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A NUMERICAL METHOD FOR COMPUTING THE STATE
TRANSITION MATRIX USING POINCARÉ INTEGRAL INVARIANTS

Michael A. Shoemaker* and Kyle M. Hughes†

The Poincaré integral invariants describe the volumes of sets in Hamiltonian phase
space. We use these invariants to derive a new numerical procedure for obtaining
the state transition matrix (STM), which can be applied to both conservative and
nonconservative systems. The method is analogous to a finite difference approxi-
mation of the STM, where perturbed states are numerically propagated along with
the reference trajectory. We discuss the mathematical similarities between this
new STM and existing methods, show numerical results for orbital motion and
uncertainty propagation, and discuss new insights afforded by the Hamiltonian
properties of phase flow.

INTRODUCTION

Many problems in dynamical systems theory, trajectory optimization, estimation and uncertainty
propagation require a state transition matrix (STM), Φ. This paper introduces a new method for
computing Φ which proceeds geometrically from Liouville’s theorem and the Poincaré integral
invariants. The method is analogous to a forward finite difference approximation of the STM, in
that test particle trajectories are numerically propagated along with the reference trajectory in order
to form Φ at a given time.

Pellegrini1 is a handy paper that discusses many different ways to compute STMs and their com-
parisons. Probably the most standard way of solving for the STM is to integrate the variational
equations along with the reference trajectory. This method is accurate if one has written the partial
derivatives of the accelerations. Numerical approaches, such as a finite difference approximation,
are attractive in that they don’t require analytical expressions for the partial derivatives, but they can
suffer from accuracy issues. One benefit of a numerical approach such as a finite difference is the
force model in the orbit propagator can be treated as a black box. The desire to improve on such
black-box approaches was one motivation for pursuing this research.

Within the astrodynamics community there has been recent interest in studying the Poincaré
integral invariants. Scheeres et al.2, 3 and Boodram and Scheeres4 used the invariants to study fun-
damental limits on spacecraft uncertainty distributions. Other research has looked into constraining
the evolution of uncertainty using control laws that leverage the integral invariants.5 To our knowl-
edge this work represents the first application of the Poincaré integral invariants to deriving an STM.
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BACKGROUND

Let the Hamiltonian system in question have n degrees of freedom (DOF), with generalized
coordinates q = (qi; i = 1, n) and conjugate momenta p = (pi; i = 1, n). The state of the system
is x = [ q p ]T , where x ∈ R2n. Given some initial conditions, the motion of the system is
uniquely described by Hamilton’s equations:

ẋ = J
∂H

∂x
(1)

J ≡
[

On In
−In On

]
(2)

where H(q,p, t) is the Hamiltonian, and On and In are the n × n zero and identity matrices,
respectively. The resulting motion x(t) is represented geometrically by trajectories in phase space
of dimension R2n.

For the n = 3 DOF problems of interest in astrodynamics, we are concerned with the 6-dimensional
state x having position and velocity. A spacecraft under conservative gravitational forces has La-
grangian L(q, q̇) written using the kinetic (T ) and potential (V ) energies:

L(q, q̇) = T (q, q̇)− V (q) (3)

where (q1, q2, q3) = (x, y, z), T = mq̇T q̇/2, and V = −µ/‖q‖. The conjugate momenta are
defined by pi = ∂L/∂q̇i, and thus

p1 = ∂L/∂ẋ = mẋ (4)

p2 = ∂L/∂ẏ = mẏ (5)

p3 = ∂L/∂ż = mż (6)

Poincaré Integral Invariants

This paper does not attempt to re-derive the Poincaré integral invariants*; instead the reader is
directed to the excellent discussions in Arnold,7 Scheeres,2 and Boodram,4 among others.

Let Bn be an n-dimensional distribution or set of points in phase space:

Bn = {x|x ∈Mn ⊂ R2n} (7)

where the set Mn is a closed and connected manifold having dimension n. The well-known Li-
ouville’s theorem, which is covered in most undergraduate-level textbooks on classical mechanics,
states that a conservative Hamiltonian system will preserve phase space volume, although the shape
of the volume may deform with time (see Fig. 1). Therefore, if we were to compute the volume
of the set Bn at two different times, that volume would be constant. Conversely, a nonconservative
system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are
explained in words as: for the setBn, the sum of the oriented areas of the set’s orthogonal projections

*These integral invariants are often attributed to either Poincaré or Poincaré-Cartan in the literature. We follow the
convention described in Jordan6 and Arnold,7 where a Poincaré-Cartan integral invariant refers to

∮
pdq − Hdt, and a

Poincaré integral invariant refers to the same quantity when the term Hdt is absent. As will become clear below, we
consider phase-space states at a constant time t, and thus dt = 0.
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Figure 1. A cartoon reproduced from Arnold7 with an exceptionally cute represen-
tation of Liouville’s theorem. The cat on the left is a set of points in phase space at
an initial time; the cat on the right shows the deformed state (with equal volume) at a
later time.

onto all non-intersecting canonical conjugate planes is invariant for Hamiltonian phase flow. To use
the description in Scheeres:2 a quantity is an integral invariant if the integration of an arbitrary
set B2k is conserved when summed over all possible symplectic combinations of degree 2k. The
term “symplectic combination” or “symplectic pair” means the pair of generalized coordinates and
conjugate momenta (qi, pi) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is
for 2-dimensional sets B2. This invariant is written as

I2(t) =
n∑
i=1

∫
B2(t)

dqi ∧ dpi (8)

= I2(τ) ∀ τ ∈ R (9)

Given the current n = 3 DOF problem, Eq. 8 becomes

I2(t) =

∫
B2(t)

dq1 ∧ dp1 +

∫
B2(t)

dq2 ∧ dp2 +

∫
B2(t)

dq3 ∧ dp3 (10)

Figure 2 shows an illustration of an arbitrary 6-dimensional hypervolume of the set B6, which has
been projected into the three orthogonal subspaces in B2. Later we will be comparing the integral
invariants at two different points in time; if we assume constant spacecraft mass, from Eqs. 4 to
6, then we can drop m and replace the notation of (qi, pi) with the cartesian position and velocity
components for convenience.

The integrand in Eq. 8 is the exterior product of the differential elements over the surface. The
exterior product preserves the sign of the area (i.e. the oriented area), and is analogous to the cross
product in computing the area of a parallelogram with sides dpi and dqi. This is important, because
the oriented area from each subspace projection in Eq. 8 may be positive or negative, but the final
sum in I2 will be invariant.

