage	Test Env.	Test Facility (Test Date)	Test Results: σ in cm ² /device, unless otherwise specified
· · · · · · · · · · · · · · · · · · ·										
K256TDP- 2AIYY	Micron	n/a (23-009)	NVMe Solid State Drive	NAND Flash	TW	7	3.3 V	Proton	MGH (Jan 2024)	Unrecoverable failures observed with 200 MeV protons only under active read-write testing. MFTF: 2.22x10 ¹⁰ /cm ² . Recoverable failures with power cycling observed with 200 MeV protons. MFTF: 1.56x10 ⁹ /cm ²
Z-085G-XI	Western Digital	n/a (23-010)	NVMe Solid State Drive	NAND Flash	TW	7	3.3 V	Proton	MGH (Jan 2024)	Unrecoverable failures (MFTF: 1.43x10 ¹⁰ /cm ²) observed with 200 MeV protons only under active read-write testing. Recoverable failures (MFTF: 1.86x10 ¹⁰ /cm ²) observed with 200 MeV protons during both reading and writing operations.
J512ABB	Micron	2YA15 (23-025)	Flash Memory	NOR	TW	5	1.8 - 2.0 V	Heavy lon	LBNL (Dec 2023)	$\begin{array}{l} 29.4 < {\rm SEL} {\rm LET_{th}} < 45.3 \ {\rm MeVcm^2/mg} \ {\rm at} \ 55^{\circ}{\rm C}; \ {\rm SEL} {\rm LET_{th}} < 29.4 \ {\rm at} \ 82^{\circ}{\rm C} \\ \sigma_{\rm maxm} \ 9.09 {\rm x10^{-8} cm^2} \ {\rm at} \ 29.4 \ {\rm MeVcm^2/mg}, \ 82^{\circ}{\rm C} \\ {\rm SEU} {\rm LET_{th}} < 8.2 \ {\rm MeVcm^2/mg}; \ {\rm SEU} \ \sigma \ 1.8 {\rm x10^{-16}} \ {\rm cm^2/bit} \ {\rm at} \ 8.2 \ {\rm MeVcm^2/mg} \end{array}$
				.			rr			
20-1CLG400C	Xilinx	n/a (20-004)	FPGA and ARM Processor on TUL PYNQ-Z2 Board	CMOS	SR	1	12 V	Protons	MGH (Aug 2023)	Performing math operations increases reliability by the cross section metric when L2 cache is enabled by allowing critical cache to be flushed. L1 cache not large enough to store as much critical information, so disabling L2 cache trivially increases reliability.
JRA-I	EdgeCortix	n/a (24-001)	AI Coprocessor (PCle card)	16 GB LPDDR4	SR	1	12 V	Proton	MGH (Jan 2024)	No destructive SEEs observed at 200 MeV protons with a flux reaching ~ 10 ⁹ p/cm ² s. Data errors were observed in the form of inference mispredictions and changes in the output confidence scores.
08UFY	STMicroelectronics	n/a (22-021)	Diode	Si	MCC	25	800 V	Heavy Ion	MSU FSEE (Apr 2023)	SEB LET _{th} > 50.5 MeVcm ² /mg at V _R = 800 V
SHMWG	Taiwan Semiconductor	n/a (22-022)	Diode	Si	МСС	25	800 V	Heavy Ion	MSU FSEE (Apr 2023)	SEB LET _{th} > 50.5 MeVcm²/mg at V _R = 800 V
KFS	Taiwan Semiconductor	n/a (22-023)	Diode	Si	MCC	25	800 V	Heavy Ion	MSU FSEE (Apr 2023)	SEB LET _{th} > 50.5 MeVcm²/mg at V _R = 800 V
6661	SSDI	2248 (23-003)	N-Channel Power MOSFET	Si	LR/ JMO	11	0V, -5V, -10V	Heavy Ion	MSU FSEE (Apr 2023)	Tested at LET of 50.5 MeV•cm²/mg; No destructive SEEs observed at 65 V _{DS} & 0 V _{GS} ; No destructive SEEs observed at 55 V _{DS} & -5 V _{GS} ; 3 (1) pass/(fail) at 70 V _{DS} & 0 V _{GS} ; 3 fails at 75 V _{DS} & 0 V _{GS} ; 4 fails at 55 V _{DS} & -10 V _{GS}
						•				
'11-SP	Texas Instruments	1828A (23-026)	Transceiver	0.25 μm CMOS	MCC	5	2.5 V	Heavy Ion	LBNL (Aug 2023)	SEL LET _{th} > 75.6 MeVcm ² /mg @75°C
H574-SP	Texas Instruments	2040A (23-027)	Logic	CMOS	MCC	15	3.3 V	Heavy Ion	LBNL (Aug 2023)	SEL LET _{th} > 75.6 MeVcm ² /mg @75°C
1351	Soloman Systech	1431 (22-045)	Organic LED Display Drive	CMOS	LR	2	5 V	Heavy Ion	LBNL (Jun 2023)	SEFI LET _{th} < 1.2 MeV•cm²/mg
3357D	Himax Technologies	2050 (22-047)	LCD Display Driver	CMOS	LR	2	5 V	Heavy Ion	LBNL (Jun 2023)	SEFI LET _{th} < ~16 MeV•cm ² /mg. Potential range issues due to packaging constraints.
				Sumr	nary	y of	TID a	nd DDI	D Test Resu	its
nber	Manufacturer	LDC or Wafe (REAG ID#)	r# Device	Function	PI	Samı Siz	ple Test Env.	Test Facili (Test Date	ty 2)	Test Results (Effect, Dose Level/Energy, Results)

