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High Efficiency Megawatt Motor (HEMM)
• 1.4 MW
• > 98% efficient
• 16 kW/kg active components
• Superconducting rotor

– Cryocooler
• Cu Litz wire stator

– 9 phases (108 slots)
– 420 A AC operation
– PAO (Polyalphaolefin) direct cooling
– 60 °C oil temperature 
– 200 °C max operation

[1] Jansen, R., et al., "High Efficiency Megawatt Motor Risk Reduction Activities," 2020 AIAA/IEEE Electric Aircraft Technologies Symposium, 2020.
[2] Woodworth, A., et al., "Thermal Analysis of Potted Litz Wire for High Power Density Aerospace Electric Machines," AIAA Propulsion and Energy 2019
[3] Szpak, G., et al., "High Efficiency Megawatt Motor Thermal Stator Preliminary Design," 2020 AIAA/IEEE EATS, 2020.
[4] Woodworth, A., et. al., "Select Variables Affecting Thermal System Design of a Liquid-Cooled Stator," AIAA/IEEE EATS, 2020.
[5] Chapman, J. W., et al., "Update on SUSAN Concept Vehicle Power and Propulsion System," AIAA Science and Technology Forum, 2023.
[6] Tallerico, T. T., et al., "Electromagnetic redesign of NASA’s high efficiency megawatt motor," AIAA/IEEE EATS, 2020. 

EATS = Electric Aircraft Technologies Symposium
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Stator build and test setup

stator

heat 
exchanger

cooling 
reservoir

flow 
meterpump

PAO 60°C 
controlled reservoir



National Aeronautics and Space Administration

www.nasa.gov

Design & Instrumentation 
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Half symmetry CFD model  

• Prediction of hotspot 
locations

• Prediction of max and 
mean temperatures

• At 500 A DC, 25 GPM is 
the minimum flow rate

• Prediction ~75 GPM 
being the optimal flow
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Results

Test Condition: 499.8A,  75 GPM 

• 14 test conditions run
• 25 -100 GPM

• ~400 to ~500 A DC
– One point at ~300 A DC

• 25.1 GPM 
– 185 °C @ 449.5 A
– 50 GPM was successful

• 75 GPM was verified as 
the optimal for min losses
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Single-Slot Conjugate CFD Model
• The interface between turns 

was determined to be  non-
adiabatic

• High thermal gradients not 
previously predicted 

• Small in-plane difference in 
position of TC and model 
location can drive large 
temperature differences

• Determined the transverse 
thermal conductivity to be 4.5 
W/(m•K)
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Single-Slot Conjugate CFD Model (continued)

• A slight asymmetry in the 
lot temperature

• Most predictions  within +/- 
5 °C  (°C)
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Conclusions

• A 1.4 MW full scale stator was fabricated, instrumented, and tested to 
validate the thermal design and further develop stator fabrication 
techniques.  
– Testing demonstrated operation at 500 A (> 420 A requirement) 
– Measured winding temperature below 200 °C, at a minimum flow rate of 50 GPM,

• Models did accurately predict an optimal flow rate of ~75 GPM 

• An improved estimate of the winding transverse thermal conductivity was 
determined (4.5 W/(m•K))

• There is much room for improvement in both the design of cavity around 
the end turns as well as the modeling of the end turns
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