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Importance of Wildfire Observation

Wildfire occurrences have been increasing for the
past decades, leaving devastating traces across the
globe.

*  Example: 2018 wildfires in California: 5$148.5 Bn!l!

* Proper resource management is crucial in the fight
against wildfires.

thisis five years
of California fires

* Accurate detection is the first step in prope
wildfire management.

* Proper machine learning techniques can help
discover remote sensing-based information that
can help us better characterize wildfires.

[1] Wang et al., “Economic footprint of California wildfires in 2018,” Nature Sustainability, 4, 252-260 (2021) Credit: USGS
Credit: Gaurdian d
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Dataset

We used the observations of NASA’s Terra and Aqua MODIS for

* Land/Cloud/Aerosols Boundaries
* Land/Cloud/Aerosols Properties

We collected the wildfire mask data from thermal anomalies/active fire product of NASA’s
Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting
Partnership (Suomi NPP).

We collected 10,000 wildfire samples (with overlapping incidents) over CONUS for the time
range of 2018-2020.

Normalized Difference Vegitation Index (NDVI) is also calculated and included as proxy of
vegetation health.

We included a deviation from mean NDVI accounting for sudden shifts in NDVI in a region.

L d




Background — Model Choice

l U-NET to VAE Transition

_

—

* Enhanced Generalization: VAE models input into continuous latent spa

CeS

generalization across tasks.

* Unsupervised Learning: Reduces dependence on large labeled dataskts

from unlabeled data.

E
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Goal Shift: From pixel-perfect segmentation to understanding broader data@tributions.

ning

Data Augmentation: VAEs generate new data instances, aiding in scenari‘limited data.
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Ronneberger, O., Fischer, P., &
ege . ° ° Brox, T. (2015) U-net:
Probabilistic U-NET — Training Mode Convolutional networks for
biomedical image segmentation.
In Medical image computing and
> < computer-assisted intervention—

MICCAI 2015: 18th international
conference, Munich, Germany,
October 5-9, 2015, proceedings,
part 111 18 (pp. 234-241). Springer
International Publishing.
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Probabilistic U-NET — Inference Mode
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Background — Model Choice

VAE to Vector Quantized (VQ)-VAE Transition

* Discrete Latency: VQ-VAE uses discrete latent spaces for better feature . A and

robustness.

 Complex Feature Handling: Improved maintenance of high-quality, detailggefeatures in

reconstructions.

* Hierarchical Representation: Allows multi-scale data abstraction, useful in compje)

segmentation tasks.

* Computational Efficiency: Simplifies the sampling process, enhanc|ng ptz biIitE
efficiency.

d

VQ-VAE

raining
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Vector Quantized Variational Autoencoder (VQ-VAE)

Embedding Reconstruction Loss
Space
p +
Vector Quantization Loss
D VZL +
CNN il e CNN Commitment Loss
z,(x) , 3 2 1 ::(i) , z,(x) ~ q(zlx)
53

Encoder Decoder

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(x) is mapped to the nearest point e5. The gradient V , L (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

Van Den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. Advances in neural information processing systems, 30.
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Vector Quantized U-NET - Training Mode
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Vector Quantized U-NET (VQ-U-NET) — Inference Mode
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Combining RBM with Vector Quantized U-NET - Training mode
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Combining RBM with Vector Quantized U-NET - Inference Mode
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Parallel Tempering Integration with Probabilistic U-NET

 Parallel Tempering is an importance sampling method and an
alternative to Persistent Contrastive Divergence (PCD)

* Thisis a classical method used in Monte Carlo techniques and is
implemented natively in PySA (https://github.com/nasa/PySA)

* |t runs Markov chains of multiple replicas of the system at different temperatures,

swapping states between temps

* This prevents the sampler from getting trapped in local minima and allows for better

sampling of the distribution Evolve
High

Temp .

