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The unstructured Voronoi mesher currently being developed within the Launch, Ascent, and

Vehicle Aerodynamics (LAVA) software framework at NASA Ames Research Center is described

in detail. The discussions include, but are not limited to, the strategies used in the seeding and

smoothing phases to ensure a high-quality mesh for Wall-Modeled Large-Eddy Simulations

(WMLES), the methods behind the cell clipping algorithm responsible for conforming the mesh

to a complex geometry, and the approach to create a global mesh from the distinct Voronoi cells.

Applications and benefits of the Voronoi meshing approach are also presented. The automated

meshing paradigm introduced was able to significantly reduce the time necessary to create

a high-quality mesh around a complex geometry when compared against the current LAVA

curvilinear overset meshing standard. For example, the task of generating a single mesh around

the high-lift common research model requires the full dedication of a mesh generation expert for

a period between one and two months. A family of meshes with different refinement levels up to

six hundred million cells can be generated by a single engineer in a day or two. This technology

has the potential for decreasing the turnaround time for conducting WMLES around complex

geometries, as well as facilitating comprehensive mesh refinement studies.

I. Introduction
The rapid growth in computational resources in the High-Performance Computing area has enabled Wall-Modeled

Large-Eddy Simulations (WMLES) as a tool for practical applications in industry. Recent work has demonstrated the

capability of WMLES to accurately predict quantities of engineering interest in flows involving complex geometries.

For example, in the field of aircraft aerodynamics, WMLES has been used to study the flow field around a model of a

commercial airplane in high-lift configurations near take-off and landing [1–6] as well as the flow around an airfoil

with horn ice accretion on the leading edge [7, 8]. Moreover, WMLES has been successfully used to predict noise

levels generated by the flow structures around landing-gear [9] and those caused by a dual-stream nozzle in co-axial

jets [10–12]. The increase in the interest for WMLES relies mainly on the fact that, for a reasonable additional cost with

respect to traditional methods such as Reynolds-Averaged Navier-Stokes (RANS), WMLES is capable of considerably

increasing the prediction accuracy of simulations of unsteady flow phenomena such as the dynamics of a shear layer

created by a jet or the non-equilibrium characteristics of a separated turbulent boundary layer [13].

One bottleneck that prevents a more widespread usage of WMLES in flow simulations around complex geometries

relevant for engineering applications is the challenge of creating appropriate high-quality, generally large-scale,

meshes [14]. There are four established approaches, that could be used separately or in conjunction with one another,

for mesh generation over complex geometries for WMLES: Cartesian octree grids coupled with an immersed boundary

technique, structured curvilinear overset grids, unstructured meshes based on predetermined cell shapes (e.g. hexahedral,

tetrahedral or prismatic), and unstructured meshes based on generic polyhedral shapes generated by a Voronoi tessellation.

Out of the previously mentioned methods, unstructured meshes offer distinct advantages that can supersede the

speed limitation drawback that comes from additional numerical requirements, such as having to store a neighbor

connectivity graph. These advantages include highly automated and scalable body-conforming mesh generation, and
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applicability of mesh smoothing techniques that can mitigate coarse-fine cell volume jumps responsible for numerical

impedance and spurious reflections. Additionally, these benefits support the primary goal of the current development

effort, which is to eliminate the time-consuming manual process traditionally required for generating body-fitted meshes.

In comparison against other unstructured mesh topologies, Voronoi grids offer several advantages for WMLES. Firstly,

the cells generated by seeding the domain with regular point distributions have faces halfway between cell centers,

enabling the use of robust and accurate, non-dissipative flux discretizations. Secondly, the resulting cells exhibit isotropy

for complex geometries and allow for control over the minimum cell size, facilitating the use of efficient explicit time

integration schemes.

One of the main advantages, in addition to computation speed, of either Cartesian or structured curvilinear overset

meshing frameworks over the unstructured approach is the use of finite-difference methods, which can be extended to

high orders of accuracy for a small computational overhead. While studies on numerical methods with high-orders

of accuracy applied to generic polyhedra exist [15–18], previous work on WMLES using Voronoi meshes have been

limited to second-order accurate schemes. There is a growing recognition within the community of the significance

of minimizing dissipation errors compared to dispersion errors in high Reynolds number Large-Eddy Simulations

(LES) [19]. Consequently, second-order kinetic energy-preserving finite volume discretizations are widely considered

to be highly appropriate for computational aerodynamics in most LES applications and studies of the influence of

higher-order methods in arbitrary polyhedral meshes are left for future work.

The Voronoi-based meshing process has only been recently applied in the WMLES framework despite its previous

successful use in the field of computational star formation [20, 21]. The first application of Voronoi meshes in the

context of turbulent flow simulations with engineering applications can be credited to Cascade Technologies and the

Center for Turbulence Research (CTR) at Stanford University in 2018 [10]. Since then, CTR’s group has successfully

conducted numerical reproductions of several flow setups involving complex geometries which include models of cars,

airplanes and aircraft rotors [1, 22–26].

In order to encourage collaboration, the objective of this manuscript is to describe the details behind the algorithms

used by the Voronoi-based mesher currently under development within the Launch, Ascent, and Vehicle Aerodynamics

(LAVA) group at the NASA Ames Research Center. First, strategies for point cloud generation are discussed in

Section II.A. The special treatment applied for near-body layers is discussed in Section II.B. The details of the smoothing

algorithm currently employed are discussed in Section II.C. After that, the procedure for computing each individual

Voronoi cell from a point cloud is considered in Section II.D. Next, the algorithm used to automatically detect geometric

features and retain them in the final global mesh is presented in Section II.E. Then, the algorithm used to clip the

generated cells with a triangulation that describes the geometry of interest is explained in Section II.F. The procedure

for creating a global mesh from the individual Voronoi cells is introduced in Section II.G. Finally, applications for the

LAVA Voronoi mesher as well as benefits are presented in Section III.

