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Abstract

Multi-objective optimization allows satisfying multiple decision criteria concurrently, and generally
yields multiple solutions. It has the potential to be applied to structural damage identification applications
which are oftentimes under-determined. How to achieve high quality solutions in terms of accuracy,
diversity, and completeness is a challenging research subject. The solution techniques and parametric
selections are believed to be problem specific. In this research, we formulate a reinforcement learning
hyper-heuristic scheme to work coherently with the single point search algorithm MOSA/R (Multi-
Objective Simulated Annealing Algorithm based on Re-seed). The four low-level heuristics proposed can
meet various optimization requirements adaptively and autonomously using the domination amount,
crowding distance, and hypervolume calculations. The new approach exhibits improved and more robust
performance than AMOSA, NSGA-II and MOEA/D when applied to benchmark test cases. It is then
applied to an active damage interrogation scheme for structural damage identification where solution
diversity/completeness and accuracy are critically important. Results show that this approach can
successfully include the true damage scenario in the solution set identified. The outcome of this research

can potentially be extended to a variety of applications.

Keywords: multi-objective optimization; hyper-heuristic; reinforcement learning; simulated annealing;

structural damage identification.

1. Introduction

Many engineering optimization problems involve multiple types of goals, thus naturally present
themselves as multi-objective problems. For example, the rapid advancement of sensing and measurement
technologies has made it possible to realize structural damage identification in near real-time. Fault
parameters in a structure are identified through matching measurements with model predictions in the

parametric space. A well-known issue in direct inversion-based techniques in structural damage
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identification is that the problems formulated are oftentimes under-determined, as the number of
measurements is generally smaller than the number of fault parameters (i.e., location and severity of
damage) to be identified. Since multiple criteria may be involved in matching measurements with
predictions, the identification can be cast into a multi-objective optimization problem. A multi-objective
optimization formulation has the potential of overcoming the computational issue in direct inversion.

From a methodology standpoint, multi-objective optimization algorithms have been applied to a
variety of applications, ranging from production scheduling (Wang et al, 2014; Lu et al, 2016), structural
optimization (Kaveh and Laknejadi 2013; Ye et al, 2017 and 2019; Zavala et al, 2014 and 2016; Zarchi
and Attaran 2019), performance improvement (Sz6ll0s et al, 2009), to structural damage identification
(Cha and Buyukozturk, 2015; Cao et al. 2018a and 2018b; Tiachacht et al, 2018; Gomes et al, 2018;
Dinh-Cong and Nguyen-Thoi 2021). However, the solution techniques are often devised and evaluated
for specific problem domains, requiring an in-depth understanding of the problem domain involved and
challenging to be exercised in different instances. Even for the same type of problems, the formulation
may need to be adjusted as more knowledge and insights are gained. One possible approach to tackle this
difficulty is the hyper-heuristic concept (Cowling et al, 2000). The terminology implies that a high-level
scheme to select heuristic operators is incorporated as the detailed algorithms are executed (Burke et al,
2009), given a particular problem and several low-level heuristics. Instead of finding reasonable solutions,
hyper-heuristic is more interested in adaptively finding proper solution methods. Many hyper-heuristic
studies have been conducted for multi-objective problems, including problems on benchmarks (Maashi et
al, 2015; Zhang et al, 2020) and real-world applications (Guizzo et al, 2015; Hitomi and Selva, 2015 and
2016; Qin et al, 2021). For more discussions about hyper-heuristic techniques, one can refer to literature
(Burke et al, 2013).

A hyper-heuristic framework typically involves: (1) a high-level strategy to iteratively select among
low-level heuristics based on the performance; (2) a predefined repository of low-level heuristics; and (3)
applying the heuristics selected into optimization and evaluating their performance. The selection
mechanism in hyper-heuristics, which ensures objectivity, specifies the heuristic to apply to a given
optimization point without using any domain information. Online learning hyper-heuristics usually take
advantage of the concept of reinforcement learning for selection (Ozcan et al, 2012), as they aim to
iteratively solve the heuristics selection task by weight adaptation through interactions with the search
domain. The low-level heuristics correspond to a set of exploration rules, and each carries a utility value.
The values are updated at each step based on the success of the chosen heuristic. An improving move is
rewarded, while a worsening move is punished. The low-level heuristics can be embedded in single-point
search techniques suited for these tasks because only one neighbor is analyzed for a choice decision

(Nareyek 2003). In a single point search-based hyper-heuristic framework, e.g., simulated annealing
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(Kirkpatrick et al, 1983) based hyper-heuristic, an initial candidate solution goes through a set of
successive stages repeatedly until termination.

A multi-objective optimization problem inherently features multiple solutions. A major challenge in
solving such a problem is finding these multiple solutions in a diverse and complete sense. Incomplete
solutions congregated together cannot fully reflect the advantage of multi-objective optimization
formulation and may not even satisfy the requirement of the specific engineering problem. To tackle this
issue, in this research, we establish a general-purpose framework that incorporates hyper-heuristic
systematically into the state-of-the-art Multi-Objective Simulated Annealing (MOSA) approach to
improve both the generality and solution performance. We develop a reinforcement learning hyper-
heuristic inspired by probability matching (Goldberg, 1990), consisting of selection and credit assignment
strategies. Recent investigations have shown that the solution quality/diversity and the robustness of
MOSA may be enhanced with re-seed schemes (Cao et al, 2019). The re-seed schemes, on the other hand,
need to be tailored to fit specific problem formulations. Here in this research, the re-seed schemes are
treated as low-level heuristics, empowering the algorithm to cover various scenarios. The performance
and generality of the proposed approach are first demonstrated over commonly recognized benchmark
testing cases DTLZ (Deb et al, 2002) and UF (Zhang et al, 2008) in comparison with the popular multi-
objective algorithms, NSGA-II (Deb et al. 2002), AMOSA (Bandyopadhyay et al, 2008) and MOEA/D
(Zhang and Li, 2007).

