

4 **JWST Reveals CO Ice, Concentrated CO₂ Deposits, and Evidence for Carbonates**
5 **Potentially Sourced from Ariel's Interior**

6 (RICHARD J. CARTWRIGHT^{a,1} (BRYAN J. HOLLER,² (WILLIAM M. GRUNDY,^{3,4} (STEPHEN C. TEGLER,⁴
7 (MARC NEVEU,^{5,6} (UJJWAL RAUT,⁷ (CHRISTOPHER R. GLEIN,⁷ (TOM A. NORDHEIM,¹ (JOSHUA P. EMERY,⁴
8 (JULIE C. CASTILLO-ROGEZ,⁸ (ERIC QUIRICO,⁹ (SILVIA PROTOPAPA,¹⁰ (CHLOE B. BEDDINGFIELD,¹
9 (MATTHEW M. HEDMAN,¹¹ (KATHERINE DE KLEER,¹² (RILEY A. DECOLIBUS,⁸ (ANASTASIA N. MORGAN,⁴
10 RYAN WOCHNER,⁴ (KEVIN P. HAND,⁸ (GERONIMO L. VILLANUEVA,⁶ (SARA FAGGI,^{13,6} (NOEMI PINILLA-ALONSO,¹⁴
11 (DAVID E. TRILLING,⁴ AND MICHAEL M. MUELLER¹⁵

12 ¹*Johns Hopkins University Applied Physics Laboratory, 11101 Johns Hopkins Rd, Laurel, MD 20723*

13 ²*Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218*

14 ³*Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001*

15 ⁴*Department of Astronomy and Planetary Science, Northern Arizona University, 527 S Beaver Street, Flagstaff AZ, 86011*

16 ⁵*University of Maryland, 4296 Stadium Dr, College Park, MD 20742*

17 ⁶*Solar System Exploration Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771*

18 ⁷*Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166*

19 ⁸*Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive Pasadena, CA 91109*

20 ⁹*Institut de Planétologie et d'Astrophysique (IPAG), UMR 5274, CNRS, Université Grenoble Alpes, Grenoble, France*

21 ¹⁰*Southwest Research Institute, 1301 Walnut Street, Boulder, CO 80302*

22 ¹¹*Department of Physics, University of Idaho, 375 Perimeter Drive, MS 0903, Moscow ID 83843*

23 ¹²*Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125*

24 ¹³*American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016*

25 ¹⁴*Florida Space Institute, University of Central Florida, 12354 Research Pkwy, Orlando, FL 32826*

26 ¹⁵*Kapteyn Astronomical Institute Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands*

27 **ABSTRACT**

28 The Uranian moon Ariel exhibits a diversity of geologically young landforms, with a surface composition rich in CO₂ ice. The origin of CO₂ and other species, however, remains uncertain. We report observations of Ariel's leading and trailing hemispheres, collected with NIRSpec (2.87 – 5.10 μm) on the James Webb Space Telescope. These data shed new light on Ariel's spectral properties, revealing a double-lobed CO₂ ice scattering peak centered near 4.20 and 4.25 μm, with the 4.25 μm lobe possibly representing the largest CO₂ Fresnel peak yet observed in the Solar System. A prominent 4.38 μm ¹³CO₂ ice feature is also present, as is a 4.90 μm band that likely results from ¹²CO₂ ice. The spectra reveal a 4.67 μm ¹²CO ice band and a broad 4.02 μm band that might result from carbonate minerals. The data confirm that features associated with CO₂ and CO are notably stronger on Ariel's trailing hemisphere compared to its leading hemisphere. We compared the detected CO₂ features to synthetic spectra of CO₂ ice and mixtures of CO₂ with CO, H₂O, and amorphous carbon, finding that CO₂ could be concentrated in deposits thicker than ~10 mm on Ariel's trailing hemisphere. Comparison to laboratory data indicates that CO is likely mixed with CO₂. The evidence for thick CO₂ ice deposits and the possible presence of carbonates on both hemispheres suggests that some carbon oxides could be sourced from Ariel's interior, with their surface distributions modified by charged particle bombardment, sublimation, and seasonal migration of CO and CO₂ from high to low latitudes.

44 **Keywords:** Uranian satellites (1750); James Webb Space Telescope (2291); Surface composition (2115);
45 Surface processes (2116); Surface ices (2117); Ice Spectroscopy (2250); Carbon dioxide (196)

1. INTRODUCTION

47 Ariel is a candidate ocean world (e.g., Hendrix et al. 2019; Castillo-Rogez et al. 2023), with a young surface (<1 Ga in some regions; Kirchoff et al. 2022), exhibiting large chasmata and putative cryovolcanic features (e.g., Smith et al. 1986; Beddingfield & Cartwright 2021; Beddingfield et al. 2022). Ground-based telescope studies determined that the 48 surfaces of Ariel and the other large Uranian moons are composed of H_2O ice mixed with a neutral absorber analogous 49 to amorphous carbon (e.g., Cruikshank et al. 1977; Brown & Cruikshank 1983; Clark & Lucey 1984), overprinted by 50 deposits of ‘pure’ CO_2 ice (Grundy et al. 2003, 2006; Cartwright et al. 2015, 2022), and possible ammonia (NH_3) 51 bearing compounds (e.g., Bauer et al. 2002; Cartwright et al. 2018, 2020c, 2023; DeColibus et al. 2022, 2023).

52 Because of the high obliquity of the Uranus system ($\sim 98^\circ$), the subsolar point migrates between 82°S and 82°N over 53 the course of Uranus’ orbit, exposing the summer poles of its moons to constant sunlight (estimated peak temperatures 54 80 – 90 K; Hanel et al. 1986; Sori et al. 2017) while blocking sunlight from reaching their winter poles (~ 20 to 30 K; 55 Sori et al. 2017), for about 21 years each season. At the estimated peak temperatures during spring and summer, CO_2 56 can sublimate and likely migrates to the winter hemisphere. Integrating this process over many seasons, the predicted 57 outcome is to strip the poles of CO_2 and other volatiles and concentrate them at low latitudes, where diurnal variations 58 in heating reduce sublimation rates (Grundy et al. 2006; Sori et al. 2017; Steckloff et al. 2022; Menten et al. 2024). 59 Over time, CO_2 should be gradually lost to space due to Jeans escape and magnetospheric interactions, depleting 60 surface deposits, potentially enriching heavy isotopes, and raising the possibility that CO_2 is actively replenished.

61 By analogy to surface irradiation of the Galilean satellites and Saturn’s mid-sized moons, radiolytic generation of 62 CO_2 and other species might occur on the Uranian satellites (Grundy et al. 2003, 2006; Cartwright et al. 2015). Such a 63 process might explain the stronger CO_2 ‘triplet’ band (1.9 – $2.1\ \mu\text{m}$) on the trailing hemispheres of the largest Uranian 64 moons and its weakening with increasing orbital distance (i.e., strongest on Ariel, weakest on Oberon). Nevertheless, 65 predictions of moon-magnetosphere interactions at Uranus are not well constrained, and perhaps CO_2 is native and 66 sourced from these moons’ interiors, with larger deposits on their trailing sides due to enhancement by radiolysis, 67 similar to the multiple origin scenarios proposed for CO_2 on Jupiter’s moon Callisto (e.g., Hibbitts et al. 2000, 2002; 68 Moore et al. 2004a; Cartwright et al. 2024).

69 Irradiation of CO_2 should also generate other species, including CO (e.g., Bennett et al. 2010b; Raut et al. 2012; Raut 70 & Baragiola 2013; Mifsud et al. 2022), carbon suboxide (C_3O_2 ; e.g., Strazzulla et al. 2007), and perhaps the cyanate 71 ion (OCN^-) and other CN-bearing compounds, assuming CO_2 can interact with NH_3 and H_2O (e.g., Hudson et al. 72 2001). Supporting this scenario, some ground-based spectra of Ariel exhibit a $2.35\ \mu\text{m}$ band, tentatively attributed 73 to CO ice (Cartwright et al. 2022). While hitherto undetected, hydrogen peroxide (H_2O_2) may be present on Ariel, 74 forming from irradiation of H_2O , similar to Europa (e.g., Carlson et al. 1999) and Charon (Protopapa et al. 2024). 75 Laboratory experiments demonstrate that H_2O_2 formation is more efficient in H_2O ice mixed with a small fraction of 76 CO_2 ($<9\%$; Mamo et al. 2023), potentially making the Uranian moons’ surfaces ideal for H_2O_2 production.

77 Unlike the CO_2 triplet band, subtle features between 2.12 and $2.27\ \mu\text{m}$ attributed to NH_3 -bearing species and 78 ammonium salts (hereon referred to as the ‘ $2.2\ \mu\text{m}$ band’) do not display discernible hemispherical or orbital trends. 79 Instead, their variable band strengths suggest association with local-scale geologic features and terrains that cannot be 80 resolved in the available disk-integrated datasets (Cartwright et al. 2020c, 2023; DeColibus et al. 2023). If NH_3 -bearing 81 species are present, they are likely replenished over short timescales due to the predicted rapid decomposition of NH_3 82 by magnetospheric charged particles ($\sim 10^6$ years at Miranda; Moore et al. 2007). The short lifespan of NH_3 and 83 the possible association between geologic features and the $2.2\ \mu\text{m}$ band on Ariel could result from recent exposure of 84 NH_3 -rich deposits (Cartwright et al. 2020c). However, the ancient surface of Ariel’s neighboring moon Umbriel (~ 4.5 85 Ga; Kirchoff et al. 2022) displays $2.2\ \mu\text{m}$ bands as well, raising the possibility that more refractory components are 86 contributing, such as carbonates, phyllosilicates, and organic residues (Cartwright et al. 2023).

87 To investigate the nature and origin of CO_2 ice and determine whether NH_3 -bearing species and other constituents 88 are present, we measured spectra of Ariel with the NIRSpec spectrograph on the James Webb Space Telescope (JWST). 89 These observations span an important wavelength range for detecting CO_2 and CO (4.2 – $5.0\ \mu\text{m}$), NH-bearing species 90 (2.9 – $3.2\ \mu\text{m}$), hydrocarbons (3.2 – $3.7\ \mu\text{m}$), nitriles (4.3 – $4.8\ \mu\text{m}$), carbonates (3.9 – $4.1\ \mu\text{m}$), and H_2O_2 ($\sim 3.51\ \mu\text{m}$).