II. Voronoi Mesh Generation Methodology

Fig. 1 Example of a 2D cluster of Voronoi cells illustrating desirable properties for numerical computations.
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Voronoi meshes possess several intrinsic qualities that make them highly suitable for CFD applications needing high

resolution and low dissipation, all the while minimizing the human effort required for mesh generation. A Voronoi

diagram is a collection of planar faces dividing the space between points distributed in 3D space. The points are often

referred to as seed points or generating locations. The faces enclosing each seed point contain the space that is closer to

the seed than any other point. The faces form arbitrary polyhedral shaped cells with three key properties, which are

illustrated in Fig. 1:

• Faces are planar, which is not always the case with non-Voronoi arbitrary polyhedral unstructured meshes, such

as those resulting from dualization of tetrahedral meshes. The faces are often assumed planar in 2nd order

finite-volume solver implementations.

• Faces are orthogonal to the vector connecting the two generating seeds on either side of the face. This property is

distinctly beneficial for the stability of the convective and diffusive flux schemes as described in Sozer et al. [27].

• Faces are located midway between the seed points on either side. Therefore, face-averaging can be performed

through a straightforward arithmetic average of the cell center values on either side of the face. Since face-averaging

is used in gradient calculations and diffusive flux discretization, these operations benefit from truncation error

cancellation which leads to a non-dissipative central scheme [28]. Regular seeding patterns are especially

benefitted from this property.

All of these properties are major factors for improving the accuracy and robustness of finite volume solvers. This

means that if one is careful about using the seed locations and the vectors that connect neighboring seeds, exact

cancellation of truncation errors should be recovered in the interpolation and differentiation algorithms even for irregular

Voronoi meshes. A more in-depth analysis of the numerical operators on unstructured Voronoi meshes is planned and

will be addressed in future publications.

Fig. 2 Cell-type examples: hexahedron (left), truncated octahedron (middle), rhombic dodecahedron (right)

In practice, it is beneficial to use regular patterns in large portions of the generator point cloud. That way, it is

possible to create regions of isovolumetric centroidal Voronoi cells that have inherent well-behaved numerical operators

dependent on a regular stencil of neighboring cells. Sozer et al. [27] has discussed the advantages and disadvantages of

using three different regular lattice arrangements: Cartesian seeding, which generated cubic cells; body centered cubic

(BCC) seeding, generating truncated octahedron cells; and face centered cubic (FCC) seeding, generating rhombic

dodecahedron cells (see Fig. 2). It was found that BCC grid arrangement was a good compromise between the number

of face evaluations and final accuracy of the results.

Additionally, it is cost-effective to increase the mesh spacing with distance from the solid boundaries of the geometry.

This happens because the length scales associated with the dynamics of the fluid motion also grow with distance from

the walls. The use of telescoping regions with seeds of increased spacing can meet both constraints. The caveat is that an

abrupt coarse-fine interface will occur at the borders between regions if no extra treatment is performed. The presence

of such an interface has been shown to be detrimental to numerical computations of compressible fluid flow because it

can create an artificial impedance boundary causing spurious wave reflections and dampening [29]. A Lloyd-smoothing

algorithm is employed to mitigate these abrupt changes in cell volumes (see Section II.C). Figure 3 provides an example

of the use of telescoping refinement regions when meshing, as well as the effect of Lloyd-smoothing iterations on the

final cell distribution.

The following section provides a detailed discussion on the steps involved in creating a clipped Voronoi tessellation

around a complex geometry, tailored for WMLES. It is important to note that the entire Voronoi meshing process relies

solely on a watertight surface triangulation that defines the geometry of interest, along with a straightforward input file

specifying areas requiring refinement.
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Fig. 3 Sample (a) unsmoothed and (b) smoothed Voronoi meshes around a multi-element airfoil created using

the concept of telescoping regions (TRs). In this mesh subset, five TRs are shown.

A. Point Cloud Seeding

For the initialization of the Voronoi diagram, we first construct a cloud of points in a process we refer to as seeding.

This results in a list of B8 ∈ R
3 where the seeds are the generating locations of the Voronoi cells. In the seeding algorithm,

we cover the seeding region Ω (assumed rectangular) with closed sets '8 ⊂ Ω, named regions, which are characterized

by their unique seed spacing X8 .

The partition of the seeding domain is used to allow the user to choose the characteristic cell size in different areas

of Ω. We define two main types of regions: 1) a near-surface region, defined by a distance from the triangulation that

defines the geometry of interest; and 2) a bulk refinement region, defined by analytical shapes such as rectangular

prisms, conical frusta, cylinders, or spheres. Additionally, a telescoping functionality is built in within each region such

that automatic and gradual coarsening of the mesh with distance from the shape can be achieved at a certain rate chosen

by the user. This is especially useful to create body-aligned off-body coarsening.

In some cases, it is beneficial to define the thickness of each subsequent telescoping near-surface region as a function

of the number of points and seed spacing desired in each layer. The meshes in Fig. 4, for example, have regions with 8

points each that double in size with each additional layer. The main benefit of using such an arrangement is observed

when trying to generate a family of meshes with increasing resolution for a grid sensitivity study. When the discussed

strategy is in place, a decrease in the near-surface length scale by half leads to an approximate increase of the total

number of cells by 4 (in 3D). This is in contrast with an increase by a factor of 8 that would happen if fixed distance

layers were used instead. Using the combination of number of points and seed spacing effectively decreases the thickness

of each wall-normal layer when a resolution increase occurs. While this approach is not a consistent global refinement,

it is effective for accuracy and numerical cost control when resolution increase is mainly needed near wall surfaces to

better represent boundary layers and wall-generated turbulence.