This new framework is then applied to the inverse analysis of structural damage identification
utilizing piezoelectric-based active interrogation. In such an approach, frequency-sweeping voltage
excitation is supplied to a piezoelectric transducer attached to the host structure. Owing to the two-way
electro-mechanical coupling, the structural impedance is coupled with the piezoelectric impedance that
can be measured based on frequency-sweeping excitation. The measured changes of piezoelectric
impedance, in conjunction with the finite element model of the baseline healthy structure, can then be
used as damage signatures to facilitate the identification of damage location and severity. In structural
health monitoring, one main challenge is to detect/identify small-size damage at the early stage of damage
progression. Because of the high-bandwidth characteristic of piezoelectric transducers, the piezoelectric
impedance can be measured in high frequency range with small wavelengths, which is very promising for
detecting and identifying small-size damage. Modeling piezoelectric impedance in high frequency range,
meanwhile, naturally leads to high mesh density as well as large number of unknown parameters to be
identified as damage may occur in any elements/segments in the structure. As such, the inverse problem
may be under-determined since the number of high-quality measurements is generally limited. One
possible strategy is to incorporate additional constraints/criteria in problem formulation. That is, we can

generally assume that damage occurs within a limited number of element/segments, so the damage index



vector, the dimension of which is the number of segments to be identified, is sparse. In general, damage
occurrence in engineering structures is a small probability event. The occurrence of damages at multiple
locations simultaneously has even smaller probability. This will lead to a multi-objective optimization
problem where one objective is the minimization of the difference between piezoelectric impedance
measurements and the model prediction in the parametric space, and another objective is the sparsity of
the damage index vector. Solving this multi-objective optimization problem can lead to a set of solutions
which can help pinpointing actual damage using engineering judgment or additional sensing devices.
Obviously, the diversity and completeness of the solution set become critically important so the true
damage scenario can be included. Here in this research we examine systematically how the proposed
reinforcement learning hyper-heuristic in multi-objective simulated annealing can effectively tackle the
challenges.

The rest of the paper is organized as follows. Section 2 outlines the algorithmic foundation, including
the multi-objective simulated annealing algorithm (MOSA) and the reinforcement hyper-heuristic
strategy. Section 3 proposes four low-level heuristics embedded in the hyper-heuristic MOSA that
combines reinforcement hyper-heuristics with the MOSA algorithm. In Section 4, benchmark case studies
involving 14 test functions are conducted and analyzed with performance metrics, the inverted
generational distance (IGD) and hypervolume (HV), which showcases the performance improvement.
Section 5 presents the application of the proposed algorithm on structural damage identification where

solution diversity and completeness are essential. Finally, concluding remarks are given in Section 6.

2. Algorithm foundation
2.1 Multi-objective optimization and simulated annealing

A multi-objective minimization problem can be expressed as
min y = f(x) = (f(x),.-.. £, (%)) (1)
where Xx = (xl,...,xm) € Q) is the m-dimensional design variable vector, and y = ( Viseeos yn) € Qy is
the n-dimensional objective vector. € is the feasible domain which is defined by a set of equalities and
inequalities of x, and Qy is the corresponding objective space. Since the objectives of such a problem

may conflict with each other, there may not exist a single solution simultaneously optimizing all
objectives. Instead, a number of solutions can be obtained with trade-offs between different objectives,
known as the Pareto optimal solutions. To evaluate the solutions, the concept of Pareto dominance can be

applied. Mathematically, x, is said to dominate another solution x, (defined as x, <x, ) if:

f1(x)< fi(x,), Vie{l,2,...n}and f,(x)<f,(x,), Jie{l,2,..,n}. When there does not exist another



solution that dominates x" € Q_, then it becomes a non-dominated solution, i.e., Pareto optimal and is

included into Pareto optimal set.

Several metaheuristics have been developed to solve the multi-objective optimization problem, such
as evolutionary algorithm (Zhou et al, 2011), genetic algorithm (Deb et al, 2000]), particle swarm
algorithm (Mohd et al, 2018), and simulated annealing (Kirpatrick et al, 1983), etc. While these
approaches have been widely applied, simulated annealing has shown interesting versatility and
adaptivity. Simulated annealing mimics the metallurgical process of annealing during which a heated
metal is cooled to the ground state. Multi-objective Simulated Annealing (MOSA) is a class of simulated
annealing extensions to multi-objective optimization, exploiting the idea of constructing an estimated
Pareto front by gathering non-dominated solutions found while exploring the feasible domain. In MOSA,
the acceptance criteria are traditionally derived by adopting the differential between new and current
solutions. However, the comparison between the new solution to the current solution remains to be an
issue. Therefore, several new techniques have been proposed by using Pareto domination-based
acceptance criterion (Smith 2006; Bandyopadhyay et al, 2008; Cao et al, 2019). The domination status of
the point is considered with respect to the current solution together with the archive of non-dominated

solutions. MOSA can find multiple Pareto-optimal solutions in a single run.

2.2 Reinforcement learning hyper heuristics

The reinforcement learning hyper-heuristic strategy proposed in this research consists of two parts,
heuristic selection and credit assignment. Essentially, we want to design online strategies that are capable
of autonomously selecting between different heuristics based on their credits (Burke et al, 2013). The
credit assignment firstly rewards the heuristics online based on the specific criterion, and then the credits
are fed to the heuristic selection strategy. Fundamentally, this is analogous to the reward assignment in
reinforcement learning, where the agent receives a numerical reward based on a successful action. Here in
this research, a new credit assignment strategy is developed based on hypervolume (Zitzler and Thiele,

1999) increments as well as the the number of solutions newly generated to calculate the credit ¢, ,

(HV(PF)~HV(PF,.) |\PE|-|"\(PF,. PF_)
0 HV (PF,,,) |PF| )

c. =eler . true

i(t)—i(t—1)

In the above Equation, iter is the total number of iterations, i(¥) is the number of iterations that has

been performed at epoch 7 (i.e., the #-th time heuristic selection has been conducted), PF; represents the

Pareto front at ¢, and HV(*) approximates the hypervolume of the Pareto front in percentage using Monte



Carlo approach through N uniformly distributed samples within the bounded hyper-cuboid to alleviate the

computational burden. Specifically,

HV (PF,r*) =volume( U v(x,r¥)) 3)

xePF
where 7* is the reference point, which is set to be 1.1 times the upper bound of the Pareto front in the HV

calculation (Ishibuchi et al, 2010; Li et al, 2016). Therefore, in Equation (2), HV(PF)) €[0, 1] is the
hypervolume of the Pareto front at 7, (HV (PF,)— HV (PF,_))) is the hypervolume increment since the last

time the heuristics are selected, and HV(PF, ) is the normalization term. The term

frue

(|PF;|—|ﬂ(PE, PE_1)|) /|PE| €[0, 1] computes the percentage of the newly generated solution in the

current Pareto front. Both terms are dimensionless, and they are summed together first then divided by

(i(t)—i(t—1)) to evaluate the performance of a heuristic as reflected by the evolution of the Pareto front
per iteration. Because it is easier for the optimizer to achieve improvements at early stage of optimization,
we introduce the compensatory factor S o [1, e] to emphasize the credits earned as the optimization

progresses progressively.

