ISS External Microorganisms: Collecting Planetary Protection Samples During Extravehicular Activity

Aaron B. Regberg, Mary Sue Bell, Richard E. Davis, Martin L. Tschirschwitz, Sarah Wallace

PPP.3 0005-24

07/14/2024

National Aeronautics and Space Administration

- COSPAR/NASA Planetary Protection Knowledge Gaps for Crewed Missions
- Prototype Hardware
- Ground Test Results
- Flight Hardware
- ISS Sampling Plan

COSPAR AND NASA HAVE DEFINED PLANETARY PROTECTION KNOWLEDGE GAPS THAT NEED TO BE ADDRESSED BEFORE CREWED MISSIONS ARRIVE AT MARS

BACKGROUND

Some organisms can survive exposure to

space!

Cyano-bacteria, lichen and fungi survived up to 500+ days outside ISS

<u>ISSUE</u>

But we *don't* know what's actually leaking/venting from our current systems, how long those organisms could survive, or how far they may travel under destination conditions

Does proximity to a warm spacecraft matter?

imagesassets.nasa.gov/image/iss018e03922 7/iss018e039227~orig.jpg

> Tardigrades survived extended ISS exposure... and then reproduced

We also know that all crewed, pressurized volumes will leak or vent

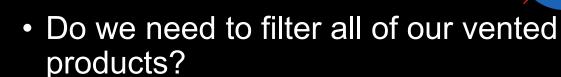
How close can crew get without compromising science?

How far could our

How far could our hitchhikers spread

The answers will drive element design (i.e. closed vs. open ECLS), where we place elements, and who/how we collect science samples

KNOWLEDGE GAP 2H. WHAT MICROBIAL CONTAMINANTS WOULD VENT FROM AN EXTRAVEHICULAR ACTIVITY (EVA) SUIT OR OTHER VEHICLES?



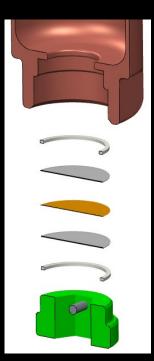
- Do we need to filter all of our vented products?
- How close can an astronaut get to a sample without contaminating it?
 - Should we use robots to collect and contain sensitive samples?

KNOWLEDGE GAP 2B. WHAT LEVEL OF NON-VIABLE MICROBIAL CONTAMINATION ESCAPE IS ACCEPTABLE?

Report of the COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions G Kminek, BC Clark, CA Conley, MA Jones, M Patel, MS Race, MA Rucker, O Santolik, B Siegel & JA Spry (Eds.)

https://www.nasa.gov/image-article/ammonia-pictured-venting-outside-of-international-space-station/

- How close can an astronaut get to a sample without contaminating it?
 - Should we use robots to collect and contain sensitive samples?
- What if our spacecraft create an artificial habitable zone?



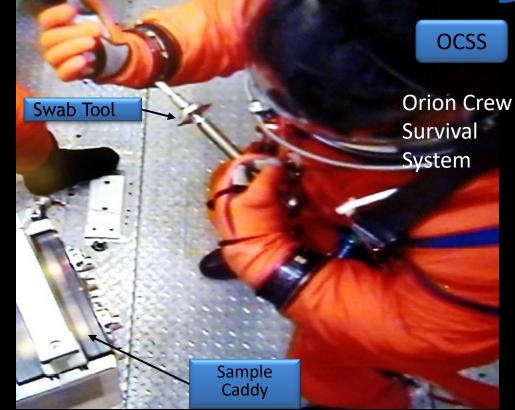
- COSPAR/NASA Planetary Protection Knowledge Gaps for Crewed Missions
- Prototype Hardware
- Ground Test Results
- Flight Hardware
- ISS Sampling Plan

PROTOTYPE PAYLOAD 8-SAMPLE EVA SWAB KIT

- 6 on top, 2 on bottom (not shown)
- 0.22 micron pore Microbial filter in bottom of each container to accommodate pressure changes