After the regions are defined, they are ordered from finest to coarsest with respect to seed spacing. This ordering is

used to determine priority. When regions of similar spacing overlap, the union of such regions should occur seamlessly

4



a)

b)

Fig. 4 A 2D mesh at y = 10.5 m around the NASA High-Lift Common Research Model with its smallest cell

spacing defined as (a) 32 mm and (b) 16 mm is used to showcase the action of a refinement step on the definition

of subsequent telescoping regions.

(see Fig. 5). This behavior is introduced by seeding all regions according to a single origin. In practice, the bounding

box of each seeding region is covered by the smallest box which has all its corners on integer multiples of the region’s

seed spacing with respect to the previously defined origin. This covering is defined here as lattice box. Within this

lattice box, test points are created at the primary lattice location and/or at staggered positions depending on the desired

final cell shape. For example, some regular cells types are shown in Fig. 2.

Fig. 5 Computational mesh around slat gap for a multi-element airfoil.

Before being included in the final seed list, a test point is checked to determine whether it lies within the computational

domain. This means it must be inside the planes defining Ω and within the region toward which the normals of the
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triangles that define the geometry of interest point. Additionally, it must be verified whether the point lies within a

region of higher priority. If a test point is found to be outside the computational domain or inside a previously seeded

region, it is discarded.

This strategy can generate a large number of redundant test points. One case where this behavior is especially

apparent is when telescoping regions are concerned. Each subsequent region encompasses another with a higher priority

than themselves and therefore, all the test points generated that overlaps the finer-spaced regions are discarded. In this,

and many other cases, the testing of each individual test point would be computationally expensive. The scheme devised

to overcome this difficulty was to use a Cartesian tiling of the lattice box where the dimensions of each tile encompasses

8 points in each direction. Similar tests to the ones used to determine the validity of an individual seed are performed

at the box level with three possible results. First, if a box is found completely outside the current seeding region or

completely inside a region of higher priority all points are discarded. Second, in the opposite scenario where the box is

completely inside the current seeding region and completely outside all regions of higher priority, all points are included.

Finally, if a box intersects any previously seeded region or computational domain boundary, the test is inconclusive and

the points within this box are tested individually.

B. Point Cloud Labeling and Near Wall Treatment

After defining the regions with varying refinement levels and constructing an initial seeding, seeds positioned in the

vicinity of the interface between these regions, as well as those near the geometry, are identified. The positions of these

points will be adjusted to enhance the quality of the final mesh for WMLES. The primary objectives are to achieve

smooth transitions between regions with different cell volumes and ensure wall-normal alignment of the near-wall cells.

A mesh that meets these criteria will maintain a consistent exchange location between the wall model and the LES

solution.

The point cloud labeling step starts by looking for seeds which have at least one neighbor that belongs to a refinement

region with a different spacing compared to the original seed’s region. The points that satisfy this criteria are marked as

the smoothing front. The neighbor information is acquired by looking through the connectivity of the Delaunay graph

defined by the point cloud, i.e. the triangulation of points such that no point is inside the circumcircle of any triangle in

the triangulation. At the same time, the smallest distance from a seed point to the geometry is inferred and seeds that lie

within one lattice spacing are marked as the wall front.

The number of points within the wall- and smoothing-regions are user defined quantities. Each additional layer is

found by iterating through the points in the current front and finding neighboring seeds that do not belong to either the

current or a previously iterated front. Note that the growing of the smoothing layers occurs in both the directions facing

the coarse and the fine refinement regions and the growing of the wall layers only occurs in the direction away from the

surface. Finally, any point marked as near-wall is also included in the smoothing front set.

Fig. 6 2D mesh around the front of a multi-element airfoil showing the identification of the near-wall points at

three different stages: a) before wall-layer projection step; b) after projection but before smoothing; c) final

arrangement after projection and smoothing. The first-wall-layer cells are shown in yellow and the second layer

cells are shown in green.

After the labeling step, the near-wall points undergo further treatment. First, the points identified as belonging to the

first wall layer are checked to see if any of their neighbors belong to a different wall-layer. If a first-wall-layer point is

found to be surrounded only by other first-wall-layer cells, it is marked for removal. The remaining near-wall points are
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then shifted along the wall normal vector to the desired wall-distance. The new distance to the surface (3B) is set to the

original wall layer number ([) minus half, multiplied by the seed spacing for the current refinement region (X8), i.e.

3B = ([ − 0.5) X8 . (1)

This procedure is defined here as the wall layer projection step and ensures the creation of body-conforming cell layers

with the desired wall-normal spacing, as shown in Fig. 6. Following the projection step for all wall layer points, any

off-wall points (points that are not marked as near-wall) that fall within the total wall layer distance coverage are

also discarded. After the first projection step, the seeds designated as smoothing points undergo Lloyd’s smoothing

procedure [30], detailed in the following subsection.

C. Point Cloud Smoothing

A Lloyd’s smoothing procedure [30] can be used to improve the centroidal property of the limited set of cells

marked for smoothing (near coarse/fine transitions and wall-layer zones) as well as providing a smoother gradation

of cell volumes across the interface. A centroidal cell is defined as a cell for which the Voronoi generating seed and

volumetric centroid of the resulting cell coincide. Given a list of Voronoi cell seeds B1, B2, · · · , B= ∈ R3, Lloyd’s

smoothing procedure simply computes the centroid of the each cell +8 , 8 = 1, · · · , =, and updates the generating seed B8
position to coincide with the cell’s centroid, 28 . With minor effort, one may show that this is both a contraction and a

gradient descent algorithm along the functional:

) (B1, B2, · · · , B=) =

#∑

8=1

∥28 − B8 ∥
2 vol (+8) .