Heuristic selection starts from the low-level heuristics at each time epoch. The concept is similar to
agent in reinforcement learning. There is, however, the exploration versus exploitation dilemma (EVE).
That is, while the heuristic with the highest credits should be favored, those with low credits need to be
selected because they may lead to high quality results. Previous strategies include probability matching
(PM), adaptive pursuit (Thierens, 2007), choice function (Cowling et al, 2000; Maashi et al, 2015),
Markov chain models (McClymont and Keedwell, 2011) and multi-armed bandit algorithms (Krempser et
al, 2012). Here we formulate a heuristic selection strategy with a minimal number of parameters inspired
by the idea of probability matching to specifically fit the online learning scheme. Given a finite set of

heuristic O, an heuristic o, € O is selected at time ¢ with probability p, , proportional to the quality of
heuristic ¢, ,, which is mainly determined by the credit ¢, ,. The parameter ¢ is independent of the

algorithm, indicating how many times the heuristic selection has been conducted. The update rule is given
as follows,
qi,tza'qi,z—l+(1_a)'ci,t (4)
9.
Dot = Pain + (1=10] Do) = — ©)

j=t1it
6'] is the minimum selection probability to facilitate exploration and guarantee

p;.. €[0, 1]. It is greater than O so that the heuristics with low credits are also considered. Here in our

where p . €(0,
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research the value of p, . is tuned to a relatively small value of 0.1 for the following considerations: (1)
larger value of p . will negatively affect the selection of heuristics with high credits (i.e., heuristics with

good performance) to which more attention should be still paid; (2) when larger value is given to select
heuristics with low credits, the exploration will take long time, thus resulting in longer computing time
for convergence. Our subsequent case studies demonstrate that this selection leads to good performance in

general. Meanwhile, the forgetting factor « €[0, 1] determines the significance of the credits received

previously because the current solution may be the result of a decision taken in the past. If & >0.5, the
algorithm will focus more on previous credits obtained; and if & <0.5, it will focus more on current
credits, as indicated in Equation (4). Here we take the previous and current credits with equal importance,
so the value of « is set as 0.5. Note that the credit means the algorithm will reward the heuristic due to its
generation of solutions with high quality. It is worth noting here again that # —1 in Equation (4) does not
imply the iteration before ¢ in optimization; it means the last time the hyper-heuristic is updated. And we
only update the values that correspond to the chosen heuristic at #—1. For unselected heuristics we have

4;,=49; ,,- In order to facilitate the algorithm, the value of ¢, is set as 0.1 at the beginning of the
computation and will be updated after iterations. After p, , is determined using Equation (4) and

Equation (5), roulette wheel selection method (Lipowski and Lipowska, 2012) is used to choose the

lower-level heuristic per its probability.

3. Hyper-heuristic MOSA

Based on the hyper-heuristic rules defined, the MOSA algorithm and the joint hyper-heuristic scheme
are presented in this section.
3.1. MOSA/R algorithm

Hereafter the algorithm used in this study is referred to as Multi-Objective Simulated Annealing
based on Re-seed (MOSA/R), which was originally explored for configuration optimization (Cao et al,
2019). MOSA/R computes the acceptance probability of a new solution using the concept of the amount
of domination. The algorithm was designed, aiming at solving multi-modal optimization problems with
strong constraints. It takes care of feasible solutions more efficiently due to the re-seed technique
developed compared to traditional MOSAs. As will be demonstrated in this research, the advancement of
MOSA/R can be generalized with hyper-heuristics by making the re-seed step autonomously to cater to

various design preferences. The pseudo-code of MOSA/R is provided as shown in Algorithms 1-5.



Algorithm 1 MOSA/R

1: Set P'max, T'min, # of iterations per temperature iter, cooling rate o, £ =0
2: Initialize the Archive (Pareto front)

3. current solution = randomly chosen from Archive

4: while T > T'min do

5: for L:iter do

6: Generate a new solution in the neighborhood of current solution

7 if new solution dominates k(k >= 1) solutions in the Archive then
8 Update

9: else if new solufion dominated by k solutions in the Archive then
10: Action

11: else if new solution non-dominant to Archive then

12: Action

13: end if

14: end for

15: end while

Algorithm 2 Update

1: Remove all £ dominated solutions from the Archive
2: Add new solution to the Archive

3: Set new soluiton as current solution

Algorithm 3 Action

1: if new solution and Archive are non-dominant to each other then
2 Set new solution as current solution
else
if new solution dominated by current solution then
Re-seed
else
Simulated Annealing
end if
end if

Algorithm 4 Re-seed

L. new solution dominated by k(k >= 0) solutions in the Archive
2: Select a heuristic from low-level heuristics based on hyper-heuristic strategy

3: Set selected solution following the selected heuristic

g if 1) {14 maEE™) S 0nd 0,1) then
Set selected solution as current solution
else
Simulated Annealing
end if

o omoEm ;




Algorithm 5 Simulated Annealing

%
o Adomy
e Adoma’ug — 2=t ko S

2: if 7——dm > rand (0, 1) then
ELEL)

1+e

3: Set new seolution as current solution

4: end if

Given two solutions a and b, if a<b (i.e., a dominates b) then the amount of domination is defined

as,

M

Adomyy, =TT, .o (@ = D)/ R) (6)

where M is the number of objectives, and R; represents the range of the ith objective (Bandyopadhyay et
al, 2008). The hyper-heuristic scheme comes into effect in Algorithm Re-seed, as indicated in the pseudo-
code Algorithm 4. Whenever re-seed is triggered, a low-level heuristic is firstly selected from the
repository based on the proposed reinforcement learning hyper-heuristic (Section 2.3), and then the
current solution is altered using the selected low-level heuristic. Simulated annealing in most related
hyper-heuristic studies (Antunes et al, 2011; Bai et al, 2012; Burke et al, 2013;) is used as the high-level
heuristic to select lower-level heuristic from the repository to exploit multiple neighborhoods which can
be regarded as variable neighborhood search mechanism. However, the proposed approach in this
research uses probability matching (PM) as the high-level heuristic and part of the MOSA/R as lower-
level heuristics, which can be regarded as an adaptive operator selection (Maturana et al, 2009). In the

next sub-section, we propose four low-level heuristics for the hyper-heuristic MOSA/R.

3.2. Low-level heuristics

Hereafter the MOSA/R with the hyper-heuristic scheme is referred to as MOSA/R-HH. The hyper-
heuristic scheme intervenes in the re-seed scheme (Algorithm Re-seed), which makes itself different from
other MOSA algorithms. In this paper, we propose four re-seed strategies as low-level heuristics.