2. DATA AND METHODS

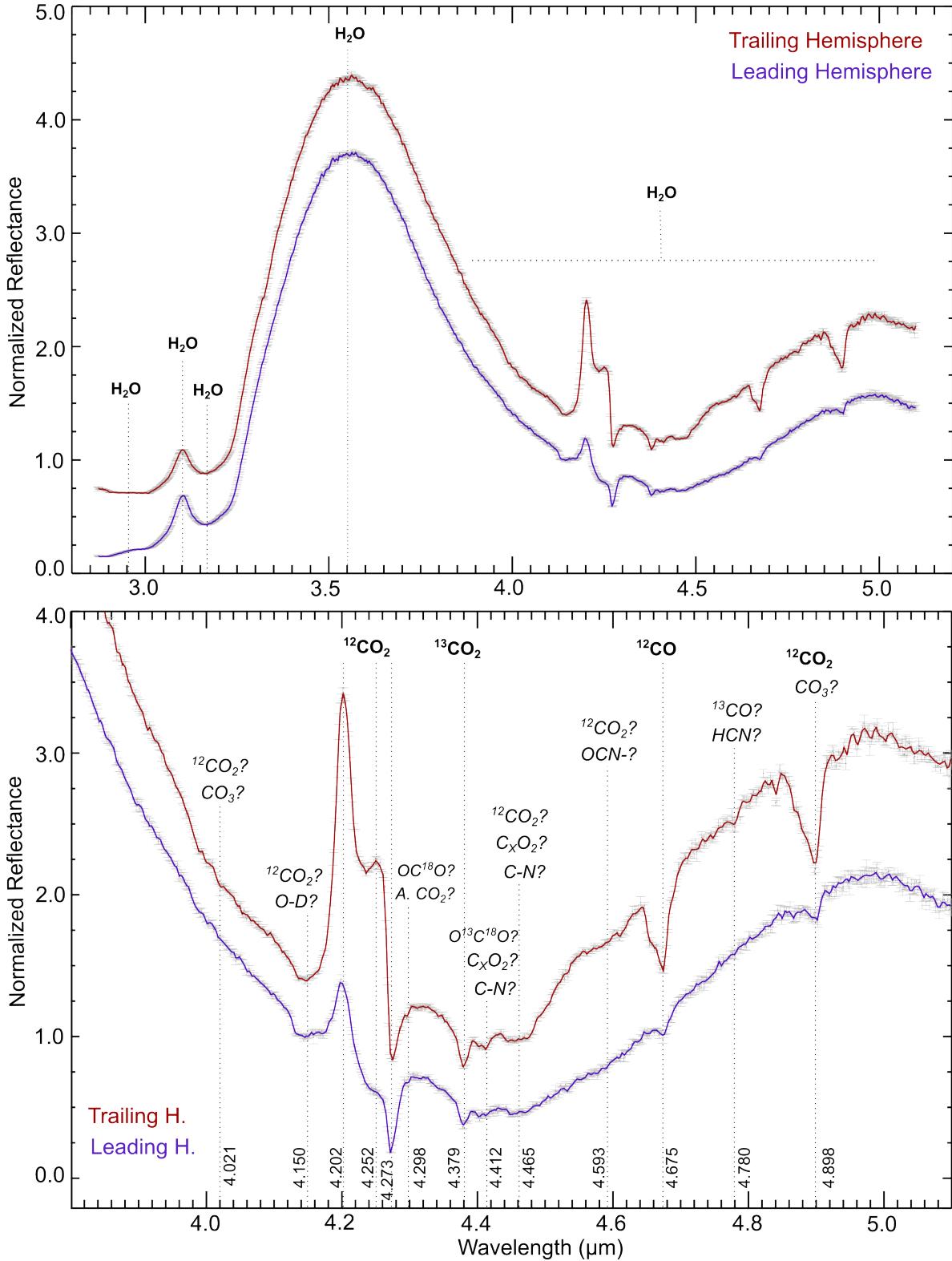
94 *NIRSpec Observations:* As part of General Observer (GO) Program 1786, NIRSpec on JWST (Jakobsen et al. 2022; 95 Böker et al. 2023) observed Ariel with the G395M/F290LP grating (2.87 – $5.10\ \mu\text{m}$, resolving power, $R, \sim 1000$) on 96 September 6th and 7th, 2023, when the mid-observation, subobserver longitude was near 293°W (trailing hemisphere) 97

98 and 63°W (leading hemisphere), respectively (subobserver latitude \sim 64.5°N for both observations). Each observation
 99 consisted of four dithers with NIRSpec's integral field unit (IFU), for a total of \sim 3,735 s (leading hemisphere) and \sim
 100 3,793 s (trailing hemisphere) of on-target time, using the NRSIRS2RAPID readout mode. The data were downloaded
 101 from the Mikulski Archive for Space Telescopes (10.17909/cwsn-7z50) (data reduction procedures described in Section
 102 A1).

103 *Band Measurements:* We measured the band areas and depths of detected absorption features and scattering peaks
 104 using a band measurement program that defines and divides off a local linear continuum for each feature (e.g.,
 105 Cartwright et al. 2024). Depth and height measurements were made by averaging the reflectance values within \pm
 106 0.002 to 0.003 μm of a user-defined band (B_c) or peak (P_c) center, and uncertainties were computed using standard
 107 error propagation procedures (e.g., Taylor 1997). The spectral contrast for each absorption band ($1 - B_d$), and scat-
 108 tering peak ($P_d - 1$) was then measured. The trapezoidal rule was used to measure the area of each feature, using
 109 Monte Carlo simulations sampling the 1σ errors for data points within each feature to estimate errors (Table 1).

110 *Comparison to Synthetic and Laboratory Spectra:* We compared Ariel's spectral properties to one-layer Hapke-Mie
 111 spectral models (section A2) generated using three sets of laboratory-derived indices of refraction ('optical constants')
 112 for crystalline CO₂ ice measured at 150 K (Hansen 1997), 70 K (Gerakines & Hudson 2020), and 21 K (Quirico &
 113 Schmitt 1997a,b), and for crystalline CO ice measured at 20 K (Robert Brown, private communication; Gerakines
 114 et al. 2023). Particulate mixtures of CO₂, CO, H₂O, and amorphous C are shown in Figure A1.

115 We present absorbance spectra of CO + CO₂ ice mixtures measured in the Astrophysical Materials Laboratory
 116 (AML) at Northern Arizona University (NAU) (Tegler et al. 2024). These co-condensed ices were made by mixing CO
 117 and CO₂ gases at room temperature before condensing as thin films on a gold mirror held at 20 K (see Tegler et al.
 118 2024 and Grundy et al. 2024a for more detail on laboratory procedures). We also compared the Ariel data to spectra
 119 of radiolyzed CO₂ ices processed by 100 keV protons (Raut & Baragiola 2013).


120 3. RESULTS AND ANALYSES

121 3.1. Detected Spectral Features

122 *CO₂ Ice:* The NIRSpec data exhibit a large scattering peak centered near 4.20 μm on Ariel's leading and trailing
 123 hemispheres, flanked by an absorption band centered near 4.27 μm , and the trailing hemisphere shows an additional
 124 peak near 4.25 μm (Figure 1). All of these features are associated with the asymmetric stretch fundamental (ν_3) mode
 125 of ¹²CO₂ (Figure 2). Ariel's leading and trailing sides also exhibit prominent absorption features near 4.90 μm , which
 126 corresponds to a biphonon + phonon combination mode, resulting from collective vibrations across a CO₂ ice lattice
 127 (Bini et al. 1991). Radiolytic carbon trioxide (CO₃) may provide minor contributions to the 4.90 μm feature (Figure
 128 A2). Another absorption band centered near 4.38 μm is consistent with the ν_3 mode of ¹³CO₂ ice. Ariel's large 4.25
 129 μm scattering peak coincides with the wavelength range where the extinction coefficient for CO₂, k , is >1 and the
 130 refractive index, n , is <1 (Gerakines & Hudson 2020) (Figure A3), suggesting that it is the largest CO₂ ice Fresnel
 131 peak yet observed on an icy body. For comparison, JWST revealed a much smaller CO₂ Fresnel peak on Charon,
 132 shifted to \sim 4.265 μm (Protopapa et al. 2024).

133 We calculated that 26.7% of Ariel's disk is sampled by both the leading and trailing hemisphere observations (Holler
 134 et al. 2016), with most of this overlap (18.7%) at $>45^\circ\text{N}$, where CO₂ is likely depleted (Grundy et al. 2006; Sori et al.
 135 2017; Steckloff et al. 2022; Menten et al. 2024). We also measured a suite of less prominent absorption bands that may
 136 result from CO₂, C₃O₂, carbonates, and nitriles (section A7), centered near 3.33, 4.02, 4.15, 4.30, 4.41, 4.47, and 4.59
 137 μm (Figures 2 and A4). Other tentative CO₂ ice features that are too subtle to reliably measure are centered near
 138 3.01, 4.84, and 4.93 μm (Figures 2, 4, and A4).

139 *CO Ice:* The NIRSpec spectra show a prominent absorption feature near 4.67 μm that is consistent with the ν_3
 140 mode of ¹²CO ice (e.g., Sandford et al. 1988; Bennett et al. 2010b), observed on a wide variety of trans-Neptunian
 141 objects (TNOs) and Centaurs by NIRSpec (e.g., Brown & Fraser 2023; Licandro et al. 2023; Emery et al. 2024; de Pra
 142 et al. 2024; Souza-Feliciano et al. 2024). CO ice should sublime rapidly at Ariel's peak surface temperatures (80 –
 143 90 K), and it is probably replenished on short timescales and perhaps complexed with a less volatile component, such
 144 as CO₂ (e.g., Sandford et al. 1988). Furthermore, Ariel's 4.67 μm feature exhibits flanking sidebands that are absent
 145 from pure CO ice (Figure 3, section 3.3). A subtle feature near 4.78 μm on Ariel's trailing hemisphere likely results
 146 from ¹³CO (see section A7 for other interpretations). We also report ¹³CO/¹²CO isotopic ratios (section A9) and
 147 modeling of possible ¹³C enrichment (section A10).

Figure 1. Top: NIRSpec IFU (G395M/F290LP) reflectance spectra and 1σ uncertainties for Ariel's leading (purple) and trailing (red) hemispheres, vertically offset for clarity and normalized to one at $4.145\text{ }\mu\text{m}$. Bottom: Close-up of the same spectra, focusing on the 3.8 to $5.1\text{ }\mu\text{m}$ wavelength region. Confirmed absorption bands and scattering peaks associated with H_2O ice, CO_2 ice, and CO ice are bolded, whereas suggested constituents are italicized and followed by a question mark. Amorphous CO_2 is abbreviated to 'A. CO_2 .' The central wavelengths (μm) for the identified features are listed vertically along each dotted line and in Table 1.