Target
JME Temp

IEEE
IGARSS
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https://github.com/nasa/PySA

Summary of Changes to VQ-VAE

 Re-organized VQ-VAE to become supervised.

e Used a prior-posterior architecture to sync codebooks and encoders, further
improving prior codebook and encoder performance.

* Added two more losses to the VQ-VAE triple losses to sync prior and posterior
codebooks and encoder outputs.

* Binarized the encoder outputs and codewords.

 Added Restricted Boltzmann Machine (RBM) to prior encoder process.
* Switched from ancestral sampling to importance sampling via RBM.

* Trained RBM using Parallel Tempering.
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Visual Comparison

Target

[ 1 Fire
Bl Non-Fire

Prob. U-NET

VQ-U-NET

LI

Db IEEE
IGARSS




Statistical Comparison

Prob. U-NET | VQ-U-NET

Precision 51.36 59.24

Recall 57.64 69.2

Fl-score 54.32 63.83

Truth
orecicion = TP
recision = TP + FP - No
R ” ~ TP Fire
seall = TP +FN S Fire TP FP
F1 _ 2 X Precision X Recall % No

Score = Precision+ Recall « Fire FN N
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Highlights

Generative machine learning can improve our understanding of wildfire processes and offer a
promising approach for wildfire detection.

VQ-U-NET architecture provides an efficient approach to model wildfire with better
segmentation representation.

Physics-inspired approaches such as PySA can work effectively with discrete models such as
VQ-VAE models even in a classical environment.

Further efforts are required for evaluation of the introduced approach such as uncertainty
analysis and model characteristics within continuous and discrete settings.
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Thank you very much for your attention!
Questions?

Ata Akbari Asanjan
ata.akbariasanjan@nasa.gov
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Wi ildfires are stochastic in nature!

* Like many other natural processes, wildfires are stochastic.
 Wildfire simulations are classified in two categories:

 Deterministic: Assuming wildfire processes are fully

resolved.

. Provides the same outcome every time the model is run for a single
wildfire event.

Credit: Kevin Maddrey

. Does not account for variability in observations.

* Stochastic: Incorporates the variability of observation.
. Provides different scenarios every time the model is run for a single
wildfire event.

. Provides a comprehensive statistical understanding for the variability
over N runs.

 Thus, deterministic approaches are not optimal for stochastic processes (e.g.

wildfire).
L -
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Uncertainty in Wildfire Observations

* Uncertainty analysis enables the assessment of reliability and confidence in research
results.

 Uncertainty analysis aids in decision-making processes related to resource
management, policy development, and risk assessment.

* It helps quantify and communicate the uncertainties associated with observations,
measurements, and predictions in Earth science.

 However, uncertainty analysis is not cheap (requires extensive computational and
design resources).

 Most uncertainty analysis methods are not designed to run “what-if” scenarios in a
low-cost and comprehensive manner.
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Discriminative vs. Generative

Discriminative modeling:

* In discriminative modeling, we aim to learn a model that discriminat
(i.e. predicts) given the inputs. (In probability terms: p(y | X))

Generative modeling:

* Generative modeling aims to solve a more general problem. It aims to L e o
learn joint distribution over all variables. o~ ."*: ) L . K
(In probability terms: p(y, X) or p(y | X) p(X)) -._“".,'.'-.:& - E

* A generative model simulates how the data is generated in the real world. BELIR LI
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Generative Modeling based on Statistical Inference

Statistical Inference is a learning scheme in which we learn about an unobserved state based on
our observations.

- - >
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Variational Inference

Variational Inference suggests that instead of going through all the samples, we assume
a distribution (e.g. Gaussian) from distribution family and instead of finding the entire
distribution (hard), find the distribution parameters (easier).

p(x) = jp(x | z) p(2z) dz

0.20 A

How to measure the closeness of distributions?
We use a metric called Kullback-Leibler Divergence. z

0.05 A
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Generative Modeling based on Probabilistic Inference

Bayes rule:

p(x|z)p(z) _px,2)
p(x) p(x)

p(z|x)=

* p(x) is data distribution or Evidence.