For n = 3, there are two other Poincaré integral invariants, I4 and I6. The invariant I4 has similar
form as Eq. 8, but the integral is over the B4 subspace projections:

I4(t) =

∫
B4(t)

dq1∧dp1∧dq2∧dp2+

∫
B4(t)

dq2∧dp2∧dq3∧dp3+

∫
B4(t)

dq3∧dp3∧dq1∧dp1 (11)
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� ⌘
26666664
$= �=

��= $=

37777775
(2)

where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants
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Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.
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�2 (C) =
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π
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Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),

∫
dp ^ dq =

∫
dp ^ dq (12)
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Figure 2. Illustration of a 6-dimensional hypervolume being projected in the 2-
dimensional subspaces of symplectic pairs, for the case of n = 3 cartesian position
and velocity.

I6 is equivalent to the standard Liouville’s theorem concerning the volume over the set B6:

I2n(t) =

∫
B2n(t)

dq1 ∧ dp1 ∧ . . . ∧ dqn ∧ dpn (12)

which for n = 3 becomes

I6(t) =

∫
B6(t)

dq1 ∧ dp1 ∧ dq2 ∧ dp2 ∧ dq3 ∧ dp3 (13)

We will mostly ignore I4 and I6 for the remainder of this memo, for reasons that will become
apparent shortly. Before moving on, let’s introduce the following notation for Eq. 8 that will come
in handy:

I2 = Axẋ +Ayẏ +Azż (14)

showing clearly that we are summing the areas of the subspace projections for each of the symplectic
pairs.

Computing Volume

It is now necessary to discuss the computation of volume in Euclidian geometry of various di-
mensions. Although Fig. 2 shows our sets Bn as amorphous blobs, the STM derivation to follow
will use sets of k-simplexes. A k-simplex is a k-dimensional polytope, which is a convex hull of its
k + 1 vertices. For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is
a triangle, a 3-simplex is a tetrahedron, etc. In other words, a k-simplex is the smallest convex set
containing the vertices.

It turns out that a k-simplex has an easy formula for its oriented volume*:

volume =
1

k!
det

[
v1 · · · vk+1

1 · · · 1

]
(15)

where vi is the i-th k-dimensional vertex of the k-simplex. The determinant in Eqn. 15 is a multi-
linear function, meaning that for a given vertex vi, the equation is linear in vi.

*Meaning we drop the absolute value that normally appears here, and accept the fact that the volume could be positive
or negative depending on the ordering of the vertices in Eq. 15
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NEW STM DERIVATION USING I2

The new STM is derived using the I2 Poincaré integral invariant and the multilinear property of
the determinant. The derivation is similar to a forward finite difference method, in that several test
particles are propagated in additional to the reference trajectory. Consider at an initial time t0 the
true state x(t0), the reference state x∗(t0) about which the linearization is performed, and some test
particle xi(t0). As Fig. 3 illustrates, these three states will enclose a triangle (denoted in green) in
each of the three symplectic pair subspaces in B2.

IV. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory. Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the

linearization is performed, and some test particle x8 (C0). As Fig. 4 illustrates, these three states will enclose a triangle

(denoted in blue) in each of the three symplectic pair subspaces in B2.

x(C) (11)

x⇤(C) (12)

x8 (C) (13)

III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Figure illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B.

x(C � ) (11)

x⇤(C � ) (12)

x8 (C � ) (13)

At an initial time C0, let the vertices of a 2-simplex be represented by a mean reference trajectory � = [ �G � §G ]) ,

an 8-th reference trajectory x8 = [ G8 §G8 ]) , and a state of interest x = [ G §G ]) . Replace the absolute vertices in

Eqn. ?? with vertices measured relative to the mean reference trajectory:

v1 =

26666664
�G � �G

� §G � � §G

37777775
=

26666664
0

0

37777775
(14)

v2 =

26666664
G8 � �G

§G8 � � §G

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � �G

§G � � §G

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. ?? for the
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III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,
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Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.
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Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.

For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair G and §G. Let’s also drop

the time dependence since that will be made clear later. Let the vertices of the 2-simplex (i.e. triangle) in Eqn. 10 be
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where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.
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The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and

Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.
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where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which
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will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if
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Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words
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Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.
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Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),
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In other words, the 2-form
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is an absolute integral invariant of the phase flow. The integral invariants represent di�erent things when projected into

di�erent dimensional subspaces of the R2= phase flow. The �2 integral invariant represents the 6D hypervolume, where
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where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants

The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and

Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.

Let B= be an =-dimensional distribution or set of points in phase space:

B= = {x|x 2 "= ⇢ R2=} (3)

where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a

nonconservative system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words

as: for the set B=, the sum of the oriented areas of the set’s orthogonal projections onto all non-intersecting canonical

conjugate planes is invariant for Hamiltonian phase flow. To use the description in Scheeres[1]: a quantity is an integral

invariant if the integration of an arbitrary set B2: is conserved when summed over all possible symplectic combinations

of degree 2: . The term “symplectic combination” or “symplectic pair” means the pair of generalized coordinates and

conjugate momenta (@8 , ?8) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is for 2-dimensional

sets B2. This invariant is written as
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Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
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For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair G and §G. Let’s also drop

the time dependence since that will be made clear later. Let the vertices of the 2-simplex (i.e. triangle) in Eqn. 10 be
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where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants

The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and

Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.

Let B= be an =-dimensional distribution or set of points in phase space:

B= = {x|x 2 "= ⇢ R2=} (3)

where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a
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Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.

For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair G and §G. Let’s also drop

the time dependence since that will be made clear later. Let the vertices of the 2-simplex (i.e. triangle) in Eqn. 10 be
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Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),

�
dp ^ dq =

�
dp ^ dq (12)

In other words, the 2-form

�2 =
’

d?8 ^ d@8 (13)

is an absolute integral invariant of the phase flow. The integral invariants represent di�erent things when projected into

di�erent dimensional subspaces of the R2= phase flow. The �2 integral invariant represents the 6D hypervolume, where

its 2D subspace projections have been summed:

� (2) = �G + �H + �I (14)
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where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants

The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and

Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.

Let B= be an =-dimensional distribution or set of points in phase space:

B= = {x|x 2 "= ⇢ R2=} (3)

where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a

nonconservative system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words

as: for the set B=, the sum of the oriented areas of the set’s orthogonal projections onto all non-intersecting canonical

conjugate planes is invariant for Hamiltonian phase flow. To use the description in Scheeres[1]: a quantity is an integral

invariant if the integration of an arbitrary set B2: is conserved when summed over all possible symplectic combinations

of degree 2: . The term “symplectic combination” or “symplectic pair” means the pair of generalized coordinates and

conjugate momenta (@8 , ?8) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is for 2-dimensional

sets B2. This invariant is written as

�2 (C) =
=’
8=1

π
B2 (C)

3@8 ^ 3?8 (4)

�2 (C) = �2 (g) 8 g 2 R (5)

?1 = §G (6)

2
Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.

