

#### Sensitivity Analysis for Takeoff and Landing Distance Parameters for Regional Air Mobility (RAM) Aircraft

07/30/2024 Gabino Martinez Rodriguez, Nathaniel J. Blaesser, Nicholas K. Borer NASA Langley Research Center Aeronautics Systems Analysis Branch



7/30/2024

This material is a work of the U.S. Government and is not subject to copyright protection in the United States

## Introduction



- Wing sizing in conceptual design phase
  - Cruise wing sized for energy economy
  - Takeoff and landing (TOL) wing sized to generate enough lift to takeoff and land safely
  - Efficient design balances wing sizes
- High-lift systems
  - Used to alleviate the disparity in wing sizes
  - Traditional high lift devices (flaps, slats, etc.), distributed electric propulsion (DEP) or other technologies
  - Allow wing to be sized primarily for cruise
- Focus of research
  - Sensitivity of TOL distance to parameters of interest
  - TOL performance analysis is typically performed with high level parameters/ratios
  - Inadequate for aircraft designs with novel technologies/configurations
    RAM aircraft



## **Motivation**

- Regional Air Mobility (RAM)
  - Seeks to connect large network of underused public airports
  - Using shorter range aircraft with alternate forms of energy (electric)
- Electric RAM Aircraft
  - Range constrained due to low specific energy of current battery technology
  - Paramount to optimize energy efficiency for battery-powered aircraft
  - DEP allows wing area to be reduced while still being able to TOL





# **TOL Model**

- Flight Optimization System (FLOPS)
  - Legacy aircraft sizing and synthesis tool
  - Six primary analysis modules
  - One of them is for TOL calculations
- Required data for FLOPS TOL module
  - Abundance of options and inputs required
  - $C_L$  at specific angles of attack (lift curve)
  - $C_D$  at specific  $C_L$  (drag polar)
  - Thrust at a range of power codes and forward velocities (engine deck)
- Aircraft model
  - RAM-like vehicle based on the Cessna 402C
  - Fully electric propulsion system



## **TOL Simulation**

- TOL distances
  - Measured from 50 ft obstacle clearance
  - Standard sea level conditions
  - Approach at 130% stall speed
  - Application of brakes occurs four seconds after touchdown



## **Aerodynamic Parameters of Interest**



• Lift curve

- Three aerodynamic parameters are sufficient to build the lift curve
  - Lift-curve slope
  - Maximum angle of attack
  - $_{\odot}$  Lift coefficient at zero degrees angle of attack
- These three parameters can be varied to account for different types of high-lift systems





#### Aerodynamic Parameters of Interest Cont.

- Drag polar
  - Defined as a second-order polynomial,  $C_D = k_2 C_L^2 + k_1 C_L + C_{D_0}$
  - Three more parameters are required to build the drag polar
    - $\circ$   $k_2$  parameter associated with lift induced drag
    - $\circ k_1$  parameter that appears due to asymmetry about the  $C_L = 0$  axis
    - $\circ C_{D_0}$  lift independent drag coefficient



#### **Propulsive Parameters of Interest**



- Engine deck
  - Electric motor with variable pitch propeller
  - Propeller efficiency model is simplified to a linear and constant section
  - Results in additional parameters for the propulsion model
    - Maximum motor power
    - Static thrust coefficient
    - $_{\odot}$  Maximum propeller efficiency



#### **Other Parameters of Interest**



- FLOPS TOL module parameters of interest
  - Wing Incidence
  - Rolling friction coefficient
  - Braking friction coefficient (landing specific)
  - Approach angle (landing specific)
  - Sink rate at touchdown (landing specific)
- Some parameters are indirectly set by the parameters of interest
  - Maximum lift coefficient
  - Minimum drag coefficient

# **Sensitivity Analysis**

- Latin Hypercube design of experiments
- Full quadratic response surface model fit to data
- Normalized with baseline TOL distances
- Sensitivity value is the percent change in TOL distance with a one percent change within the selected bounds of the parameter of interest



| Parameter                            | Lower Bound | Upper Bound |
|--------------------------------------|-------------|-------------|
| Lift Curve Slope (per degree)        | 0.0658      | 0.0987      |
| Maximum Angle of Attack (degree)     | 12          | 16          |
| $C_L$ at Zero Degree Angle of Attack | 0.3         | 1           |
| Quadratic Term in the Drag Polar     | -20%        | +20%        |
| Linear Term in the Drag Polar        | -20%        | +20%        |
| Zero-Lift Drag Coefficient           | -20%        | +20%        |
| Maximum Motor Power (HP)             | 260         | 390         |
| Static Thrust Coefficient            | 0.4         | 0.6         |
| Maximum Propeller Efficiency         | 0.56        | 0.84        |
| Rolling Coefficient of Friction      | 0.016       | 0.024       |
| Braking Coefficient of Friction      | 0.288       | 0.432       |
| Approach Angle (degree)              | 2           | 4           |
| Sink Rate at Touchdown (ft/s)        | 2           | 6           |
| Wing Incidence Angle (degree)        | 0           | 4           |

## **Takeoff Results**

- Baseline model within one percent of takeoff distance compared to Cessna 402C
- Lift coefficient at zero-degree angle of attack
  - Shifts lift curve setting max lift coefficient
  - Other lift curve parameters set max lift coefficient
- Drag polar parameters
  - Moderately impactful due to small drag increments at low  $C_L$
- Propulsion parameters
  - Highly impactful as vehicle must be accelerated to cue speeds





# **Landing Results**

- Baseline model within half a percent of landing distance compared to Cessna 402C
- Propulsion parameters
  - Minimally impactful due to low use of propulsion system during landing
- Lift curve parameters
  - Highly impactful since they set maximum  $C_L$
- Drag polar parameters
  - Moderately impactful due to small drag increments at low  $C_L$
- FLOPS parameters
  - Contains highly and minimally impactful

**ts** within half a percent





## **Concluding Remarks**



- Takeoff key takeaways
  - Most impactful parameters are those relating to propulsion and the lift curve
  - Drag polar parameters are moderately impactful but not near the level of the most impactful parameters
- Landing key takeaways
  - Lift-curve parameters are some of the most impactful
  - Among the most impactful as well were the approach angle, wing incidence, and braking coefficient
    - These parameters are often overlooked by many empirical approaches to estimate TOL performance.
  - The drag polar parameters were amongst the moderate impactful parameters



## Thank You

- Questions?
- Thank you to the NASA Aeronautics Research Mission Directorate (ARMD) for funding this work
  - Transformative Aeronautic Concepts Program (TACP)
  - Convergent Aeronautics Solutions (CAS)
  - Aircraft as Energy Nodes (ÆNodes) Activity