148 *H₂O Ice:* The spectral signature of H₂O ice is apparent on both sides of Ariel, with clear evidence for the strong
 149 3.0 μm ν_3 mode, the 3.1 μm Fresnel peak indicative of crystalline H₂O ice, the 3.6 μm H₂O ice continuum peak, and
 150 a broad 4.5 μm $\nu_2 + \nu_R$ combination mode (Figure 1; [Mastrapa et al. 2009](#) and references therein).

151 *What about NH₃, Hydrocarbons, and H₂O₂?* The NIRSpec spectra do not display evidence for the 2.96 μm ν_3 mode
 152 indicative of NH-bearing species nor other features associated with NH₃ or NH₄. NH-bearing features between 2.9 and
 153 3.2 μm are also apparently absent from Charon ([Protopapa et al. 2024](#)), which exhibits a prominent 2.2 μm band long
 154 attributed to NH-bearing compounds (e.g., [Brown & Calvin 2000](#); [Buie & Grundy 2000](#); [Grundy et al. 2016](#); [Cook et al. 2018](#);
 155 [Protopapa et al. 2020](#); [Cook et al. 2023](#)). Thus, NH-bearing species may contribute to Ariel's 2.2 μm band
 156 but are obscured by H₂O ice absorption in the 3 μm region sampled by G395M data. We also find no reliable evidence
 157 for C-H stretching modes exhibited by hydrocarbons between 3.2 and 3.5 μm , nor any evidence for a prominent H₂O₂
 158 combination mode ($\nu_1 + \nu_6$) near 3.51 μm (Figure A5; [Bain & Giguère 1955](#)).

159 3.2. Band Parameter Measurements

160 We measured seven confirmed features in both spectra, and another eight likely features on Ariel's trailing hemisphere,
 161 four of which are also on Ariel's leading side ($>3\sigma$ detection, Table 1). The 3.1 μm H₂O Fresnel peak is
 162 significantly stronger on Ariel's leading side. In contrast, all of the features that are definitively associated with CO₂
 163 and CO ice are stronger on Ariel's trailing hemisphere. The distributions of H₂O and CO₂ are consistent with the
 164 hemispherical trends established in ground-based studies (e.g., [Grundy et al. 2003](#); [Cartwright et al. 2022](#)). The features
 165 centered near 4.02, 4.41, and 4.47 μm are significantly stronger on Ariel's trailing side ($>3\sigma$ difference). The 3.33
 166 μm , 4.30 μm , 4.59 μm , and 4.78 μm bands are only reliably detected on Ariel's trailing hemisphere ($>3\sigma$ detection,
 167 Table 1).

168 3.3. Synthetic and Laboratory Spectra of CO₂ and CO Ice

169 We compared the Ariel data to synthetic spectra of crystalline CO₂ ice (models 1-3) and CO ice (model 4), shown in
 170 Figure 2. These comparisons highlight the large number of subtle features that can be expressed by CO₂ ice (models
 171 1 and 2), many of which appear to be present on Ariel (Table 1). Furthermore, Ariel's CO₂ scattering peaks can be
 172 approximated by a layer of large CO₂ grains ($\geq 50 \mu\text{m}$ diameters; model 3). The synthetic spectrum of CO ice matches
 173 the central wavelength positions of Ariel's 4.67 μm and 4.78 μm features (model 4), confirming the presence of this
 174 molecule and possibly confirming its heavy-carbon isotopologue.

175 Figure 3a shows laboratory data of CO and CO₂ mixtures, whereas Figure 3b shows CO generated in proton-
 176 irradiated CO₂ ice films containing CO and O₂, with trace amounts of CO₃ and O₃ ([Raut & Baragiola 2013](#)). The
 177 pure CO sample exhibits a narrow sideband that likely results from a longitudinal optical phonon mode (LO) caused
 178 by collective oscillations within the ice's structure. Similar LO modes have been reported for CO₂ samples illuminated
 179 at oblique angles ([Cooke et al. 2016](#)). However, this 4.658 μm sideband exhibited by Ariel's 4.67 μm feature is broader
 180 than pure CO and more similar to the sidebands exhibited by mixed CO + CO₂ samples, consistent with prior
 181 work ([Sandford et al. 1988](#)). We speculate that these sidebands result from CO dimers and trimers with vibrational
 182 frequencies distinct from monomeric CO.

183 The ν_3 mode in the proton-generated CO sample we analyzed is centered at shorter wavelengths ($\sim 4.668 \mu\text{m}$) than
 184 Ariel's 4.67 μm band (4.675 μm) and does not match its sidebands (Figure 3). Similarly, another study that generated
 185 CO via electron irradiation of CO₂ (20 – 50 K) measured a band center of 4.671 μm for its ν_3 mode ([Mifsud et al.
 186 2022](#)), slightly offset from Ariel's 4.67 μm band. Thus, radiolytic CO may not be the primary contributor to CO on
 187 Ariel. Alternatively, ice annealing processes and CO diffusion to lower energy sites in the surrounding CO₂ lattice
 188 might obscure the signature of radiolytic CO over time, making interpretation more difficult.

189 The other sideband ($\sim 4.687 \mu\text{m}$) expressed by Ariel's 4.67 μm feature, is absent from pure CO ice, CO + CO₂
 190 mixtures, and radiolytic CO, suggesting mixing with other species, including H₂O ([Sandford et al. 1988](#)) and perhaps
 191 carbonate salts. Comparison between these Ariel data and laboratory spectra of irradiated carbonates and other
 192 carbon oxides could test our inference, based on Figure 3, that CO may be (partially) native to Ariel. Similarly, new
 193 optical constants for CO + CO₂ mixtures, and CO₂ mixed with other carbon oxides, are likely required to better
 194 understand Ariel's spectral properties.

195 4. DISCUSSION

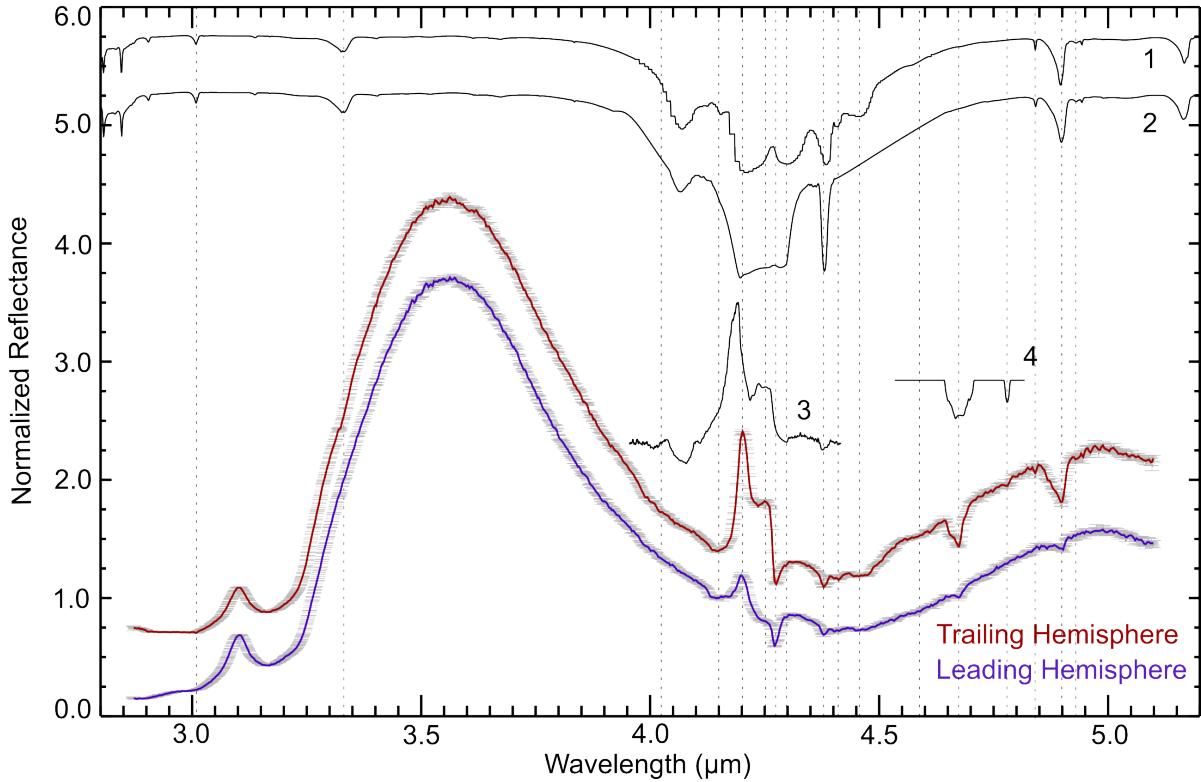

196 4.1. Concentrated Deposits of CO₂ ice

Table 1. Band measurements for Ariel.