For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair G and §G. Let’s also drop

the time dependence since that will be made clear later. Let the vertices of the 2-simplex (i.e. triangle) in Eqn. 10 be
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Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.

For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair G and §G. Let’s also drop

the time dependence since that will be made clear later. Let the vertices of the 2-simplex (i.e. triangle) in Eqn. 10 be
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Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),

�
dp ^ dq =

�
dp ^ dq (12)

In other words, the 2-form
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is an absolute integral invariant of the phase flow. The integral invariants represent di�erent things when projected into

di�erent dimensional subspaces of the R2= phase flow. The �2 integral invariant represents the 6D hypervolume, where

its 2D subspace projections have been summed:
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where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants

The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and

Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.

Let B= be an =-dimensional distribution or set of points in phase space:

B= = {x|x 2 "= ⇢ R2=} (3)

where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a

nonconservative system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words
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conjugate planes is invariant for Hamiltonian phase flow. To use the description in Scheeres[1]: a quantity is an integral

invariant if the integration of an arbitrary set B2: is conserved when summed over all possible symplectic combinations

of degree 2: . The term “symplectic combination” or “symplectic pair” means the pair of generalized coordinates and

conjugate momenta (@8 , ?8) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is for 2-dimensional

sets B2. This invariant is written as
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Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.
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@1 = G (7)

?2 = §H (8)

@2 = H (9)

?3 = §I (10)

@3 = I (11)

Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),

�
dp ^ dq =

�
dp ^ dq (12)

In other words, the 2-form

�2 =
’

d?8 ^ d@8 (13)

is an absolute integral invariant of the phase flow. The integral invariants represent di�erent things when projected into

di�erent dimensional subspaces of the R2= phase flow. The �2 integral invariant represents the 6D hypervolume, where

its 2D subspace projections have been summed:

� (2) = �G + �H + �I (14)

3

� ⌘
26666664
$= �=

��= $=

37777775
(2)

where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants

The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and

Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.

Let B= be an =-dimensional distribution or set of points in phase space:

B= = {x|x 2 "= ⇢ R2=} (3)

where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a

nonconservative system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words

as: for the set B=, the sum of the oriented areas of the set’s orthogonal projections onto all non-intersecting canonical

conjugate planes is invariant for Hamiltonian phase flow. To use the description in Scheeres[1]: a quantity is an integral

invariant if the integration of an arbitrary set B2: is conserved when summed over all possible symplectic combinations

of degree 2: . The term “symplectic combination” or “symplectic pair” means the pair of generalized coordinates and

conjugate momenta (@8 , ?8) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is for 2-dimensional

sets B2. This invariant is written as

�2 (C) =
=’
8=1

π
B2 (C)

3@8 ^ 3?8 (4)

�2 (C) = �2 (g) 8 g 2 R (5)

?1 = §G (6)

2
Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.

For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair G and §G. Let’s also drop

the time dependence since that will be made clear later. Let the vertices of the 2-simplex (i.e. triangle) in Eqn. 10 be
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motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants
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some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.
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where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a

nonconservative system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words
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conjugate momenta (@8 , ?8) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is for 2-dimensional

sets B2. This invariant is written as
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to the reference trajectory.
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TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?
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?2 = §H (8)

@2 = H (9)

?3 = §I (10)

@3 = I (11)

Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),

�
dp ^ dq =

�
dp ^ dq (12)

In other words, the 2-form

�2 =
’

d?8 ^ d@8 (13)

is an absolute integral invariant of the phase flow. The integral invariants represent di�erent things when projected into

di�erent dimensional subspaces of the R2= phase flow. The �2 integral invariant represents the 6D hypervolume, where

its 2D subspace projections have been summed:

� (2) = �G + �H + �I (14)

3

� ⌘
26666664
$= �=

��= $=

37777775
(2)

where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants

The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and
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TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Fig. 4 illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B2.

x(C) (11)

x⇤(C) (12)

x8 (C) (13)

III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Figure illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B.

x(C � ) (11)

x⇤(C � ) (12)

x8 (C � ) (13)

At an initial time C0, let the vertices of a 2-simplex be represented by a mean reference trajectory � = [ �G � §G ]) ,

an 8-th reference trajectory x8 = [ G8 §G8 ]) , and a state of interest x = [ G §G ]) . Replace the absolute vertices in

Eqn. ?? with vertices measured relative to the mean reference trajectory:

v1 =

26666664
�G � �G

� §G � � §G

37777775
=

26666664
0

0

37777775
(14)

v2 =

26666664
G8 � �G

§G8 � � §G

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � �G

§G � � §G

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. ?? for the

5

III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Figure illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B.

x(C � ) (11)

x⇤(C � ) (12)

x8 (C � ) (13)

At an initial time C0, let the vertices of a 2-simplex be represented by a mean reference trajectory � = [ �G � §G ]) ,

an 8-th reference trajectory x8 = [ G8 §G8 ]) , and a state of interest x = [ G §G ]) . Replace the absolute vertices in

Eqn. ?? with vertices measured relative to the mean reference trajectory:

v1 =

26666664
�G � �G

� §G � � §G

37777775
=

26666664
0

0

37777775
(14)

v2 =

26666664
G8 � �G

§G8 � � §G

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � �G

§G � � §G

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. ?? for the

5

III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Figure illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B.

x(C � ) (11)

x⇤(C � ) (12)

x8 (C � ) (13)

At an initial time C0, let the vertices of a 2-simplex be represented by a mean reference trajectory � = [ �G � §G ]) ,

an 8-th reference trajectory x8 = [ G8 §G8 ]) , and a state of interest x = [ G §G ]) . Replace the absolute vertices in

Eqn. ?? with vertices measured relative to the mean reference trajectory:

v1 =

26666664
�G � �G

� §G � � §G

37777775
=

26666664
0

0

37777775
(14)

v2 =

26666664
G8 � �G

§G8 � � §G

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � �G

§G � � §G

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. ?? for the

5

III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Figure illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B.

x(C � ) (11)

x⇤(C � ) (12)

x8 (C � ) (13)

At an initial time C0, let the vertices of a 2-simplex be represented by a mean reference trajectory � = [ �G � §G ]) ,

an 8-th reference trajectory x8 = [ G8 §G8 ]) , and a state of interest x = [ G §G ]) . Replace the absolute vertices in

Eqn. ?? with vertices measured relative to the mean reference trajectory:

v1 =

26666664
�G � �G

� §G � � §G

37777775
=

26666664
0

0

37777775
(14)

v2 =

26666664
G8 � �G

§G8 � � §G

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � �G

§G � � §G

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. ?? for the

5

III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Figure illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B.

x(C � ) (11)

x⇤(C � ) (12)

x8 (C � ) (13)

At an initial time C0, let the vertices of a 2-simplex be represented by a mean reference trajectory � = [ �G � §G ]) ,

an 8-th reference trajectory x8 = [ G8 §G8 ]) , and a state of interest x = [ G §G ]) . Replace the absolute vertices in

Eqn. ?? with vertices measured relative to the mean reference trajectory:

v1 =

26666664
�G � �G

� §G � � §G

37777775
=

26666664
0

0

37777775
(14)

v2 =

26666664
G8 � �G

§G8 � � §G

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � �G

§G � � §G

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. ?? for the

5

III. New STM Derivation using �2

The new STM is derived using the �2 Poincaré integral invariant and the multilinear property of the determinant.