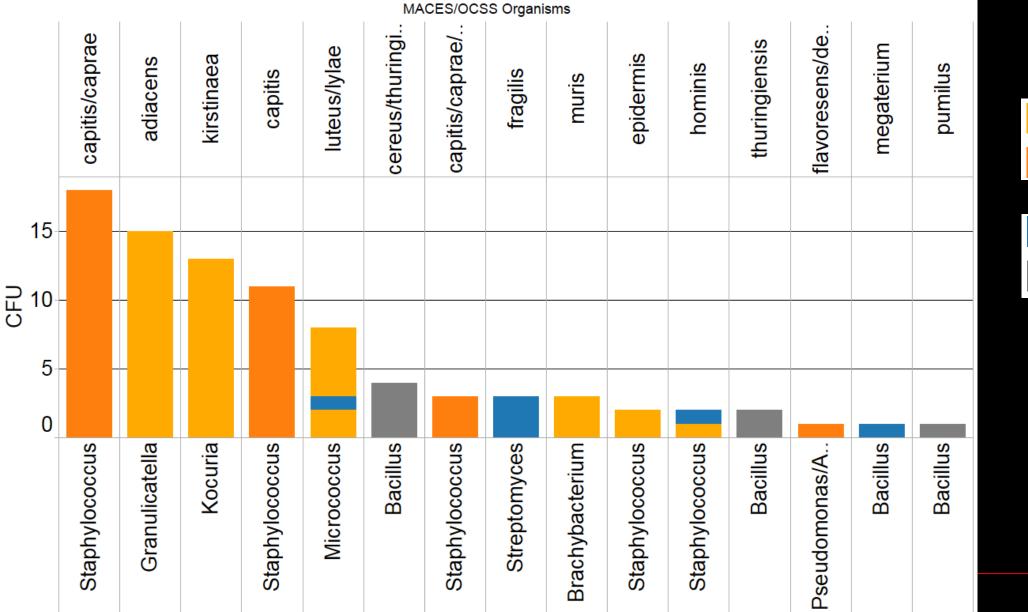
Rucker, Michelle A., Drew Hood, Mary Walker, Kasthuri J. Venkateswaran, and Andrew C. Schuerger. 2018. "EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations." In 2018 IEEE Aerospace Conference, 1–9. IEEE. https://doi.org/10.1109/AERO.2018.8396381.

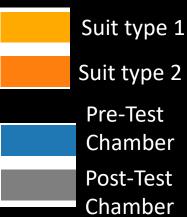
Unify | Explore | Discover


GROUND TESTING WITH FLIGHT LIKE ISS AND ORION

Sampling suit joints during pre-breathe Internal suit pressure is 4.2 psig (29.6 Kpa) above atmospheric pressure

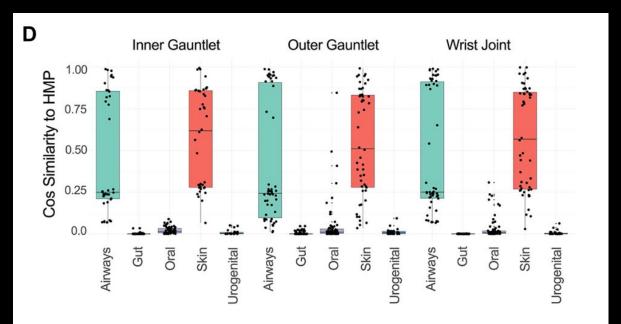
> NOTE: we would NOT expose EMU wrist joints on ISS


Sampling suit at vacuum in the 11 ft. chamber at Johnson Spac Center Internal suit pressure is 4.2 psia 29.6 Kpa)



- COSPAR/NASA Planetary Protection Knowledge Gaps for Crewed Missions
- Prototype Hardware
- Ground Test Results
- Flight Hardware
- ISS Sampling Plan

4-6 HOURS OF VACUUM DOES NOT KILL BACTERIA ON SPACE SUIT SURFACES

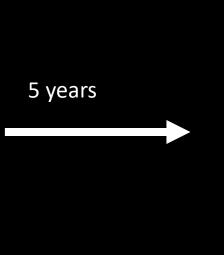


MICROBES ON SPACESUITS ARE SIMILAR TO MICROBES FROM HUMAN SKIN AND AIRWAYS

Danko, D., Malli Mohan, G. B., Sierra, M. A., Rucker, M., Singh, N. K., Regberg, A. B., et al. (2021). Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions. Frontiers in Microbiology, 12, 1900. https://doi.org/10.3389/fmicb.2021.608478

- We used Shotgun metagenomic sequencing to further characterize the microbial community in these samples
- Spacesuits are cleaner than human skin but external surfaces are not sterile.

