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Abstract

This study compares dust storm simulations using two commonly adopted methods for representing four
important dust emission parameters. Compared to a dynamic dust source mask based on land use and
vegetation cover, a static mask based solely on land use overestimates dust concentration and optical depth
by a factor of 2, besides generating spurious emissions. The results reinforce that seasonal variations
in vegetation cover can significantly affect dust emissions. For sandblasting efficiency, a clay-dependent
semiempirical expression produces 10 times more dust than a physics-based expression. Simulations using
model-predicted versus a fixed constant for air density differ by only 8%. However, this difference could
range between 12 and 22% for annual simulations over global dust source regions. Simulations with updated
versus old land use data, using the same dust source mask, differ twofold, indicating the significant impact of
land use change on regional dust emission in central Arizona. The differences in the pairs of these simulations
are generally larger than the uncertainty due to meteorology. The simulations align better with observation
when using the dynamic dust source mask, the physics-based sandblasting efficiency, and the up-to-date land
use data. Given the high sensitivity of dust to surface conditions, the results discussed have implications
for improving the dust cycle in weather and climate models and for interpreting model intercomparisons.
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1. Introduction1

Physics-based models are essential for understanding the atmospheric dust cycle and its interactions with2

climate, air quality, and the environment. These models can help mitigate the costly adverse impacts of dust3

and dust storms on public health and property. Consequently, numerous field, laboratory, computational,4

and theoretical studies have been carried out to understand the dust emission process and develop predictive5

models (Bagnold, 1941; White, 1979; d’Almeida, 1987; Gillette and Passi, 1988; Tegen and Fung, 1994;6

Marticorena and Bergametti, 1995; Shao et al., 1996; Fécan et al., 1999; Alfaro and Gomes, 2001; Ginoux7

et al., 2001; Prospero et al., 2002; Kok et al., 2014). Despite satisfactory performance in many applications,8

these models exhibit significant uncertainties, an order of magnitude or higher (Todd et al., 2008; Huneeus9

et al., 2011; Wu et al., 2020). The discrepancy between models and observations depends on how well10

the models represent processes or parameters such as dust source areas, sediment availability, threshold11

friction velocity, size distribution and range, wet and dry deposition, point-scale to grid-scale upscaling of12

parameters amid sub-grid scale heterogeneities, and input data, including meteorology (Schulz et al., 1998;13
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Shao, 2008; Kok, 2011; Webb and Strong, 2011). Challenges in accurately accounting for these processes14

and lacking data have prompted model simplifications. Intermodel disagreements arise from differences15

in dust emission schemes or their implementations, which dictate how the various processes or quantities16

(parameters) involved are represented (e.g., Darmenova et al., 2009; Kang et al., 2011; Menut et al., 2013).17

These include parameters such as wind erosion threshold velocity including corrections for drag-partition18

and soil-cohesion, sandblasting efficiency, dust source specification, particle size distribution (size range and19

the method, sectional versus modal), and various input data characterizing the surface (Raupach and Lu,20

2004; Zender et al., 2003; Timmreck and Schulz, 2004; Menut et al., 2007; Shao et al., 2011; Joshi, 2021).21

Recently, satellite-derived albedo-based drag-partitioning was reported to improve dust simulations (e.g.,22

LeGrand et al., 2023; Hennen et al., 2023), but the results could be subject to errors due to flaws in the23

albedo-based roughness parameters (approach of Chappell and Webb, 2016, cited in Okin (2023); see Okin24

(2023)). Additionally, intermodel disagreement can stem from variations in transport (including deposition)25

and meteorological components (Maring et al., 2003; Colarco et al., 2003; Grini and Zender, 2004; Uno et al.,26

2006; Nowottnick et al., 2011).27

28

Focusing on the emission part of the models, this study examines the sensitivity of dust simulation to29

parameter representation in a dust emission scheme, in which threshold friction velocity is observationally30

constrained rather than parameterized. Such analysis could provide estimates for model uncertainty linked to31

these parameters, and provide insights to decide model configuration and to interpret model intercomparisons.32

The procedure involves generating a control or reference simulation, followed by generating sensitivity33

simulations by altering the representation for a specific parameter in the dust emission scheme (dust emission34

model). The study tests two different methods, both commonly known in the literature, for representing35

the four parameters: dust source mask, sandblasting efficiency, air density, and land use. These parameters36

generally appear as a multiplier in a dust flux equation or influence the threshold velocity for wind erosion37

(e.g., Eq. (1)). Consequently, these can significantly impact patterns and magnitudes of dust emission and38

concentration. The study also compares the parameter sensitivities with the sensitivity due to meteorology39

alone. Such studies appear to be relatively scarce, especially within the presented context—detailed analysis40

at high resolution, evaluations for both dust concentration and optical depth, ensemble simulations, and41

comparison with sensitivity (uncertainty) due to meteorology in a consistent modeling framework.42

43

The reference simulation utilized the same configuration for the dust emission model as in Joshi (2021)44

(hereafter J21), which successfully simulated the tested dust storm. J21 employed a single configuration45

for the dust emission model parameters, determined through a literature survey and physical reasoning,46

with a primary focus on agreement with observations. In contrast, the present study conducted additional47

(sensitivity) simulations by modifying the configuration from the reference to address the question: how48

would the simulations differ if an alternative dust emission parameter representation was employed? The49

reference simulation differed from J21 solely in meteorology, turning off nudging and utilizing an ensemble50

of simulations rather than a single realization. Section 2 describes the materials and methods, followed by51

Section 3 presenting the results and discussions, and Section 4 ending the paper with conclusions.52

2. Methods and data53

2.1 Model configuration54

The same dust modeling system—comprising the Weather Research and Forecasting (WRF), FENGSHA55