(1) Minimum amount of domination of solution in the Archive. The first strategy selecting the
solution from Archive calculates the minimum difference of domination amount with respect to the new

solution. For Vx € Archive that dominates the new solution,

. . M
X, =argmin(Adom,, ) =argmin([T" (0= fx,,)]/R)) ()

L . . o 1
Then the selected solution is set as current solution with probability

1+ exp(—Adom /max(T,1))

selected , new

To avoid premature convergence, the solution is chosen with the minimum difference of domination



amount. As shown in Fig. 1(a), the selected solution using this strategy corresponds to the one in the

Archive that dominates the current solution the least.

A 'y A
& = &
3 n® = 3

®
s 3 (TS |
® ®
Archive Archive Archive
) ™ ® & ™ °® .
> >
falx) fafx)
(a) (b) ()
A y 3
= =
2 “3

Min. amount

@ ® of domination

: Largest crowding
distance contribution

L @

Max. amount
® [ ] .uf domination

P> >
filx) filx)

(d) (e)

Fig. 1 Examples of solutions selected by the four low-level heuristics

Archive

(2) Maximum amount of domination of solution in the Archive. The second strategy is defined

similarly to low-level heuristic (1). For Vx € Archive that dominates the new solution,
M
X, = argmax(Adom, ) =argmax (Hz‘:l,ﬁ(x);/i(xm,) (| fi(x)— fl.(xngw)| / R,.)) (8)

The only difference is that this time the solution will be chosen with the maximum domination amount
compared to the new solution. The strategy emphasizes the exploitation of better neighboring solutions
than strategy (1) that aims to maintain a balance between exploration and exploitation. As shown in Fig.
1(b), the selected solution by the second strategy dominates the current solution the most. The first two
strategies are new solution dependent. Next, we will introduce two new solution independent strategies.
(3) Solution with the largest hypervolume (HV) contribution in the Archive. In this heuristic, the

hypervolume contribution of each point in Archive is computed using the method proposed by Emmerich
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et al (2005). Hypervolume contribution quantifies how much each point in the Pareto front contributes to
the HV. As explained in Fig. 1(c), the areas of the colored rectangles indicate the hypervolume
contribution for each solution in the Archive. A large value of HV contribution indicates that the point
stays in a less explored portion of the Pareto front but with good convergent performance.

(4) Solution with the largest crowding distance in the Archive. This strategy utilizes the technique
called crowding distance (Deb et al, 2002), and the point will be selected with the largest crowding
distance. The strategy is inclined to exploration (diversity) in the EVE dilemma. As presented in Fig. 1(d),
in the minimization case, the crowding distance for each solution in the Archive is determined by the area
of the bounding box formed by its adjacent solutions. It is worth noting that, in computing crowding
distance, the edge points (min/max points) are set as infinity after sorting operation based on objective
values. Fig. 1(d) is employed for illustration only, and the infinite edge points are not included.

Fig. 1(e) compares the solutions selected by the proposed four low-level heuristics, each low-level
heuristic design has its own emphasis and intention. The hyper-heuristic scheme is designed to adaptively
switch between different priorities that suit the current search endeavor the best, and therefore could be
applied to tackle different instances without further modification. Fig. 2 depicts the overall mechanism of

MOSA/R and the co-acting hyper-heuristic in a flowchart.

Perturbation

MOSA/R > Archive

!

: ol (=

R " Yes
e-see b
{4}

Hyper-heuristic (Repository)

Noy

New L
Solution [

No

atisfying Stopping
Cretia?

Fig. 2 Flowchart of MOSA/R and the embedded hyper-heuristic

4. Benchmark case studies
4.1 Test cases

The proposed algorithm MOSA/R-HH, AMOSA (Bandyopadhyay et al, 2008), NSGA-II (Deb et al,
2002), and MOEA/D (Zhang and Li, 2007) algorithms are applied here to evaluate the benchmark test

11



problems including DTLZ (Deb et al, 2002) and UF (Zhang et al, 2008) test suites. These three algorithms
are selected here for comparison because they have been applied to a number of multi-objective
optimization problems. As listed in Table 1, the test functions are representative due to their diverse

properties. All algorithms will be executed 5 times independently for each test problem.

Table 1 Main properties of the 14 test functions

Problem No. of Ob;j. No. of Var. Properties
DTLZ1 3 6 Linear Pareto, multimodal
DTLZ2 3 7 Concave Pareto
DTLZ3 3 10 Concave Pareto, multimodal
DTLZ4 3 10 Concave Pareto, biased solutions distribution
DTLZ5 3 10 Concave degenerated Pareto
DTLZ6 3 10 Concave Pareto, biased solutions distribution
DTLZ7 3 10 Discontinuous Pareto
UF1 2 10 Convex Pareto
UF2 2 10 Convex Pareto
UF3 2 10 Convex Pareto
UF4 2 10 Concave Pareto
UF5 2 10 Discrete Pareto
UF6 2 10 Discontinuous Pareto,
UF7 2 10 Linear Pareto

4.2. Parametric setting

The initial temperature and final temperature (stopping criterion) control the acceptance of all
solutions at the beginning of the algorithm (Suman and Kumar, 2006) and error, respectively. The starting
temperature T, and final temperature 7., values for AMOSA and MOSA/R-HH are here set to be 100
and 107, respectively. The total number of iterations, denoted as iter, is chosen to be 20,000 for DTLZ1
and DTLZ2, 30,000 for DTLZ3-7, and 100,000 for UF test problems. For the cooling process in

simulated annealing, the exponential approach is adopted as 7,,, =a'T, with cooling coefficient of 0.8.

1

Note that all parameters in AMOSA are set to be the same as that of MOSA/R-HH. For NSGA-II and
MOEA/D, the total number of function evaluations is set in accordance with AMOSA and MOSA/R-HH.
Other parameters are used following those in literature (Deb et al, 2002; Zhang and Li, 2007). The

population size is set to be 150 and 300 for 2-objective and 3-objective test problems, respectively. The

12



distribution indices of Simulated Crossover (SBX) and polynomial mutation are set to be 20. The
crossover rate is 1.0, and the mutation ration is 1/n, where n is the length of the decision vector. In
MOEA/D, Tchebycheff approach is used, and the size of neighbor population is set to be 20. All initial

solutions are generated randomly from the decision space of the problems.

4.3. Performance metrics

In this study, two popular metrics, inverted generational distance (IGD) (Ishibuchi et al, 2015) and
hypervolume (HV) (Zitzler et al, 2007), are used to quantify the performance of the algorithms. The
performance comparison is based on the Pareto set that it is a set of solutions realizing the optimal trade-
offs between the optimization objectives in multi-objective optimization problems.