Part Number	Manufacturer	LDC or Wafer# (REAG ID#)	Device Function	PI	Sample Size	Test Env.	Test Facility (Test Date)	Test Results (Effect, Dose Level/Energy, Results)	
Power Device									
2N6284	Microchip	P2132CDWR (23-006)	Power Transistor	KLR	6	Gamma	GSFC (Aug 2023)	No degradation observed up to 59.6 krad(Si)	
2N5154	VPT	B2321 (23-022)	Power Transistor	KLR	6	Gamma	GSFC (Dec 2023)	No degradation observed up to 61 krad(Si)	
Photonics									
EYP-RWL-0808-00800- 4000-BFW09-0000	Toptica-Eagleyard	n/a (23-011)	808-nm Laser Diode	MBJ	2	Proton DDD	UCD (Aug 2023)	No observable degradation up to 63-MeV proton fluence of 5.6E11 p/cm ² .	
EYP-RWL-0808-00800- 4000-BFW09-0000	Toptica-Eagleyard	n/a (23-011)	Laser Diode	MBJ	2	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
IF-HS1	Coherent-Dilas	n/a (23-012)	976-nm Laser Diode	MBJ	2	Proton DDD	UCD (Aug 2023)	No observable degradation up to 63-MeV proton fluence of 5.52E11 p/cm ² .	
IF-HS1	Coherent-Dilas	n/a (23-012)	Laser Diode	MBJ	2	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
CMDFB1030A	II-VI	n/a (23-013)	1030-nm Laser Diode	MBJ	1	Proton DDD	UCD (Aug 2023)	No observable degradation up to 63-MeV proton fluence of 5.87E11 p/cm ² .	
CMDFB1030A	II-VI	n/a (23-013)	Laser Diode	MBJ	1	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
EPM605	JDSU/Lumentum	n/a (23-014)	Photodiode	MBJ	2	Proton DDD	UCD (Aug 2023)	Photodiode degradation of dark current at 63-MeV proton fluence<7.5E10 p/cm ² .	
EPM605	JDSU/Lumentum	n/a(23-014)	Photodiode	MBJ	2	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
C30665GH-LC	Excelitas	n/a (23-015)	Photodiode	MBJ	1	Proton DDD	UCD (Aug 2023)	Photodiode degradation of dark current and responsivity at 63-MeV proton fluence<7.5E10 p/cm ² .	
C30665GH-LC	Excelitas	n/a(23-015)	Photodiode	MBJ	1	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
J22-5IR03M-1.7	Teledyne	n/a (23-016)	Photodiode	MBJ	1	Proton DDD	UCD (Aug 2023)	Photodiode degradation of dark current at 63-MeV proton fluence<7.5E10 p/cm ² .	
J22-5IR03M-1.7	Teledyne	n/a(23-016)	Photodiode	MBJ	1	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
GAP3000	GPD	n/a (23-017)	Photodiode	MBJ	1	Proton DDD	UCD (Aug 2023)	Photodiode degradation of dark current at 63-MeV proton fluence <7.5E10 p/cm ² .	
GAP3000	GPD	n/a (23-017)	Photodiode	MBJ	1	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
C30665GH	Excelitas	n/a (24-004)	Photodiode	MBJ	2	Proton DDD	UDC (Feb 2024)	Photodiode degradation of dark current at 63-MeV proton fluence<8.89E11 p/cm ² .	