Note that the volume coefficient is positive. Since it is never the case that all cells have zero volume, the Lloyd step

is a descent direction for ) . Thus, in an iterative loop, cells approach a uniformly centroidal shape. An illustration of the

Lloyd smoothing procedure is provided in Fig. 7. The initial random distribution of points yields Voronoi cells whose

centroids are not coincident with the seed locations. After 20 iterations, the cells become almost perfectly centroidal

with a much more even spacing.

Fig. 7 Illustration of the Lloyd smoothing procedure. (left) initial, (right) after 20 iterations.

Since the LAVA Voronoi mesher intentionally places seeds in regular lattices, a considerable number of seeds

may be left in place during the smoothing process depending on the user’s specification. The Lloyd’s smoothing [30]

iterations are performed only on the set of the previously defined smoothing points (see Section II.B). Figure 8 shows the

effect of 10 iterations of the smoothing procedure when used to create a body-conforming mesh that gradually coarses

away from the wall.

In Section II.A, it was stated that test points that are found to be inside the geometry of interest are discarded. This

means that, if no further action is taken, most of the near-wall points are going to generate highly non-centroidal cells

and their location will be moved towards, or even inside, the geometry upon a Lloyd’s algorithm iteration. To prevent

this behavior, additional points are added to the Delaunay graph before each smoothing step and removed afterward.

These extra points are defined as the projections of the points from the first near-wall layer onto the geometry’s surface.

Additionally, to maintain consistent wall-normal spacing, the near-wall cells undergo another wall layer projection step

(Section II.B) with each smoothing iteration.
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Fig. 8 Example mesh around a multi-element airfoil showcasing the identified smoothing points in red and the

frozen points in gray before (a) and after (b) 10 iterations of Lloyd’s smoothing algorithm.

D. Single Voronoi Cell Computation

In order to generate a Voronoi diagram given a list of seeds B1, B2, . . . , B= ∈ R3∗, we must find a tiling of a domain Ω

(assumed rectangular) into sets +1, +2, . . . , +=, that are disjoint except on their boundary, so that for each +8 , all G ∈ +8
are closer to B8 than to any other seed point given a certain metric. The choice of an Euclidean distance results in convex

polyhedral cells tiling Ω since each cell is formed by the intersection of half-spaces. Additionally, the faces of a Voronoi

cell contain all the points that are equidistant from the two nearest neighboring seeds.

Since the Voronoi diagram is the dual graph of a Delaunay triangulation, the problem of generating the+8 cells can be

recast as the problem of computing its dual graph and translating the results. Put another way, a Delaunay triangulation

is the graph of face-neighbor connectivity for a Voronoi diagram. We denote a Delaunay triangulation by D(s) where

s is a given seed list s = [B1, B2, · · · , B=] ∈ R
3×= stored in computer memory as a 3 × = column major contiguously

allocated matrix. The computation of a single cell via the Delaunay triangulation is denoted +8 = Iel l (D(s), 8), which

returns a vertex list and face connectivity list sited at cell seed B8 .

This method provides improved numerical robustness compared to the alternative of calculating each cell individually

through the intersection of half-spaces among nearby seeds around a specific generator point. If the previous method

is used in the case where four seeds are close to sharing a common circumsphere, numerical errors may generate

topological inconsistencies and the union of the individual cells may create connectivity errors in the final mesh [31].

Most of such possible failures are avoided by pre-computing the global connectivity graph associated with the Delaunay

triangulation. Furthermore, computationally efficient methods for obtaining the Delaunay triangulation are available on

open source libraries such as the Computational Geometry Algorithms Library (CGAL) [32] and Geogram [33]. In this

work, we rely on the latter. Lastly, even though it seems necessary for this strategy to compute the connectivity amongst

all generating seeds, it is possible to generate local graphs that respect the global connectivity [34]. This property allows

for a distributed memory implementation of this strategy, which will be a topic of future work.

To generate a particular Voronoi cell, we read the seed-neighbor data structure obtained from the Delaunay graph and

define cutting planes in terms of a given seed and its neighbors. In general, a Voronoi diagram may have boundary cells

that extend to infinity but, since we are interested in the tessellation of a finite region corresponding to our computational

domain, we further restrict the cells by the planes defining the domain Ω, resulting in the cell +8 .

Though the use of a Delaunay triangulation together with Simulation of Simplicity (SoS) algorithms [35] allows for

the avoidance of most numerical errors in the generation of Voronoi cells +8 , failures might still occur, especially if

regular seeding patterns are used. In the case where the underlying Delaunay triangulation has degeneracies, i.e., if

there are any zero-volume tetrahedra in the Delaunay graph, then some of the systems of equations that define a vertex

of a Voronoi cell as the intersection of cutting planes may lack a unique solution. A rank revealing QR factorization is

∗Though one may write an optimized Voronoi tessellation algorithm for R2, the current implementation recasts the problem in three dimensions

by mirroring the seed cloud across a pair of planes.
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used to identify these cases. When a rank degenerate case is found, the set of Delaunay neighbors causing the deficiency

is marked. The cell computation is then restarted with the marked vertices removed. Since the Voronoi cells are always

well-defined convex polyhedra, the process of removing the collapsed Delaunay triangles will eventually remove all of

the degenerate vertices and result in a well defined convex cell in the form of a vertex and face list. Although the process

of repeating cell computation may initially sound costly, but it is our practical experience that there are only very few

cells which ever enter the class of failure states described above. Accounting for them is simply a matter of algorithmic

correctness for the few cells which happen to form degenerate vertices, and so it does not result in a computational

bottleneck.