Inverted Generational Distance (IGD) The IGD indicator measures the degree of convergence by
computing the average of the minimum distance of points in the true Pareto front (PF*) to points in

Pareto front obtained (PF), as described below,

|PF

> Jpg;g(Zw *—f,,f)

IGD(PF, PF*) =

|PF | ©

where M is the number of objectives, f, is the mth objective value of fePF . In Equation (9),
M .
?111)1;[2( fo*—f )zj calculates the minimum Euclidean distance between the ith point in PF* and points
€ m=1

in PF. A lower value of IGD indicates better convergence and completeness of the PF obtained.
Hypervolume (HV) The HV indicator measures convergence as well as diversity as shown in

Equation (3). The calculation of HV requires normalized objective function values and here HV stands for

the percentage covered by the Pareto front of the cuboid defined by the reference point and the original

point (0, 0, 0). As mentioned before, the reference point is set to be 1.1 times the upper bound of the PF*.

4.4. Test case results and discussions

The four algorithms are applied to the test functions listed in Table 1. The analysis results are based
on 5 independent test runs and meanwhile the mean and standard deviation of IGD and HV are recorded.
All computations are conducted within MATLAB on a desktop computer with Intel(R) Core(TM) i7-
10700F CPU @ 2.90GHz, 16 G RAM.

Tables 2 and 3 show the relative performance of all four algorithms in terms of the two metrics IGD
and HV, where we keep 4 significant digits for mean and standard deviation. The shaded grids indicate
the best result in each test in terms of the mean value. As can be observed from the table, MOSA/R-HH
prevails in DTLZ1, DTLZ2, DTLZ5 and DTLZ7 in both metrics. MOEA/D has an edge over MOSA/R-

13



HH in DTLZ3, while MOSA/R-HH performs significantly better than NSGA-II and AMOSA. DTLZ4 is
a close race for MOSA/R-HH, NSGA-II and MOEA/D. And for DTLZ6, MOSA/R-HH, AMOSA and
MOEA/D all demonstrate similar performance. Fig. 3 depicts the Pareto front obtained by each algorithm
when applied to DTLZ1 test case. It is worth noting that different algorithms may exhibit different
strengths in specific cases. Consider DTLZ3 as an example. DTLZ3 involves the Rastrigin function, a
non-convex, non-linear multimodal function, on top of DTLZ2, which is employed to test the
convergence to the true Pareto front. MOEA/D essentially decomposes multiple objectives into multiple
single objectives. As such, it is possible to avoid certain limitations of the evolutionary algorithms based
on the Pareto dominant relationship, which is similar to the MOSA/R-HH algorithm. Therefore, in certain
cases the convergence of MOEA/D algorithm to the true Pareto front may indeed be on par or even better.

This however doesn’t change the main observation here that MOSA/R-HH mostly outperforms other

algorithms.
Table 2 Numerical test results: IGD mean and standard deviation
Problems MOSA/R-HH AMOSA NSGA-II MOEA/D
DTLZ1 | 0.007191 £ 0.000369 0.02134 £ 0.00506 1.656+ 0.538 0.01315+£0.00195
DTLZ2 0.01403 £ 0.00127 0.01992+ 0.00107 0.03093+ 0.00147 0.02434+ 0.00173
DTLZ3 0.06330+ 0.00380 0.7198+ 0.131 7.419+ 1.87 0.0342+0.0125
DTLZ4 0.02263 £ 0.00222 0.07643 £ 0.00456 0.02176+ 0.000668 0.02334+0.00176
DTLZ5 6.356E-4 + 4.34E-5 0.001956+ 1.49E-4 | 0.001390+ 2.74E-4 0.002541 + 0.0966
DTLZ6 | 3.231 E-4+5.42E-6 | 4.404E-4+ 1.85E-4 0.8738+0.0762 0.001792 + 2.20E-4
DTLZ7 0.01657 £ 9.49E-4 0.01928+ 5.45E-4 0.8235+0.0211 0.06502 £ 0.00152
UF1 0.01252+0.00189 0.03509+ 0.00250 0.01972+ 0.00967 0.01938 £ 0.00567
UF2 0.002974 + 6.25E-4 | 0.005458 + 8.87E-05 | 0.006871+ 0.00365 0.01876+0.00563
UF3 0.2477+0.104 0.3797+0.368 0.1559+0.0131 0.2553+0.0323
UF4 0.01905+ 8.76E-4 0.03124+ 1.99E-4 0.03792+ 0.00397 0.04796 £ 0.00513
UF5 0.1636+ 0.00666 0.1523+ 0.0242 0.6759+0.279 0.6501+0.292
UF6 0.1412+0.0816 0.09371 + 4.34E-06 0.4929+ 0.0963 0.5606+ 0.151
UF7 0.01713+ 1.33 E-4 0.03393+0.00514 0.008407+ 0.00309 | 0.005269+ 5.043E-4
Table 3 Numerical test results: HV mean and standard deviation
Instance MOSA/R-HH AMOSA NSGA-II MOEA/D
DTLZ1 0.8593+0.0204 0.8312+£0.0184 0.04210+£ 0.0941 0.8353+0.0282
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DTLZ2 0.5850+ 0.00130 | 0.5663+0.00832 | 0.5789+ 0.00420

DTLZ3 | 0.5280+0.0380 0.004466 + 0.00470 | 0.001404 + 0.00236

DTLZ4 | 0.5739+ 0.00869 | 0.5535+ 0.00738 | 0.5686+ 0.00765

DTLZ5 0.2096+0.00125 | 0.2097+0.00100 | 0.2038 + 0.00356

DTLZ6 0.2029+0.00166 | 0.001440+0.00211 | 0.2012+ 0.00119

DTLZ7 0.2580+ 0.0122 0.1683+0.00304 | 0.2498+ 0.00557
UF1 0.683+0.00198 0.6958+0.0126 0.6962 + 6.37E-4
UF2 0.71843+4.03E-4 | 0.7165+0.00351 | 0.7036+ 0.00355
UF3 0.4724+0.0993 0.4098 +0.227 _ 0.3787+ 0.0454
UF4 0.4044+0.00659 | 0.3919+0.00760 | 0.3885+0.0131
UF5 0.3613+ 0.0346 0.05647+0.0524 | 0.1128+0.158
UF6 0.3287+0.0428 0.1104+ 0.0413 0.2214+ 0.0643
UF7 0.5677+0.00127 | 0.5454+0.00541

0.5734+ 0.00451 _
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Fig. 3 Pareto front obtained by each algorithm for test instance DTLZ1
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Fig. 4 Pareto front obtained by each algorithm for test instance UF4

For UF test cases, MOSA/R-HH takes the lead in three of them in both IGD and HV, which is the
best among the four algorithms. Fig. 4 shows an example of the Pareto front obtained by each algorithm
for UF4 in comparison with the true Pareto front. It can be noticed that the Pareto front obtained by
MOSA/R-HH stays close to the true Pareto front and maintains good diversity. The performance of
AMOSA, NAGA-II and MOEA/D fluctuate as test function changes due to different problem properties.
On the other hand, MOSA/R-HH is more robust and outperforms other algorithms when tackling most

test instances because of the adaptive hyper-heuristic scheme.