NIR-MPZ-LN-20	iXblue	n/a (23-018)	Optical Phase Modulator	MBJ	1	Proton DDD	UCD (Aug 2023)	No observable degradation up to a 63-MeV proton fluence of 5.89E11 p/cm ² .	
NIR-MPZ-LN-20	iXblue	n/a (23-018)	Optical Phase Modulator	MBJ	1	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
BBM2-NIR-MPX-LN-01	iXblue	n/a (23-019)	Optical Phase Modulator	MBJ	1	Proton DDD	UCD (Aug 2023)	No observable degradation up to a 63-MeV proton fluence of 5.89E11 p/cm ² .	
BBM2-NIR-MPX-LN-01	iXblue	n/a (23-019)	Optical Phase Modulator	MBJ	1	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
SCD-T80156 rev A	DiCon	n/a (24-005)	Optical Switch	MBJ	2	Proton DDD	UCD (Feb 2024)	No observable degradation up to a 63-MeV proton fluence of 8.95E10 p/cm ² .	
113-00148	Coherent Electro-Optics Technology	n/a (24-006)	High Power Isolator	MBJ	2	Proton DDD	UCD (Feb 2024)	No observable degradation up to a 63-MeV proton fluence of 8.95E10 p/cm ² .	
OD-110L	Opti Diode	n/a (23-028)	GaAlAs 850 nm LED	JML	4	Proton DDD	UCD (Aug 2023)	Step irradiation to up to 63 MeV proton fluence of 3.40x10 ¹² /cm ² (451 krad(Si). Relative optical intensity decreased between 47.1% - 48.5% at the maximum dose; no spectral shift or widening of the output spectrum. [19]	
NC4U334BR	Nichia	n/a (23-029)	AlGaN 280 nm LED	JML	2	Proton DDD	UCD (Aug 2023)	Step irradiation to up to 63 MeV proton fluence of 3.43x10 ¹² /cm ² (456 krad(Si). Relative optical intensity decreased ≤ 10% at max dose; no spectral shift or widening of output spectrum.	
NCSU434C	Nichia	n/a (23-030)	AlGaN 280 nm LED	JML	2	Proton DDD	UCD (Aug 2023)	Step irradiation to up to 63 MeV proton fluence of 3.43x10 ¹² /cm ² (456 krad(Si). Relative optical intensity decreased ≤ 10% at max dose; no spectral shift or widening of output spectrum.	
XFM-5050-UV	Luminus	n/a (23-031)	AlGaN 280 nm LED	JML	2	Proton DDD	UCD (Aug 2023)	Step irradiation to up to 63 MeV proton fluence of 3.43x10 ¹² /cm ² (456 krad(Si). Relative optical intensity decreased ≤ 10% at max dose; no spectral shift or widening of output spectrum.	
Thermistors			· · · · · · · · · · · · · · · · · · ·						
QT06020-142	Qti	n/a (23-020)	Thermistor	MBJ	2	Gamma	GSFC (Dec 2023)	No degradation observed up to 80 krad(Si).	
QT06020-142	Qti	n/a (23-020)	Thermistor	MBJ	2	Proton DDD	UCD (Aug 2023)	Thermistor showed variation in temperature linearity between 63-MeV-proton 7.5e10 p/cm ² and 1.5e11 p/cm ² fluence.	

