Testing Description

Automotive and industrial grade SSDs (listed in Table |I) were tested for TID and
SEE response at the assembly level to investigate radiation tolerance trends and
explore radiation hardness assurance best practices in commercial memory
devices [1]. SSDs were installed in passive NVMe extenders to place only the drive
in the beam line. A digital I/O module connected to the test computer (Fig. 1)
provided inhibit signals to block both facility beam delivery and power while
attempting recovery from any device failure conditions (e.g., failed write, failed

read, or unresponsive device).
Table I. Description of devices under test

Micron Swissbit Exascend Western Digital
MTFDHBK256TDP- SFPC320GM1AGAT | EXPIAM960GB- | SDBPTPZ-085G-XI
1AT12AIYY O-1-8C-51P-STD DL
Operating M.2:-40°C to +95°C -40°C to +85°C -40°C to +85°C -40°C to +85°C
Temperature BGA: -40°C to +105°C
LDC 3BA22 and 3PA22 0423 Unavailable 19JUN2023
Memory 256 GB TLC or 85 GB SLC 320 GB pSLC 960 GB TLC 85 GB SLC
Type Intel-marked (Micron B17A)  Kioxia/Toshiba 96 Layer 3D NAND
64 Layer 3D NAND 64 Layer 3D NAND
DRAM No Micron DDR3 1GB No No
Controller Silicon Motion SM2263A Phison PS5008-E8-10 Marvell 88551321 WD - Possibly PCle 3.0
PCle 3.0 PCle 3.0 PCle 4.0 20-82-10048-A1 Polaris
MP16
Footprint M.2 2230 M.2 2280 M.2 2280 M.2 2230
w
,DS Power inhibit 8
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Fig. 1. Full-board SSD test apparatus for autonomous SEE and TID testing at a distance.
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A fully autonomous test is illustrated in Fig. 2. As observed by supply current, 8
separate events occur, all of which are recovered with a power cycle. In each case,
the device completes entire read and write cycles between events. The lower
curve denotes NSRL-delivered beam spills, with a typical fluence of 500/cm?.

The SEE and TID test flows are depicted in Fig. 3 and 4. In each case, test data was
1,024 to 4,096 random locations written with 1,024 kB of pseudorandom data.
Data was uniquely marked to indicate any addressing errors. On each operational
loop, the random locations were changed.
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Fig. 2. Supply current (top) of critical events during heavy-ion testing, with beam spill fluence (bottom).
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Fig. 4. TID dynamic read/write test flow, including
power cycling added after initial results

Fig. 3. SEE dynamic read/write test flow
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Heavy lon Results

In June 2024, the Micron, Western Digital, Swissbit, and Exascend drives were all tested with
high-energy heavy ions at the NASA Space Radiation Lab (NSRL). All were susceptible to
unrecoverable errors. A small improvement was observed in the Micron device when
provisioned into 100% SLC storage (Fig. 8). Here, mean fluence between failure includes both
recoverable (with power cycle) and unrecoverable events.

Proton Results

Micron TLC automotive grade SSDs and Western Digital SLC industrial grade SSDs
were irradiated dynamically at the Massachusetts General Hospital’s Francis H.
Burr Proton Therapy Center in January, 2024. Both devices suffered unrecoverable
failures during both read and write operations. Mean fluence between failure
’ (including both recoverable and unrecoverable events together) are in Fig. 5.

That dynamic testing of a complex system may expose new
error signatures is not a novel concept [4], nor is the presence
of functional failures in solid-state drives [5]. However, the
hardness assurance implications herein address the
momentum towards flying off-the-shelf [1] systems with little
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CMOS devices commonly fail due to single-event latchup [8]
under heavy-ion irradiation. It is not unreasonable to
hypothesize that an arbitrary solid-state drive might be dose-
limited by NAND erasures and be SEE-limited by unidentified
CMOS microcircuit controllers. The devices tested herein are
neither. The SSDs are dose-limited by power-on processes and
are SEE-limited by errors in controller, DRAM, and memory
circuitry that are neither traditional destructive SEE (e.g., SEL)

The TLC Exascend flash was significantly more vulnerable (Fig. 9) than the SLC Swissbit flash,
while the Swissbit controller was the most sensitive region tested — which notably is the only
device with onboard DRAM. However, these were primarily recoverable events. Unrecoverable
errors occurred on all devices, including when irradiating only the NAND flash for both the TLC
Exascend drive and the SLC Swissbit drive (i.e., not merely user data corruption).