5. Application to structural damage identification
In this section, we apply the proposed approach (MOSA/R-HH) to the identification of damage
parameters in a structure based on piezoelectric impedance/admittance active interrogation, to showcase

the advantage of incorporating the hyper-heuristic technique in engineering implementation.
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5.1 Piezoelectric impedance/admittance for structural damage identification

Structural damage identification, i.e., the process of identifying the location and severity of damage,
is typically realized by inverse analysis through comparison between sensor measurements and model
prediction in the parametric space. Active interrogation through actuation and sensing is widely adopted.
Piezoelectric transducers are compact and can be easily integrated with the host structure. Owing to the
two-way electro-mechanical coupling, they can be used as actuators and/or sensors. They possess high
bandwidth, and thus can be used for high-frequency active interrogation which is promising for detecting
small size damage. The finite element-based equations of motion of a structure integrated with a
piezoelectric transducer can be derived as (Wang and Tang, 2008)

Mx+Cx+Kx+K,,0=0 (10)
KQ+KLx+RQO=V, (11)

where x is the structural displacement vector, M, K and C are mass, stiffness and damping matrices,

respectively, K, is the electro-mechanical coupling vector, K is the reciprocal of capacitance of the

piezoelectric transducer, R is the resistor employed in the measurement circuit, Q is the electrical charge

on the surface of piezoelectric transducer, and V, is the input/excitation voltage. In the context of

structural damage identification, the host structure is divided into # segments. We assume damage occurs
in one or some of the segments as local stiffness reduction. Here without loss of generality, we assume

damage in structure causes stiffness reduction while the mass remains unchanged. The stiffness matrix of

the damaged structure can be written as K, = > K, (l—a j) , where K, is the stiffness matrix of the jth
1

segment of the healthy structure, «;is the damage index indicating damage severity |a/| and location j. In

structural damage identification, we aim at identifying a =[e,, -, ] which is referred to as the damage

index vector.

While a variety of active interrogation approaches have been proposed, in this research we apply the
piezoelectric impedance/admittance approach. In actual practice, we supply frequency-sweeping
excitation voltage to the piezoelectric transducer integrated with the host structure and measure the
resulting current in the circuit. After derivations, we can obtain, for example, the admittance of the
integrated system (Shuai et al, 2017; Cao et al, 2018b),
iw

A(a)): =" T 2 - T
ioR+K, -K},(K, -o’M+iaC) K,

(12)

E§|| ~I

where @ is the excitation frequency, i is the imaginary unit, and / and 7, are, respectively, the

magnitude of the current and that of the voltage input. Although both impedance and admittance which is
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the reciprocal of the impedance have been used in previous investigations, here in this research we focus
on the admittance. In piezoelectric impedance or admittance based active interrogation, the same
piezoelectric transducer is used as actuator and sensor concurrently, which leads to implementation
convenience. Moreover, as impedance and admittance are harmonic responses, the inverse analysis is
more likely to be realized than transient responses. In order to facilitate efficient computational analysis,
we conduct linearization of Equation (12) to develop a sensitivity-based relation between the admittance

change and the damage index vector (Shuai et al, 2017),

n aA
A,(0)~ A(a :0”25'%:0 a, (13)
J= J
where
K,-Mo’ +Cai)”
;TA|a]0=a)i[ia)R+KC -K,(K-Mo® +Cai)'K,,]°K], oK, az Cai) o0 K12 (14)

J J
The admittance changes then can be written as a linear function of the damage index «, .

Ad(w) =4, - A(0.=0)= ) [wi(K, -K},Z"K,,)’K[,Z" (LK, L )Z"K ,] o, (15)
Jj=1

where Z=K—-Ma’ +iwC denotes the dynamic stiffness of the structure and L indicates how the
elemental matrices are assembled into the global stiffness matrix. Equation (15) exhibits the relationship
between the admittance changes and damage index at single excitation frequency point @ . Such
relationship holds at every frequency point of voltage excitation. When admittances are measured at m
frequency points, m equations can be formulated to establish the relation as a matrix form

-1

M) iw((K—a)zMHa)C)_lKIZ)TLTKhL((K—aJZMﬂ'a)C) K,z)

AA = =S« (16)

mxn

: B 2
AM(w,) (K +ioR K, (K - oM +iaC) 'Ku)

In the above equation, Ad(w)=A,(a+0)—A(a=0) represents the vector of the changes of admittance at
a series of excitation frequency points where admittance is measured. For example, we can measure
admittance at m frequency points @,,...,, and then obtain the admittance change vector before and after

damage occurrence. S

mxn

is the sensitivity matrix in terms of the coefficient matrices shown in Equation

(16). An example of admittance response and the change are illustrated in Fig. 5. Our mission is to solve

for a based on the admittance change vector and the sensitivity matrix

mxn *
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Fig. 5 Ilustration of admittance responses and admittance change due to damage.

5.2 Inverse optimization formulation

As can be seen in Fig. 5, admittance changes are more significant around the peaks which correspond
to the structural resonances. The changes are much less significant elsewhere and can be easily
contaminated by measurement noise. One can envision that the effective measurements with noticeable
changes are generally limited. That is, m is small. Meanwhile, to inversely identify small size damage, the
number of finite elements and the number of segments will need to be large such that the analysis can
have high fidelity in high frequency range and the damage can be pinpointed. As such, the number of
segments or the dimension of the damage index vector, #, will need to be large. Moreover, it is important
to point out that the rows of the sensitivity matrix are not necessarily linearly independent, as the selection
of frequency points for admittance measurement is generally arbitrary, e.g., evenly distributed with the
frequency range of interest. Therefore, the inverse problem, Equation (18), is oftentimes under-
determined.

In order to solve the structural damage identification problem, here we cast the inverse analysis into
an optimization framework. One objective is obvious, i.e., to minimize the difference between
measurements and model prediction in the damage parametric space. In this research we impose an
additional objective that fits the nature of damage identification. In engineering practice, structural
damage occurrence is normally a small probability event. The occurrence of damages at multiple
locations has very small probability. That is, we can assume the number of segments with damage is
small or, equivalently speaking, the damage index vector is sparse. This fits the nature of damage

occurrence in practical situations. We then have the following optimization model,
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find aceE”"
min ||AA—AA

. meas || (17)
min e,

st. o =<a;<a,

where ¢, is the lower bound of the damage index with value of 0, indicating healthy state, and «, is

upper bound with value of 1, meaning totally damaged state, and || denotes the /, norm. It is worth

emphasizing that for the multi-objective optimization formulated in Equation (17), we may expect
multiple solutions of damage index vector @, which fits the situation that the inverse problem in
structural damage identification is under-determined. If multiple solutions are indeed found, we may use
engineering judgment or deploy additional sensors for final decision making. In comparison, a single
objective optimization generally yields a single solution, which may not reflect the actual damage

scenario.