The derivation is similar to a forward finite di�erence method, in that several test particles are propagated in additional

to the reference trajectory.

TODO: can we discuss that we are never actually computing the volume of any of these elements, because the 3rd

vertex in the triangle is the unknown � , which is the beauty of it!

TODO: can I show that the highers degree of curvature of the area is related to higher order STTs?

Consider at an initial time C0 the true state x(C0), the reference state x⇤(C0) about which the linearization is performed,

and some test particle x8 (C0). As Figure illustrates, these three states will enclose a triangle (denotes in blue) in each of

the three symplectic pair subspaces in B.

x(C � ) (11)

x⇤(C � ) (12)

x8 (C � ) (13)

At an initial time C0, let the vertices of a 2-simplex be represented by a mean reference trajectory � = [ �G � §G ]) ,

an 8-th reference trajectory x8 = [ G8 §G8 ]) , and a state of interest x = [ G §G ]) . Replace the absolute vertices in

Eqn. ?? with vertices measured relative to the mean reference trajectory:

v1 =

26666664
�G � �G

� §G � � §G

37777775
=

26666664
0

0

37777775
(14)

v2 =

26666664
G8 � �G

§G8 � � §G

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � �G

§G � � §G

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. ?? for the

5

@1 = G (7)

?2 = §H (8)

@2 = H (9)

?3 = §I (10)

@3 = I (11)

Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),

�
dp ^ dq =

�
dp ^ dq (12)

In other words, the 2-form
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where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.
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Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.
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where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a

nonconservative system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words

as: for the set B=, the sum of the oriented areas of the set’s orthogonal projections onto all non-intersecting canonical

conjugate planes is invariant for Hamiltonian phase flow. To use the description in Scheeres[1]: a quantity is an integral

invariant if the integration of an arbitrary set B2: is conserved when summed over all possible symplectic combinations

of degree 2: . The term “symplectic combination” or “symplectic pair” means the pair of generalized coordinates and

conjugate momenta (@8 , ?8) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is for 2-dimensional

sets B2. This invariant is written as
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§G8 � � §G

37777775
=

26666664
XG8

X §G8
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@1 = G (7)

?2 = §H (8)

@2 = H (9)

?3 = §I (10)

@3 = I (11)

Fig. 1 A cartoon from Arnold[4], illustrating the cutest representation of Liouville’s theorem I’ve even seen.

Liouville’s Theorem states that conservative Hamiltonian systems preserve phase space volume. Liouville’s theorem

is actually a generalization of the Poincaré integral invariants. This states that the phase flow in R2= preserves the sum

of the oriented areas of the projections of a surface onto the = coordinate planes (?8 , @8),

�
dp ^ dq =

�
dp ^ dq (12)

In other words, the 2-form

�2 =
’

d?8 ^ d@8 (13)

is an absolute integral invariant of the phase flow. The integral invariants represent di�erent things when projected into

di�erent dimensional subspaces of the R2= phase flow. The �2 integral invariant represents the 6D hypervolume, where

its 2D subspace projections have been summed:

� (2) = �G + �H + �I (14)

3

� ⌘
26666664
$= �=

��= $=

37777775
(2)

where � (q, p, C) is the Hamiltonian, and $= and �= are the = ⇥ = zero and identity matrices, respectively. The resulting

motion x(C) is represented geometrically by trajectories in phase space of dimension R2=.

A. Poincaré Integral Invariants

The two best references I have found so far that describe the Poincaré integral invariants are Arnold[4] and

Scheeres[1]. The mathematics in Arnold[4] is more rigorous and includes detailed proofs, but this memo will borrow

some of the notation and derivation in Scheeres[1] out of convenience, because it is easier to understand.

Let B= be an =-dimensional distribution or set of points in phase space:

B= = {x|x 2 "= ⇢ R2=} (3)

where the set "= is a closed and connected manifold having dimension =. The well-known Liouville’s theorem, which

is covered in most undergraduate level textbooks on classical mechanics, states that a conservative Hamiltonian system

will preserve phase space volume, although the shape of the volume may deform with time (see Fig. 1). Therefore, if

we were to compute the volume of the set B= at two di�erent times, that volume would be constant. Conversely, a

nonconservative system will not preserve phase space volume.

Liouville’s theorem is actually a generalization of the Poincaré integral invariants, which are explained in words

as: for the set B=, the sum of the oriented areas of the set’s orthogonal projections onto all non-intersecting canonical

conjugate planes is invariant for Hamiltonian phase flow. To use the description in Scheeres[1]: a quantity is an integral

invariant if the integration of an arbitrary set B2: is conserved when summed over all possible symplectic combinations

of degree 2: . The term “symplectic combination” or “symplectic pair” means the pair of generalized coordinates and

conjugate momenta (@8 , ?8) that correspond with each other.

The simplest example of a Poincaré integral invariant, and the one we will focus on the most, is for 2-dimensional

sets B2. This invariant is written as

�2 (C) =
=’
8=1

π
B2 (C)

3@8 ^ 3?8 (4)

�2 (C) = �2 (g) 8 g 2 R (5)

?1 = §G (6)

2
Fig. 4 Illustration of truth, reference, and test particle trajectory solutions in phase space, showing one subspace
projection for the symplectic pair G and §G.

For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair G and §G. Let’s also drop

the time dependence since that will be made clear later. Let the vertices of the 2-simplex (i.e. triangle) in Eqn. 10 be
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26666664
G⇤ � G⇤
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=

26666664
0

0

37777775
(14)
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v2 =

26666664
G8 � G⇤

§G8 � §G⇤

37777775
=

26666664
XG8

X §G8

37777775
(15)

v3 =

26666664
G � G⇤

§G � §G⇤

37777775
=

26666664
XG

X §G

37777775
(16)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in Eqn. 10 for the

:-simplex in each of the three subspaces†.