E. Geometry Representation as a Surface Triangulation

Currently, the input of a body in the LAVA Voronoi mesher is made through a closed surface triangulation that

defines its external geometry. Initially, regions of this surface triangulation may be manually grouped into different

components by the user. These classifications allow not only for the application of different boundary conditions along

the geometry but also different seeding specifications. One example of this methodology can be observed in Fig. 9,

where the leading edge of an iced airfoil model is identified as a separate component with respect to the rest of the

airfoil and a finer seeding region is chosen by the user to resolve the small turbulent structures that may be present in

that region.

Fig. 9 The triangulation for the of EG1164 iced airfoil [36] is split between two components, the iced leading

edge, in blue, and the the remainder in red. The separation in components allows for seed spacing variations in

the mesh generation process.

However, in some setups, it is necessary to detect feature lines automatically. In that case, a flood-fill algorithm is

used to further segregate the triangles that belong to a given component of the global surface triangulation by grouping

those whose normal vectors are within a certain angle of each other. First, a starting triangle is chosen and “colored”

with a numerical index we call the triangle’s color. This triangle initializes a list which is called the coloring front. Next,

its neighbors are found by identifying the triangles with common edges and the angle between their normal vectors

is inspected. For each neighbor, if the angle is smaller than a user specified threshold and the triangle has not yet

been colored, then this triangle is colored by the same value as the parent and it is added to a coloring front. After all

neighbors are tested, the parent is removed from the coloring front. This process is repeated until no triangles belong to

the coloring front. At this stage, a check is performed to see if all the colored triangles share at least an edge and, if that

is not the case, neighbors of triangles that only share a vertex are included in the coloring front and the process repeats.

Once all the triangles of this preexisting component are already labeled, then the process is complete. On the other

hand, if there are still unlabeled triangles, a new coloring front with a new color ID is started. This is repeated until all

triangles of all preexisting components are grouped according to a certain angle criterion. Finally, a map is constructed

between the newly formed groups and the user-defined components in the original surface triangulation. Even though

this combined classification of the triangulation is used in the clipping algorithm (Section II.F), the existence of this

map allows for the backwards translation upon the assembly of the global mesh and guarantees that the user will be able

to set boundary conditions in the solver as intended based on the original triangulation components.
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F. Clipping the Near-body Cells

At this point, the computational domain Ω is populated with a point cloud that was created to be concentrated in

the regions of interest and smoothed in transition regions, and the corresponding Voronoi diagram restricted to Ω is

generated. One crucial step is missing before WMLES can be performed to study the flow dynamics around complex

geometries. The cells that intersect the surface triangulation that defines the geometry of interest need to be clipped and

new surface faces need to be generated in a way that ensures cell closure. Each step pertaining this process is explained

in the following sections. A simplified flow chart showcasing the logical steps is included in Fig. 10.

Start clipping
Does cell intersect 

triangulation?
No Done clipping

Yes

Loop over all vertices and save ones outside of the 

geometry. Loop through all the faces.

Have all faces been tested?

Does face intersect 

triangulation?

Are the face vertices in 

the fluid domain?

Add all edges to the 

clipped edges list.

Increment loop

No

Yes

No

Yes

Triangulate face. Find face/triangulation intersections. Merge 

edges with the same triangulation component ID. Add resulting 

on-body edge to clipped edges list.

Loop over all face edges. Test whether edge intersects 

geometry. Generate or copy in-fluid edges. Add them 

to clipped edges list.

Yes

Loop over intersection candidates triangles at 

component boundaries. Find edges that lie within the 

original cell and add to clipped edges list. 

Identify and separate disconnected sets of clipped 

edges.

For each disconnected set,  reconstruct clipped cell 

face by face based on edge/neighbor connectivity.

Correct face normal orientation.

No

Fig. 10 Cell clipping algorithm flow chart.

1. Detecting Candidates for Intersection

Given a cell +8 in the premarked wall layers (see Section II.B) and a surface triangulation (Δ), we start by checking if

there are triangles in Δ that possibly intersect the cell. An Axis-Aligned Bounding Box (AABB) tree search is performed

and the candidates for intersection are identified. This search results in a subset of triangles, Δ2, that contains all

triangles that intersect with a given cell, as well as others which only have overlapping bounding boxes but do not truly

intersect (see Figs. 12 and 13). If no candidates exist, this cell will not be clipped and the clipper returns from execution.

When Δ2 is not empty, a test is performed at all the original cell’s vertices to identify if they lie on the inside or

outside of the surface triangulation. Vertices in the fluid domain (outside of the triangulation) are appended to a clipped

cell list of vertices. Next, a loop is performed over all original cell faces. In this loop, we construct a list of edges that

constitutes the cutting of the Voronoi cell by Δ2.

Each clipped edge object is defined by the indices of its end points in the unique list of clipped cell vertices and by

the two faces that it neighbors. The face identification is performed either through the neighboring seed ID, if this is

an in-fluid face, or by the triangulation component ID, if this is an on-body face. The information regarding which

faces share a certain edge will be used to reconstruct the faces of the final clipped cells and needs to be collected while

building the clipped edge list.

For each iteration of the loop over all original cell faces, new edge objects are potentially generated when cutting

the original cell by the geometry. Since edges occur at the intersection of two faces, in general, the collection of the

edges that belong to the set of clipped cells will happen with repetition. The procedure for recording the identifying

information on the faces that share a certain edge starts by checking whether an edge object with the same vertices

already exists in the clipped edges list. In the case that this edge is appearing for the first time, it is appended to

the clipped edges list and the current iteration’s face identifying information is stored, leaving the second index not

populated. If, on the other hand, it already exists in the list, a previous iteration over the original cell’s faces already

10



created a similar edge object. Now, it has its first index already populated with the ID that identifies the face that

previously generated it. In this case, the ID of the second face that this edge neighbors is populated with the information

identifying the current iteration’s face.