5.3 Experimental set up

We conduct finite element formulation and experiment to generate necessary data for case
demonstration. The setup is shown in the Fig. 6. A cantilever plate is used as the host structure with the
length 561 mm, width 19.05 mm, and thickness 4.763 mm. It is made of aluminum with mass density
2700 kg/m® and Young’s modulus 68.9 GPa. A piezoelectric transducer is attached to the top surface at
180 mm from the fixed end. The piezoelectric transducer has length 15 mm, width 19.05 mm, and

thickness 1.4 mm. It has the following material properties: Young’s moduli E,, =86 GPa and
E,, =73 GPa, density p=9500kg/m’, piezoelectric constant —1.0288x10° Vm™ and dielectric constant

B, =1.3832x10°mF'. The plate is discretized with 3D 20-node solid element with 12,500 elements in

total. To facilitate damage identification, it is divided into 25 segments along the length direction, each

with a damage index ¢, . In experiment, a small resistor R (100 ) is connected in serial to the

piezoelectric transducer to measure the voltage drop across it (Fig. 6), and the current in the circuit can be
obtained which then yields the admittance information. A signal analyzer (Agilent 35670A) with a source
channel and the sweep sine capability is employed. The source channel is used to generate the sinusoidal

voltage V, sent to the piezoelectric transducer, and the output voltage V,, across the resistor is recorded.

out
Without loss of generality, piezoelectric admittances and their changes upon damage occurrence are
measured around the 14" (1893.58 Hz) and the 21% (3704.05 Hz) natural frequencies. 100 measurements
are collected in the frequency range from 1891.69 Hz to 1895.47 Hz and from 3700.35 Hz to 3707.75 Hz,
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respectively. Correlated finite element analysis and experimental measurements are conducted so the

model matches with the experimental setup in terms of admittance measurements under the healthy state.

180 mm 15 mmy
E—
] 6.163 mm T4763 mm

. [ 19.05 mm

561 mm

- ::‘:I\é_ Signal analyzer
e (Agilent 35670A)

Vout

PZ
)

Cantilever plate

Small resistor
]

Fig. 6 Experimental setup and geometry of cantilever plate.

It is worth noting that piezoelectric transducer has very high bandwidth. As such, the piezoelectric
admittance can be accurately extracted at much higher frequencies than the usual vibration-based
approaches. For example, in the case studies, we are able to extract admittances at the abovementioned
frequency ranges. The high-frequency responses are capable of reflecting structural property changes with
small characteristic sizes (i.e., small damage). As a tradeoff, a single piezoelectric admittance technique
usually covers smaller structure/component for damage identification. This is generally not a problem for
structures in aerospace, marine, and some infrastructure components such as wind energy components as
multiple transducers can be used. The admittance value versus frequency relation is obtained based on
frequency sweeping. The piezoelectric admittances are essentially harmonic responses. In our experiment,
at each frequency point, 50 repeated cycles of responses are recorded and then averaged. This can
effectively reduce the noise effect. The admittance change before and after damage occurrence is used as
input. The subtraction of the admittances before and after damage occurrence can remove possible DC
shift in experiment.

In order to minimize unwanted uncertainties and variations in the experimental testbed, we use an
added mass (attached to the host structure using small amount of wax) to emulate damage. Using this
method we can easily add/remove damage without altering the testbed boundary condition. The added
mass causes the shift of admittance curves, which is equivalent to stiffness reduction. In our experiment,
after we introduce the added mass, we extract admittance curve in the frequency range of interest. We

then adjust, in the numerical model, the stiffness (i.e., reducing the Young’s modulus of the elements) in
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the specific segment to which the mass is added, such that the admittance curve calculated matches with
the experimental one (with added mass). The percentage of stiffness reduction in the damaged segment

can then be obtained numerically.

5.4 Optimization solutions and discussion

Three cases are studied here using the experimental setup and procedure outline in the preceding
subsection. In the first case, we introduce damage to the 14" segment with local equivalent segment
stiffness reduction 0.28%. To demonstrate and evaluate the reinforcement learning hyper-heuristic and the
resulting MOSA/R-HH, we apply both MOSA/R-HH and MOSA/R (Section 3.1) into the case
investigation.

It is worth noting that the true Pareto front for practical engineering analysis generally cannot be

obtained a priori. To facilitate the computation, the term HV (PF ) in Equation (2) needs to be

true
evaluated. We take the followings steps: a) The two objectives are normalized, so the objective values are
in the range of [0,1]; b) For Obj 1 in the Pareto front, we use ‘linspace’ in MATLAB to generate a
linearly spaced vector in the range of [0,1]. Here in this research the number of solutions in Pareto front is

set as 900, so we use 30 (square root of 900) points in the linearly generated vector; c) For Obj 2 in the

Pareto front, we use pf (2,:)=1—sqrt( pf (1,:)); d) We then calculate the hypervolume using the

estimated Pareto front with reference points. Here the reference points are set as 1.1 times the boundary
points of each objective; and e) The initial hypervolume of the estimated Pareto front for the damage
identification case is 0.76. Note that this value can be different when different strategy is used to generate
the estimated Pareto front.

In both algorithms, the maximum iterations are 100,000, the population is 150, and the number of
Pareto optimal set is 9,000. The computation terminates when the maximum iteration is reached. Within
9,000 results, there are many repeated solutions after optimization convergence. After post-processing by
removing the repeated ones, we obtain three distinct solutions from MOSA/R-HH and two distinct
solutions from MOSA/R, shown in Fig. 7. In Fig. 7, the horizontal axis indicates the damage location, and
the vertical axis indicates the severity of damage at the segment identified. The corresponding objective
function values are listed in Table 4. In the table, the multiple solutions identified are arranged based on
the number of non-zero entries, i.c., the second objective function in optimization. The HV values are
listed in Table 5. An immediate observation from these results indicates 1) the true damage scenario is
essentially included in the solution sets identified by both methods (Fig. 7(a) being the closest); and 2)
MOSA/R-HH yields higher HV values and therefore better diversity. With the higher solution diversity

and the solutions distribution, an operator will have higher confidence in making the decision.
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Fig. 7 Damage identification results for Case 1; 3 distinct solutions from MOSA/R-HH and 2 distinct
solutions from MOSA/R.
Table 4 Objective function values for case studies
) Case 1 Case 2 Case 3
Algorithms - : - - - :
Obj 1 Obj 2 Obj 1 Obj 2 Obj 1 Obj 2