�G §G =


�X §G8 XG8

� 26666664
XG

X §G8

37777775
(17)

�H §H =


�X §H8 XH8

� 26666664
XH

X §H8

37777775
(18)

�I §I =

�X §I8 XI8

� 26666664
XI

X §I8

37777775
(19)

The Poincaré integral invariant from Eqn 9 for the 8-th test particle trajectory is then found from summing Eqs. 17 to

19:

�28 = �G §G + �H §H + �I §I (20)

=


�X §G8 �X §H8 �X §I8 XG8 XH8 XI8

�

266666666666666666666664

XG

XH

XI

X §G

X §H

X §I

377777777777777777777775

(21)

†The term 1/:! can be dropped, because it will cancel out later anyway.
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Figure 3. Illustration of truth (x), reference (x∗), and i-th test particle (xi) trajec-
tories in phase space, showing one subspace projection for the symplectic pair x and
ẋ.

For now, let’s restrict the discussion to the 2-dimensional subspace for the symplectic pair x and
ẋ. Let’s also drop the time dependence since that will be made clear later. Let the vertices of the
2-simplex (i.e. triangle) in Eqn. 15 be represented relative to the reference trajectory:

v1 =

[
x∗ − x∗
ẋ∗ − ẋ∗

]
=

[
0
0

]
(16)

v2 =

[
xi − x∗
ẋi − ẋ∗

]
=

[
δxi
δẋi

]
(17)

v3 =

[
x− x∗
ẋ− ẋ∗

]
=

[
δx
δẋ

]
(18)

Then the area (or volume) of the subspace projections are found by evaluating the determinant in
Eqn. 15 for the k-simplex in each of the three subspaces*:

Axẋ =
[
−δẋi δxi

] [δx
δẋ

]
(19)

Ayẏ =
[
−δẏi δyi

] [δy
δẏ

]
(20)

*The term 1/k! can be dropped, because it will cancel out later anyway.
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Azż =
[
−δżi δzi

] [δz
δż

]
(21)

where we’ve used the multilinear property of the determinant to write the areas as a linear function
of δx.

The Poincaré integral invariant from Eqn 14 for the i-th test particle trajectory is then found from
summing Eqs. 19 to 21:

I2i = Axẋ +Ayẏ +Azż (22)

=
[
−δẋi −δẏi −δżi δxi δyi δzi

]


δx
δy
δz
δẋ
δẏ
δż

 (23)

Defining the terms δr ≡ [ δx δy δz ]T and δv ≡ [ δẋ δẏ δż ]T , Eq. 23 is written as

I2i =
[
−δvTi δrTi

] [δr
δv

]
(24)

If we then consider N test particles, where N = 2n, we can construct the following from Eq. 24: I2i...
I2N

 =

−δv
T
i δrTi

...
...

−δvTN δrTN

[δr
δv

]
, i = 1, . . . , N (25)

We can rewrite Eq. 25 with the matrix notation

y = Ωδx (26)

where y ≡ [ I2i . . . I2N ]T , δx ≡ [ δrT δvT ]T and

Ω ≡

−δv
T
i δrTi

...
...

−δvTN δrTN

 (27)

The derivation up to this point has considered all quantities at the initial time t0. Let us now in-
troduce a time dependence, and frame the discussion from the standpoint of solving for the state
of interest δx(t). The left hand side of Eq. 26 contains the I2 integral invariants for each of the
i ∈ 1, . . . , N sets of k-simplex points, which by definition is constant in time. Thus,

y = Ω(t0)δx(t0) = Ω(t)δx(t) + ε (28)

where ε represents an error term that can be visualized in Fig. 3. The set B2 is initially a perfect
triangle (green), and therefore its area can be represented by the area of the three nodes in the
triangle, but as the system is propagated forward in time the locus of points in the set turns into
the region (orange) and can no longer be exactly represented by a triangle (blue). If we neglect the
error ε, then we can simply solve for the state deviation δx(t) using our knowledge of the initial
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conditions at t0 and the N + 1 trajectories (i.e. N test particles and one reference trajectory) that
have been propagated to t using

δx(t) = Ω−1(t)Ω(t0)δx(t0) (29)

We assume that Ω(t) is invertible because it is square (i.e. by earlier setting N = 2n) and by
judicious choice of the reference trajectories*. It is now apparent that Eq. 29 is in the form of a
linearized mapping of the state deviation vector from t0 to t, and can thus be written as a STM:

δx(t) = ΦP (t, t0)δx(t0) (30)

where
ΦP (t, t0) ≡ Ω−1(t)Ω(t0) (31)

The subscript P is to denote it as the STM derived using the Poincaré integral invariants, because it
will be compared with other STMs later. It is straightforward to show that this new STM satisfies
the identity, inverse, and commutative properties we come to expect from an STM (see Appendix
A). Note that the times t0 and t are meant to be general; when we apply the method we will replace
these with the integration time steps t and t+ ∆t.

DISCUSSION

Before showing some numerical experiments to test this new method, it is worthwhile to discuss
some options.

Defining Test Particles

We need to define N = 6 test particle initial conditions at t0, and the inverse Ω−1(t) must exist.
We have room to play some games here. In general, any arbitrary test particles can be defined by
randomly perturbing the reference trajectory to yield δxi(t0), and likewise Ω(t0) through Eq. 27.
One just needs to propagate the test particles to time t and hope that the matrix Ω−1(t) is invertible.
We show below that judicious choice of test particles allows us to guarantee that this matrix inverse
exists. Let us consider two options, written below in terms of Ω(t0):

• Case A:

Ω(t0) =



0 0 0 δx1(t) 0 0
0 0 0 0 δy2(t) 0
0 0 0 0 0 δz3(t)

−δẋ4(t) 0 0 0 0 0
0 −δẏ5(t) 0 0 0 0
0 0 −δż6(t) 0 0 0

 (32)

• Case B:

Ω(t0) = diag
([
−δẋ1(t0) −δẏ2(t0) −δż3(t0) δx4(t0) δy5(t0) δz6(t0)

])
(33)

*We will return to this point soon.

7



Case A is a natural starting point, because the first test particle perturbs x, the next perturbs y, and
so on. Case B might not be an obvious choice, but this case is shown in the next section to be
equivalent to the forward finite difference approach.