In the event of the edge lying on the body, it will only appear once while iterating through the faces of the original

cell. This does not constitute a problem because, when a body edge is created, the identifying information on the

two neighboring faces is known. This scenario can happen in one of two ways: either the body edge in question lies

in between a fluid face, identified by its neighbor seed ID, and a region of the triangulation, identified by a certain

component ID, or it lies between two triangulation regions with different component IDs.

2. Gathering In-fluid and On-body Edges

For each face of the original cell, a second AABB query limited to the cell’s intersection candidates is performed. If

no possible intersections are found, a vertex of this face is checked to see whether it lies within the surface or in the fluid

domain. In the first case, all of the face edges are discarded, in the second, all are appended to the unique edges list.

Now, if possible intersections are found, the face is triangulated and a triangle-triangle intersection check is conducted

for each pair of face-triangle and surface-triangle. If no actual intersections are found after this step, a similar vertex

check as the one previously mentioned is performed and only the in-fluid edges are kept.

a) b) c) d)

Fig. 11 Example of automatic defeaturing (subplots a, b and c) for different mesh refinement levels near the

leading edge of the iced airfoil model EG1164 [36] as well as geometric detail retention on coarse meshes (d) if

desired.

If the surface triangulation intersects a face, then each intersecting triangle pair creates an intersection edge. After

all intersections are performed, the groups of intersection edges that belong to the same components (see Section II.E)

are merged together, creating a single clipped edge per component. Once formed, the merged clipped edge is appended

to the unique edges list. Such edge-type is labeled here as on-body edge (see Fig. 12). This step allows for the automatic

defeaturing of the triangulation (Δ) since sections that are not resolvable by the incident cells can be skipped. If higher

fidelity reproduction of the original geometry is desired, a separation of the triangulation amongst more components can

be performed (see Section II.E). An example of both automatic defeaturing and high-fidelity feature representation, even

in coarse meshes, is shown in Fig. 11. In the appending process, new vertices may have been formed and those are

appended to the unique list of vertices if there is no previous entry at the same spatial location. In the case where a cell

is not sufficiently small to resolve a sharp triangulation feature that pierces a cell and belongs to the same component,

the merging algorithm results in a closed loop and an edge is not formed. Once this step is complete, both the in-fluid

and body edges are appended to the unique edges list.

Next, a loop over the edges of the current face is performed and an edge-triangle intersection test is conducted.

Note that in the case where split cells or split faces are formed, an edge can be intersected by the surface triangulation

multiple times. If the edge in question is intersected only once, the vertex on the body is paired with the original cell’s

vertex which lies in the fluid domain. If multiple intersections occur, the intersection points are sorted based on the

distance from one end of the original edge. By using the information of whether the end point in question lies within the

triangulation or in the fluid domain, one can gather the intersection points in pairs and append the final edges to the

unique clipped edges list. These edge types are referred here as intersection edges (see Fig. 12).

Upon conclusion of this set of instructions for all faces of the original cell, the unique edges list contains all the

edges that are fully in the fluid region, all those that intersect the body, and all those that lie on the body as result of a

face intersecting Δ. The only edges that are not yet included are the ones corresponding to edges between different

components in the triangulation. At this point, an iteration is performed on the triangles that lie at the component
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Fig. 12 Schematic representing the different types of clipped edges acquired during the clipping process.

boundaries to identify the boundary edges. Each of the end points of these component boundary edges are then tested to

see if they lie completely inside or outside the original cell. If both ends of such an edge lie inside, this edge is appended

to the unique clipped edge list, if both ends lie outside, then an intersection test is performed. If this component boundary

edge intersects the original cell, then the portion that lies inside is appended to the unique clipped edge list. If no

intersection occurs, this edge is discarded. Lastly, if one end is inside the original cell and the other is outside then

it is known that the edge intersects a face of the original cell and, again, the portion that is within the original cell’s

boundaries are appended to the unique clipped edge list. An example of triangulation component boundary edges is

shown in Fig. 12.

3. Thin Geometry Handling with Split-cells

Fig. 13 Detailed representation of the creation of a split cell on the slat of the NASA High-Lift Common

Research Model. After the original cell is intersected with the triangulation, two disjoint edge sets are formed.

The connectivity of these edges are used to collect them into groups. These collections are used to reconstruct the

faces of the parent and child cells.

At this point, all the necessary edges to form the final clipped cells are collected but, since split cells can be formed

(see Fig. 13), there is a need to separate the possibly disjoint set of edges into distinct groups. For this, a flood fill

algorithm is employed. The first step is to pick a random edge from the unique clipped edges list and to label it with a

distinct value. The next step is to identify all the edges that are connected to the end points of this step’s labeling front.

This is a simple task since the edges are defined by a pair of indices that point into the unique list of vertices. Once

all the neighbors are identified, all of these are labeled with the same value and a new labeling front is formed. This

process is repeated until the labeling front of edges is empty. If the number of labeled edges correspond to the total

number of unique edges, then the clipped cell is not a split cell and the algorithm is concluded. In the case that there are

still edges that are unlabeled, then a new front is started and the process repeats until all the distinct groups of connected

edges are identified. An example of a disjoint set of clipped edges is shown in Fig. 13.
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4. Clipped Faces Formation

For each of the distinctly labeled groups, the edges that belong to the different faces are identified (see Section II.F.2)

and faces are formed by cycling through the connectivity between edges, forming a list of vertices. The order of these

vertices in the list determine the normal orientation of the formed face, and the last step is to determine correct vertex

ordering of the newly formed faces. This process starts by iterating through the fluid faces. Since the original cell

is convex, an outward normal orientation of faces that neighbor another fluid cell can always be enforced by testing

whether a face normal points in the same direction as a vector that originates on the cell’s centroid and points towards

the face’s centroid. This is not guaranteed for a body face and a special treatment is performed.