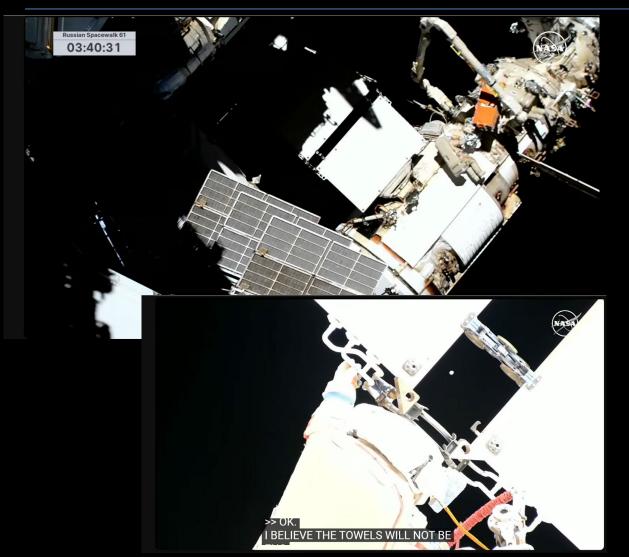
David Danko



- COSPAR/NASA Planetary Protection Knowledge Gaps for Crewed Missions
- Prototype Hardware
- Ground Test Results
- Flight Hardware
- ISS Sampling Plan

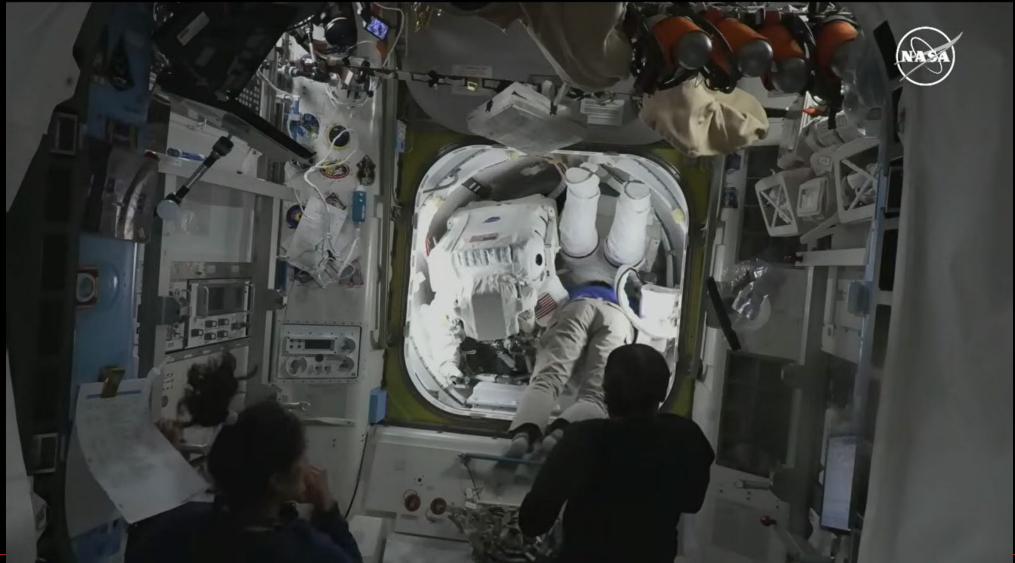
HARDWARE DESIGN WAS UPDATED BASED ON GROUND TESTING RESULTS AND NASA EVA SAFETY REQUIREMENTS