We now show that both Cases A and B allow the matrix inverse Ω−1(t) to exist and to be eval-
uated without needing to numerically perform the inversion. For Case A, let Eq. 32 be written
as

Ω(t0) =

[
0 R
V 0

]
(34)

where R ≡ diag
([
δr1 δr2 δr3

])
and V ≡ diag

([
−δv4 −δv5 −δv6

])
, and 0 and I are the

3× 3 zero and identity matrices, respectively. Eq. 34 can be rewritten as

Ω(t0) =

[
I 0
0 V

] [
0 I
I 0

] [
I 0
0 R

]
(35)

Noting that the matrix
[
0 I
I 0

]
is orthogonal, the inverse of Eq. 35 reduces to

Ω−1(t0) =

[
I 0
0 R

]−1[
0 I
I 0

]T[
I 0
0 V

]−1
=

[
0 V−1

R−1 0

]
(36)

From Eq. 52 in Appendix A, we show that

Φ−1P (t, t0) = Ω−1(t0)Ω(t) (37)

which, when combined with Eq. 36, results in

Φ−1P (t, t0) = Ω−1(t0)Ω(t) (38)

=

[
0 V−1

R−1 0

] [
Ω11 Ω12

Ω21 Ω22

]
(39)

=

[
V−1Ω21 V−1Ω22

R−1Ω11 R−1Ω12

]
(40)

where we’ve introduced a shorthand notation for the 3× 3 block elements of Ω(t):

Ω(t) =

[
Ω11 Ω12

Ω21 Ω22

]
(41)

Recall that we’ve approximated our system as a conservative Hamiltonian system between times
t0 and t. Because the STM is symplectic for a conservative Hamiltonian system, Φ−1P (t, t0) can be
decomposed into 3× 3 block components8

Φ−1P (t, t0) =

[
ΦT
vv −ΦT

rv

−ΦT
vr ΦT

rr

]
(42)

which can be rearranged to recover the STM without performing a matrix inversion:

ΦP (t, t0) =

[
Φrr Φrv

Φvr Φvv

]
(43)

where Eq. 40 is simple to evaluate, with R−1 = diag
([
δr−11 δr−12 δr−13

])
and

V−1 = diag
([
−δv−14 −δv−15 −δv−16

])
. A similar argument can be made for Case B: recalling

Eq. 33, the inverse Ω−1(t0) is trivial to compute because Ω(t0) is a diagonal matrix, and the rest of
the derivation follows as already shown from Eqs. 37, 42 and 43.
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Comparison with Forward Finite Difference

The new state transition matrix ΦP can be shown to be equivalent to one obtained with the
forward finite difference method (i.e. difference quotient approximation) in Case B defined above.
The STM from a forward finite difference method, denoted by ΦFD is found by perturbing the
reference state at t0 in each of the six components individually, and computing the sensitivity matrix
as follows:

Φ(t, t0) =
∂x(t)

∂x(t0)
≈



δx(t)
δx(t0)

δx(t)
δy(t0)

δx(t)
δz(t0)

δx(t)
δẋ(t0)

δx(t)
δẏ(t0)

δx(t)
δż(t0)

δy(t)
δx(t0)

δy(t)
δy(t0)

δy(t)
δz(t0)

δy(t)
δẋ(t0)

δy(t)
δẏ(t0)

δy(t)
δż(t0)

δz(t)
δx(t0)

δz(t)
δy(t0)

δz(t)
δz(t0)

δz(t)
δẋ(t0)

δz(t)
δẏ(t0)

δz(t)
δż(t0)

δẋ(t)
δx(t0)

δẋ(t)
δy(t0)

δẋ(t)
δz(t0)

δẋ(t)
δẋ(t0)

δẋ(t)
δẏ(t0)

δẋ(t)
δż(t0)

δẏ(t)
δx(t0)

δẏ(t)
δy(t0)

δẏ(t)
δz(t0)

δẏ(t)
δẋ(t0)

δẏ(t)
δẏ(t0)

δẏ(t)
δż(t0)

δż(t)
δx(t0)

δż(t)
δy(t0)

δż(t)
δz(t0)

δż(t)
δẋ(t0)

δż(t)
δẏ(t0)

δż(t)
δż(t0)


≡ ΦFD(t, t0) (44)

Let the N = 6 test particle trajectories in the Poincaré integral invariant approach be equivalent
to the initial state perturbations at t0 used in the above finite difference method, i.e. Eq. 27 at t0
becomes

Ω(t0) = diag
([
−δẋ1(t0) −δẏ2(t0) −δż3(t0) δx4(t0) δy5(t0) δz6(t0)

])
(45)

and therefore

Ω−1(t0) = diag
([
−δẋ−11 (t0) −δẏ−12 (t0) −δż−13 (t0) δx−14 (t0) δy−15 (t0) δz−16 (t0)

])
(46)

Also, now evaluate Eq. 27 at t for our N = 6 perturbed trajectories,

Ω(t) =



−δẋ1(t) −δẏ1(t) −δż1(t) δx1(t) δy1(t) δz1(t)
−δẋ2(t) −δẏ2(t) −δż2(t) δx2(t) δy2(t) δz2(t)
−δẋ3(t) −δẏ3(t) −δż3(t) δx3(t) δy3(t) δz3(t)
−δẋ4(t) −δẏ4(t) −δż4(t) δx4(t) δy4(t) δz4(t)
−δẋ5(t) −δẏ5(t) −δż5(t) δx5(t) δy5(t) δz5(t)
−δẋ6(t) −δẏ6(t) −δż6(t) δx6(t) δy6(t) δz6(t)

 (47)

Given Eq. 37, we premultiply Eq. 47 with Eq. 46 to yield

Φ−1P (t, t0) =



δẋ1(t)
δẋ1(t0)

δẏ1(t)
δẋ1(t0)

δż1(t)
δẋ1(t0)

− δx1(t)
δẋ1(t0)

− δy1(t)
δẋ1(t0)

− δz1(t)
δẋ1(t0)

δẋ2(t)
δẏ2(t0)

δẏ2(t)
δẏ2(t0)

δż2(t)
δẏ2(t0)

− δx2(t)
δẏ2(t0)

− δy2(t)
δẏ2(t0)

− δz2(t)
δẏ2(t0)

δẋ3(t)
δż3(t0)

δẏ3(t)
δż3(t0)

δż3(t)
δż3(t0)

− δx3(t)
δż3(t0)

− δy3(t)
δż3(t0)

− δz3(t)
δż3(t0)

− δẋ4(t)
δx4(t0)

− δẏ4(t)
δx4(t0)

− δż4(t)
δx4(t0)

δx4(t)
δx4(t0)

δy4(t)
δx4(t0)

δz4(t)
δx4(t0)

− δẋ5(t)
δy5(t0)

− δẏ5(t)
δy5(t0)

− δż5(t)
δy5(t0)

δx5(t)
δy5(t0)

δy5(t)
δy5(t0)

δz5(t)
δy5(t0)

− δẋ6(t)
δz6(t0)

− δẏ6(t)
δz6(t0)

− δż6(t)
δz6(t0)

δx6(t)
δz6(t0)

δy6(t)
δz6(t0)

δz6(t)
δz6(t0)


(48)

Eq 48 can be rewritten as

Φ−1P (t, t0) =

[
ΦT
vv −ΦT

rv

−ΦT
vr ΦT

rr

]
(49)
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which brings us to the same result as Eqs. 42 and 43. Thus, the STM in Eq. 48 is rearranged in block
component form to arrive at the same result as Eq. 44, thereby showing the two STM formulations
to be equivalent for this choice of test particles (Case B).

