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Importance of Wildfire Observation

• Wildfire occurrences have been increasing for the 
past decades, leaving devastating traces across the 
globe.
• Example: 2018 wildfires in California: $148.5 Bn[1]

• Proper resource management is crucial in the fight 
against wildfires.

• Accurate detection is the first step in proper 
wildfire management.

• Proper machine learning techniques can help 
discover  remote sensing-based information that 
can help us better characterize wildfires.

Credit: USGS
[1] Wang et al., “Economic footprint of California wildfires in 2018,” Nature Sustainability, 4, 252-260 (2021)

Credit: Gaurdian
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Dataset

• We used the observations of NASA’s Terra and Aqua MODIS for
• Land/Cloud/Aerosols Boundaries

• Land/Cloud/Aerosols Properties

• We collected the wildfire mask data from thermal anomalies/active fire product of NASA’s 
Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting 
Partnership (Suomi NPP).

• We collected 10,000 wildfire samples (with overlapping incidents) over CONUS for the time 
range of 2018-2020.

• Normalized Difference Vegitation Index (NDVI) is also calculated and included as proxy of 
vegetation health.

• We included a deviation from mean NDVI accounting for sudden shifts in NDVI in a region.
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Background – Model Choice

U-NET to VAE Transition

• Goal Shift: From pixel-perfect segmentation to understanding broader data distributions.

• Enhanced Generalization: VAE models input into continuous latent spaces for better 

generalization across tasks.

• Unsupervised Learning: Reduces dependence on large labeled datasets, enabling learning 

from unlabeled data.

• Data Augmentation: VAEs generate new data instances, aiding in scenarios with limited data.

U-NET

VAE
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Probabilistic U-NET – Training Mode
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International Publishing.
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Probabilistic U-NET – Inference Mode
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Background – Model Choice

VAE to Vector Quantized (VQ)-VAE Transition

• Discrete Latency: VQ-VAE uses discrete latent spaces for better feature capture and 
robustness.

• Complex Feature Handling: Improved maintenance of high-quality, detailed features in 
reconstructions.

• Hierarchical Representation: Allows multi-scale data abstraction, useful in complex 
segmentation tasks.

• Computational Efficiency: Simplifies the sampling process, enhancing stability and training 
efficiency.

VAE

VQ-VAE
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Vector Quantized Variational Autoencoder (VQ-VAE)

Van Den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. Advances in neural information processing systems, 30.

Reconstruction Loss
+
Vector Quantization Loss
+
Commitment Loss
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Vector Quantized U-NET – Training Mode
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Vector Quantized U-NET (VQ-U-NET) – Inference Mode
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Combining RBM with Vector Quantized U-NET – Training mode
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Combining RBM with Vector Quantized U-NET – Inference Mode
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Parallel Tempering Integration with Probabilistic U-NET

• Parallel Tempering is an importance sampling method and an 

alternative to Persistent Contrastive Divergence (PCD)

• This is a classical method used in Monte Carlo techniques and is 

implemented natively in PySA (https://github.com/nasa/PySA)

• It runs Markov chains of multiple replicas of the system at different temperatures, 

swapping states between temps

• This prevents the sampler from getting trapped in local minima and allows for better 

sampling of the distribution
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Replica 2

Replica 1

Target 
Temp

High 
Temp

Replica 5

Replica 4

Replica 3

Replica 2

Replica 1

Replica 5

Replica 4

Replica 3

Replica 2

Replica 1

Evolve Evolve Evolve EvolveSwap Swap Swap

Replica 5

Replica 4

Replica 3

Replica 2

Replica 1 Use as 
Sample

https://github.com/nasa/PySA
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Summary of Changes to VQ-VAE

• Re-organized VQ-VAE to become supervised.

• Used a prior-posterior architecture to sync codebooks and encoders, further 
improving prior codebook and encoder performance.

• Added two more losses to the VQ-VAE triple losses to sync prior and posterior 
codebooks and encoder outputs.

• Binarized the encoder outputs and codewords.

• Added Restricted Boltzmann Machine (RBM) to prior encoder process.

• Switched from ancestral sampling to importance sampling via RBM.

• Trained RBM using Parallel Tempering.