(a dust emission model), and Community Multiscale Air Quality (CMAQ) models—and configuration,56

including the same 1 km horizontal resolution and the same initial and boundary conditions as used in57

Joshi (2021) or J21, except turning off the meteorological nudging, was employed to generate the reference58

simulation for the same case of 8–9 April 2013 Arizona dust storm caused by a cold front. (More details59

about this dust storm, including the synoptic developments, can be found in Sect. 2.3.2 of Joshi (2023).)60

The nudging was disabled unless stated explicitly to ensure no contribution of meteorology toward any61

difference between dust simulations (i.e., the difference between dust simulations differing only in dust62
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emission parameter representation). The WRF model was initialized every third hour on 6 April 2013,63

producing eight different realizations for meteorology, each saved at a 15-minute frequency. Corresponding64

to these realizations, an 8-member ensemble dust simulation was generated with the chemical transport65

model CMAQ (with dust emissions computed offline) initialized at 0 UTC on 8 April 2013 and for the66

following two days. The ensemble simulations were carried out for the sake of statistical significance.67

68

First, the reference or control simulation ControlE was generated as discussed above. Then, four sensitivity69

experiments were carried out by changing from the control, one at a time, the representation for each of the70

four parameters—dust source mask, sandblasting efficiency, air density, and land use. The details on these71

parameters and the dust emission model are provided in Sect. 2.1.1. Finally, dust simulation—quantified72

in terms of the surface-concentration of particulate matter with a diameter less than 10 µm (PM10 ) and73

column abundance of dust (or dustiness) represented by dust optical depth (DOD)—from each sensitivity74

experiment was compared with ControlE. The modeled DOD was calculated by subtracting from the total75

aerosol optical depth (AOD) the AOD portion attributable to non-dust-related emissions (AOD from a76

no-dust experiment that excluded dust emissions).77

2.1.1. Dust emission model78

Saltation bombardment or sandblasting is assumed to be the dust emission mechanism. The horizontal79

flux of saltating sand particles is multiplied by saltation bombardment efficiency (Shao et al., 1993) or80

sandblasting efficiency to calculate the vertical flux F (gm−2s−1) of dust particles (Owen, 1964; Raupach81

and Lu, 2004):82

F =
Cρa
g

L∑
l=1

S∑
s=1

KvhMlAlEs × u∗(u
2
∗ − u2

∗t,ls), if u∗ > u∗t,ls

= 0, otherwise.

(1)

where C is a dimensionless constant, g is the acceleration of gravity, u∗ is wind friction velocity, u∗t,ls is83

the threshold friction velocity for the erodible land type l and soil type s, Es is the soil wind erodibility,84

and Kvh is the sandblasting efficiency. The Ml and Al denote the dust source mask and the fraction of the85

wind-erodible land type (the surface from which sediment deflation can occur), respectively. The ρa is the86

surface air density. Together, the product Ml ×Al × Es can be viewed as an ‘erodibility’ parameter. More87

details on this dust emission model can be found in J21.88

2.2 Experimental details89

2.2.1. Dust source mask90

A dust source mask (Ml in Eq. (1)) identifies and assigns dust emission strength to wind-erodible areas91

based on surface characteristics. As such, it is one of the key parameters affecting dust production. Two92

methods for creating the dust source mask are tested. The first method considers both land use and near93

real-time vegetation cover. The dust-suppression effect of vegetation is represented using the satellite-derived94

250-m resolution NDVI (Normalized Difference Vegetation Index based on the MODIS data, see J21). For95

desert land types, the mask value is 1.0 if NDVI is less than 0.1, and it decreases linearly from 0.7 to 0.3 as96

NDVI increases from 0.10 to 0.13. For cropland, the mask equals 1.0 for pixels with NDVI below 0.25. This97

dynamic mask, which has also been used in previous studies (see J21), was used in the control (reference)98

experiment ControlE. The second method is simpler and considers only land use. In this method, the mask99

values of 0.5, 0.25, 0.75, and 0.75 are assigned to shrubland, shrubgrass, sparse-barren land, and cropland,100

respectively (Fu et al., 2014). This time-static (or simply static) mask was used in the sensitivity experiment101

referred to as StatMask.102
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2.2.2. Sandblasting efficiency103

The vertical flux of the emitted dust is typically computed by multiplying the horizontal saltation flux with104

sandblasting efficiency (Kvh in Eq. (1)), which represents the soil’s ability to release suspendable particles.105

Therefore, Kvh is one of the key factors determining the amount of the emitted dust aerosol. Lu and Shao106

(1999) developed a parameterization for Kvh by considering the removal of dust from a small crater formed107

by the impact of a saltator particle plowing through the soil surface. Solving particle motion equations with108

some simplifications, they obtained an expression, consistent with field measurements (Lu and Shao, 1999):109

Kvh =
Cαgfρb

2p

(
0.24 + Cβu∗

√
ρp
p

)
(2)

where p is the soil plastic pressure (a measure of surface hardness), f is the fraction of dust in the crater110

volume, ρp and ρb are the particle and bulk soil densities, respectively, and Cα and Cβ are constants of111

order 1. All these parameters are soil-specific. This expression captures the dependence of dust emission on112

variable wind conditions, through friction velocity u∗, as well as on soil-surface hardness, among other soil113

properties. The expression has been adopted by many recent studies (e.g., Foroutan et al., 2017; Joshi, 2021).114

Other physics-based Kvh parameterizations can be found elsewhere (e.g., Alfaro and Gomes, 2001; Kok115

et al., 2014). Another parameterization that is tested here is purely empirical (Marticorena and Bergametti,116

1995) (hereafter MB95), with some extrapolation (such as used in Dong et al., 2016; Fu et al., 2014):117