Delivered for launch in August 2023


LAUNCHED ON NG-19 IN AUGUST OF 2023

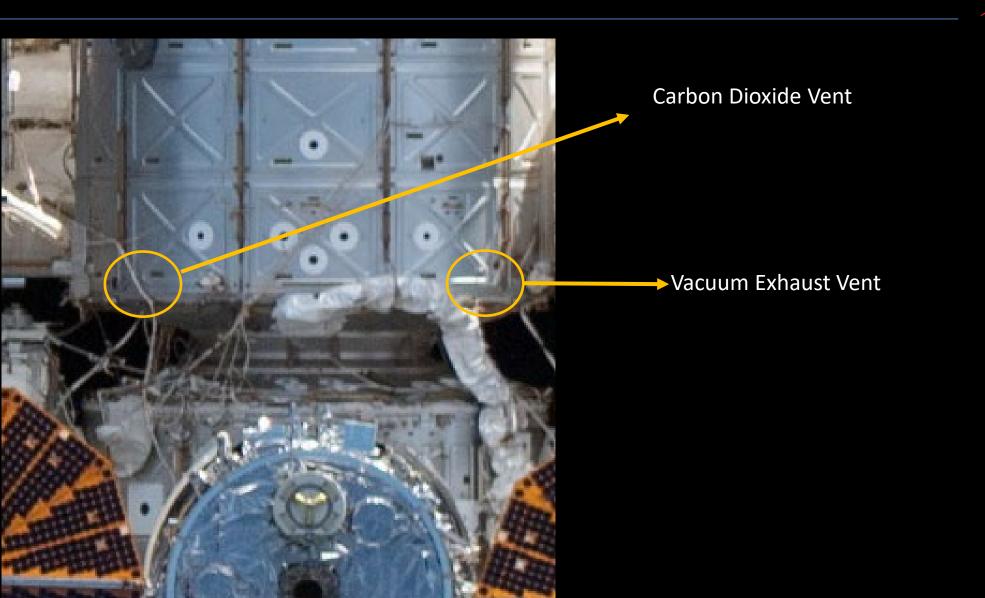
EVA DELAYED FROM OCTOBER 2023 TO 6/13/2024