2.460x107 1 8.361x107" 1 3.6361x107° 1
MOSA/R-HH 2.36686x10~° 2 8.197x107" 2 4.2474%x107 2
2.36683x107° 3 8.111x10™" 3 7.1758%107° 3

2.460x107 1 8.498x107" 1 3.6361x107° 1
MOSA/R 2.364x107 2 8212x107" 2 4.3089x1077 2
- - 8.172x107" 3 4.0033%1077 3
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Table 5 Hypervolume index for two case studies

Hypervolume Index

Algorithms
Case 1 Case 2 Case 3
MOSA/R-HH 0.9 0.87 0.89
MOSA/R 0.84 0.81 0.88

We now further analyze the individual solutions identified. Observing Fig 7, we can conclude that the
two algorithms perform similarly in the two solutions that they both identify. In the first solution, both
algorithms correctly identify the damage location (the 14™ segment) and severity (~0.28%). In the second
solution, in addition to the 14" segment identified, both algorithms point to the 10" segment having
~0.07% stiffness reduction. While this represents a solution that is different from the true damage
scenario, it is a valid solution provided by the multi-objective optimization formulation. In this solution,
the damage severity identified in the 10" segment is quite small (0.07%) as compared to the true damage
severity of 0.28 % at the 14" segment. Apparently, both solvers are able to find a second solution which is
similar to the true damage scenario. The MOSA/R-HH further points to a third damage scenario in which
the 14™ segment, the 10™ segment, and the 17" segment all have stiffness reductions. Nevertheless, since
the 17" segment has even smaller damage severity, i.e., ~0.01%, this scenario is quite similar to the
second scenario since the damage effect in the 17" segment is order of magnitude smaller. In general, for
this first case, both MOSA/R and MOSA/R-HH can produce good results to damage identification, and
the multiple solutions generated all point to the true damage scenario. The HV values listed in Table 5
confirms that MOSA/R-HH yields higher HV values and therefore better diversity. This validates the
algorithm improvement.

In the second case, we introduce a smaller damage, 0.16% stiffness reduction, to the 12" segment. In
damage identification, smaller size damage is generally more challenging to identify. Once again we
apply both MOSA/R and MOSA/R-HH. The same set of computational parameters in the first case are
employed. This time, both algorithms produce three distinct solutions as plotted in Fig. 8. These solutions
are arranged in the order of non-zero entries. In the first solution, both algorithms point to the true damage
scenario, i.e., ~0.16% damage in the 12" segment. It is worth noting that MOSA/R and MOSA/R-HH
point to considerably different results afterwards. For the second solution, MOSA/R-HH indicates
damage in the 12" segment (0.14%) and the 13" segment (~0.03%). In this solution, the damage effect in
the 13 segment is quite small compared to true damage severity of 0.16 %, and thus this solution is close
to the true damage scenario. On the other hand, MOSA/R indicates damage in the 10" segment (0.12%)
and the 17" segment (0.12%). This is quite different to the true damage scenario. Similar observations can

be obtained for the third solution results. MOSA/R-HH indicates damage in the 11" segment (~0.14%),
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the 12 segment (0.03%), and the 10™ segment (0.01%). Although this is different from the true damage
scenario (i.e., the 12Msegment having 0.16% damage), this result is quite close from physics standpoint
because the 11" segment is directly net to the 12" segment. When we examine the third solution of
MOSA/R, the result is damage occurring in the 10" segment (0.13%), the 17" segment (0.09%) and the
9t segment (0.02%). This is very different from the true damage scenario. The HV values of Case 2 are
reported in Table 4. As expected, MOSA/R-HH yields higher HV values and therefore better solution
diversity. We can again conclude that MOSA/R-HH produces better damage identification results as all
three solutions are close to the true damage scenarios. MOSA/R on the other hand produces two solutions

that are quite different from the true damage scenario.
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Fig. 8 Damage identification results for Case 2; 3 distinct solutions from MOSA/R-HH and 3 distinct
solutions from MOSA/R.
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In the third case, we introduce damage to two separate locations at the 9" and the 19™ segments with
0.23% and 0.18% stiffness reductions, respectively. For this multi-damage case, three solutions are
produced by both algorithms, as shown in Fig. 9. The three solutions identify one, two and three damage
locations, respectively, since the second optimization objective is to minimize the number of damage
locations. Consequently, both algorithms point to a single damage solution as shown in Fig. 9(a). While
this solution doesn’t match with the true damage scenario, it is not a surprise because both algorithms
attempt to find optimal solutions that minimize the objective functions, and numerically they identify the
single damage as an optimal solution. Meanwhile, in this solution, both algorithms are able to find one
damage location correctly with close to actual severity. For solution 2 shown in Fig. 9(b), both
algorithms identify the true damage locations, and the severities are fairly close to the actual values. For
the third solution, both algorithms correctly identify the main damage locations and the severities
obtained are close, while they both additionally point to a third damage location. MOSA/R-HH identifies
a third damage at segment 7 with severity of 0.005%, and MOSA/R identifies is located at segment 17
with severity of 0.016%. These two severity values are very small as compared to those of the main
damage locations. Thus, the third solution identified by both algorithms is similar to the second solution,
and both solutions point to the true damage scenario with good accuracy. The results obtained in this case
demonstrate the ability of the proposed algorithm to handle the multiple damage case. It is worth noting
that the damage identification cases are all conducted using experimental data which inevitably is subject
to noise and various uncertainties. The results obtained by MOSA/R-HH demonstrate its capability of

producing damage identification results in an accurate and robust manner.
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Fig. 9 Damage identification results for Case 3; 3 distinct solutions from MOSA/R-HH and 3 distinct
solutions from MOSA/R.

6. Conclusions

In this research, we formulate an autonomous hyper-heuristic scheme that works coherently with
multi-objective simulated annealing, featuring domination amount, crowding distance and hypervolume
calculations. The hyper-heuristic scheme can be adjusted at a high-level by changing heuristic selection
and credit assignment strategies or at a low-level by customizing the heuristic repository to meet different
optimization requirements. It can also be used to investigate the relation between heuristics and problem
instances. The proposed MOSA/R-HH is shown to yield better results than other MOSA algorithms like
AMOSA and representative evolutionary algorithms like NSGA-II and MOEA/D in benchmark test
cases. The proposed hyper-heuristic approach is then applied to piezoelectric admittance based active
interrogation for structural health monitoring. By comparing with MOSA/R without hyper-heuristic, we
successfully demonstrate that the new algorithm can identify damage scenario with enhanced accuracy

and robustness.
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