Kvh = 1013.4×clay−6, if clay ≤ 0.2

= 2× 10−4, if clay > 0.2,
(3)

where clay represents the surface-soil clay fraction. The first part of Eq. (3) is based on the work of MB95,118

who assumed that a soil’s ability to release suspendable particles should be related to its clay content,119

because clay consists of the smallest soil particles. The second part according to Dong et al. (2016) is120

based on the recommendation of MB95. Due to the extrapolation part, the expression is referred to here as121

‘semiempirical.’ The physics-based expression (Eq. (2), with parameters based on Kang et al. (2011)) was122

used in ControlE and the clay-based one (Eq. (3)) in the sensitivity experiment named ClayKvh.123

2.2.3. Air density124

The quantity of dust emitted is proportional to surface air density (ρa in Eq. (1)), due to the greater125

erosive power of denser air. Dust emission models often assume a fixed constant for air density, ∼ 1.23126

kgm−3 (e.g., Marticorena and Bergametti, 1995; Hennen et al., 2023), corresponding to the standard at sea127

level (Darmenova et al., 2009). However, spatial and periodic-temporal fluctuations in surface air density128

(caused by elevation differences, the diurnal cycle, or advection) can influence wind power (Liang et al.,129

2022) and therefore dust emission. Within the modeling domain of this study with complex topography, the130

model-predicted surface air density ranged from 0.91 to 1.16 kgm−3, differing by ∼ 27% across space, and131

from 1.06 to 1.11 kgm−3, differing by ∼ 5% across time (computed over a diurnal cycle spanning the dust132

storm, 12 UTC to 12 UTC). Model-predicted air density that varies dynamically was used in the control133

experiment, while a fixed constant ∼ 1.25 kgm−3 (value from the previous version of the model) was used134

in the sensitivity experiment referred to as FxdAdens.135

2.2.4. Land use136

Only certain land types such as barren, shrub, or cropland emit dust significantly, and some do more137

efficiently than others. For example, disturbed cropland emits more efficiently than undisturbed shrubland.138

The specification of land types can affect dust emission in the model through three terms: the dust source139

mask, the threshold friction velocity, and the fraction of the erodible land type (Ml, u
∗
t,ls, and Al in140

Eq. (1)). Two data sets for land use are tested. One is the Biogenic Emissions Landuse Database,141

Version 3 (BELD3) (Kinnee et al., 1997) data set (https://www.epa.gov/air-emissions-modeling/142

biogenic-emissions-landuse-database-version-3-beld3), a commonly used data set for the inline dust143

emission scheme in the community CMAQv5.3 (e.g., Huang and Foroutan, 2022). This data is time-invariant144
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and includes information collected some 20 years earlier than the simulated dust storm. The other data set145

is up-to-date and was created (detail in J21) using the 30 m resolution Cropland Data Layer (CDL; Han146

et al. (2012)) from the US Department of Agriculture for the year 2013. The CDL-based up-to-date data147

was used in ControlE and the old BELD3 data in the sensitivity experiment referred to as Beld3Lnd. In148

the two experiments, the dust source mask Ml remains the same and any difference between the simulations149

will be only through the threshold friction velocity and erodibility (u∗
t,ls and Al).150

2.3 Data and metrics151

The following data sets are used: ground-based hourly observations of PM10 from the US Environmental152

Protection Agency’s Air Quality System, satellite-derived dust optical depth (DOD; ∼10 km resolution) from153

the Aqua-MODIS Deep Blue aerosol product (Ginoux et al., 2012), and hourly METeorological Aerodrome154

Reports (METAR) station data from the NCEP’s Meteorological Assimilation Data Ingest System. More155

details about these data including station locations can be found in J21. The spatial aggregates are computed156

across the same two regions defined in J21, away from the domain boundaries. One of these regions is urban157

or Phoenix (Phx), which is far from dust sources, and the other is rural or western Pinal County (WPnl),158

which is near dust sources. Both the regions are indicated in Fig. 3. Furthermore, global high-resolution159

(0.1◦ spatial) land data from the fifth generation of European ReAnalysis (Muñoz-Sabater, J. et al., 2021) or160

ERA5-Land are used to analyze the impact of air density variations across the Earth’s potential dust source161

regions. The ERA5-Land includes hourly averages for all months of the year 2013, each month having 24162

values, for the hours 00–23.163

164

The metrics to compare model results with observations include the mean bias (MB), the normalized mean165

bias (NMB), the mean absolute error (MAE), and the index of agreement (IOA). These are defined as MB166

=
∑n

i=1
mi−oi

n , NMB =
∑n

i=1 mi−oi∑n
i=1 oi

× 100%, MAE =
∑n

i=1
|mi−oi|

n , and IOA = 1 −
∑n

i=1(mi−oi)
2∑n

i=1(|mi−ō|+|oi−ō|)2 ;167

where n is the sample size, mi and oi are the ith model and observation values, respectively, and ō is the168

mean of the observations.169

170

Similar quantities are used to compare sensitivity simulations with the control (ControlE). Corresponding to171

MB and MAE, the mean difference (MD) and the mean absolute difference (MAD) referring to a sensitivity172

experiment are calculated by replacing the observation (in ‘model minus observation’) with ControlE values.173

Whether a particular metric refers to calculations relative to the observation or to the control is indicated174

by the suffixes 2Obs or 2Ctl, respectively. Therefore, MB2Obs will denote the mean bias relative to the175

observation, MD2Ctl the mean difference relative to the control (model minus ControlE), IOA2Ctl the index176

of agreement relative to the control (i.e., observation in the IOA expression replaced by ControlE), and so177

on. Another metric is the ratio of means (RatM), as RatM2Obs, when the mean of model values is divided178

by that of observation, or as RatM2Ctl, when the division is by the mean of the control.179