- Radiator coolant leak delayed US EVA's
- Coolant is non-toxic silicone oil

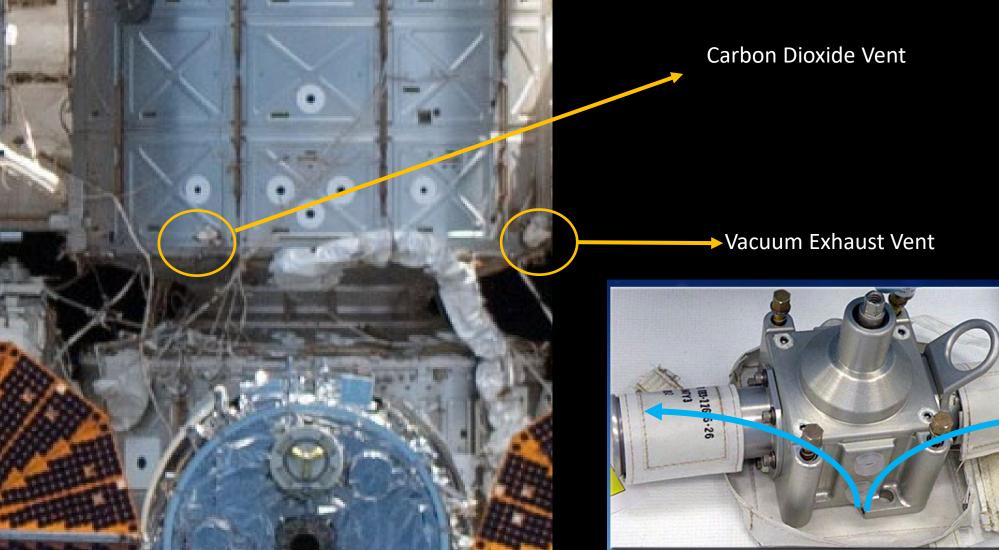

6/13 EVA SCRUBBED DUE TO SUIT DISCOMFORT RESCHEDULED FOR 6/24

6/24 EVA SCRUBBED DUE TO AN UMBILICAL WATER LEAK RESCHEDULED FOR 7/29

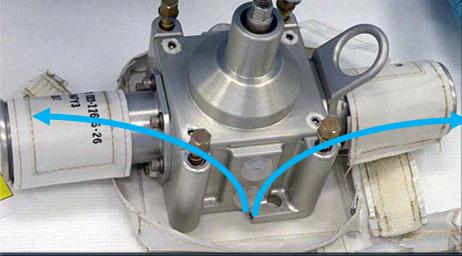



- COSPAR/NASA Planetary Protection Knowledge Gaps for Crewed Missions
- Prototype Hardware
- Ground Test Results
- Flight Hardware
- ISS Sampling Plan

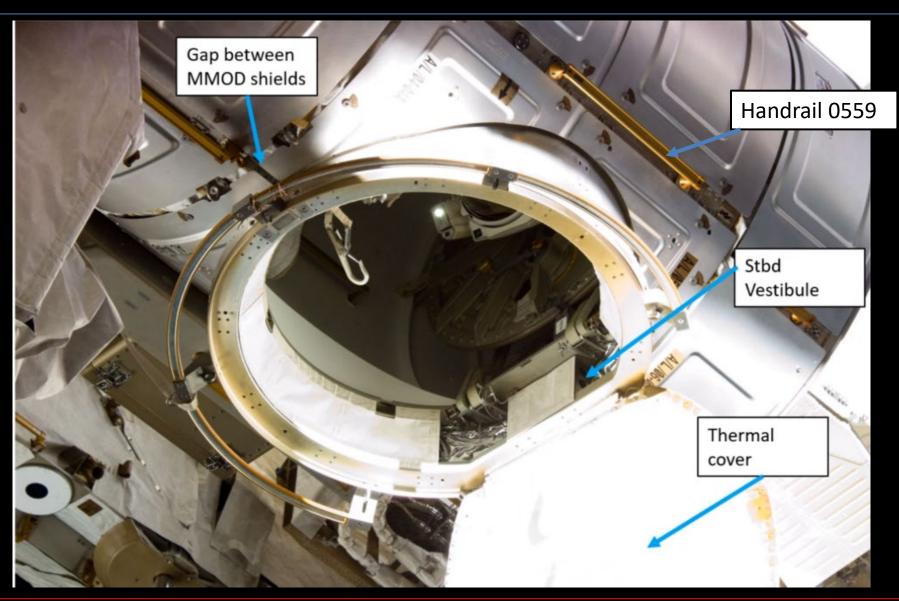
SAMPLE LOCATIONS NEAR THE AIRLOCK AND ON THE LAB MODULE



SAMPLE LOCATIONS ON THE LAB MODULE



SAMPLE LOCATIONS ON THE LAB MODULE



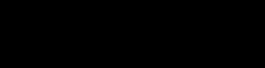
https://www.nasa.gov/image-article/space-station-pictured-from-spacex-crew-dragon-3/ Unify | Explore | Discover

SAMPLE LOCATIONS AROUND THE AIRLOCK

NA 2

RUSSIA HAS ALSO SAMPLED THEIR SEGMENT

Microbiological Investigation of the Space Dust Collected


BioNanoScience https://doi.org/10.1007/s12668-019-00712-1

Microbiological Investigation of the Space Dust Collected from the External Surfaces of the International Space Station Check for updates

Elena A. Deshevaya¹ • Elena V. Shubralova² • Svetlana V. Fialkina ^{1,3} • Aleksandr A. Guridov¹ • Natalia D. Novikova¹ • Oleg S. Tsygankov⁴ • Pavel S. Lianko² • Oleg I. Orlov¹ • Sergey P. Morzunov² • Albert A. Rizvanov^{5,6} • Irina V. Nikoleva⁷