After the normal correction is performed on the fluid faces, an iteration on the body faces is conducted. First, note

that at least one face neighboring a body face can be assumed to have a correct orientation. That is evident if a body

face neighbors a fluid face. In the case that a body face only neighbors other body faces, it is possible to start the normal

determination process by the body faces that neighbor a fluid face and move inward. Once there is a neighboring face

with a correct normal orientation, one can simply observe the order that the vertices of the shared edge have in the

cycle definition of the neighbor face. To enforce an outward normal in the body face, the vertices need to appear in the

opposite order when compared to the neighbor in question. Finally, the distinct cells that are formed are then appended

to the global mesh by using the procedure described in Section II.G.

G. Global Mesh Assembly

Upon obtaining a cell, we then must integrate this cell into a global mesh for the purposes of simulation on

unstructured grids. To this end, we must uniquely identify all faces and vertices which appear with duplication in the list

of all cells +1, +2, ..., +=. Naturally, each face of +8 is associated with two seeds, (B8 , B 9 ). Thus we see that for each face

of +8 , there is a bi-index (8, 9). Upon first inspection, one may think that it is sufficient to use such a bi-index and its

symmetry condition to uniquely identify a stored face.

Although this holds true for an unclipped Voronoi diagram, the presence of clipped cells (Section II.F) allows for

faces to be split by geometric features. Typically, a split face results from an original cell being divided into a parent cell

and multiple child cells. In this case, the split cells are assigned new unique IDs, preventing further issues. However, a

split face can also occur without generating split cells. This situation can lead to multiple distinct faces sharing the same

bi-index (8, 9). If only one of these faces is appended to the global mesh, it can create holes.

To address this, we must account for the possibility of multiple distinct faces with the same (symmetrical) bi-index.

Therefore, faces belonging to the seed with the smallest ordering index (8 < 9) are stored. This approach ensures that all

unique faces are included in the global mesh without repetition.

When examining the vertices of the Voronoi cells, one may notice that they lie on the intersection of three faces.

Additionally, the vertex is equidistant from the three neighboring seeds that identify these faces as well as from the seed

that is responsible for generating the cell in question. In other words, they are in correspondence with the tetrahedra

present in the Delaunay triangulation, as referenced in Section II.D. The indices of these four seeds can be used to

uniquely identify vertices in the global mesh in most cases. The exceptions are related to highly structured locations,

such as the corners of a Cartesian grid, where a vertex of a Voronoi cell can be equidistant to more than four generators.

In those cases these vertices may be associated with different quad-indices and some duplicity may occur. To handle

this, on top of the quad-index labeling, we employ a mesh repair strategy that looks for the nearest neighbors of the

vertices in the global mesh within a certain tolerance. If multiple vertices are found in this small neighborhood, the

average of these vertices is computed and all the original points are remapped to this representative location. After this

step, the face vertices’ connectivity cycles need to be rearranged in regards to this new map. During this procedure, very

small facets may become edges or be completely removed from the mesh.

Finally, split cells may result from the clipping algorithm (Section II.F). In that case, both the parent cell and the

children cells are initially identified with the same generator seed index. To create a global mesh usable for unstructured

simulations, it is necessary not only to uniquely identify the resulting children but also to correct the connectivity

between neighboring cells. With that in mind, split cells are stored and are not initially appended to the global mesh

and split children are given a unique ID. After all the unclipped and unsplit clipped cells are computed and stored, the

split cells are iterated upon. All the neighbors of each child cell are investigated and, if the corresponding face has

been already appended to the global mesh or if the face belongs to another cell that has been split, then its connectivity

information is corrected with the cell identifier of a split child. After this step, all the split cells are stored in the final

global mesh.
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III. Applications of the LAVA Voronoi Mesher
This section highlights some projects where the LAVA Voronoi mesher is leveraged. Its capability of automated

meshing with only simple inputs from the user reduces the meshing turn-around time and allows for a streamlined

construction of a family of progressively refined meshes that can be used in a mesh sensitivity study. Additionally, the

comparison of the results obtained with the unstructured Voronoi approach with other simulation frameworks within

LAVA, such as structured-curvilinear overset or Cartesian-octree immersed-boundary, can increase the confidence in the

final results acquired from numerical simulations.

A. Jet Acoustics

Fig. 14 Voronoi mesh around a potential nozzle geometry for a supersonic commercial airliner comprised of an

internal plug and a lobed mixer.

In NASA’s ongoing effort to develop a quiet supersonic jet, two main challenges must be addressed before such an

aircraft can be certified. The first challenge involves reducing or eliminating the sonic boom ground signature during

supersonic cruise. The second challenge is meeting noise constraints during takeoff and landing when the aircraft is

traveling at subsonic speeds. For the second challenge, NASA’s Commercial Supersonic Technology (CST) project has

issued a technical task: to design a quiet propulsion system for a low-boom supersonic aircraft that not only meets the

Federal Aviation Administration’s airport noise regulations but also does so with a comfortable margin.

Previous work by Stich et al. [12] has shown that WMLES can be used to quickly generate the necessary database

to characterize the noise levels of simple, axisymmetric jet flows under various conditions. However, it remains to

be seen whether WMLES can accurately predict the complex aeroacoustics in more practically relevant geometries

for commercial supersonic airliners, such as internally mixed exhaust systems. Understanding of the noise generation

dynamics of such systems is still limited. To address this issue, a series of exhaust nozzles was designed [37]. Figure 14

shows a Voronoi mesh around one of these nozzles, featuring an internal plug and a lobed mixer.
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The primary obstacle to extending Stich et al.’s work to more complex nozzle geometries is the creation of a series

of high-quality meshes needed to populate the simulation database. The structured overset curvilinear grid framework

used currently requires a labor-intensive and highly manual mesh generation process that could take a skilled engineer

several days or even weeks to complete. The LAVA Voronoi mesher technology currently under development is expected

to overcome this bottleneck and enable the use of WMLES to inform the design decisions for future quiet supersonic

aircraft.