Feature Name	Feature Center (μm)	Feature Wavelength Range (μm)	Hemisphere	Spectral Contrast (%)	Band Area ($10^{-4} \mu\text{m}$)	$>3\sigma$ Contrast and Band Area?	Spectral Constituents (confirmed, bolded) (suggested, italicized)
^a 3.10 μm	3.100	3.014 – 3.168	Leading	99.29 ± 1.29	564.08 ± 2.07	Yes	H₂O Ice
			Trailing	68.37 ± 0.90	388.65 ± 1.68	Yes	
3.33 μm	3.331	3.308 – 3.362	Leading	-0.65 ± 0.68	-2.54 ± 0.63	No	¹² CO ₂ Ice, CH ₄ ,
			Trailing	2.59 ± 0.34	5.69 ± 0.50	Yes	<i>Hydrocarbons</i>
4.02 μm	4.021	3.954 – 4.109	Leading	3.80 ± 0.31	35.47 ± 1.17	Yes	¹² CO ₂ Ice, CO ₃
			Trailing	7.30 ± 0.66	65.38 ± 1.14	Yes	
4.15 μm	^L 4.147	4.117 – 4.187	Leading	7.33 ± 0.48	35.90 ± 0.86	Yes	¹² CO ₂ Ice, O-D
	^T 4.150	4.117 – 4.178	Trailing	9.50 ± 0.77	35.73 ± 0.67	Yes	
^{a,b} 4.20 μm	4.202	4.152 – 4.276	Leading	38.47 ± 0.83	^b 193.14 ± 1.61	Yes	¹² CO ₂ Ice
			Trailing	126.13 ± 1.30	743.91 ± 2.19	Yes	
^{a,b} 4.25 μm	4.252	4.152 – 4.276	Leading	15.64 ± 0.85	193.14 ± 1.61	Yes	¹² CO ₂ Ice
			Trailing	82.42 ± 1.10	743.91 ± 2.19	Yes	
^c 4.27 μm	4.273	4.257 – 4.303	Leading	25.86 ± 1.21	43.45 ± 0.91	Yes	¹² CO ₂ Ice
			Trailing	41.24 ± 0.79	89.45 ± 0.79	Yes	
^d 4.30 μm	4.298	4.292 – 4.302	Leading	3.22 ± 1.43	1.35 ± 0.52	No	¹⁶ O ¹² C ¹⁸ O Ice,
			Trailing	4.13 ± 0.87	1.59 ± 0.34	Yes	<i>amorphous CO₂</i>
4.38 μm	4.379	4.365 – 4.391	Leading	7.82 ± 0.93	10.81 ± 0.68	Yes	¹³ CO ₂ Ice
			Trailing	11.12 ± 1.04	16.19 ± 0.61	Yes	
4.41 μm	^L 4.403	4.395 – 4.423	Leading	2.96 ± 0.88	3.20 ± 0.56	Yes	¹⁶ O ¹³ C ¹⁸ O Ice,
	^T 4.412	4.393 – 4.429	Trailing	5.26 ± 1.13	8.38 ± 0.71	Yes	<i>C_XO₂, Nitriles</i>
4.47 μm	4.465	4.430 – 4.495	Leading	2.66 ± 0.86	10.22 ± 1.05	Yes	¹² CO ₂ Ice, C _X O ₂ ,
			Trailing	6.11 ± 0.63	27.06 ± 1.04	Yes	<i>Nitriles</i>
4.59 μm	4.593	4.552 – 4.639	Leading	1.53 ± 0.60	6.08 ± 1.24	No	¹² CO ₂ Ice, OCN [–]
			Trailing	2.50 ± 0.73	14.90 ± 1.02	Yes	
4.67 μm	4.675	4.640 – 4.706	Leading	6.60 ± 1.09	11.64 ± 1.03	Yes	¹² CO Ice
			Trailing	23.29 ± 0.76	63.06 ± 0.93	Yes	
4.78 μm	4.780	4.764 – 4.795	Leading	1.70 ± 0.65	0.35 ± 0.57	No	¹³ CO Ice, HCN
			Trailing	2.42 ± 0.25	4.17 ± 0.78	Yes	
4.90 μm	4.898	4.845 – 4.927	Leading	4.59 ± 0.76	11.57 ± 1.30	Yes	¹² CO ₂ Ice,
			Trailing	20.29 ± 0.96	64.77 ± 1.06	Yes	CO ₃

^aSpectral features are peaks measured above the continuum.^bBand areas for the 4.20 μm and 4.25 μm features are convolved, and we report the same band area for both peaks.^cThe 4.27 μm feature overlaps the wavelength range of the 4.25 μm scattering peak, and the reported measurements for this feature (and its hemispherical asymmetry) are provided for completeness but are likely inaccurate.^d4.30 μm feature is partly embedded in the long-wavelength wing of the 4.27 μm feature.^L = Leading, ^T = Trailing.

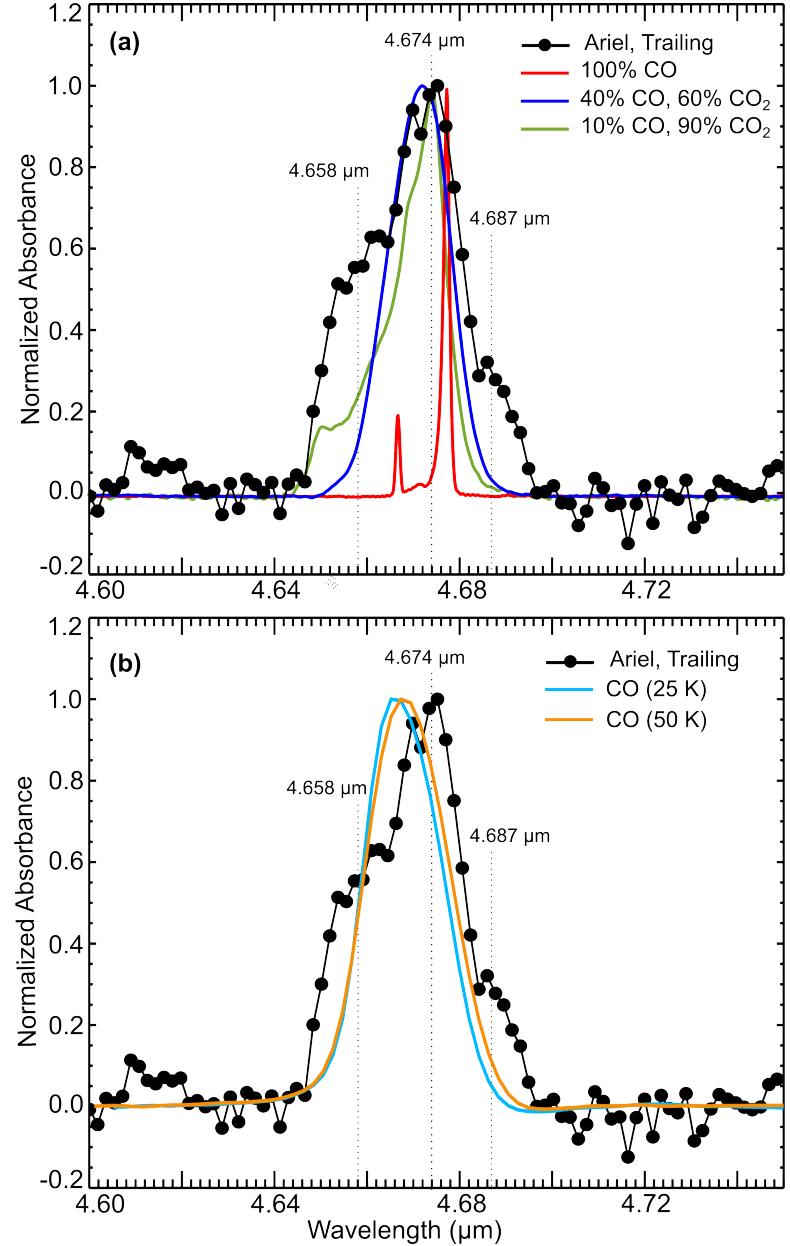

197 The results presented here and in prior studies (Grundy et al. 2003, 2006; Cartwright et al. 2015, 2020a) indicate
 198 that CO₂ on Ariel has remarkably similar spectral properties to crystalline CO₂ ice measured in the laboratory (i.e.,
 199 CO₂ molecules primarily bonded to each other in a long-range order). Comparison to synthetic spectra of crystalline
 200 CO₂ ice (Figure 2) highlights that Ariel exhibits many subtle CO₂ features outside of the strong ν_3 mode. Specifically,
 201 features near 3.01, 3.33, 4.84, 4.90, and 4.93 μm on Ariel’s trailing hemisphere do not appear on many other objects
 202 where CO₂ has been detected by JWST/NIRSpec (e.g., Villanueva et al. 2023; Brown & Fraser 2023; Pinto et al. 2023;
 203 Bockelee-Morvan et al. 2024; Cartwright et al. 2024; Emery et al. 2024; Wong et al. 2024; de Pra et al. 2024; Protopapa
 204 et al. 2024) (TNO examples provided in Figure A6), with the exception of Triton (Wong et al. 2023). Consequently,
 205 Ariel’s surface exhibits some of the most CO₂-rich deposits in the Solar System.

Figure 2. Comparison between Ariel's leading (purple) and trailing (red) hemisphere spectra (vertically offset for clarity, normalized to unity at $4.145\text{ }\mu\text{m}$) and 1σ uncertainties, along with synthetic spectra of crystalline CO_2 ice (1-3) and CO ice (4). These synthetic spectra were generated using optical constants: model 1, $10\text{ }\mu\text{m}$ grain size, Hansen (1997); model 2, $10\text{ }\mu\text{m}$ grain size, Quirico & Schmitt (1997a,b); model 3, $50\text{ }\mu\text{m}$ grain size, Gerakines & Hudson (2020); model 4, $10\text{ }\mu\text{m}$ grain size, Robert Brown (private communication). Models 1 and 2 were scaled to the depth of the $4.90\text{ }\mu\text{m}$ band on Ariel's trailing side, Model 3 was scaled to the height of the $4.20\text{ }\mu\text{m}$ scattering peak on Ariel's trailing side, and Model 4 was scaled to the depth of the $4.67\text{ }\mu\text{m}$ band on its trailing side. All four models are offset vertically for clarity. The central wavelength of measured features (Table 1) and possible features near 3.01 , 4.84 , and $4.93\text{ }\mu\text{m}$ are indicated by dotted lines.

To estimate the thickness of Ariel's CO_2 ice deposits, we calculated the e-folding depths ($1/\alpha$; where α is the absorption coefficient) for near-infrared (NIR) photons propagating through a slab of CO_2 ice, which is essentially an application of the Beer-Lambert absorption law. To account for scattering off grain boundaries, we calculated the mean optical path length, $\text{MOPL} = -1/(\alpha^* \ln(R))$; where R is the reflectance; Clark & Roush 1984), using synthetic spectra composed of CO_2 ice grains (1 , 10 , and $100\text{ }\mu\text{m}$ diameters). The results of these two approaches indicate that photons spanning the wavelength range of the $\text{CO}_2 \nu_3$ band (4.1 – $4.4\text{ }\mu\text{m}$) can travel 0.0001 to 0.1 mm into slabs of CO_2 ice or deposits dominated by CO_2 grains before being absorbed (Figure 4). In contrast, photons penetrate $>0.3\text{ mm}$ in the wavelength range of the $4.90\text{ }\mu\text{m}$ band, 4 mm in the wavelength ranges of the 3.33 and $4.84\text{ }\mu\text{m}$ bands, and upwards of 10 mm in the wavelength ranges of the possible 3.01 and $4.93\text{ }\mu\text{m}$ features (Figure 4). The penetration depth estimates reported here are broadly consistent with prior estimates made on weak CO_2 features between 1.5 to $1.7\text{ }\mu\text{m}$ (4 – 30 mm depths) and 1.9 to $2.1\text{ }\mu\text{m}$ (0.07 – 0.4 mm depths) (Cartwright et al. 2015, 2022). Additionally, these estimates are consistent with laboratory measurements of CO_2 ice optical constants, which used thin films (0.25 – $3\text{ }\mu\text{m}$ thick) to avoid saturation while measuring the ν_3 mode (Gerakines & Hudson 2020) and samples $>10\text{ mm}$ thick to measure weaker CO_2 features (Hansen 1997, 2005).