15

Visual Comparison
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Statistical Comparison

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Recall = 
𝑇𝑃

𝑇𝑃 +𝐹𝑁 

F1 score = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
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F1-score 54.32 63.83
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Highlights

• Generative machine learning can improve our understanding of wildfire processes and offer a 
promising approach for wildfire detection.

• VQ-U-NET architecture provides an efficient approach to model wildfire with better 
segmentation representation.

• Physics-inspired approaches such as PySA can work effectively with discrete models such as 
VQ-VAE models even in a classical environment.

• Further efforts are required for evaluation of the introduced approach such as uncertainty 
analysis and model characteristics within continuous and discrete settings.
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Thank you very much for your attention!

Questions?

Ata Akbari Asanjan

ata.akbariasanjan@nasa.gov
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What-if Scenarios

Sparse unhealthy Vegetation

Very unhealthy/No VegetationNormal Vegetation

Healthy Vegetation
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Wildfires are stochastic in nature!

• Like many other natural processes, wildfires are stochastic.

• Wildfire simulations are classified in two categories:

• Deterministic: Assuming wildfire processes are fully 
resolved.
• Provides the same outcome every time the model is run for a single 

wildfire event.

• Does not account for variability in observations.

• Stochastic: Incorporates the variability of observation.
• Provides different scenarios every time the model is run for a single 

wildfire event.

• Provides a comprehensive statistical understanding for the variability 
over 𝑁 runs.

Credit: Kevin Maddrey

• Thus, deterministic approaches are not optimal for stochastic processes (e.g. 
wildfire).
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Uncertainty in Wildfire Observations

• Uncertainty analysis enables the assessment of reliability and confidence in research 
results.

• Uncertainty analysis aids in decision-making processes related to resource 
management, policy development, and risk assessment.

• It helps quantify and communicate the uncertainties associated with observations, 
measurements, and predictions in Earth science.

• However, uncertainty analysis is not cheap (requires extensive computational and 
design resources).

• Most uncertainty analysis methods are not designed to run “what-if” scenarios in a 
low-cost and comprehensive manner.
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Discriminative vs. Generative

Discriminative modeling: 

• In discriminative modeling, we aim to learn a model that discriminates 

(i.e. predicts) given the inputs. (In probability terms: 𝑝 𝑦 𝑋))

Generative modeling: 

• Generative modeling aims to solve a more general problem. It aims to 

learn joint distribution over all variables. 

(In probability terms: 𝑝(𝑦, 𝑋) or 𝑝 𝑦 𝑋) 𝑝(𝑋))

• A generative model simulates how the data is generated in the real world.
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Generative Modeling based on Statistical Inference

Statistical Inference is a learning scheme in which we learn about an unobserved state based on 
our observations.

smiling
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Variational Inference

Variational Inference suggests that instead of going through all the samples, we assume 
a distribution (e.g. Gaussian) from distribution family and instead of finding the entire 
distribution (hard), find the distribution parameters (easier).

𝑝 𝑥 =  න 𝑝 𝑥 𝑧) 𝑝 𝑧  𝑑𝑧

How to measure the closeness of distributions?

We use a metric called Kullback-Leibler Divergence.
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Generative Modeling based on Probabilistic Inference

Bayes rule:

𝑝 𝑧 𝑥) =
𝑝 𝑥 𝑧) 𝑝(𝑧)

𝑝(𝑥)
=

𝑝(𝑥, 𝑧) 

𝑝(𝑥)

• 𝑝(𝑥) is data distribution or Evidence. 
• (In discriminative models, we rather focus on conditional probability 𝑝(𝑦|𝑥) and neglect the unconditional 

probability 𝑝 𝑥 .

• 𝑝(𝑧) is the prior distribution. 

• 𝑝 𝑥 𝑧) is the likelihood. 

