Computational Materials for Qualification and Certification of Process-Intensive Metallic Materials (CM4QC)

An Industry – Government – Academia Steering Group

AIAA Aviation 29 July – 2 August 2024 Las Vegas, NV

Presented by Dr. E.H. Glaessgen NASA Senior Technologist for Computational Materials NASA Langley Research Center

and **Dr. M. Gorelik** FAA Chief Scientist and Technical Advisor for Fatigue and Damage Tolerance

> Approved for Public Release on TBD Case Number: TBD

Outline

- Background and Motivation
- Engagement with the Community
- Steering Group Goals, Membership and Operation
- Vision and Key Elements of the Roadmap
 - State of the Art and Requirements
 - Capability Maturation, Assessment and Increasing Acceptance
- Some Ongoing Work at NASA Langley

In the context of this presentation:

• Metal Additive Manufacturing (AM) is used as a representative example of Process-Intensive Materials (PIM)

[•] The terms CM (Computational Materials) and ICME (Integrated Computational Materials Engineering) are used interchangeably

Increasing Complexity of AM Parts

Evolution of Criticality of AM Parts

*CFR - Code of Federal Regulations PSE – Principal Structural Element LLP – Life Limited Part

Examples of "Model-Friendly" Domains (in the Context of FAA Regulations)

Reference to Title 14 CFR Parts 25 (Airframe) and 33 (Engines)

- Damage Tolerance \rightarrow Part 25 (AC 25.571-1D)
 - In general, "analysis supported by test evidence" is accepted

- Damage Tolerance \rightarrow <u>Part 33</u> (AC 33.70-1)
 - Analysis is accepted (e.g., stress, heat transfer, crack growth, ...)
 - However, "...the analysis approach should be validated against relevant test data"

ICME as Emerging Technology

Commonly identified benefits:

- Cost savings
- Novel fit-for-purposes materials

Accelerated Insertion of Materials (AIM) Program

The AIM program initiative created a new materials development methodology that accelerates the insertion of new materials in order to achieve parity with the engine/platform development/design cycles. Accomplishments of the AIM program include:

- Establish design-driven material requirements by tightly coupling design and materials activities and tools.
- Providing earlier information (with confidence bounds) to designers throughout the development cycle.
- Controlling the performance, producibility, and cost of materials.
- Reducing risks of new material insertion risk while also decreasing costly, time-consuming data generation.
- Creating a knowledge base and tool kit for designers that links with computational design tools
- Integrated design, <u>certification</u>, and flexible manufacturing
- Risk reduction (program risk vs. product safety risk)

Integrated Computational Materials Engineering A Transformational Discipline for Improved Competitiveness and National Security	Keeping pace with industry needs	Requires significant maturation to realize this benefit
Committee on Integrated Computational Materials Engineering National Materials Advisory Board Division of Engineering and Physical Sciences	Materials Genome Initiative	
	Home About the Materials Genome Initiative	
	The materials Genome instance is a rederar mutur-agency initiative for discovering, manufacturing, and deploying advanced materials twice as first and at a fraction of the cert compared to traditional methods. The initiative researces called a researces	

and infrastructure to support U.S. institutions in the adoption of methods for accelerating materials development

Input from the Aerospace Community

The primary goals of this Steering Group are to

- Provide coordination for and focus to investments made by U.S. industry and the U.S. government toward development of computational materials-based approaches for Q&C of process intensive metallic materials.
- Identify key considerations and enablers required to increase airworthiness / certifying authorities' acceptance of CM methods used for Q&C of structural or flight-critical PIM parts.
- Increase dialogue among the stakeholder organizations and seek opportunities for collaboration.