As an additional test, we generated synthetic spectra composed of CO_2 in particulate mixtures with CO , H_2O , and amorphous carbon, finding that the $\text{CO}_2 \nu_3$ mode is present in all mixtures (see section A2 for model details). In contrast, weak features near 3.01 , 3.33 , 4.84 , and $4.93\text{ }\mu\text{m}$ are not present in any of these particulate mixture models, while the $4.90\text{ }\mu\text{m}$ band is present in particulate mixture models that include 40% CO_2 (Figure A1). These results support the hypothesis that CO_2 ice on Ariel's surface is segregated from H_2O ice. Whether these CO_2 -

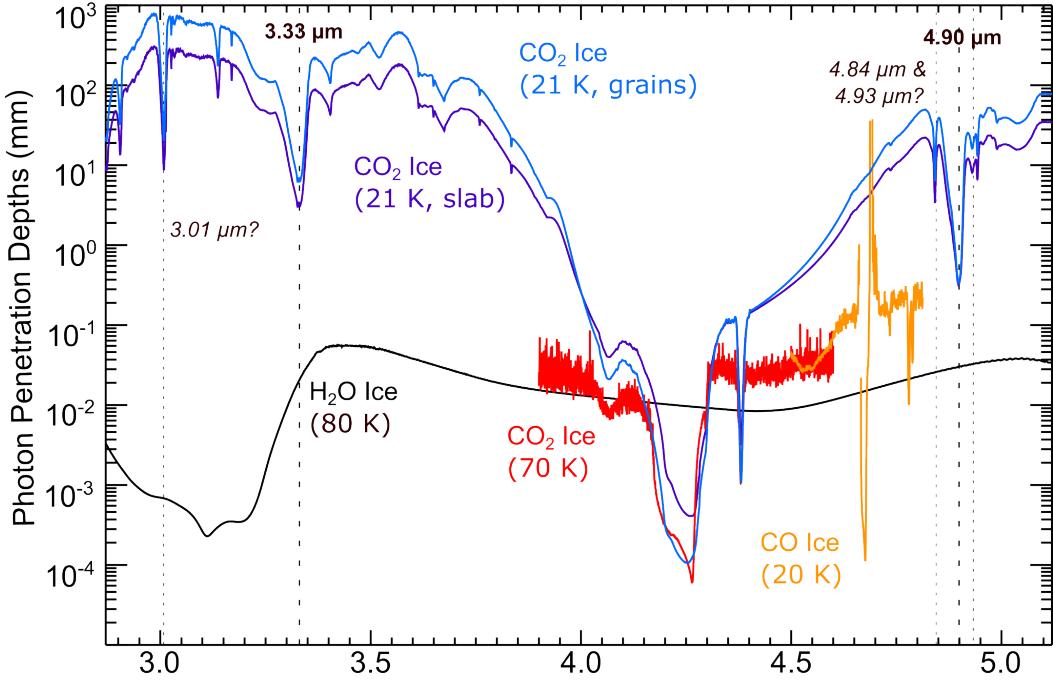


Figure 3. (a) Comparison between a continuum-removed version of the $4.67 \mu\text{m}$ absorption band on Ariel's trailing hemisphere (black, converted into absorbance units) and laboratory absorbance spectra of pure CO ice and CO + CO₂ ice mixtures measured in the Astrophysical Material Laboratory at temperatures between 20 to 30 K, with the CO feature persisting at temperatures up to 80 K in the mixed CO + CO₂ samples (Tegler et al. 2024; Grundy et al. 2024a). Pure CO₂ ice is essentially featureless in this wavelength range and omitted for clarity. The CO₂:CO mixture (9:1, green, centered near $4.674 \mu\text{m}$) provides a good match to the central wavelength of Ariel's $4.67 \mu\text{m}$ band, whereas mixtures with comparable amounts of CO₂ and CO (6:4, blue, centered near $4.672 \mu\text{m}$) provide less ideal matches. Pure CO ice (red, $4.677 \mu\text{m}$) is much narrower, offset to longer wavelengths, and exhibits a narrow sideband ($4.667 \mu\text{m}$), likely resulting from a longitudinal optical phonon mode, which does not match the broad short-wavelength sideband of Ariel's $4.67 \mu\text{m}$ band. Neither the pure CO nor CO + CO₂ mixtures are able to match Ariel's long-wavelength sideband centered near $4.69 \mu\text{m}$. (b) Comparison between a continuum-removed version of the $4.67 \mu\text{m}$ band on Ariel's trailing hemisphere (black) and laboratory spectra of a sample dominated by CO ice generated via irradiation of a CO₂ thin film with 100 KeV H⁺ protons at 25 K (light blue) and 50 K (orange), shown in optical depth units ($-\ln(R/R_0)$), where R is the reflectance of the film and gold substrate and R₀ is the reflectance of the bare gold substrate (Raut & Baragiola 2013)). All spectra are normalized to one at their maxima. The radiolytic CO features do not provide good matches to the central position, width, or sidebands of Ariel's $4.67 \mu\text{m}$ band.

225 dominated deposits are spatially associated with specific geologic landforms, or are more regionally dispersed, cannot
 226 be determined with these disk-integrated spectra.

4.2. Radiolytic Production and Seasonal Migration of CO and CO₂

227 At winter temperatures of 20 to 30 K, CO₂ and CO ices are stable and likely form a winter cap. Once exposed
 228 to sunlight in spring, CO₂ and CO should start to sublimate and migrate to cold traps near the new winter pole or
 229 leave the surface environment via Jeans escape, in particular for the more volatile CO. Seasonal migration of CO₂
 230 molecules could lead to the formation of a transient layer of pure CO₂ frost that is predicted to be
 231 up to 2.4 mm thick (Steckloff et al. 2022). Scattering within such a thick layer of seasonally-mobile
 232 CO₂ grains might contribute to Ariel's large $4.20 \mu\text{m}$ and $4.25 \mu\text{m}$ scattering peaks. Furthermore, the
 233 JWST/NIRSpec results presented here indicate that CO₂ ice deposits could be upwards of 10 mm thick
 234 on Ariel's trailing hemisphere (section 4.1), raising the possibility that CO₂ deposits on its trailing side
 235 are resistant to seasonal migration. On Ariel's leading hemisphere, CO₂ deposits may be only ~ 0.3

Figure 4. *e*-folding photon penetration depths into a slab of CO_2 ice (red; Gerakines & Hudson 2020, purple; Quirico & Schmitt 1997a,b), CO ice (orange; Gerakines et al. 2023), and H_2O ice (black; Mastrapa et al. 2009), and mean optical path length (MOPL) for photons into a layer of CO_2 ice grains with 1 μm diameters (blue). The MOPL for photons into layers composed of 10 and 100 μm diameter CO_2 ice grains are intermediate between the blue and purple lines. The black dashed lines highlight the band centers for Ariel's 3.33 μm and 4.90 μm bands, and the gray dashed lines highlight other subtle CO_2 ice features that may be present in the spectrum of Ariel's trailing hemisphere (centered near 3.01, 4.84, and 4.93 μm). This plot shows that only the strong ν_3 modes for $^{12}\text{CO}_2$, $^{13}\text{CO}_2$, ^{12}CO , and ^{13}CO should be exhibited by Ariel, if carbon oxides are well mixed with H_2O on its surface. The presence of weaker CO_2 ice features supports the presence of concentrated CO_2 ice deposits exposed on Ariel's surface (likely mixed with small amounts of CO and perhaps other carbon oxides).

mm thick (Figure 4), suggesting that CO_2 on its leading side could primarily result from sublimation and transport from its trailing hemisphere.

One way to explain how Ariel retains CO is if it forms at depth via radiolytic decomposition of thick CO_2 deposits. Measurements made by Voyager 2 indicate that heavy ions are largely absent from Uranus' magnetosphere (Ness et al. 1986), suggesting that high-energy electrons and protons could be the primary drivers of radiolytic processes. Energy deposition by protons and heavy ions is mostly limited to the top 0.01 mm of icy regoliths (e.g., Delitsky & Lane 1998), but energetic electrons (\sim 1 MeV) can penetrate cm-scale depths into ices (e.g., Nordheim et al. 2017). CO molecules generated at depth would be stable at Ariel's winter pole before diffusing out of its regolith once exposed to sunlight, possibly being retained long enough to be detected. However, geologic sources of native CO could be contributing as well (Figure 3, section 3.3).

4.3. Possible Internally-Derived Materials

The 2.2 μm bands detected in ground-based observations of the Uranian moons have been attributed to potentially internally-derived deposits rich in NH_3 -hydrates and NH_3 ice, carbonates, phyllosilicates, and/or organics (e.g., Cartwright et al. 2020c, 2023; DeColibus et al. 2023). Although we did not detect evidence of NH-bearing species, phyllosilicates, or hydrocarbons in the G395M data, Ariel's 4.02 μm feature could result from a $\nu_1 + \nu_3$ combination mode expressed by CO_3 in carbonate minerals (Hexter 1958; Bishop et al. 2021), similar to Callisto's 4.02 μm band (Johnson et al. 2004; Cartwright et al. 2024). Laboratory experiments showed that although a 4.89 μm feature formed in irradiated CO_2 ice, attributed to radiolytic CO_3 (Figure A2; Raut & Baragiola 2013), a complementary 4 μm band was not observed. Similarly, carbonic acid (H_2CO_3), generated via irradiation of H_2O and CO_2 mixtures at cryogenic temperatures (<100 K), exhibits a broad absorption band between 3.8 and 3.9 μm (e.g., Moore & Khanna 1991; Hage et al. 1998; Gerakines et al. 2000), but it is uncertain what processes might cause this feature to shift to

longer wavelengths, matching Ariel's 4.02 μm band. It therefore seems more likely that non-radiolytic, native species contribute to Ariel's 4.02 μm band.

A prior study suggested Umbriel's 2.2 μm band may result from thermonatrite ($\text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O}$), possibly contributing to bright crater floor deposits (Cartwright et al. 2023), along with cold-trapped CO_2 ice (Sori et al. 2017). In this scenario, emplaced carbonates could serve as base material for radiolytic CO_2 , or perhaps endogenic CO_2 could be delivered from Ariel's interior with carbonates, either at present or in the geologic past. Indeed, it is predicted that within deep oceans evolved from carbon-rich ices, a large fraction of CO_2 (several 100s of $\text{mmol}/(\text{kg H}_2\text{O})$) may be in solution with bicarbonate (Castillo-Rogez et al. 2022). If CO_2 is outgassed from Ariel's interior, then some of it should condense and contribute to the concentrated CO_2 ice deposits detected in JWST and ground-based datasets. Endogenic CO_2 , if mixed with liquid H_2O and coexisting with bicarbonate, could indicate a mildly acidic ocean ($\text{pH} \sim 6-8$), favoring the surface precipitation of bicarbonate salts and potentially Mg or Ca carbonates at lower pH values (e.g., Glein et al. 2015; Tosi et al. 2024). Alternatively, radiolytic CO_2 , or native CO_2 sequestered in Ariel's crust, would permit a more basic ocean chemistry ($\text{pH} > 9-10$), supporting Na and NH_4 carbonate precipitation.