Table Il. Unrecoverable Errors with Heavy lons

Fig. 5. Mean fluence between failures for Micron (left) and Western Digital (right) with 200 MeV proton testing.
Each device is a separate bar, with total failures per device listed. Mean and 95% confidence ranges are shown.

While the MFBF appear quite different between the two, the fluence to
unrecoverable failure are similar — about 2.22x101%/cm? for the Micron and
1.43x101%/cm? for the WD. The WD device requires intervention less often than the
Micron device, but neither is immune to proton-induced functional failure.
Irradiations in an unbiased configuration (4.28x10'°/cm? for each device) did not

Target Unique Parts | Threshold LET for Fluence at Highest
Tested Unrecoverable Passing LET

cause any observable failures even though both device’s NAND flash arrays are Micron (SLC)  Entire Device 6 91<x<173 1x10%/cm? nor easily-correctable soft errors (these drives feature
susceptible to bit cell upsets in this condition. JliEen (LG, Entire Device 7 ) SSS S 2 ele extensive error-correction [9] that should be sufficient for the
Swissbit Flash 3 >-1<x<3.1 2x10°/cm? errors induced by low fluences of heavy-ions or 200 MeV
Swissbit Controller/DRAM 2 x>17.3 6.59x103/cm?
Exascend Flash 2 x<5.1 N/A - i U el -
! TI D ReS u | tS Exascend Controller/DRAM 3 2.5<x<5.1 4.61x10%/cm?
WD Entire Device 2 5.1<x<9.1 8.65x105/cm?

Total ionizing dose testing with gamma irradiation at the NASA GSFC
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Hardness Assurance Implications
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protons observed in previous testing [10]).

It is prudent that the usage of any complex system be
predicated upon some estimation of radiation response, and
while a trend toward test-as-you-fly on a black-box system
may be the only practical solution for many applications (e.g.,
cost and schedule), underlying vulnerabilities in these systems
require a particularly careful approach [11] that may not
resemble that of piece-part tests (e.g., those in [8]).

The off-the-shelf SSDs tested in this work provide automotive-
and industrial-grade temperature ranges and reasonable
assurance of manufacturing quality [1]. They likely have
acceptable TID performance for the lowest of dose
environments (or when heavily shielded), and the remedy for
TID testing practices is clear — ensure that test-like-you-fly
really means a full test case, not merely testing the most
common usage. However, their SEE performance remains
troubling from a testing standpoint and requires further
exploration.

Complex devices procured off-the-shelf offer little
customizability, less error reporting, and potentially no
architectural details. Yet, they cannot be reliably screened
with a destructive SEE test when all parts tested in this study
failed unrecoverably for reasons likely related to the
architecture (e.g., SSD mapping tables and other configuration
information stored in the non-volatile array) rather than a
familiar single-event latchup signature.
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Fig. 6 (above). TID tolerance as measured by supply current for
the Swissbit SSD with continuous read/write (top) and read/write
with periodic power cycling (bottom).
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The Exascend Pl4 TLC industrial SSD failed (Fig. 7) at 23 krad(Si) when
dynamically read/written in-situ, but at only 7 krad(Si) when power
cycling was included (and 17 krad(Si) for a “cold spare” test).

Data Transfer Speed

0 5 10 15 20 25 30
Total lonizing Dose (krad(Si))

TLC: Triple-Level Cell
LDC: Lot Date Code

LET: Linear Energy Transfer

NVMe: Non-Volatile Memory express

SEE: Single-Event Effect

SEFI: Single-Event Functional Interrupt

SEL: Single-Event Latchup
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