Membership includes subject matter experts from the aerospace industry, various government laboratories and academia

Steering Group Membership

Industry

The Boeing Company*

Lockheed-Martin* / Sikorsky

Raytheon / Pratt & Whitney

General Electric Aviation

Spirit Aerosystems

Honeywell Aerospace

Howmet Aerospace

Southwest Research Institute

Northrup-Grumman Corporation

Textron Aviation

Academia

University of Texas at San Antonio*

Carnegie Mellon University*

Vanderbilt University

Pennsylvania State University

Northwestern University

*CM4QC Leadership Team

Government

Federal Aviation Administration*

U.S. Air Force Research Laboratory

U.S. Navy Air Systems Command

Sandia National Laboratory*

U.S. Army Aviation Command

Oak Ridge National Laboratory

National Aeronautics and Space Administration*

National Institute of Standards and Technology*

Operation of the CM4QC Steering Group

- Working Group 1: Understanding industry priorities / timeline and key regulatory implications (High TRL*)
- Working Group 2: Strategies for maturation and transition of research to engineering (Mid TRL)
- Working Group 3: Development of required computational materials and measurement capabilities (Low TRL)

Expected initial outcome → Multi-year implementation plan Symposium at MS&T 2024 (planned)

*Technology Readiness Level

Part 1: State of the Art and Requirements

- Identify key stakeholders
- Industry's vision (including timeline, extent of application and key drivers) for adopting CM as a component of Q&C framework for PIM
- Identification of key CM and enabling technologies that are needed (based on a phased approach) to achieve the industry vision.
- Identify key regulatory gaps that must be addressed to enable broader use of CM in Q&C for relevant applications and product types
- "State of industry" assessment of CM tools including level of validation and maturation

Part 2: Capability Maturation, Assessment and Increasing Acceptance

- Define CM maturity assessment framework
- Identify key elements and associated methods for CM verification and validation (V&V) framework including data, testing and characterization requirements
- Identify acceptable levels of V&V from the regulatory and industry perspective
- Technology maturation path by TRL including simulation, testing and characterization
- Identify key elements and timeline of the CM ecosystem's maturation path
- Identify key stakeholder organizations and funding opportunities

Anticipated Key Drivers by Stakeholder

• Industry

- Reduced time and resources for new materials development \rightarrow time to market
- Reduced level of Q&C testing \rightarrow \$\$ and time savings
- Enhanced process control and quality assurance capabilities → improved product safety and reliability

Government

Note: in the context of this discussion, the government agencies' considerations include – (a) R&D funding; (b) regulatory; (c) end user.

- To understand R&D investment priorities for developing CM capabilities for Q&C of advanced metallic materials (across the TRL scale)
- To understand industry's plans (including timeline and extent of application) for adopting CM capabilities for Q&C of advanced materials. To use this understanding in identification of the corresponding regulatory enablers and gaps.
- The same key drivers as listed above for Industry (due to some of the Government agencies' perspective as *end-user* of advanced metallic materials)

Academia

- To understand R&D priorities and key technology gaps for developing CM capabilities for Q&C of advanced metallic materials
- Understand educational needs (including continuing education) of industry and academia

Computational Materials-Informed Qualification and Certification of Additively Manufactured Flight Hardware

Small deviations in processing parameters may result in large differences in performance Current approaches for Q&C of metallic materials (including AM) are entirely based on test data

Goal is to <u>change the paradigm for Q&C</u>: Develop a computational materials-informed ecosystem for quantifying sources of variability in fatigue performance of additively manufactured metallic materials through integrated multi-scale, multi-physics simulation, characterization and monitoring

All images courtesy of Samuel Hocker at NASA Langley

Summary

- Background and Motivation
- Engagement with the Community
- Steering Group Goals, Membership and Operation
- Vision and Key Elements of a Roadmap
 - State of the Art and Requirements
 - Capability Maturation, Assessment and Increasing Acceptance
- Some Ongoing Work at NASA Langley

Questions: Please contact us at...

Ed Glaessgen* e.h.glaessgen@nasa.gov

Michael Gorelik Michael.Gorelik@faa.gov

*EHG gratefully acknowledges the Transformational Tools and Technologies Project of the NASA Aeronautics Research Mission Directorate for supporting the work discussed on Slide 15.