The presence of carbonates would have important implications for minerals possibly formed in an aqueous environment and for the habitability of Ariel's interior, including the availability of phosphorus (Postberg et al. 2023), a key chemical component for life. Except for NH_4 carbonates, carbonate salts require environments where silicate minerals can interact with liquid H_2O (Castillo-Rogez et al. 2022). Such formation environments may exist at rock-water interfaces in ocean world interiors such as Ceres, whose strong 4 μm band results from carbonates (e.g., Rivkin et al. 2006), including Na_2CO_3 salts (e.g., De Sanctis et al. 2016; Carrozzo et al. 2018; Raponi et al. 2019), likely formed from the alteration of rock in contact with an ocean that included NH_3 (Castillo-Rogez et al. 2018). **Similarly, Enceladus' plume particles are dominated by H_2O ice mixed with minor amounts of Na carbonates (Postberg et al. 2009) and Na phosphates (Postberg et al. 2023) that likely formed in its ocean.**

If CO is internally-derived and released during winter, it could persist on Ariel's surface, condensing with CO_2 . To survive in Ariel's interior, endogenic CO would need to be sequestered in its crust and unable to interact with liquid H_2O , or else it would have oxidized to CO_2 or reduced to metastable organic compounds, such as formic acid/formate and perhaps CH_4 (Neveu et al. 2015; Glein & Waite Jr 2018). CO trapped as guest molecules in clathrates, however, would be more resistant to these processes and might persist. CO clathrates exhibit a $^{12}\text{CO } \nu_3$ mode near 4.685 μm (Dartois 2011), potentially matching a sideband on Ariel's 4.67 μm feature (Figure 3). Furthermore, the detection of CO in Enceladus' plume material (e.g., Peter et al. 2024) demonstrates that CO can survive in warm icy satellite interiors.

5. SUMMARY AND CONCLUSIONS

We analyzed JWST/NIRSpec spectral observations collected over Ariel's leading and trailing hemispheres, revealing the presence of crystalline CO_2 ice and CO ice mixed with CO_2 . We detected a suite of other spectral features that might result from carbonates, C_3O_2 , and nitriles. The detected CO_2 ice is likely concentrated in thick deposits, possibly mixed with a small amount of CO, but the physical state of these deposits and whether they are associated with geologic conduits to Ariel's interior, is difficult to determine with these disk-integrated spectra. Spatially-resolved NIR spectra collected by an orbiter making close flybys of the Uranian moons is required to explore the spatial relationship between volatiles and geologic features and confirm whether some carbon oxides originate in Ariel's interior (e.g., Beddingfield et al. 2020; Cartwright et al. 2021; Leonard et al. 2021; Cohen et al. 2022; National Academies of Sciences, Engineering, and Medicine 2022).

We found no compelling evidence for NH-bearing species, hydrocarbons, or H_2O_2 in the G395M data, although NH-bearing species could be present but obscured by strong 3 μm H_2O ice absorption. The lack of hydrocarbon features suggests that amorphous carbon dominates the low albedo material that is well-mixed with H_2O ice in the Uranian moons' regoliths, possibly also mixed with some 'amorphous silicates' (Cartwright et al. 2018). The apparent absence of H_2O_2 suggests that the irradiation environment at Ariel may be fairly quiescent, or extensive CO_2 deposits limit interactions between charged particles and underlying H_2O ice.

6. ACKNOWLEDGMENTS

This work is based [in part] on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127

308 for JWST. These observations are associated with GO program 1786. Support for GO program 1786 was provided by
 309 NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities
 310 for Research in Astronomy, Inc., under NASA contract NAS 5-03127.

REFERENCES

311 Alexander, C. O., Fogel, M., Yabuta, H., & Cody, G. 2007, *Geochimica et Cosmochimica Acta*, 71, 4380

312 Applin, D. M., Izawa, M. R., & Cloutis, E. A. 2016, *Icarus*, 278, 7

313 Bain, O., & Giguère, P. A. 1955, *Canadian Journal of Chemistry*, 33, 527

314 Bauer, J. M., Roush, T. L., Geballe, T. R., et al. 2002, *Icarus*, 158, 178

315 Beddingfield, C., Li, C., Atreya, S., et al. 2020, arXiv preprint arXiv:2007.11063

316 Beddingfield, C. B., & Cartwright, R. J. 2021, *Icarus*, 114583

317 Beddingfield, C. B., Cartwright, R. J., Leonard, E., Nordheim, T., & Scipioni, F. 2022, *The Planetary Science Journal*, 3, 106

318 Bennett, C., Jones, B., Knox, E., et al. 2010a, *The Astrophysical Journal*, 723, 641

319 Bennett, C. J., Jamieson, C. S., & Kaiser, R. I. 2010b, *Physical Chemistry Chemical Physics*, 12, 4032

320 Bini, R., Salvi, P., Schettino, V., & Jodl, H.-J. 1991, *Physics Letters A*, 157, 273

321 Bishop, J., King, S., Lane, M., et al. 2021, *Earth and Space Science*, 8, e2021EA001844

322 Bisschop, S., Fuchs, G., Boogert, A., van Dishoeck, E., & Linnartz, H. 2007, *Astronomy & Astrophysics*, 470, 749

323 Bockelee-Morvan, D., Lellouch, E., Poch, O., et al. 2024, *Astronomy & Astrophysics*, 681, A27

324 Bohlin, R. C., & Landolt, A. U. 2015, *The Astronomical Journal*, 149, 122

325 Bohren, C., & Huffman, D. 1983, Wiley, New York

326 Böker, T., Beck, T., Birkmann, S., et al. 2023, *Publications of the Astronomical Society of the Pacific*, 135, 038001

327 Brown, M. E., & Calvin, W. M. 2000, *Science*, 287, 107

328 Brown, M. E., & Fraser, W. C. 2023, *The Planetary Science Journal*, 4, 130

329 Brown, R. H., & Cruikshank, D. P. 1983, *Icarus*, 55, 83

330 Buie, M., & Grundy, W. 2000, *Icarus*, 148, 324

331 Bushouse, H., Eisenhamer, J., Dencheva, N., Davies, J., & Greenfield, P. e. a. . 2023, Zenodo, zenodo.org/records/8067394

332 Carlson, R., Anderson, M., Johnson, R., et al. 1999, *Science*, 283, 2062

333 Carlson, R. W. 1999, *Science*, 283, 820

354 Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. 2018, *Science advances*, 4, e1701645

355 Cartwright, R., Beddingfield, C., Nordheim, T., et al. 2021, *Planetary Science Journal*, 2, 120

356 Cartwright, R. J., DeColibus, R. A., Castillo-Rogez, J. C., et al. 2023, *The Planetary Science Journal*, 4, 42

357 Cartwright, R. J., Emery, J. P., Grundy, W. M., et al. 2020a, *Icarus*, 338, 113513

358 Cartwright, R. J., Emery, J. P., Pinilla-Alonso, N., et al. 2018, *Icarus*, 314, 210

359 Cartwright, R. J., Emery, J. P., Rivkin, A. S., Trilling, D. E., & Pinilla-Alonso, N. 2015, *Icarus*, 257, 428

360 Cartwright, R. J., Nordheim, T. A., Cruikshank, D. P., et al. 2020b, *The Astrophysical Journal Letters*, 902, L38

361 Cartwright, R. J., Beddingfield, C. B., Nordheim, T. A., et al. 2020c, *The Astrophysical Journal Letters*, 898, L22

362 Cartwright, R. J., Nordheim, T. A., DeColibus, R. A., et al. 2022, *The Planetary Science Journal*, 3, 8

363 Cartwright, R. J., Villanueva, G. L., Holler, B. J., et al. 2024, *The Planetary Science Journal*, 5

364 Castillo-Rogez, J., Daswani, M., Glein, C., Vance, S., & Cochrane, C. 2022, *Geophysical Research Letters*, 49, e2021GL097256

365 Castillo-Rogez, J., Neveu, M., McSween, H. Y., et al. 2018, *Meteoritics & Planetary Science*, 53, 1820

366 Castillo-Rogez, J., Weiss, B., Beddingfield, C., et al. 2023, *Journal of Geophysical Research: Planets*, e2022JE007432

367 Clark, R. N., Brown, R. H., Cruikshank, D. P., & Swayze, G. A. 2019, *Icarus*, 321, 791

368 Clark, R. N., Curchin, J. M., Hoefen, T. M., & Swayze, G. A. 2009, *Journal of Geophysical Research: Planets*, 114

369 Clark, R. N., & Lucey, P. G. 1984, *Journal of Geophysical Research: Solid Earth*, 89, 6341

370 Clark, R. N., & Roush, T. L. 1984, *Journal of Geophysical Research: Solid Earth*, 89, 6329

371 Cohen, I. J., Beddingfield, C., Chancia, R., et al. 2022, *The planetary science journal*, 3, 58

372 Cook, J. C., Dalle Ore, C. M., Protopapa, S., et al. 2018, *Icarus*, 315, 30

373 Cook, J. C., Protopapa, S., Dalle Ore, C. M., et al. 2023, *Icarus*, 389, 115242

374 Cooke, I. R., Fayolle, E. C., & Öberg, K. I. 2016, *The Astrophysical Journal*, 832, 5

398 Cruikshank, D., Pilcher, C. B., & Morrison, D. 1977, *The*
 399 *Astrophysical Journal*, 217, 1006

400 Dartois, E. 2011, *Icarus*, 212, 950

401 Dartois, E., Deboffle, D., & Bouzit, M. 2010, *Astronomy &*
 402 *Astrophysics*, 514, A49

403 de Pra, M., Hénault, E., Pinilla-Alonso, N., et al. 2024

404 De Sanctis, M. C., Raponi, A., Ammannito, E., et al. 2016,
 405 *Nature*, 536, 54

406 DeColibus, R. A., Chanover, N. J., & Cartwright, R. J.
 407 2022, *The Planetary Science Journal*, 3, 119

408 —. 2023, *The Planetary Science Journal*, 4, 191

409 Delitsky, M. L., & Lane, A. L. 1998, *Journal of Geophysical*
 410 *Research: Planets*, 103, 31391

411 Eiler, J. M., Kitchen, N., & Rahn, T. A. 2000, *Geochimica*
 412 *et Cosmochimica Acta*, 64, 733

413 Emery, J., Wong, I., Brunetto, R., et al. 2024, *Icarus*,
 414 116017

415 Escribano, R. M., Muñoz Caro, G. M., Cruz-Díaz, G. A.,
 416 Rodríguez-Lazcano, Y., & Maté, B. 2013, *Proceedings of*
 417 *the National Academy of Sciences*, 110, 12899