Perturbation Size

We have not yet discussed the size of the perturbations δx and δẋ used to define the test particles,
in both the Poincaré and finite difference approaches. Of course, the approximation of the partial
derivatives in Eq. 44 would require small perturbations (but not so small as to result in numerical
issues). However, as we discussed around Fig. 3, the triangle represents a locus of points and does
not care if it is large or small. There is likely to be some connection between the size of the triangle
and the “amount” that it deviates from a triangle as the locus of points evolves in phase space over
time, but that is not explored in the present paper. We discuss the effect of perturbation size in the
numerical tests to follow.

The Other Integral Invariants

We hinted earlier that there were reasons for mostly ignoring the other Poincaré integral invari-
ants, I4 and I6 in the present paper. One reason is that the evaluation of the determinant in Eq. 15 is
very simple for a 2-simplex, as we have seen for the triangle, but becomes much more complicated
for a 4-simplex or a 6-simplex. Note that because of the multilinear property of the determinant,
the 4-simplex and 6-simplex determinants can still be written as a linear function of the unknown
state δx, but with many more terms. Another reason for ignoring the higher dimensional invariants
is because of the large number of test particles required. Recall that I2 requires N = 2n = 6 test
particles. In the case of I4, we require N = 3(2n) = 18 test particles, because each row making up
y is now a 4-D volume, where one of the vertices is our state of interest δx. Each test particle must
be unique. Particles cannot be reused between rows of y; doing so would make the rows of Ω lin-
early dependent, and therefore Ω−1 would not exist. Likewise, I6 would require N = 5(2n) = 30
test particles. We have used the symbolic library sympy in python to find expressions for these de-
terminants, and they contain a large number of terms. For example, computing a single element in
the matrix Ω for I4 requires 11 additions and 24 multiplications, and for I6 requires 119 additions
and 480 multiplications.

Discussion on Error

Until now, we have not spent much time discussing the error ε appearing in Eq. 28. It should
be noted that we have restricted the discussion to conservative Hamiltonian systems, to ensure that
phase space volume, and the Poincaré integral invariants, are conserved. In fact, we can apply the
new STM to nonconservative systems with ease, because the error term ε will soak up the change in
phase space volume. Note that the integration time steps between t0 and t is usually small enough
that any change in volume due to nonconservative forces will be negligible. In our preliminary
numerical experiments described below, we apply the new STM to nonconservative systems to test
its effectiveness.

NUMERICAL EXPERIMENTS

We can do some simple numerical experiments to see how the new Poincaré STM formulation
compares with other methods for calculating the STM. Let’s consider a satellite with initial orbital
elements listed in Table 1. The numerical experiments consider two settings in the force model: one
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that considers only conservative forces (gravitational potential from the Sun, Moon, and a 10-by-10
Earth spherical harmonic model), and one that adds nonconservative forces from solar radiation
pressure (SRP) and atmospheric drag. Because the perigee altitude shown in Table 1 is well within
the atmosphere, and the satellite area-to-mass ratio is set to 0.1 m2 kg-1, we can expect the noncon-
servative drag force to have a non-negligible impact on the orbit. The reference orbit is propagated
using a Runge-Kutta 7(8) numerical integrator with an error tolerance of 1 × 10−13 and a variable
step size. The experiments compare the STMs from both the new 2-D Poincaré STM formulation
(ΦP), the forward finite difference (ΦFD), and from integrating the variational equations (ΦVar). The
commercial software FreeFlyer® version 7.6.0 is used to propagate the reference and truth orbits
and to report out ΦVar that is integrated from the variational equations along the reference.

Table 1. Initial Orbital Elements
Perigee alt., km Apogee alt., km a, km e i, deg Ω, deg ω, deg ν, deg

500 km 10000 km 11628 0.4 45 25 100 300

The flow of the numerical simulation is described in Fig. 4. The initial conditions for the reference
state x∗, an initial Gaussian uncertainty represented by a covariance matrix P0, a small deviation
state δx, and the initial test particle perturbations δxi are first defined. The initial uncertainty P0

is defined as a diagonal matrix, with each position and velocity component having 1σ variances of
10 m and 0.1 mm s-1, respectively. The initial deviation state is defined using the 1σ variances as
δx(t0) = (10, 10, 10, 0.1, 0.1, 0.1) m and mm s-1. The orbit is propagated for 1 day. At each propa-
gation time step, ΦP and ΦFD are computed from the integrated test particle trajectories. The STM
ΦVar is integrated along with the equations of motion using the built-in methods from FreeFlyer®.
Each STM is tested by using it to linearly propagate a small deviation state δxSTM, where “STM”
corresponds to each of the Poincaré, finite difference, and variational equation STMs. Likewise,
P is linearly propagated with each STM. The state error xerr, which is the difference between the
linearly propagated state and the state from the Runge-Kutta integrator, is saved at each time step.

Tables 2 and 3, as well as Fig. 5 to 8, summarize the results of the numerical experiment. The
position error columns in Table 2 come from xerr, where we’ve computed the the mean of the
position error vector norm of xerr over the entire 1 day time span. Table 3 of position uncertainty
shows

√
trace(P) at the end of the simulation. The column denoted “Monte Carlo” in Table 3 is

computed from a point cloud of 1000 samples, drawn from the initial Gaussian distribution and
propagated with the Runge-Kutta integrator. All numerical results use the Case B perturbations,
because they were found to be nearly identical to the results using the Case A configuration.

Table 2. Test results, mean position error

Test Particle Perturb. Mean Position Error, km
Num. Forces δxi [km], δẋi [km/s] Poincaré Finite Diff. Var. Eqns.

1 Cons. 1E-3, 1E-6 4.00E-4 4.00E-4 3.99E-4
2 Cons. 10, 0.1 0.12 0.12 3.99E-4
3 Noncons. 1E-3, 1E-6 diverge diverge 0.22
4 Noncons. 10, 0.1 0.18 0.18 0.22

In tests 1 and 2, we have turned off the nonconservative drag and SRP forces; the numerical results
show that, as expected the Poincaré and finite difference methods are nearly identical, as we showed
them to be mathematically equivalent. Interestingly, the numerical results also show these two
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Figure 4. Illustration of the test process used in the numerical experiment.