• 𝑝 𝑧 𝑥) is posterior distribution. 
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Probabilistic Inference – Unsupervised Form

Bayes rule:

𝑝 𝑧 𝑥) =
𝑝 𝑥 𝑧) 𝑝(𝑧)

𝑝(𝑥)
=

𝑝(𝑥, 𝑧) 

𝑝(𝑥)

In unsupervised variational inference we assume a family of distributions for the prior and force 
the model to learn the best distribution parameters that match the data.
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Probabilistic Inference – Supervised Form

In
p

u
t 

d
at

a,
 𝑋

Prior Net
Prior 

Latent, 𝑍𝑝𝑟𝑖𝑜𝑟

Ta
rg

et
 d

at
a,

 𝑌

Posterior
Net

Posterior 
Latent, 𝑍𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

KL Divergence

In
p

u
t 

d
at

a,
 𝑋



29

Probabilistic Inference – Supervised Form

• Probabilistic U-Net is a great approach for capturing variations in a supervised 
fashion.

• However, it can be further improved by relaxing the variation inference assumption 
(i.e. latent space is a Multivariate Gaussian distribution).

• In order to relax the prior assumption, we can replace the prior latent space with an 
iterative process such as Restricted Boltzmann Machine (RBM).

• The RBM allows parallel Gibbs sampling which results in more accurate prior 
characterization.

• This way we are joining the best of both worlds (Variational Inference & MCMC) to 
generate more accurate latent samples and thus, more realistic scenarios for wildfire 
detection.
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Statistical Inference

Bayes rule:

𝑝 𝑧 𝑥) =
𝑝 𝑥 𝑧) 𝑝(𝑧)

𝑝(𝑥)

• Solving the Bayesian inference in the previous slide is often hard close to not possible.

• This becomes worst with larger dimensionality in data (e.g. Image, time series).

𝑝 𝑥 =  න 𝑝 𝑥 𝑧) 𝑝 𝑧  𝑑𝑧

Solutions:

1. Variational Inference: Moderate accuracy, Fast

2. Markov Chain Monte Carlo: Good accuracy, Very slow
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Gibbs Sampling in the form of ML

• Gibbs sampling can be implemented as a machine learning model.

• Imagine we have two variables 𝑋 and 𝑌.

• In order to sample from the joint P(𝑋, 𝑌) distribution, all we need is to have P 𝑋 𝑌) 
and P Y 𝑋).

• We can define a model that gives the conditional distributions: Restricted 
Boltzmann Machine (RBM)!

• RBM learns conditional distributions via negative log-likelihood.

• Gibbs sampler uses conditional distributions to refine samples.

• This mechanism learns a Boltzmann distribution of 𝑋 and 𝑌.

𝑃 𝑋, 𝑌 =
𝑒−𝐸(𝑥)

σ𝑋,𝑌 𝑒−𝐸(𝑥,𝑦) 𝑌X
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Monte Carlo Markov Chain

• MCMC is a generic method of sampling from a high-dimensional probability 
distribution.

• By sampling, we gain better knowledge of the entire probability distribution 
landscape.

• As we sample more from a distribution,

we learn more about the distribution!

• MCMC includes many variations
• Metropolis-Hasting: Uses proposal density 

& acceptance/rejection method for new samples.

• Gibbs: Uses conditional distributions for new samples. (Good for complex high-dimensional target 
distributions)
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Gibbs Sampling

• Gibbs sampling breaks down the sampling process of a complex high-dimensional 
target distribution, into simpler, easy-to-sample conditional distributions.
• Example: Imagine we have a 𝑁-d target distribution

𝑃(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁)
• Drawing samples from this distribution is hard if we don’t have the joint probability function.

• Instead, we freeze all but one dimension and calculate a conditional probability. e.g.;

𝑃 𝑥1 𝑥2, 𝑥3, … , 𝑥𝑁)
• Then we start from a random location, update each dimension based on other given dimensions 

and conditional probability
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Gibbs Sampling in the form of ML

• Gibbs sampling can be implemented as a machine learning model.

• Imagine we have two variables 𝑋 and 𝑌.

• In order to sample from the joint P(𝑋, 𝑌) distribution, all we need is to have P 𝑋 𝑌) 
and P Y 𝑋).

• We can define a model that gives the conditional distributions: Restricted Boltzmann 
Machine (RBM)!

• RBM learns conditional distributions via negative log-likelihood.

• Gibbs sampler uses conditional distributions to refine samples.

• This mechanism learns a Boltzmann distribution of 𝑋 and 𝑌.