418 Fray, N., & Schmitt, B. 2009, *Planetary and Space Science*,
 419 57, 2053

420 Fujiya, W., Kawasaki, N., Nagashima, K., et al. 2023,
 421 *Nature Geoscience*, 16, 675

422 Gerakines, P., & Moore, M. 2001, *Icarus*, 154, 372

423 Gerakines, P., Moore, M. H., & Hudson, R. L. 2000,
 424 *Astronomy and Astrophysics*, v. 357, p. 793-800 (2000),
 425 357, 793

426 Gerakines, P. A., & Hudson, R. L. 2020, *The Astrophysical*
 427 *Journal*, 901, 52

428 Gerakines, P. A., Materese, C. K., & Hudson, R. L. 2023,
 429 *Monthly Notices of the Royal Astronomical Society*, 522,
 430 3145

431 Gerakines, P. A., Yarnall, Y. Y., & Hudson, R. L. 2022,
 432 *Monthly Notices of the Royal Astronomical Society*, 509,
 433 3515

434 Glein, C. R., Baross, J. A., & Waite Jr, J. H. 2015,
 435 *Geochimica et Cosmochimica Acta*, 162, 202

436 Glein, C. R., & Waite Jr, J. H. 2018, *Icarus*, 313, 79

437 Glein, C. R., Grundy, W. M., Lunine, J. I., et al. 2024,
 438 *Icarus*, 115999

439 Grim, R., Greenberg, J., De Groot, M., et al. 1989,
 440 *Astronomy and Astrophysics Supplement Series* (ISSN
 0365-0138), vol. 78, no. 2, May 1989, p. 161-186., 78, 161

441 Grundy, W., Schmitt, B., & Quirico, E. 2002, *Icarus*, 155,
 442 486

443 Grundy, W., Young, L., Spencer, J., et al. 2006, *Icarus*, 184,
 444 543

445 Grundy, W., Young, L., & Young, E. 2003, *Icarus*, 162, 222

446 Grundy, W., Binzel, R., Buratti, B., et al. 2016, *Science*,
 447 351, aad9189

448 Grundy, W., Tegler, S., Steckloff, J., et al. 2024a, *Icarus*,
 449 410, 115767

450 Grundy, W., Wong, I., Glein, C., et al. 2024b, *Icarus*, 411,
 451 115923

452 Hage, W., Liedl, K. R., Hallbrucker, A., & Mayer, E. 1998,
 453 *Science*, 279, 1332

454 Hanel, R., Conrath, B., Flasar, F., et al. 1986, *Science*, 233,
 455 70

456 Hansen, G. B. 1997, *Advances in Space Research*, 20, 1613

457 —. 2005, *Journal of Geophysical Research: Planets*, 110

458 Hapke, B. 2012, *Theory of reflectance and emittance*
 459 *spectroscopy* (Cambridge university press)

460 Haynes, W. M. 2016, *CRC handbook of chemistry and*
 461 *physics* (CRC press)

462 Hendrix, A. R., Hurford, T. A., Barge, L. M., et al. 2019,
 463 *Astrobiology*, 19, 1

464 Hexter, R. 1958, *Spectrochimica Acta*, 10, 281

465 Hibbitts, C., Klemaszewski, J., McCord, T., Hansen, G., &
 466 Greeley, R. 2002, *Journal of Geophysical Research:*
 467 *Planets*, 107, 14

468 Hibbitts, C., McCord, T., & Hansen, G. 2000, *Journal of*
 469 *Geophysical Research: Planets*, 105, 22541

470 Holler, B., Young, L., Grundy, W., & Olkin, C. 2016,
 471 *Icarus*, 267, 255

472 Hudson, R., Moore, M., & Gerakines, P. 2001, *The*
 473 *Astrophysical Journal*, 550, 1140

474 Jakobsen, P., Ferruit, P., de Oliveira, C. A., et al. 2022,
 475 *Astronomy & Astrophysics*, 661, A80

476 Johnson, R., Carlson, R., Cooper, J., et al. 2004, *Jupiter:*
 477 *The Planet, Satellites and Magnetosphere*, 485

478 Kirchoff, M. R., Dones, L., Singer, K., & Schenk, P. 2022,
 479 *The Planetary Science Journal*, 3, 42

480 Leonard, E. J., Elder, C., Nordheim, T. A., et al. 2021, *The*
 481 *Planetary Science Journal*, 2, 174

482 Licandro, J., Pinilla-Alonso, N., Holler, B., et al. 2023

483 Mamo, B., Brody, J., Teolis, B., et al. 2023in , 220-08

484 Mastrapa, R., Sandford, S., Roush, T., Cruikshank, D., &
 485 Dalle Ore, C. 2009, *The Astrophysical Journal*, 701, 1347

486 McClure, M. K., Rocha, W., Pontoppidan, K., et al. 2023,
 487 *Nature astronomy*, 1

488 McCord, T. a., Hansen, G., Clark, R., et al. 1998, *Journal*
 489 *of Geophysical Research: Planets*, 103, 8603

490 Menten, S. M., Sori, M. M., & Bramson, A. M. 2024,
 491 XXXX, XX, XXX

492 Mifsud, D. V., Kaňuchová, Z., Ioppolo, S., et al. 2022,
 493 *Journal of Molecular Spectroscopy*, 385, 111599

494 Milkov, A. V., & Etiope, G. 2018, *Organic geochemistry*,
 495 125, 109

497 Mogan, S. R. C., Tucker, O. J., Johnson, R. E., Sreenivasan,
498 K. R., & Kumar, S. 2020, *Icarus*, 352, 113932

499 Moore, J. M., Chapman, C. R., Bierhaus, E. B., et al.
500 2004a, *jpsm*, 1, 397

501 Moore, M., Hudson, R., & Ferrante, R. 2004b, The First
502 Decadal Review of the Edgeworth-Kuiper Belt, 291

503 Moore, M., & Khanna, R. 1991, *Spectrochimica Acta Part*
504 *A: Molecular Spectroscopy*, 47, 255

505 Moore, M. H., Ferrante, R., Hudson, R., & Stone, J. 2007,
506 *Icarus*, 190, 260

507 Mumma, M. J., & Charnley, S. B. 2011, *Annual Review of*
508 *Astronomy and Astrophysics*, 49, 471

509 National Academies of Sciences, Engineering, and
510 Medicine. 2022

511 Ness, N. F., Acuna, M. H., Behannon, K. W., et al. 1986,
512 *Science*, 233, 85

513 Neveu, M., Desch, S. J., Shock, E. L., & Glein, C. R. 2015,
514 *Icarus*, 246, 48

515 Newman, S., Buratti, B., Jaumann, R., Bauer, J., &
516 Momary, T. 2007, *The Astrophysical Journal*, 670, L143

517 Nordheim, T., Hand, K. P., Paranicas, C., et al. 2017,
518 *Icarus*, 286, 56

519 Palumbo, M., Strazzulla, G., Pendleton, Y., & Tielens, A.
520 2000, *The Astrophysical Journal*, 534, 801

521 Peter, J. S., Nordheim, T. A., & Hand, K. P. 2024, *Nature*
522 *Astronomy*, 8, 164

523 Pinilla-Alonso, N., Bannister, M., Brunetto, R., et al. 2021,
524 JWST Proposal. Cycle 1, 2418

525 Pinto, O. H., Kelley, M., Villanueva, G., et al. 2023, *The*
526 *Planetary Science Journal*, 4, 208

527 Postberg, F., Kempf, S., Schmidt, J., et al. 2009, *Nature*,
528 459, 1098

529 Postberg, F., Sekine, Y., Klenner, F., et al. 2023, *Nature*,
530 618, 489

531 Protopapa, S., Cook, J., Grundy, W., et al. 2020, *Pluto*
532 *System after New Horizons*

533 Protopapa, S., Raut, U., Wong, I., et al. 2024, *Nature*
534 *Communications*

535 Quirico, E., & Schmitt, B. 1997a, *Icarus*, 127, 354

536 —. 1997b, doi: https://doi.org/10.26302/SSHADE/EXPERIMENT_BS_20130215_001

537 Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. 2019,
538 *Icarus*, 320, 83

539 Rauscher, B. J. 2023, doi: <https://arxiv.org/abs/2306.03250>

540 Raut, U., & Baragiola, R. 2013, *The Astrophysical Journal*,
541 772, 53

542 Raut, U., Fulvio, D., Loeffler, M., & Baragiola, R. 2012,
543 *The Astrophysical Journal*, 752, 159

544 Rivkin, A., Volquardsen, E., & Clark, B. 2006, *Icarus*, 185,
545 563

546 Rouleau, F., & Martin, P. 1991, *The Astrophysical Journal*,
547 377, 526

548 Sandford, S., Allamandola, L., Tielens, A., & Valero, G.
549 1988, *Astrophysical Journal, Part 1 (ISSN 0004-637X)*,
550 vol. 329, June 1, 1988, p. 498-510., 329, 498

551 Smith, B. A., Soderblom, L., Beebe, R., et al. 1986,
552 *Science*, 233, 43

553 Sori, M. M., Bapst, J., Bramson, A. M., Byrne, S., &
554 Landis, M. E. 2017, *Icarus*, 290, 1

555 Souza-Feliciano, A., Holler, B., Pinilla-Alonso, N., et al.
556 2024, *Astronomy & Astrophysics*, 681, L17

557 Steckloff, J. K., Goldstein, D., Trafton, L., Varghese, P., &
558 Prem, P. 2022, *Icarus*, 384, 115092

559 Strazzulla, G., Brucato, J., Palumbo, M., & Spinella, F.
560 2007, *MEMORIE-SOCIETA ASTRONOMICA*
561 *ITALIANA*, 78, 681