* (Indiscriminative models, we rather focus on conditional probability p(y|x) and neglect the unconditional
probability p(x).

* p(2) is the prior distribution.
« p(x|z)isthe likelihood.
* p(z|x)is posterior distribution.
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Probabilistic Inference — Unsupervised Form

Bayes rule:

p(x|z)p(z) _px,2)
p(x) p(x)

p(z|x)=

In unsupervised variational inference we assume a family of distributions for the prior and force
the model to learn the best distribution parameters that match the data.

AN

Reconstructed data, X

p(z)

Latent
Space, Z

Encoder Decoder

Input data, X

00 p(x)
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Probabilistic Inference — Supervised Form

Nt
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Probabilistic Inference — Supervised Form

* Probabilistic U-Net is a great approach for capturing variations in a supervised
fashion.

* However, it can be further improved by relaxing the variation inference assumption
(i.e. latent space is a Multivariate Gaussian distribution).

* In order to relax the prior assumption, we can replace the prior latent space with an
iterative process such as Restricted Boltzmann Machine (RBM).

* The RBM allows parallel Gibbs sampling which results in more accurate prior
characterization.

 This way we are joining the best of both worlds (Variational Inference & MCMC) to
generate more accurate latent samples and thus, more realistic scenarios for wildfire
detection.
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Statistical Inference

Bayes rule:

p(x|z)p(z)
p(x)

p(z|x)=

* Solving the Bayesian inference in the previous slide is often hard close to not possible.
* This becomes worst with larger dimensionality in data (e.g. Image, time series).

p(x) = jp(x | z) p(z) dz

Solutions:

1. Variational Inference: Moderate accuracy, Fast
2. Markov Chain Monte Carlo: Good accuracy, Very slow
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Gibbs Sampling in the form of ML

* Gibbs sampling can be implemented as a machine learning model.

 |Imagine we have two variables X and Y.

* Inorder to sample from the joint P(X,Y) distribution, all we need is to have P(X | Y)
and P(Y | X).

* We can define a model that gives the conditional distributions: Restricted
Boltzmann Machine (RBM)!

* RBM learns conditional distributions via negative log-likelihood.
 Gibbs sampler uses conditional distributions to refine samples.

e This mechanism learns a Boltzmann distribution of X and Y.
—E(x)
e

P(X,Y) =

S, e-ECY) X Y
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Monte Carlo Markov Chain

e MCMC is a generic method of sampling from a high-dimensional probability
distribution.

e By sampling, we gain better knowledge of the entire probability distribution
landscape.

 As we sample more from a distribution,
we learn more about the distribution!

e MCMC includes many variations
Metropolis-Hasting: Uses proposal density

& acceptance/rejection method for new samples.

* Gibbs: Uses conditional distributions for new samples. (Good for complex high- dlmen5|onal target
distributions)

M)
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Gibbs Sampling

 Gibbs sampling breaks down the sampling process of a complex high-dimensional
target distribution, into simpler, easy-to-sample conditional distributions.
Example: Imagine we have a N-d target distribution
P(xq1,X5,X3, ., Xp)
 Drawing samples from this distribution is hard if we don’t have the joint probability function.

* |Instead, we freeze all but one dimension and calculate a conditional probability. e.g.;
P(x1 | X2, X3, ...,xN)
« Then we start from a random location, update each dimension based on other given dimensions
and conditional probability

A
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Gibbs Sampling in the form of ML

* Gibbs sampling can be implemented as a machine learning model.
 |Imagine we have two variables X and Y.

* In order to sample from the joint P(X,Y) distribution, all we need is to have P(X | V)
and P(Y | X).

 We can define a model that gives the conditional distributions: Restricted Boltzmann
Machine (RBM)!

* RBM learns conditional distributions via negative log-likelihood.

 Gibbs sampler uses conditional distributions to refine samples.