𝑃 𝑋, 𝑌 =
𝑒−𝐸(𝑥)

σ𝑋,𝑌 𝑒−𝐸(𝑥,𝑦)

𝑌X
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RBM: An energy-based model

• This mechanism learns a Boltzmann distribution of 𝑋.

𝑃 𝑋 =  ෍
𝑌

𝑒−𝐸(𝑥,𝑦)

σ𝑋,𝑌 𝑒−𝐸(𝑥,𝑦)
 

• Energy term 𝐸(𝑥, 𝑦) can be represented by

𝐸 𝑥, 𝑦 = − ෍

𝑖∈𝑋

𝑥𝑖 𝑏𝑖
𝑋  − ෍

𝑗∈𝑌

𝑦𝑗𝑏𝑗
𝑌  − ෍

𝑖∈𝑋

෍

𝑗∈𝑌

𝑥𝑖𝑦𝑗𝑤𝑖𝑗

𝑌X
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Combining RBM with Probabilistic U-Net – Training mode
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Combining RBM with Probabilistic U-Net – Inference Mode
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Visual Results
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Performance Metrics

U-Net Prob. U-Net
(Gaussian)

Prob. U-Net 
(Bernoulli)

Prob. U-Net
(RBM)

Precision 0.536 0.431 0.235 0.654

Recall 0.987 0.955 0.752 0.473

F1 score 0.695 0.594 0.358 0.549

Jaccard score 0.532 0.422 0.318 0.378

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
Recall = 

𝑇𝑃
𝑇𝑃 +𝐹𝑁 

F1 score = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
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Advantages of the proposed approach

• Probabilistic U-Net with Boltzmann latent space is more generalized than its alike with 
Gaussian latent.

• Discrete latent space will help the model in efficient learning of latent configurations.

• RBM acts as a connection door between the classical and quantum computation realms.

• Question: How RBM connects classical and quantum computations?

• RBM uses 𝑒−𝐸(𝑥) to define probability, thus;

𝐸(𝑥) ∝
1

𝑝
• Because of this property, we can look for lower energy to find higher probability samples.
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Annealed Importance Sampling

• Annealed Importance Sampling (AIS) is an alternative to Parallel Tempering or 
Persistent Contrastive Divergence

• It changes the distribution slowly from a reference distribution to a target 
distribution in an even way such that importance weights can be calculated

• This method allows you to estimate the partition function, giving a way of gauging 
the quality of your sampling

• We have implemented AIS in PySA and have ported over its partition function 
estimation to parallel tempering, allowing for similar calculations there

p0
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q0(x1|x0)

Z1
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q1(x2|x1)
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Path-Integral Quantum Monte Carlo Integration with Probabilistic U-Net

• Quantum Monte Carlo (QMC) is a classical technique of using Markov Chain Monte 
Carlo to sample from a quantum thermal distribution.

• This is equivalent to an RBM, just where the RBM can have both thermal and 
quantum effects.

• Classical simulation of Quantum RBMs via QMC is efficient but offers more power 
than exists in classical RBMs

• In practice this can be visualized as multiple 

RBMs working together to get results

• This has been implemented in PySA and can 

be integrated with the Prob. U-Net as a different 

sampler.

Output 
Distribution
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Quantum Computation

• Quantum computing is a rapidly emerging technology based on quantum mechanics.

• Multiple applications, such as optimization and sampling, have been introduced and are 
expected to surpass the classical computers’ performances.

• Quantum annealing is a proposed optimization method for finding the lowest energy (best 
answer).

• We start from an initial Hamiltonian state and slowly move toward problem Hamiltonian 
(solution).

• Theoretically, quantum computer can find the lowest energy more effectively due to 
tunneling effect. Energy Landscape
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Bridge between Quantum  and Classical Computation

• We can use this property in sampling to find the best Boltzmann distribution.

• We do MCMC in Energy landscape to find the lowest energy point. That is equivalent to doing 
MCMC on Boltzmann distribution.

• This approach is expected to perform better because of Quantum computer’s effective and 
fast sampling. 

• The results are expected to be more accurate and simultaneous.

Energy Landscape Probability Distribution
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