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High Efficiency Megawatt Motor (HEMM)

c 1.4 MW
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Stator build and test setup
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Design & Instrumentation
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Half symmetry CFD mode
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Results

14 test conditions run e ~400to~500ADC e 251 GPM e 75 GPM was verified as
« 25-100 GPM — One point at ~300 ADC — 185°C @ 449.5A the optimal for min losses
— 50 GPM was successful
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Presentation Notes
Why is there so much variance in the 135 “outer”  temperatures-  do not know-will need to investigate when stator is torn apart.  
What does surface temperature mean
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Single-Slot Conjugate CFD Model

The interface between turns
was determined to be non-
adiabatic

High thermal gradients not
previously predicted

Small in-plane difference in
position of TC and model
location can drive large
temperature differences

Determined the transverse
thermal conductivity to be 4.5
W/(m - K)
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Single-Slot Conjugate CFD Model (continued)
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Conclusions @

 A1.4 MW full scale stator was fabricated, instrumented, and tested to
validate the thermal design and further develop stator fabrication
techniques.
— Testing demonstrated operation at 500 A (> 420 A requirement)
— Measured winding temperature below 200 °C, at a minimum flow rate of 50 GPM,

* Models did accurately predict an optimal flow rate of ~75 GPM

* An improved estimate of the winding transverse thermal conductivity was
determined (4.5 W/(m<K))

* There is much room for improvement in both the design of cavity around
the end turns as well as the modeling of the end turns
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