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The Quesst mission will demonstrate the possibility of low-noise supersonic
flight and produce dose-response regressions for use by regulators.

Goal: Collect representative community annoyance as function of dose (Rathsam et al., 2023)
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Community testing entails two simultaneous regression experiments.

Single Event Dose

▶ Perceived level, PL (dB) (Stevens, 1972)

▶ Nominal dose range: 70 to 87 dB

▶ Average level, not point-wise doses

▶ Setpoint control is not absolute

Cumulative Dose

▶ Day-night averaged sound level

PLDNL = −49.4 + 10 log10

 J∑
j=1

10
SEj
10
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Initially proposed designs presumed fine control of setpoints anywhere in
the nominal dose range and emphasized uniformity in dose histograms.

▶ Nominal, per-community tempo: ≈80 supersonic passes, 24-30 flight days over 4-6 weeks
▶ Scheduling tool rationale à la Horonjeff (2021); designs discussed in Vaughn et al. (2023)
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Data from past risk reduction studies may have features like the X-59
shaped sonic boom data.
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Logistic (GLM) regression experiments suffer from design dependence.

Following Khuri et al. (2006), good designs minimize

MSE [µ̂ (x)] = E [µ̂ (x)− µ (x)]2 = Var [µ̂ (x)] + {Bias [µ̂ (x)]}

▶ Linear predictor: η (x) = f T (x)β
(
βT ≡ (intercept, slope)T

)
▶ Mean response at x : µ (x) = h

[
f T (x)β

]
= h [η (x)] (h ≡ logit−1 (·))

Upon literature review: specificity, points of support, use of previous information
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By its design, the X-59 should reduce annoyance, and the binary annoyance
outcome is expected to be rare within the range of factors tested.
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Concerns about setpoint control and sparsity of highly annoyed responses
in the limited dose range motivated discussion of single-event designs.

Factorial Experimentation

▶ Single-event dose as primary factor and treatment

▶ Imperfect setpoint control → reduce points of support

Replication

▶ Fixed ‘budget’ of ≈80 supersonic passes

▶ Fewer points of support → increased replication per point

▶ Sparse response → greater emphasis on high doses
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Blocking strategies may add robustness against testing interruptions.

(Notional) Blocking according to uniform risk assessment, assuming five weeks of testing

Nominal Level (PL, dB) Counts Each Week Total
70 2 10
75 4 20
81 4 20
87 6 30

Total 16 80

(Notional) Blocking to prioritize high doses in initial and final weeks of testing

Nominal Level (PL, dB) Week 1 Week 2 Week 3 Week 4 Week 5 Total
70 0 3 3 3 1 10
75 3 3 5 6 3 20
81 5 4 4 3 4 20
87 8 6 4 4 8 30

Total 16 16 16 16 16 80
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Arrangement of supersonic passes into same-day testing is necessary to
determine treatment levels for cumulative dose design.

Test Day
No. Single-Event Doses Cumulative Dose

Passes (PL, dB) (PLDNL, dB)
A 3 70, 70, 75 27.7
B 4 75, 75, 81, 87 39.0
C 3 81, 81, 87 39.3
D 3 75, 87, 87 40.8
E 3 81, 87, 87 41.1

Baseline Cumulative Design

Nominal Average Doses (PLDNL, dB)

C
ou

nt
s

20 25 30 35 40 45 50

0
2

4
6

8
10

(Notional) Alternative Cumulative Design

Nominal Average Doses (PLDNL, dB)

C
ou

nt
s

20 25 30 35 40 45 50

0
2

4
6

8
10

Cruze et al. (NASA) Experimental Designs During NASA Quesst Mission 11 / 17



Randomization is used to remove effects due to remaining nuisance factors.
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▶ Random sampling of experimental units
(≈ 1,000 people) within community

▶ Assigning nominal test day combinations into
blocks (weeks)

▶ Randomize time of delivery, order of nominal
levels of supersonic passes

Numerous operational constraints exist!
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Community testing with X-59 is an extraordinarily complex undertaking!

Conclusions

1. Setpoint control and other considerations motivated reevaluation of proposed test designs.

2. The basics of design of experiments bolster the rationale for community testing plans.

3. Notional experimental designs emphasize the loudest levels produced by the quiet X-59.
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https://www.nasa.gov/mission/quesst/

https://www.nasa.gov/mission/quesst/
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