180

The statistical significance of the difference between simulations is determined using the Welch’s t-test at a181

significance level (α) of 0.05.182

3. Results and discussion183

3.0.1. Meteorological simulations184

Since dust emission and concentration are highly sensitive to surface wind, the simulated wind is compared185

against the observed one in Fig. 1, which shows time series for wind speed and direction with inset measures186

of model performance. The performance metrics include mean bias MB, mean absolute error MAE, root187

mean squared error RMSE, index of agreement IOA, and circular correlation coefficient ρcirc. Overall,188

the wind speed is simulated well (e.g., MAE < 1.54ms−1, RMSE < 2.28ms−1, IOA ∼ 0.9), although189

discrepancies can also be seen including for high wind speeds relevant to dust emission. The agreement with190

observation is lower than in J21 (which used nudging), and this bias may affect dust estimates. The simulated191

precipitation largely resembled J21 (Fig. 7 therein), with no precipitation around the domain center, the192
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main dust-producing region (high dust-source-mask values in Fig. 4 in J21). However, a small precipitation193

band near the center of the domain was absent (for hours 00 and 01 over the top edge of the western Pinal194

County). This absence may contribute to dust biases. Challenges in accurately simulating meteorology195

for the complex-terrain studied region have also been noted earlier. Nevertheless, the obtained accuracy196

should suffice for the purpose of this study—to analyze dust emission parameter sensitivity. Moreover, the197

study estimates meteorology-induced dust uncertainty and discusses parameter sensitivity in relation to this198

uncertainty.199

200

201

Fig. 1. Observed (black squares, hourly) and simulated (red lines, every 15 minutes) 10 m wind (a) speed and (b) direction
averaged across METAR stations with names listed inset. The windroses in (c) include all the stations.
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Fig. 2. Average dust emission rate (hour 21:00 on April 8) using the dynamic (a, ControlE) versus the static (b, StatMask)
dust source masks. Black contours show county borders.

3.1 Sensitivity to dust source mask202

Dust emissions using the two formulations for dust source mask, static (StatMask) and dynamic (ControlE),203

differ significantly in magnitude and spatial structure, as shown in Fig. 2. The emissions are generally204

stronger and more widespread in the static case. Occasionally, however, the dynamic mask emits more dust,205

such as at the spot just below the gray star in the figure where NDVI was so small (to have the dynamic206

mask value ∼1). The static mask also results in spurious dust emissions over some areas, such as in central207

Pinal or Pima counties (orange-red blobs in Fig. 2(b)), the areas not seen to be dusty in the satellite-based208

observations (Fig. 11(a) in J21) or in the dynamic mask (Fig. 2(a)). The lack of spatiotemporal variations,209

such as seasonal changes or the dynamic nature of vegetation, in the static case did not modulate dust210

emissions accordingly, thus allowing the emissions over areas not expected. The impact of these spurious211

emissions is seen in surface dust concentrations (PM10) shown in Fig. 3. The difference in concentrations212

between the two cases is large, an order of magnitude over some areas, and is statistically significant both213

near the source regions and downwind (t-test, α = 0.05; Fig. 3). A more detailed comparison, including214

temporal structures, is discussed next for two specific regions (chosen away from the domain boundaries to215

minimize the effect of any transported dust). The two regions are Phoenix (Phx) and western Pinal County216

(WPnl), indicated in Fig. 3.217

218

Figure 4 shows that the static-mask simulated values (orange-red, StatMask) for both the dust variables219

(PM10 and DOD) are generally much higher than those simulated by the dynamic mask (blue, ControlE).220

This difference is pronounced during the peak concentration, corresponding to stronger surface winds (Fig. 1).221

Compared to the observation, ControlE is closer than StatMask (Fig. 4). The StatMask predictions are about222

1.5–2.4 times higher than the control (Table 1). A similar factor of ∼ 2 difference in dust emission and AOD223

was noted by an earlier study for regions with large seasonal vegetation variations (but dynamic source224

function producing more dust than the static; Kim et al. (2013)). The PM10 difference between the two225

simulations is larger for Phx than for WPnl, because dust emissions in StatMask are much stronger than226

in ControlE over areas that contributed dust to Phx (orange-red blobed areas southwest of Phx, Fig. 2(b))227

compared to areas that contributed to WPnl (with winds from the southwest, Fig. 10 in J21). The agreement228

with observation is higher in the dynamic mask than in the static one (as indicated by larger IOA, more229
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Fig. 3. PM10 simulated using dynamic (a, ControlE) versus static (b, StatMask) dust source masks. The difference between
the two is significant (t-test, α = 0.05) over areas excluding the overlaying dark gray shading in (b). The dashed rectangles
indicate the two regions, Phoenix (Phx, upper) and western Pinal County (WPnl, lower). The values shown are an average
over 30 hrs (the range shown in Fig. 4).

closer to 1 ratio of means RatM, and smaller errors MB, NMB, and MAE in Table 1). Similar conclusions230

follow for DOD from Table 2 that static mask overpredicted DOD compared to the dynamic one (by a factor231

of more than three), as well as compared to the point observation.232

233

These results show that dust simulations using static versus dynamic dust source mask can differ significantly.234

Furthermore, a dynamic dust source mask, which is sensitive to changes in vegetation cover, could improve235

the modeling of the dust cycle as did here. A caveat to note is that the dust-emission suppression effect236

represented by the NDVI mask might have been less than the actual, because the NDVI mask cannot237

represent the effect of non-green (brown or dead) or non-photosynthetic vegetation (NPV) present over238

wind-erodible arid regions (Ji et al., 2017; Huang and Foroutan, 2022), including non-green crop-residue239

over farmlands (Tan et al., 2022). However, integrating satellite-derived NPV into dust modeling could be240

tricky, as the NPV corresponding to vegetation not close to the ground, such as leafless or dead standing trees,241

may not effectively suppress dust emission (e.g., Huang and Foroutan, 2022). Additionally, satellite-derived242

