1	Accelerating Antarctic research amid rapid changes
2	Lettie A. Decekt2t
3 4	Lettie A. Roach ^{1,2,†}
5 6 7 8	1 Center for Climate Systems Research, Columbia University, New York, NY, USA. 2 NASA Goddard Institute for Space Studies, New York, NY, USA. [†] e-mail: <u>I.roach@columbia.edu</u>
9	
10	Standfirst
11	We must prioritize diversity, scientific communication and team-based science to keep
12	up with rapid Antarctic ice and climate change.
13	
14	What got me interested in sea ice, during university about ten years ago, was the Antarctic sea
15 16	ice paradox. When the world was warming, why was Antarctic sea ice expanding? This question has motivated most Antarctic sea ice research for decades. And yet, within only a few years, the
17	trend has reversed. Antarctic sea ice area reached a satellite era record low in 2016, followed
18	by a new record low in 2022, and then another record low in 2023. The pace of change has
19	been dramatic, even during my short research career thus far.
20	
21	Sea ice plays a crucial role in the global water cycle, acting as a reservoir for relatively fresh
22	water. In the Southern Ocean, the amplitude of the seasonal cycle of sea ice is enormous,
23	expanding sixfold each year, and helping transport freshwater from higher to lower latitudes.
24	Sea ice affects the exposure of Antarctic ice shelves to ocean warming and storms, influencing
25	mass loss from Antarctic's grounded ice, which is one of the most uncertain factors in future sea
26	level rise and paramount for adaptation. Sea ice is essential in climate feedbacks and ecological
27	systems in the Southern Ocean. Given its global importance, that the processes driving
28	Antarctic sea ice expansion are not yet fully-understood, that the record-breaking sea ice lows
29	were not anticipated, and that their drivers remain unclear, one might ask why there hasn't been
30	more research progress.
31	
32	Several connected factors complicate our understanding of Antarctic sea ice. Antarctic
33	observations are very limited. The Southern Ocean experiences polar night, and visible satellite
34	observations are limited to months with good light, visibility and cloud-free conditions. Being
35	extremely cold, stormy and remote, Antarctica is a challenging destination for field campaigns.
36	Thick sea ice in winter hinders ships and powerful storms hamper crossings. Although coverage
37	is slowly increasing, we have very limited observations of sea ice thickness and of subsurface
38	ocean water properties in the Southern Ocean, more so than any other ocean on Earth. State-
39 40	of-the-art climate models still struggle with accurate simulation of the Southern Ocean and its
40 41	sea ice. Biases in this region lead to low confidence in future projections of Antarctic sea ice.
41 42	Moreover, the processes at play are complicated, and impacted by interactions between the ocean, atmosphere and cryosphere.
42 43	סטלמה, מהוססטופור מות טועסטופור.
43 44	Naturally, we have minimal control over inherent climatic and technological limitations. And, of
45	course, increased research funding is sorely needed (for example, glaciology research funding

in the US is minuscule compared to the projected costs of sea level rise mitigation¹). But we
can determine how our polar research community conducts research. From my early-career
perspective, here are three key areas where we must improve to rapidly advance understanding
in polar science.

50

51 First, it is imperative that we make our scientific community more inclusive to all people, and 52 especially newcomers. Ample evidence shows that diverse teams have better performance 53 outcomes. The geosciences remains one of the least diverse scientific fields, with many 54 experiencing hostile behavior². In particular, harassment during remote Antarctic fieldwork is a 55 serious and distressing issue³. Preventing misconduct, harassment, and discrimination is the 56 right thing to do by any moral standard and also crucial for improving retention. We all have a 57 duty to uphold standards of conduct every day within our research community and consider how 58 we can make our communities more inclusive. This includes thinking about academic 59 hierarchies and power structures. In communities that are strongly hierarchical and where 60 publication metrics are valued above all else, it's easier for harassers to get away with bad 61 behavior. Less reliance on reference letters and on single academic advisors would help to 62 redistribute power in academic relationships. Besides, we must address aspects that are often 63 exclusionary: the need to move long distances for temporary postdoc positions, the physical 64 qualification process for Antarctic fieldwork, and overloaded work schedules that challenge 65 work-life balance and mental wellbeing.