To maintain realistic operating conditions, the devices were tested with 1 GB of pseudorandom data written and read from random locations (changing each cycle) through the SSD memory space. Each write/read loop takes about 10 seconds to complete at this scale. Operations were performed from a Windows 10-based computer using Python test code that used the wmic module to perform low level (raw) block operations.

The sequence below describes the subsequent events, marked with

- but is uncharacteristically flat.
- 4. At 4:59:24 PM power is restored

- and read cycles afterwards

Xilinx Zyng-7020 SoC on the TUL PYNQ-Z2 board

The results of the tests were separated into configurations where the L2 cache was on and off, shown in Figures below. When the L2 cache is ON, the MFTF is significantly worse for the IDLE configurations compared to the MM configurations. This is most likely due to the critical data retrieval processes of the DUT. When matrix multiplication is processing, critical kernel data is being flushed out of the cache to make room for the matrix data. If the system is idling, then that critical data never gets flushed out of the cache and thus has a higher chance of corruption, especially since the DDR3 SDRAM chip was not under irradiation. Additionally, the UNLOADED configurations were significantly better than the LOADED configurations. This implies that the drivers being loaded and active in the kernel do affect the reliability of the system. This is expected since the drivers have memory access to kernel space, even when they aren't actively being used. However, the number of drivers installed and loaded do not seem to have a significant effect on cross section.

We surmise that this could be because there wasn't enough of a significant difference in the number of drivers between the configurations, or because the drivers were not being actively used on real hardware devices. In the L2 cache OFF configuration, any pattern are much more difficult to discern, most likely due to there being not enough memory just in the L1 cache to hold critical data.

Micron MTFDHBK256TDP-1AT12AIYY SSD

Six devices were tested at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital.

Two SEFI observed and recovered in quick succession during 200 MeV proton testing.

. Initiation of a write command at 4:59:17 PM. The supply current elevates

2. Three seconds later at 4:59:20 PM the test software throws an exception when the write has failed to complete. This is classified as a timeout error. 3. The power supply is disabled for four seconds and the proton beam is

5. The device is allowed 20 seconds to initialize, still without beam applied. 6. At 4:59:44 PM the beam is uninhibited and testing (the incomplete write)

7. Writing proceeds successfully for about 2 seconds until it again hangs for 3 seconds, triggering a timeout error and a repeat of the recovery in steps

. Writing resumes after the second recovery and completes. The subsequent read operation is successful, along with the depicted writ

Fluence Between Failure with Proton Irradiations

Device #	Total Failure Events	Total Biased Fluence	Mean Fluence Between Failure	Tested until unrecoverable error occurred?
Micron_2	2	4.28E+09	2.14E+09	Yes
Micron_3	7	6.97E+09	9.96E+08	Yes
Micron_4	4	8.82E+09	2.21E+09	Yes
Micron_5	14	1.46E+10	1.04E+09	Yes
Micron_6	13	2.06E+10	1.58E+09	No
Micron_7	9	2.38E+10	1.98E+09	No
Micron_8	9	1.26E+10	9.42E+08	No
sum	58	9E+10	1.56E+09	

Results with L2 Cache On.

Results with L2 Cache Off.