NPV might detect fallen leaves and litter, but strong winds could scatter this material away before the243

satellite observation updates (typically 1–2 times per day), making the surface beneath vulnerable to wind244

erosion during subsequent high winds. This wind-induced relocation, leading to a larger apparent NPV, is245

generally not a concern with NDVI-like indices representing green vegetation. Given no other better or more246

reliable options available (Okin, 2023), NDVI or similar products like leaf area index or green vegetation247

fraction continue to be used in dust modeling. They are expected to offer advantages over a time-static248

simple mask.249

250

The difference or improvement in dust simulations with the dynamic mask is particularly expected for251

regions with significant seasonal or spatial vegetation-variations, such as the western US (Chapter 4 in Joshi252

(2023)). The difference may not be important for regions like permanent deserts with little such variations.253

Due to frequent changes in exposed surfaces or ground vegetation cover, cropland and rangeland are two254

dust sources that would particularly be represented better with a dynamic treatment for the dust source255

mask. The changes over cropland can occur due to agricultural activities like plowing, planting, or irrigating,256
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Table 1: Comparisons of PM10 from ControlE with each of the sensitivity experiments (StatMask, ClayKvh, FxdAdens, and
Beld3Lnd), and from ControlE and each of the sensitivity experiments with the observations (Obs). The statistics (computed
over the time range shown in Fig. 4) shown are: the mean bias (MB), the mean difference (MD), their absolute values (MAE
and MAD, respectively), the normalized mean bias (NMB in %), the index of agreement (IOA), and the ratio of means (RatM).
The suffixes 2Ctl or 2Obs indicate calculations with respect to ControlE (2Ctl) or observations (2Obs), as discussed in Sect. 2.3.
Mean, MD, MAD, MB, and MAE are all in µgm−3.

Region Metric ControlE StatMask ClayKvh FxdAdens Beld3Lnd Obs

Phx Mean 157.77 373.32 1680.73 168.95 83.49 145.4
MD2Ctl 0.0 215.55 1522.96 11.18 -74.28 9.19
MAD2Ctl 0.0 233.61 1522.96 11.18 74.3 79.8
RatM2Ctl 1.0 2.37 10.65 1.07 0.53 1.06
IOA2Ctl 1.0 0.73 0.22 1.0 0.88 0.82
RatM2Obs 1.06 2.53 11.3 1.14 0.56 1.0
MB2Obs 9.19 222.56 1497.64 20.1 -63.25 0.0
NMB2Obs 6.32 153.07 1030.02 13.82 -43.5 0.0
MAE2Obs 79.8 283.8 1519.17 87.37 80.59 0.0
IOA2Obs 0.82 0.47 0.11 0.8 0.84 1.0

WPnl Mean 318.56 475.65 4244.12 346.24 138.06 243.82
MD2Ctl 0.0 157.08 3925.56 27.68 -180.5 70.36
MAD2Ctl 0.0 166.51 3925.56 27.68 180.5 240.81
RatM2Ctl 1.0 1.49 13.32 1.09 0.43 1.29
IOA2Ctl 1.0 0.93 0.2 1.0 0.79 0.66
RatM2Obs 1.29 1.92 17.16 1.4 0.56 1.0
MB2Obs 70.36 224.13 3939.41 97.61 -106.98 0.0
NMB2Obs 28.86 91.92 1615.71 40.03 -43.87 0.0
MAE2Obs 240.81 363.14 3960.87 259.95 146.78 0.0
IOA2Obs 0.66 0.51 0.06 0.62 0.77 1.0

and the changes over rangeland can occur due to seasonal or interannual variations in precipitation, as well257

as changes in the intensity and patterns of livestock grazing.258

259

Fig. 4. (a) Average PM10 across the observation sites using dynamic (ControlE, blue) versus static (StatMask, orange-red)
dust source masks. Thin solid lines show ensemble members and the thick dashed line shows the ensemble mean. The dotted
horizontal line at the bottom indicates if the difference is significant (t-test, α = 0.05) statistically (presence of a dot) or not
(absence of a dot). The solid gray line shows observation. (b) Similar description as in (a) but for DOD. In (b) the gray crosses
show the observation, as spatial mean and maximum. Phx and WPnl are the averaging regions indicated in Fig. 3.
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Table 2: Similar description as in Table 1 but for DOD. InstMod and InstObs represent time-matching instantaneous values
(for an instant) from model and observation, respectively.

Region Metric ControlE StatMask ClayKvh FxdAdens Beld3Lnd

Phx Mean 0.21 0.69 2.47 0.23 0.12
RatM2Ctl 1.0 3.28 11.72 1.08 0.58
MAD2Ctl 0.0 0.48 2.26 0.02 0.09
IOA2Ctl 1.0 0.68 0.25 1.0 0.93
InstMod 0.74 2.62 8.15 0.8 0.46
InstObs 0.25 0.25 0.25 0.25 0.25

WPnl Mean 0.2 0.72 2.88 0.22 0.13
RatM2Ctl 1.0 3.67 14.64 1.1 0.65
MAD2Ctl 0.0 0.53 2.69 0.02 0.07
IOA2Ctl 1.0 0.64 0.21 1.0 0.95
InstMod 0.69 2.58 10.91 0.76 0.41
InstObs 0.12 0.12 0.12 0.12 0.12
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113°W 112°W 111°W
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33°N
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Pima

Pinal

(b) ClayKvh

113°W 112°W 111°W

40 100 300 500 700 900 1100 1300

PM10( g m 3) [(b) is ×0.1]

Fig. 5. Similar to Fig. 3 but using the physics-based (a, ControlE) versus the clay-based (b, ClayKvh) sandblasting efficiencies.
Values in (b) are scaled by a factor of 10, as indicated over the colorbar. Dotted ellipses indicate structural nuances, like
gradients, between the two cases.

