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Cut-cell Cartesian meshes enable robust
automated meshing for CFD

Automated mesh generation and adaptation
are essential for vehicle design and optimization

Complex configurations can be meshed
automatically with cut-cell Cartesian grids

Cart3D uses an explicit multigrid solver that
Is well suited for the 3D Euler equations




We want to strengthen the existing multigrid solver
for an incipient automated RANS capability

Developing capability for automated, RANS-based vehicle design
Need a stronger solver for stiffness from the viscous equations

Implicit preconditioning to leverage the existing multigrid solver
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The baseline multigrid algorithm is
fully explicit and matrix-free

Commonly use W-cycles with 5-stage smoother

Gradient evaluations on the first stage only
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Improve the multigrid convergence rate with
Implicit preconditioning
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based on implicit Euler
method



Solve the linear preconditioner equations with
Jacobian-free Newton Krylov method

Solve the implicit preconditioning equations
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Supersonic wedge case for verification of the

baseline and preconditioned solvers

Fully supersonic flow i

Uniform 256x256 mesh 0_85

15° wedge alignhed to grid
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Preconditioned solver improves convergence
rate on supersonic wedge case

8 Krylov vectors, max CFL = 1000

— Baseline - no limiter

— — Preconditioned - no limiter

—— Baseline - van Leer limiter

— — Preconditioned - van Leer limiter

No limiter MG convergence rate
Improves from 0.88 > 0.74

Limiter rattling

Normalized L1 Density Residual
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Further evaluation of the preconditioned solver
with a more realistic case: NACA 0012 airfoil

NACA 0012 with closed TE

M
Moo= 0.8, o= 1.25° =K
~10k cell mesh generated with 7 - o
adaptation cycles =

4 level [1,1] W-cycle



Most free parameters have a small effect on
the preconditioned method convergence rate
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CFL ramping also has a small effect on the
preconditioned method convergence rate

10°
101 .. — x=1.1
| | | 10°§
200 ____________________________ ___________________________________ ________________________________ ot N
E ; g 10°
10
10
10
10
10
10

1000 ‘-"!‘:'-'-!-'f“-'f-i'v't'.'!'-'v't'f;.';v";'.':'fi ’ R NI R I SR e b R R T
I ‘l;'

600 ..... SO FOUUOUN SRRSR: L ................................... ................................... ...................................

CFL

L1 Density Residual

400 |-f-f s ‘ "' ................................... ................................... ................................... ...................................

© &% 4 fo ‘n B )

O H H S — A— S T— 0
Yy oF 10
1 F CFL" = CFLpax tanh | ["|~

-11

J 10
G ! ! ! I 12

0 50 100 150 200 250 1070725 50 75 100 125 150 175 200 225 250
MG Cycles MG Cycles




L1 Density Residual

Larger Krylov subspaces improve the multigrid
convergence rate but increase computational cost
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Capitalize on multigrid’s fast initial convergence
with sequential hybrid preconditioning

Baseline multigrid solver has 130 Allschemes  — Baime
o e e | : . — k=2
good initial convergence rate SRR -~ haverelatively | —
', good initial — =
10° convergence  |— k=20

Faster convergence rate is also e
maintained longer with
preconditioned solver

L1 Density Residual
S

Idea: start with explicit multigrid

before enabling the implicit | e
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Capitalize on multigrid’s fast initial convergence
with sequential hybrid preconditioning

Idea: start with explicit multigrid
before enabling the implicit
preconditioning

* Run 200 iterations with explicit
multigrid solver

* Turn on preconditioner with various
# of Krylov vectors

Reduced computational cost of
preconditioned algorithm

CFL constraint on initial startup

L1 Density Residual
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— Baseline

— Seq100, Nk =8

ONERA M6 wing also improved convergence
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Strong steady-state solvers enable implicit
high-order time integration via dual time stepping

Implicit methods are advantageous since cut-cells can have
arbitrarily-small volumes

A-stable (or L-stable) linear multistep methods are commonly used
but cannot exceed 2"9-order accuracy

Multi-stage methods can be A- or L-stable and better than 2nd
order accurate

Explore the potential of a matrix-free unsteady implementation
with fully-implicit Runge-Kutta methods
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A'-preconditioning stabilizes the pseudo-
time iterations

Consider the model equation: 1 = )\u, \ e C
Naive dual time stepping for multi-stage scheme:
ut —
D ul, — ~ S AN Unstable for small At
t

A-l-preconditioning:

Do A1 17 — 178 | A)\_> Stable for SDIRK2, Radau IIA, and
TlUs = At | Gauss-Legendre time integration

[Jameson, 2017]
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A'-preconditioning simplifies the implementation
by diagonalizing the stage equations

A-'-preconditioning:

At

A + ecoupled residuals reduces
At the memory footprint
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Diagonalized stage equations enable simple
Inclusion of BDF schemes into formulation

Can easily include classical backwards difference methods

T
Dl = AT =5 o

Solve one stage equation but leverage other stages for storage of
solutions at previous timesteps

Currently use a two-stage formulation that includes BDF1 and BDF2

1/2 -1/2
1/2  3/2

1 0
0 1

BDF1 (1st-order accurate) BDF2 (2nd-order accurate)
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This formulation demonstrates proper order of
convergence on 2D vortex convection
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Summary

Implicit preconditioning of a multigrid solver significantly
Improves its convergence rate on several 2D and 3D test cases

Jacobian-free Newton Krylov provides a low memory, matrix-free
algorithm for solving the linear preconditioning equations

Most free parameters have small effects on the solver except for the
number of Krylov vectors

Described and verified a matrix-free dual time stepping
implementation that includes both fully-implicit Runge-Kutta and
backwards difference (BDF) methods
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Outlook

Implement the implicit preconditioning in the RANS solver and
assess solver convergence rates

Explore alternative formulations of the Jacobian-vector product
and limiters

Investigate W-cycle vs V-cycle and explicit multigrid
preconditioning of the GMRES linear solve

Assess convergence criteria and efficiency of implicit RK methods
on more complex unsteady cases
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Implicit Preconditioning for Explicit Multigrid Solvers
on Cut-Cell Cartesian Meshes
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Backup



Implicit preconditioning improves the multigrid
subiteration convergence rate from 0.71 to 0.54

Radau llA, At=0.2 :
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