Table 3. Test results, position uncertainty from
√

trace(P) after 1 day

Test Particle Perturb. Final Position 1σ Uncertainty, km
Num. Forces δxi [km], δẋi [km/s] Poincaré Finite Diff. Var. Eqns. Monte Carlo

1 Cons. 1E-3, 1E-6 3.123 3.123 3.123 3.165
2 Cons. 10, 0.1 3.522 3.522 3.123 3.165
3 Noncons. 1E-3, 1E-6 diverge diverge 3.134 3.176
4 Noncons. 10, 0.1 3.923 3.923 3.134 3.176

methods to have nearly identical performance even in tests 3 and 4 when the nonconservative forces
are turned on, despite the fact that our mathematical proof assumes a conservative Hamiltonian
system between times t and t+ ∆t.

With only conservative forces and small perturbations (test 1, Fig. 5), we see nearly identical
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Figure 5. Test 1 position error, conservative forces with small test particle perturba-
tions. Note that all data are nearly identical and plotted on top of one another.

Figure 6. Test 2 position error, conservative forces with large test particle perturba-
tions. Note that Poincaré and finite difference series are nearly identical and plotted
on top of one another.
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Figure 7. Test 3 position error, nonconservative forces with small test particle pertur-
bations. The Poincaré and finite difference methods quickly diverge.

Figure 8. Test 4 position error, nonconservative forces with large test particle pertur-
bations. The Poincaré and finite difference methods have somewhat similar perfor-
mance as the variational equations over this test span.
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performance between all methods. This could be due to the slowly changing nature of the dynamics
for this particular orbit, suggesting that the linearization is not sensitive to the method used. Test 2
in Figure 6 is a nearly identical setup to the first test, but we’ve increased the size of the test particle
perturbations δxi and δẋi. We can see that the performance gets worse (error grows) when we
increase the size of the test particle perturbations, as we would expect from the finite difference.

In tests 3 and 4 we have turned on the nonconservative forces; we can no longer prove mathemat-
ically that the Poincaré and finite different methods are equivalent, as the derivation around Eq. 48
assumed sympletic matrices. We see in test 3 that when the test particle perturbations δxi and δẋi
are small, the errors diverge after a short amount of time, as the spacecraft reaches the first perigee
dip into the atmosphere (recall from Table 1 the initial true anomaly ν places the spacecraft shortly
before perigee). In test 4, the performance is improved by increasing the size of the test particle
perturbations, such that Poincaré and finite different methods have similar performance to the vari-
ational equations. In fact, for this particular experimental setup, the mean position error is slightly
smaller (0.18 km) when using ΦP or ΦFD compared with 0.22 km with ΦVar.

Comparing Fig. 7 and 8 with Fig. 5 and 6, we can see that the linearization error from ΦVar grows
when the nonconservative drag force is added; this illustrates the highly nonlinear effects around
perigee as the spacecraft dips into the atmosphere, even when the variational equations are used.
Also, an interesting result is that the finite difference method in test 4 performs well, despite the
fact that the finite difference approximation of the partial derivatives assumes small perturbations
to the reference trajectory. Although we haven’t proven that the FD and Poincaré methods are
mathematically equivalent when including nonconservative forces, this numerical result suggests
that the two approaches yield nearly identical results, and may benefit from larger perturbations
when the system is sufficiently nonlinear.

Table 3 shows that for all tests, the propagation of the covariance matrix was identical between
ΦP and ΦFD. Also, among the various tests, the position uncertainty from the computed covariance
is similar magnitude to that computed from both the variational equations and from the full Monte
Carlo. Of course, because this is only a linear propagation of P, we would expect the errors com-
pared with the Monte Carlo to grow over time, especially in test 4 with the addition of the drag and
SRP forces that exacerbate the nonlinear dynamics.

The results in this study show the potential for examining the linearization error in astrodynamical
problems through the lens of Hamiltonian dynamics, as we have equated the error term ε in Eq. 28
to the change in the computed Poincaré integral invariants over time. The understanding developed
in this paper may be useful to others wishing to explore new methods for linearization or uncertainty
propagation. From a computational standpoint, the new numerical method shown in this paper re-
quires the same number of satellite propagations as integrating the variational equations; N = 6 test
particles, along with the reference trajectory, resulting in 42 states needing numerical integration.
The benefit of the numerical methods, both the Poincaré and the finite difference, is that the partial
derivatives of the accelerations need not be computed. Of course, the disadvantage of the numerical
methods is the need to choose a suitable perturbation of the test particles relative to the reference.
The present study gives a new understanding that large perturbations are mathematically acceptable,
and in some cases may actually improve performance, especially for highly nonlinear systems.
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CONCLUSION

The Poincaré integral invariants were examined and used to derive a new STM that is formed
numerically by integrating test particles along with the reference trajectory. This paper focused on
the 2-D invariant, as the formulation was shown to much simpler, although in principle the 4-D
and 6-D invariants can also be used, but at a higher computational cost. The method using the 2-D
invariant was shown to be equivalent to the forward finite difference method for computing the STM.
Numerical results were presented that demonstrated the equivalence between the Poincaré method
and the forward finite difference. Also, despite the new method assuming conservative Hamiltonian
dynamics on the time-scale of an integration time step, we demonstrated that it can be applied to
nonconservative systems and still have similar performance as integrating the variational equations,
albeit over shorter analysis time spans.
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NOTATION

ε error vector k index, also dimension of simplex
ν true anomaly L Lagrangian
Φ state transition matrix M manifold
Ω intermediate matrix quantity N number of test particles
Ω right-ascension of ascending node n degrees of freedom
ω argument of perigee O zero matrix
A phase-space area (volume) P covariance matrix
a semi-major axis p conjugate momenta
Bn n-dimensional set in phase space q generalized coordinates
e eccentricity R set of real numbers
H Hamiltonian T kinetic energy
I identity matrix t time
i index, also inclination V potential energy
I2 2-D Poincaré integral invariant v vertex vector
I4 4-D Poincaré integral invariant x state vector
I6 6-D Poincaré integral invariant x∗ reference state vector
J symplectic matrix δx relative state vector

y vector of invariants

APPENDIX A

The new STM defined by Eq. 31 can be shown to satisfy the following three properties. The
identity property:

Φ(t0, t0) = IN×N (50)

Ω−1(t0)Ω(t0) = IN×N (51)
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The inverse property:

Φ(t0, t) = Φ−1(t, t0) (52)

Ω−1(t0)Ω(t) = [Ω−1(t)Ω(t0)]
−1 (53)

= Ω−1(t0)Ω(t) (54)

The commutative property:

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (55)

Ω−1(t2)Ω(t0) = Ω−1(t2)Ω(t1)Ω
−1(t1)Ω(t0) (56)

= Ω−1(t2)Ω(t0) (57)
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