3.2 Sensitivity to sandblasting efficiency260

Dust modeled using the clay-based (ClayKvh) versus the physics-based (ControlE) sandblasting efficiency261

shows a striking difference, with the ClayKvh estimates being an order of magnitude larger than the control262

(Fig. 5, Fig. 6). The clay-based concentrations are ∼ 11 to 13 times higher than the control, and by similar263

measures, ∼ 11 to 17 times, higher than the observation (Table 1). This discrepancy exceeds 1500 µgm−3
264

across the observation stations in Phx, and more than twice in WPnl. The greater discrepancy in WPnl is265

due to proximity to dust sources. The agreement index IOA with the observation is much lower for ClayKvh266

(0.06–0.11) than for the control (0.66–0.82). Likewise, the errors relative to the observation are significantly267

larger for ClayKvh than for the control (MB, NMB, and MAE in Table 1). Column dustiness is also268

overestimated in ClayKvh, relative to the control (by ∼ 12 to 15 times) or to the observation (Table 2). The269

large difference between the two simulations, and over an order of magnitude discrepancy with observation270

in the clay-based case can be attributed to strong dependence on clay content for the ClayKvh case, in which271

Kvh can vary over a few orders of magnitude. This wide variation stems from significant clay variation over272

the modeling domain (Fig. 2.7 (d) in Joshi (2023)). However, there is no similar strong dependence in the273
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Fig. 6. Similar to Fig. 4 but using the physics-based (ControlE, blue) versus the clay-based (ClayKvh, orange-red) sandblasting
efficiencies. Note the ClayKvh values are scaled (reduced) by a factor of 10.

physics-based case, in which Kvh variation is limited to only within a factor of around 2.274

275

Based on these results, the clay-based versus the physics-based sandblasting efficiency could result in over276

an order of magnitude difference in the simulated dust. Far better agreement with observation underscores277

the preference for the physics-based expression, especially for regions with significant clay variation. Several278

other reasons also support this preference.279

280

First, the first part of the clay-based expression in Eq. (3), derived by MB95 by fitting a simple curve to281

Gillette’s data (Gillette, 1979), is irrelevant for soils with clay > 0.2. Also, this data was limited or sparse282

(MB95). Moreover, this expression lacks physics and can lead to serious dust overpredictions (Kang et al.,283

2011; Foroutan et al., 2017). MB95 cautioned about its utility, calling it a “temporary solution.” Different284

studies have used this expression differently. Some used it as is, regardless of clay fraction exceeding 0.2285

(e.g., Woodward, 2001; Hennen et al., 2023), while others assumed a uniform global clay fraction of 0.2286

(Zender et al., 2003). Hennen et al. (2023) appear to have capped clay fractions above 0.2 at 0.2, leading287

to an implementation very similar to the ClayKvh-case here. LeGrand et al. (2023) employed it similarly288

and reported ‘relatively small’ overall effect of clay variation on dust flux, contrary to the significant effect289

observed in the ClayKvh-case. The author suggests an error in how the MB95 expression was implemented290

in LeGrand et al. (2023). Their mentioned reference LeGrand et al. (2019) notes that for clay fraction over291

0–0.2 the maximumKvh (their β) variation can be by only 1.08, whereas this variation should be a few orders292

of magnitude (see Figure 4 in MB95). With the MB95-intended implementation, the dust fluxes in LeGrand293

et al. (2023) would likely have varied drastically, significantly affecting the corresponding PM10 simulations.294

295

The second reason to prefer the physics-based expression is that the second part of Eq. (3) assumes a296

constant much larger than the number generally resulting from the first, effectively assuming soils with297

larger (generally > 0.2) clay fractions are more dust-productive. However, in the Gillette’s measurements,298

which included soils with less than 20% clay, the lowest mean Kvh actually corresponded to a soil with more299

than 50% clay (MB95). This minimum could have occurred due to crusting of the clay-rich soil (Gillette,300

1979). The physically based expression Eq. (2), however, does not imply such a constant, large value.301

302

The limitations of the empirical relationship (clay < 0.2 and based on limited data) and its arbitrary use303
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in the literature point to an urgent need for field or laboratory measurements. Such measurements would304

help explore or better constrain the relationship between sandblasting efficiency and globally available soil305

data, such as texture fractions. The arbitrary use can pose a challenge to interpreting model performances306

or intercomparisons.307

3.3 Sensitivity to air density308
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(a) ControlE
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(b) FxdAdens
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40 100 300 500 700 900 1100 1300

PM10( g m 3)

Fig. 7. Similar to Fig. 3 but using model-predicted (a, ControlE) versus a fixed constant (b, FxdAdens) for surface air density.
The difference is not significant over a considerable portion of the domain, indicated by the gray shading in (b).

Fig. 8. Similar to Fig. 4 but using the model-predicted (ControlE, blue) versus a fixed constant (FxdAdens, orange-red) for
surface air density.

The difference in dust simulations varying in air density representation is relatively small, with fixed air309

density (FxdAdens) resulting in slightly larger values than the model-predicted density (ControlE) (Fig. 7,310
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Table 1). Although small, the difference could be significant during the peak PM10/DOD period (Fig. 8).311

The FxdAdens PM10 values are slightly larger than the control, by 11–28 µgm−3or ∼ 8% (Table 1). The312

overall agreement between the two is high (IOA2Ctl ∼ 1). Compared to observations, ControlE appears313

slightly closer (with smaller errors MB, NMB, and MAE and higher IOA, Table 1). This small closeness314

may not represent a significant or real improvement in the control case, but it suggests that air density315

specification can impact dust simulations. Similar conclusions hold for DOD (Table 2).316

317

Therefore, dust simulations using model-predicted versus a fixed constant for air density can differ by318

a non-negligible margin. The difference would be much larger for longer simulations including seasonal319

changes (Fig. S1(c) and Fig. S2 in the Supplementary material). Consequently, the model-predicted option320

is preferable to account for realistic density variations, particularly in regions with significant diurnal or321

seasonal cycles and elevation differences. The increase in compute time in this study for the model-predicted322

option compared to the fixed constant was imperceptible.323

3.4 Sensitivity to land use324
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Fig. 9. Similar to Fig. 3 but using the up-to-date (a, ControlE) versus the old (b, Beld3Lnd) land use data.