B. High-Lift Aerodynamics

Fig. 15 Voronoi mesh around the NASA High-Lift Common Research Model. In this coarse example case, the

smallest distance between cell generating points was set to 16 mm.

Numerical simulations have been widely utilized in the design process of aircraft configurations under cruise

conditions. In these scenarios, the flow remains largely attached over the wings, allowing RANS models to produce

accurate results. However, these models are less effective at predicting flow dynamics at the edges of the flight envelope.

An example of this is when the aircraft’s high-lift devices are fully deployed and it may be operating at low speeds

and/or high angles of attack. The advancement of computational capabilities for analyzing high-lift configurations

would significantly expedite the design, development, and certification of both current and new aircraft across the entire

flight envelope. This challenging developmental task has the potential to enhance efficiency while reducing risks and
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costs [38, 39].

This scenario contributed to the organization of the High Lift Prediction Workshop (HLPW) series [13, 40–42].

The 4th HLPW focused on the NASA High-Lift Common Research Model (CRM-HL) configuration [43]. During this

workshop, discrepancies were noted in flow separation and force and moment predictions of RANS-based approaches

at high angles of attack near stall when compared to experimental data. In contrast, advancements in scale-resolving

methods, such as WMLES, were found to accurately replicate the flow dynamics near stall, showing improved agreement

with experimental results [13].

The LAVA group contributed to the HLPW-4 by submitting WMLES results utilizing its structured curvilinear

overset framework. This method involves a labor-intensive meshing process with significant manual input from engineers.

For a complex geometry like the CRM-HL, multiple engineers had to work simultaneously dedicating part of their time

to meshing for several weeks to achieve a satisfactory grid. It was estimated that a single meshing expert would take

between one and two months to complete this task considering a full-time dedication to meshing [44]. Conversely, a

single engineer using the LAVA Voronoi mesher can create a series of high-quality meshes with varying refinement

levels in just a day or two. One example of a Voronoi mesh around the CRM-HL geometry is shown in Fig. 15.

The high quality cells achievable with the Voronoi mesher can provide accurate WMLES predictions for complex

geometries while significantly reducing the time required to generate them. The Voronoi meshing approach is presently

being employed for CRM-HL aerodynamic predictions as part of HLPW-5 and will be documented in a forthcoming

publication.

C. Iced Wing

Fig. 16 Voronoi mesh around a scaled-down swept wing model with glaze ice accretion on its leading edge. In

this coarse example, the smallest distance between cell generating points was set to 0.6 mm.

Ice accretion on an aircraft poses a significant safety risk. If an aircraft’s ice protection system fails, its aerodynamic

performance decreases drastically with a reduced lift, increased drag and a lower stall angle. Thus, it is crucial to

develop and validate numerical prediction tools that can help improve the current understanding of the fundamental

physics involved in iced flight and assist during the next-generation aircraft design process [45].

Simulating the aerodynamics of iced aircraft is especially challenging because ice accumulation tends to create large

areas of unsteady separated flow, even at low angles of attack. The presence of such areas pose significant challenges for

simulations using the latest RANS-based computational fluid dynamics tools [13, 42]. The LAVA group is currently

evaluating the feasibility of performing WMLES on iced swept wing configurations[46] using two different simulation

frameworks: a curvilinear overset approach coupled with an immersed boundary model and a Voronoi-based body-fitted

grid (see Fig. 16). The immersed boundary technique is used to overcome the difficulties that would arise from trying to

create a structured grid around the high-fidelity accreted ice shape. The geometric representations and aerodynamic

measurements of the wings (and airfoils) with accreted ice are a result of an experimental campaign at NASA Glenn

Research Center’s Icing Research Tunnel (IRT) [47, 48]. It is expected that the comparison of the numerical and

experimental results based on different frameworks will help the advancement of the simulation capabilities of aircraft

under such environmental conditions.
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IV. Summary and Future Work
The strategies and procedures behind the automated Voronoi mesher, currently being developed by the LAVA group

at the NASA Ames Research Center, were presented in detail. The process of creating different refinement regions

and seeding the Voronoi graph generators was explained. This includes methods for automated wall distance-based

mesh coarsening, seamless integration of overlapping regions, identification of near-wall and smoothing points, and

regularization of the near-body mesh. Additionally, a smoothing algorithm based on Lloyd’s iteration method was

introduced, allowing for smoother transitions between regions with different refinement levels and ultimately reducing

spurious numerical reflections at coarse-fine interfaces. The manuscript also covered the strategy for computing a single

Voronoi cell, including clipping by complex geometries. Algorithms for automated defeaturing of the geometry and

handling possible split cells were discussed. The approach to creating a global mesh without repeated vertices or faces

was also reported. Finally, potential applications and benefits of the LAVA Voronoi mesher were highlighted. The

Voronoi mesher can significantly reduce the meshing time for complex geometries and its parametric nature makes it

simple to generate a family of meshes with varying refinement levels. For example, for the CRM-HL geometry discussed

in the manuscript, a single engineer is able to create a family of meshes up to 600M cells in one or two days using the

Voronoi approach. This is a significant speed up when compared to the full dedication of a meshing expert working for

weeks to create a single mesh for the same problem when using a highly manual curvilinear overset gridding framework.

All the discussions and meshing examples presented originate from the implementation of a shared memory

parallel computing algorithm. While the LAVA Voronoi mesher successfully reduced the manual meshing bottleneck,

particularly for complex geometries, the next phase of the project involves implementing a distributed memory approach

using a message passing interface. This transition has the potential to further reduce the time required to generate the

final mesh and enable the creation of highly refined meshes in a more cost-effective manner.
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