Control Subject Media IIC and Source Name 2001 Table 4 Microorganisms isolated on the ISS external surfaces in SE TEST				
EVA/date	Location sampled	Swab appearance		
EVA-25 15 November 2010	Valves of trace contamination removal unit	Black spots		
EVA-35 22 August 2013	Porthole of the exit hatch VL2 of the module "SEARCH"	Black spots		
EVA-35 22 August 2013	Porthole of the exit hatch VL2 of the module "SEARCH"	Gray spots		
EVA-38 19 June 2014	SM, window 2	Black spots		
EVA-41 10 August 2015	SM, between tubes of radiator (STR)	Black spots		
EVA-42 26 February 2016	The exit porthole of the module "PIRS" surface	Gray spots		
EVA-42 26 February 2016	The exit porthole of the module "PIRS," window, and hatch frame	Black and gray spots, bright grains		

EVA, extravehicular activities VL2, exit porthole 2 SM, SERVICE MODULE STR, thermal control system

https://nasa3d.arc.nasa.gov/detail/iss-hi-res

RESULTS FROM THE RUSSIAN SEGMENT

Check for updates

BioNanoScience https://doi.org/10.1007/s12668-019-00712-1

 Table 2
 The dust sampling

chronology

Microbiological Investigation of the Space Dust Collected from the External Surfaces of the International Space Station

Elena A. Deshevaya¹ • Elena V. Shubralova² • Svetlana V. Fialkina^{1,3} • Aleksandr A. Guridov¹ • Natalia D. Novikova¹ • Oleg S. Tsygankov⁴ • Pavel S. Lianko² • Oleg I. Orlov¹ • Sergey P. Morzunov⁵ • Albert A. Rizvanov^{5,6} • Irina V. Nikolaeva⁷

 Table 4
 Microorganisms isolated on the ISS external surfaces in SE TEST

EVA/date	Location sampled	Swab appearance	Microorganisms
EVA-25 15 November 2010	Valves of trace contamination removal unit	Black spots	Bacillus licheniformis
EVA-35 22 August 2013	Porthole of the exit hatch VL2 of the module "SEARCH"	Black spots	Bacillus sphaericus; B. subtilis
EVA-35 22 August 2013	Porthole of the exit hatch VL2 of the module "SEARCH"	Gray spots	B. subtilis
EVA-38 19 June 2014	SM, window 2	Black spots	Bacillus pumilus
EVA-41 10 August 2015	SM, between tubes of radiator (STR)	Black spots	Bacillus pumilus; Aureobasidium sp.
EVA-42 26 February 2016	The exit porthole of the module "PIRS" surface	Gray spots	Bacillus sphaericus
EVA-42 26 February 2016	The exit porthole of the module "PIRS," window, and hatch frame	Black and gray spots, bright grains	Bacillus licheniformis; Bacillus pumilus; assemblage of Agrococcus jenensis, Skermanella aerolata, Deinococcus aerolatus, and Staphylococcus hominis

EVA Date Cosmonauts who collected samples EVA-25 (two samples) 15.11.2010 F. Yurchikhin EVA-35 (two samples) 22.08.2013 A. Misurkin EVA-38 (two samples) 19.06.2014 O. Artemiev EVA-39 (two samples) 18.08.2014 O. Artemiev 20.10.2014 EVA-40 (two samples) A. Samokutiaev EVA-41 (five samples) 10.08.2015 M. Kornienko EVA-42 (three samples) 26.02.2016 O. Volkov, Yu. Malenchenko

- All identified organisms also found inside ISS
- Only able to culture organisms from stained samples
- Not able to cultivate microorganisms from beneath thermal blankets

EVA, extravehicular activities

VL2, exit porthole 2

SM, SERVICE MODULE

STR, thermal control system

CONCLUSIONS

- NASA has developed and tested a tool kit for collecting microbiological samples during EVA.
- Results from this experiment should help close planetary protection knowledge gaps for crewed missions and allow us to develop life support systems that minimize forward contamination.
- The payload is on station, and we hope to collect samples in July of 2024.
- Working with flight operations on a science payload has been good practice for conducting EVA science on Artemis missions.
- The tool kit could also be used to collect organic. contamination knowledge samples on other crewed or robotic missions.