Dust simulations with the old (Beld3Lnd) and up-to-date (ControlE) data for land use differ significantly in325

magnitude and structure (Fig. 9, Fig. 10). Modeled dust is generally smaller in the old data due to smaller326

cropland or greater shrubland fraction over the dust-producing region. This is expected as shrubland327

requires stronger winds to emit dust compared to cropland. For this reason, in Fig. 9 the dust plumes over328

the northwestern part of the domain and the wide, high-concentration plume extending to the southern Gila329

county from the WPnl region in the control case are both missing in Beld3Lnd. Furthermore, the sensitivity330

to land use is greater in WPnl than in Phx, as can be seen from the difference in the gaps between the blue331

and the orange-red PM10 curves in Fig. 10. The higher sensitivity in WPnl is due to the proximity of the332

averaging locations to the stronger emission sources (Fig. 9).333

334

At the start and the end of the peak concentration period in Fig. 10, Beld3Lnd highly underpredicted335

concentrations, while ControlE indicated dust activity (high PM10) more consistent with observation.336

Overall, the Beld3Lnd values are smaller than the control by ∼ 74–180 µgm−3 or a factor of around 2337

(RatM2Ctl 0.43–0.53; Table 1). Compared to observations, Beld3Lnd underpredicted the concentrations by338
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a factor of around 2 in Phx (RatM2Obs 0.56), whereas ControlE predicted them well (RatM2Obs near 1.0).339

ControlE generally aligns better with observations, except during the peak when Beld3Lnd performs better340

(Fig. 10). This contrasting behavior during the peak period is due to ControlE significantly overpredicting341

the peak values, particularly in WPnl (Fig. 10). This is reflected as both experiments having similar342

absolute error MAE for Phx but differing for WPnl, where ControlE exhibits a larger error (Table 1).343

The pronounced overprediction during the peak, compared to observations, could be attributed to biases344

in the simulated meteorology (Sect. 3.0.1). Addressing these biases would likely bring ControlE closer to345

observations, while causing Beld3Lnd to deviate further, shifting the Beld3Lnd curve downward (Fig. 10).346

This meteorology-induced effect is likely because a meteorological nudging brings the ControlE PM10 values,347

particularly around the peak, to lower levels, closer to observations (Fig. 3.14 in Joshi (2023)).348

349

Fig. 10. Similar to Fig. 4 but using the up-to-date (ControlE, blue) versus the old (Beld3Lnd, orange-red) land use data.

These results show that dust simulations could be sensitive to land use or land use data (old versus new) and350

could be improved significantly using more accurate data. The actual sensitivity is likely greater than the one351

estimated because the dust source mask remained the same, corresponding to ControlE or up-to-date land352

use data, which includes a higher proportion of cropland (a relatively more erodible land type). Isolating353

the land use effect further should be the subject of future studies.354

355

The significant sensitivity underscores the influence of land use changes in central Arizona on regional dust356

emission. The land use change in this case doubled the dust emission, implying potential impacts of future357

land use changes on the region’s dust activity. Therefore, updating land use data, often overlooked in models,358

is crucial for dust or air quality modeling because land use might have changed (or will change), as it has for359

Phoenix and the surrounding areas (e.g., Jenerette and Wu, 2001), in response to environmental or climatic360

conditions or socio-economic factors, including migration, infrastructure development, and agricultural361

activities or expansions (Lark et al., 2015; Lambert et al., 2020). In the western US dust-source regions,362

factors such as water availability, highway construction, and city expansion have led to conversions from363

agricultural lands to abandoned, desert, or urban and builtup areas (Hyers and Marcus, 1981; Baxter and364

Calvert, 2017), or from uncultivated lands to cultivated ones (Lark et al., 2015). Such conversions can365

impact regional dust activity, as wind erosion depends on land use or land cover (Gillette et al., 1978; Joshi,366

2021).367
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3.5 Uncertainty due to meteorology368

An additional experiment was carried out by enabling meteorological nudging (observation and analysis),369

but otherwise leaving the configuration identical to ControlE. Dust simulation ratios of means to control for370

this experiment were 1.01 and 0.71 for PM10 (and 0.88 and 0.61 for DOD) for Phx and WPnl, respectively.371

Dust concentrations could therefore differ by nearly 30% solely due to uncertainty in meteorology. However,372

these ratios are generally much closer to unity than for the parameter sensitivities discussed above. Thus,373

the differences in dust simulations for each pair of experiments involving dust source mask, sandblasting374

efficiency, and land use data are robust to meteorological variations. The difference for air density, however,375

is comparable to or within the meteorological uncertainty. Future studies should explore more the role of376

meteorological uncertainty, including sensitive dependence on initial conditions or atmospheric chaos toward377

which some effort is underway (Joshi and Shukla, 2023).378

3.6 Implications for dust modeling in general379

The sensitivity analysis presented above, while specific to a particular dust emission scheme, is relevant for380

many other dust emission schemes in general, which typically use a similar flux equation (as Eq. (1)). In381

these schemes, the four parameters generally affect the flux in similar ways, and therefore, a comparable level382

of model sensitivity could be expected. One key difference to note however is that in other dust schemes, the383

input air density (ρa) also impacts the threshold friction velocity u∗t, unlike in the scheme used above. To384

the author’s knowledge, the sensitivity to air density has rarely been studied. Specifically, Darmenova et al.385