 This mechanism learns a Boltzmann distribution of X and Y.

i X Y

P(X) Y) — ZXYe—E(X,y)
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RBM: An energy-based model

e This mechanism learns a Boltzmann distribution of X.

e_E(x'y)
P(X) = ZYZXYQ_E(x'y)

* Energyterm E(x,y) can be represented by

E(x,y) = _zxi bi* —Zij]Y _zzxiijij

iEX jey iEX jEY
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Combining RBM with Probabilistic U-Net — Training mode
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Combining RBM with Probabilistic U-Net — Inference Mode
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Visual Results

Prob. U-Net Prob. U-Net Prob. U-Net
Gaussian)  (Bernoulli) (RBM)
‘
Target U-Net
‘
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Performance Metrics

U-Net Prob. U-Net Prob. U-Net Prob. U-Net
(Gaussian) (Bernoulli) (RBM)
Precision 0.536 0.431 0.235 0.654
Recall 0.987 0.955 0.752 0.473
F1 score 0.695 0.594 0.358 0.549
Jaccard score 0.532 0.422 0.318 0.378
Precision = % Recall = % "

Fire No Fire

2 X Precision X Recall

F1 score = Fire TP FP

Precision X Recall

Prediction

AnB No Fire FN TN

Jaccard score =

Jml AUB
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Advantages of the proposed approach

Probabilistic U-Net with Boltzmann latent space is more generalized than its alike with
Gaussian latent.

Discrete latent space will help the model in efficient learning of latent configurations.
RBM acts as a connection door between the classical and quantum computation realms.

Question: How RBM connects classical and quantum computations?
e RBM uses e "E® to define probability, thus;
1
E(x) o< —
p

* Because of this property, we can look for lower energy to find higher probability samples.
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Annealed Importance Sampling

 Annealed Importance Sampling (AlS) is an alternative to Parallel Tempering or
Persistent Contrastive Divergence

* It changes the distribution slowly from a reference distribution to a target
distribution in an even way such that importance weights can be calculated

* This method allows you to estimate the partition function, giving a way of gauging
the quality of your sampling

« We have implemented AIS in PySA and have ported over its partition function
estimation to parallel tempering, allowing for similar calculations there

qo(xllxo) C]l(X2|X1) qz(x3lxz) q3(xf|x3)

,—\[\,ﬁ
F)O F)l ||||||| ||||||| |||||||
—___/ -/
/ _VZ _FZ — [
JmL ° f q
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Path-Integral Quantum Monte Carlo Integration with Probabilistic U-Net

 Quantum Monte Carlo (QMC) is a classical technique of using Markov Chain Monte
Carlo to sample from a quantum thermal distribution.

 Thisis equivalent to an RBM, just where the RBM can have both thermal and
guantum effects.

e Classical simulation of Quantum RBMs via QMC is efficient but offers more power
than exists in classical RBMs

* |In practice this can be visualized as multiple

RBMs working together to get results -

e This has been implemented in PySA and can } 4 Dig:;‘i‘iiton
be integrated with the Prob. U-Net as a different

sampler. -
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Quantum Computation

Quantum computing is a rapidly emerging technology based on qguantum mechanics.

Multiple applications, such as optimization and sampling, have been introduced and are
expected to surpass the classical computers’ performances.

Quantum annealing is a proposed optimization method for finding the lowest energy (best
answer).

We start from an initial Hamiltonian state and slowly move toward problem Hamiltonian
(solution).

Theoretically, quantum computer can find the lowest energy more effectively due to
tunneling effect. Energy Landscape

AN
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Bridge between Quantum and Classical Computation

We can use this property in sampling to find the best Boltzmann distribution.

We do MCMC in Energy landscape to find the lowest energy point. That is equivalent to doing
MCMC on Boltzmann distribution.

This approach is expected to perform better because of Quantum computer’s effective and
fast sampling.

The results are expected to be more accurate and simultaneous.

Energy Landscape Probability Distribution q
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