66

67 Second, we must improve our scientific communication across sub-discipline boundaries. I think 68 most agree that we need to see more connections made across hydrologic, oceanic, 69 atmosphere and cryospheric science⁴, not to mention inter- and transdisciplinary connections 70 with social sciences for adaptation and mitigation to climate change and sea level rise. There 71 are moves towards this, evident in the new Climate Schools that are emerging in the US. 72 However, particularly when considering sea ice-which sits at the interface of the ocean and 73 atmosphere, and, in some locations, ice shelves—as well as the complex, coupled Antarctic ice 74 and climate system, it is clear these connections need to be developed more guickly. How can 75 we meet the challenge of rapidly broadening our understanding of Antarctic system 76 components, while not sacrificing depth of knowledge in individual physical processes? To 77 encourage more activity across disciplinary boundaries, we must develop capability to distill 78 complex, technical concepts for a more general (but still scientific) audience through practice 79 and education. Participating in polar fieldwork was an eye-opening experience for me, showing 80 how scientists studying the very same phenomena could approach it from different directions 81 and with different languages. Summer schools and other initiatives that bring together modelers 82 and observationalists, or other groups, help researchers to speak the language of both 83 approaches⁵. 84

Third, as our science expands and the real-world implications of our work become ever more urgent, we must question whether our current academic system is prioritizing the most critical issues and in the most effective way. As our datasets get larger and our Earth system models more complex but our academic system continues to prioritize first-author papers, it is a struggle for early-career researchers⁶ and peer reviewers to keep up. It also encourages researchers to

90	break up large projects into small 'publishable units and incentivizes researchers to 'stay in their
91	lane.' From experience foraying from sea ice into climate and ice sheets, it's certainly easier to
92	keep publishing in your original field of expertise than moving to different Earth system
93	components. Community members have suggested alternative ways to recognize scientific
94	contributions (e.g. Github activity ⁷), but this has not been widely adopted. Can we learn from
95	fields like particle physics, where papers are written by very large teams, and how do we make
96	sure contributions are recognized equitably?
97	
98	As warming increases and sea level rises, we need to rapidly accelerate research progress in
99	Antarctic sea ice, grounded ice and the broader Earth system. As scientists, we are privileged to
100	enjoy a large amount of freedom and flexibility in our work. Let's use it to build inclusive,
101	welcoming communities that empower people to cross disciplinary boundaries and make new
102	advances.
103	
104	
105	References
106	
107	
108	1 Catania, G., T. Moon, & A. Aschwanden (2022), Glacial knowledge gaps impede resilience to
109	sea level rise, Eos, 103, https://doi.org/10.1029/2022EO220238. Published on 11 May 2022.
110	2 Maria Crietta E. et al Farthla Future 11 a0000EE000010 (0000)
111 112	2 Marin-Spiotta, E., et al. Earth's Future, 11, e2022EF002912 (2023).
112	3 Results from the U.S. Antarctic Program's Sexual Assault and Harassment Needs
114	Assessment. U.S. National Science Foundation.
115	https://www.nsf.gov/news/news_summ.jsp?cntn_id=305782&org=OPP
116	https://www.hsi.gov/news/news_sunm.jsp:chth_id=303702&0ig=OfT_
117	4 Jain, S., et al. AGU Advances, 3, e2022AV000676 (2022).
118	
119	5 Holland, M. M. & D. Perovich. Bull. Amer. Meteor. Soc., 98, 2057–2059 (2017).
120	
121	6 Schmidt, G. & Moyer, E. Nature Clim Change 1, 102–103 (2008).
122	
123	7 Ryan Abernathey, I Got Tenure, But Science is Still Broken. https://rabernat.medium.com/i-
124	got-tenure-but-science-is-still-broken-db7a6d69e925
125	
126	Competing interests
127	The author declares no competing interests.
128	
129	