(2009) reported air density sensitivity of u∗t, corresponding to average air density over three Asian dust386

regions. The present study goes further and provides uncertainty in dust fluxes. Furthermore, the analysis387

here includes a whole year to account for seasonal changes and incorporates global dust source regions.388

389

The fractional uncertainty in dust flux (F ) is computed as ∆F
F =

f(ρa,0)−f(ρa,ex)
f(ρa,ex)

× 100%, where f is the390

part of the dust flux expression that depends on input air density (ρa), ρa,ex is the expected or actual391

air density, and ρa,0 = 1.23 kgm−3 is the commonly used constant for air density. Three cases of dust392

emission schemes are considered: first, the scheme as used in this study (Eq. (1)) for which f = ρa; second,393

similar to the first (Owen, 1964; Shao et al., 1996), but f = ρau∗(u
2
∗ − [u∗t(ρa)]

2), where u∗t(ρa) indicates394

ρa dependence of u∗t; and third, the scheme of Marticorena and Bergametti (1995) or MB95 for which395

f = ρa(u∗ + [u∗t(ρa)])(u
2
∗ − [u∗t(ρa)]

2). For simplicity, u∗ = 1ms−1 is assumed. The u∗t(ρa) is calculated396

using the parameterization of MB95 for a saltating particle of diameter 75 µm (which yields ∼ 0.20 m s−1
397

for ρa = ρa,0). The u∗t has an inverse relation with ρa.398

399

The annual variation in air density over most of the arid regions ranges between 10–22% and is maximum400

over Asian deserts such as Taklimakan and Gobi, and relatively less over lower-latitude arid regions in401

both the hemispheres, including the modeling domain of this study where the variation is around 15% (Fig.402

S1(b,c) in the Supplementary material). Dust flux variations for the first case of the emission schemes would403

be similar in magnitude to these density variations. The fractional uncertainty in dust flux for the first case404

ranges from 8 to 20% over most of the dust source regions, corresponding to the minimum expected air405

density (Fig. S2). The uncertainty increases slightly for the second case (Fig. S3) as expected, because406

of the additional uncertainty from the u∗t term. For the third case, the uncertainty decreases from the407

second and is similar to or slightly less than in the first. The decrease in this case can be attributed to the408

opposing contributions from the terms (u∗ + u∗t) and (u2
∗ − [u∗t(ρa)]

2). Thus, it may be concluded that409

the uncertainty in dust flux due to air density representation is dominantly through the ρa term explicitly410

appearing in the flux equations.411

412

Given the significant uncertainty that can arise from fixing air density to a constant, the model-predicted413

option is recommended, particularly for ρa explicitly occurring in the flux equation. For u∗t, an appropriate414

constant for air density may suffice (Fig. S1(a)) if the computing time becomes a concern, as u∗t changes415

only by ∼ 0.04 ms−1 for density over a wide range, 0.9–1.26 kgm−3. Although the uncertainty is the416

least corresponding to the maximum air density (Fig. S2–4), more relevant for practical considerations is417
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the uncertainty corresponding to the minimum air density (when the uncertainty is the greatest). This is418

because dust storms tend to occur in the afternoon hours between 12:00 and 20:00 LST, or during periods of419

maximum thermal instability (Orgill and Sehmel, 1976; Mbourou et al., 1997) when the air density tends to420

be minimal (Fig. S1(c)). Thus, the commonly used 1.23 kgm−3 for air density appears to be an overestimate421

and not optimal for most dust source regions (Fig. S1).422

4. Conclusions423

This study quantified dust simulation uncertainties associated with representations for four important424

parameters in a dust emission model. The results reveal significant differences in dust concentration and425

optical depth: twofold between static and dynamic dust source masks, tenfold between clay-based and426

physics-based sandblasting efficiencies, and twofold between old and up-to-date land use data. These427

parameter sensitivities surpass meteorology-induced uncertainty and support conclusions consistent with428

physical reasoning—simulations better match observation when using a dynamic dust source mask, a429

physics-based sandblasting efficiency, and up-to-date land use data. Sensitivity to surface air density430

is small and comparable to meteorological uncertainty but would be larger for longer simulations. For431

major global dust source regions, up to 22% uncertainty in dust flux can occur when ignoring air density432

variations. Although the literature acknowledges the potential impacts of these parameter representations,433

at least qualitatively, a detailed quantitative analysis appears to be lacking. Moreover, studies often neglect434

updating land use data or dust source mask and ignore the effect of air density variation, in addition435

to implementing arbitrarily the empirical relation for sandblasting efficiency. Failing to consider these436

parameter uncertainties could mislead model development and could lead to incorrect interpretations of437

model-observation discrepancies. The significant sensitivities identified and discussed in this study therefore438

have implications for improving the dust cycle in weather and climate models and interpreting intermodel439

differences.440

441

Notably, parameter sensitivity could be season-dependent, influenced by whether a dust event is frontal or442

convective, or by seasonal vegetation dynamics affecting the dust source mask. It could be region-dependent443

as well, due to spatial variations in clay content or erodible land types. More work is needed to isolate the444

effect of land use data, which is likely underestimated. Future studies should explore or test other options445

for dust source mask (including the effect of non-green vegetation) and sandblasting efficiency. To better446

constrain the ‘sandblasting efficiency-soil property’ empirical relationship, additional measurements are447

urgently needed. Model development will also need to investigate sensitivity to size distribution, deposition448

scheme, and threshold friction velocity. The albedo-based drag-partitioning used in recent studies could449

have much less process fidelity than claimed (Okin, 2023). Further research is required to explore the range450

of uncertainty caused by meteorology for which some effort is underway.451
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