562 Taylor, J. 1997, *Introduction to error analysis, the study of*
563 *uncertainties in physical measurements*

564 Tegler, S., Grundy, W., Loeffler, M., et al. 2024, *The*
565 *Planetary Science Journal*, 5, 31

566 Tosi, F., Mura, A., Cofano, A., et al. 2024, *Nature*
567 *Astronomy*, 8, 82

568 Villanueva, G., Hammel, H., Milam, S., et al. 2023, *Science*,
569 381, 1305

570 Wong, I., Hines, D., Brunetto, R., et al. 2023in , 401–08

571 Wong, I., Brown, M. E., Emery, J. P., et al. 2024, *The*
572 *Planetary Science Journal*, 5, 87

APPENDIX

A1. *Data and Methods: NIRSpec Observations*

574 Data processing utilized the Science Calibration Pipeline v1.13.4 with CRDS context jwst_1214.pmap to process raw
 577 *uncal* data into *s3d* spectral cubes for each of the four dithers (Bushouse et al. 2023). The pipeline was run using the
 578 default parameters and including the NSClean routine to remove the $1/f$ pattern noise (Rauscher 2023). The spectral
 579 extraction used a “template PSF-fitting” routine. The wavelength grid was first computed using the *CRVAL3* and
 580 *CRDELT3* header keywords, with each wavelength corresponding to a specific slice in the data cube. An initial by-eye
 581 estimate was made for the centroid position of the target (Ariel is a point source given the 0.1" NIRSpec pixels). The
 582 background was then calculated as the median of all pixels >5 pixels from the centroid and subtracted from all pixels
 583 in the slice. The “template PSF” was then calculated by taking the median of a moving 21-slice window. A 9×9
 584 pixel box was cut out around the centroid of the template PSF, normalized to unity within the box, and iteratively
 585 fit to the slice in the middle of the 21-slice window using the *scipy.optimize.minimize* function and the Nelder-Mead
 586 algorithm. The two fit parameters were the flux scaling factor and the background, which were used to construct the
 587 best-fit model. The 1D spectrum was constructed by extracting the flux within a 3.5-pixel radius circular aperture,
 588 centered on the centroid in each slice. To remove the solar component, the four dithers were medianed and then
 589 divided by a median G395M spectrum of P330E, a well-established spectrophotometric calibration star (G2V, Vmag
 590 13.028 ± 0.004 ; e.g., Bohlin & Landolt 2015). The individual P330E spectra were computed using the same template
 591 PSF-fitting routine described above. Uncertainties for the Ariel and P330E spectra were computed as the median
 592 absolute deviation within each wavelength bin, with the uncertainties propagated to the final P330E-divided spectra
 593 (Figure 1).

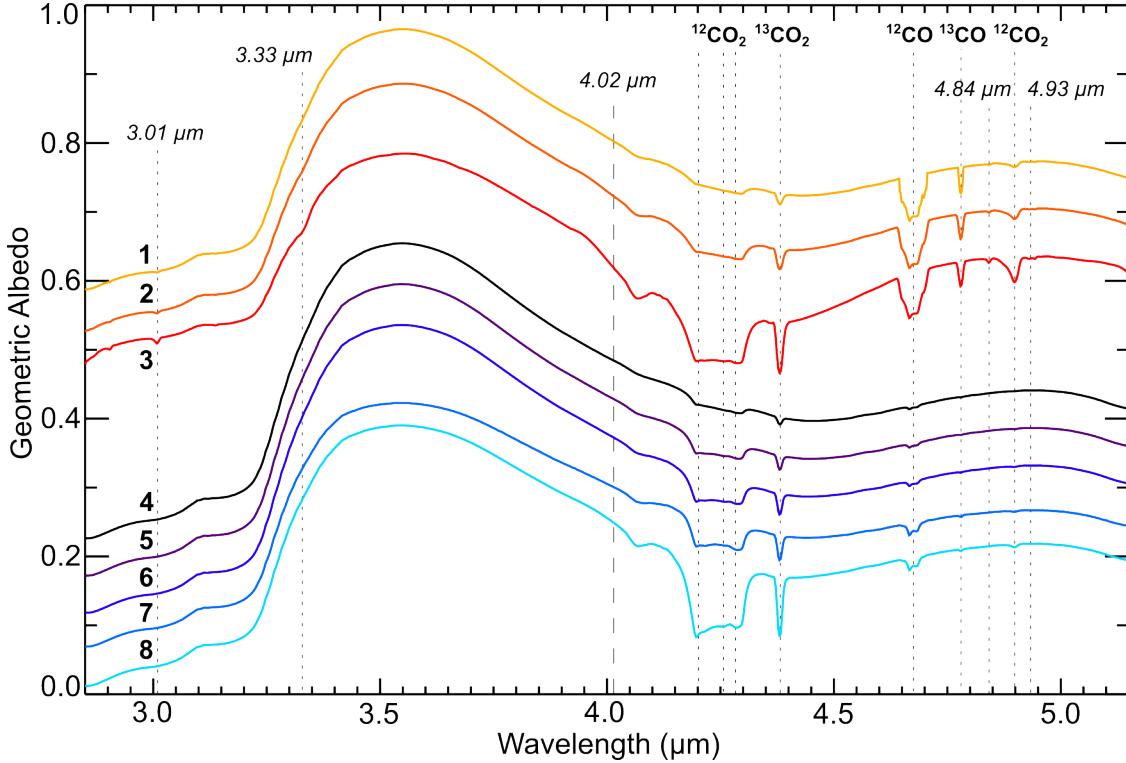
A2. *Data and Methods: Radiative Transfer Modeling*

594 The synthetic spectra reported in this study were generated by adopting Mie scattering theory (e.g., Bohren &
 595 Huffman 1983) to calculate the single scattering albedo ($\bar{\omega}_0$) for each component using their real, n , and imaginary, k ,
 596 parts of the complex refractive index, derived from laboratory experiments for crystalline CO₂ ice (150 K, Hansen 1997;
 597 70 K, Gerakines & Hudson 2020; 21 K Quirico & Schmitt 1997a,b), CO ice (Robert Brown, private communication; 20
 598 K, Gerakines et al. 2023), crystalline H₂O ice (80 K; Mastrapa et al. 2009), and amorphous carbon (room temperature;
 599 Rouleau & Martin 1991). These $\bar{\omega}_0$ values were then passed to Hapke equations that calculate geometric albedo as
 600 a function of wavelength (Hapke 2012). The program generates one-layer models of end-member species (like those
 601 shown in Figure 2) or particulate or areal mixtures of various components (Figure A1). Minor resonances in synthetic
 602 spectra generated using Mie-derived $\bar{\omega}_0$ are addressed by calculating albedo using a range of grain sizes ($\pm 10\%$ spread
 603 in diameters), which are then averaged at each wavelength step in the final model. Although Mie scattering theory
 604 only approximates the structure of planetary regoliths, it is widely used in radiative transfer models to simulate the
 605 surfaces of icy bodies. More details and caveats on this program and its prior application to simulate the spectral
 606 properties of the Uranian moons’ surfaces are provided in, e.g., Cartwright et al. 2023.

A3. *Results and Analyses: Comparison between Ariel’s 4.90 μm Band and Radiolytically Formed CO₃*

608 Here we report laboratory spectra of radiolytically generated CO₃ compared to Ariel’s 4.90 μm band (Figure A2).

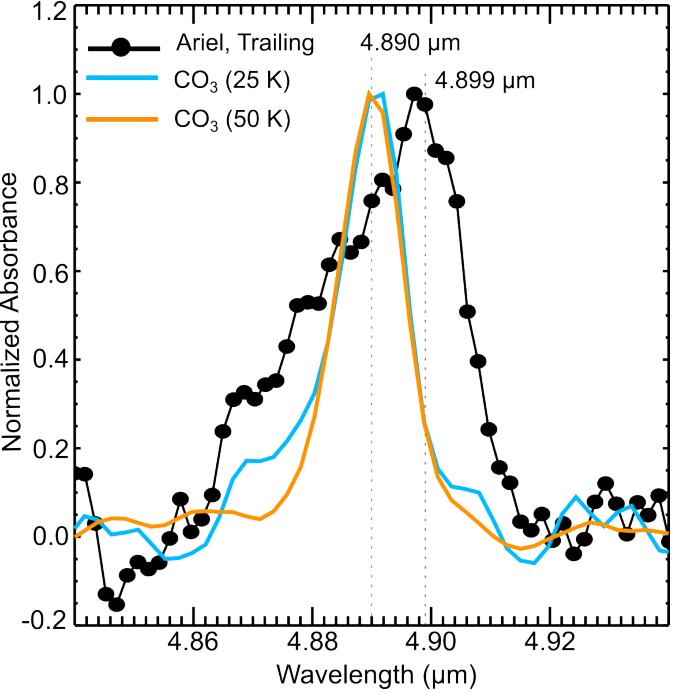
A4. *Results and Analyses: Ariel’s CO₂ scattering peak compared to the indices of refraction for CO₂*

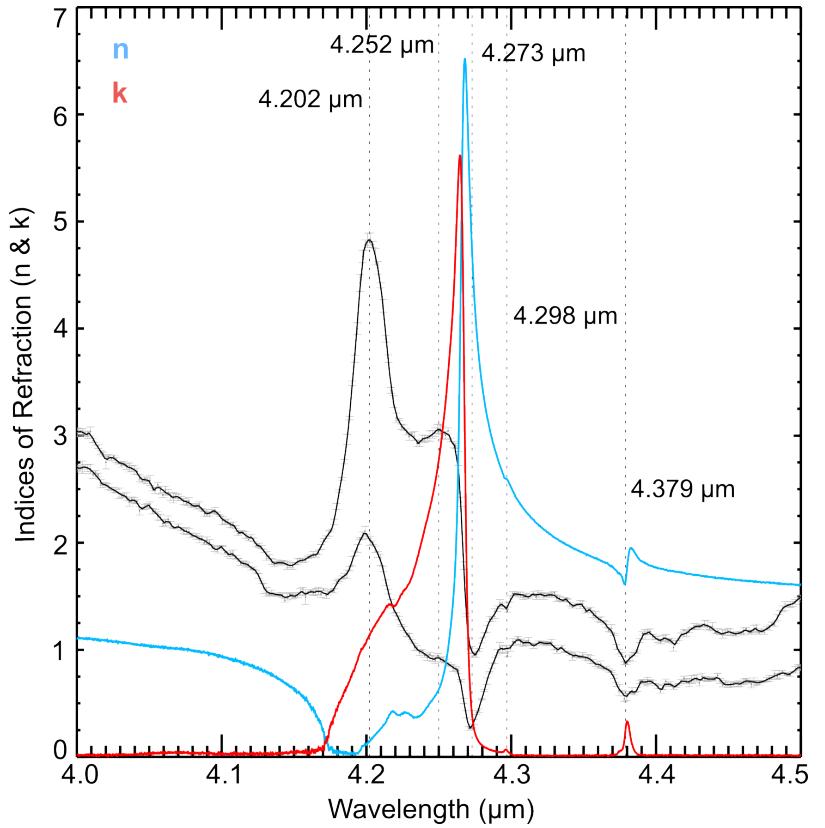

611 Here we report an arbitrarily scaled NIRSpec spectrum of Ariel’s trailing hemisphere compared to the indices of
 612 refraction for CO₂, measured by Gerakines & Hudson 2020 (Figure A3).

A5. *Results and Analyses: Ariel trailing / Ariel leading spectral ratio*

613 Here we report a ratio between the spectra collected over Ariel’s trailing and leading hemispheres (Figure A4).

A6. *Results and Analyses: H₂O₂ and Ariel’s 3.6 μm Feature*


614 To investigate whether H₂O₂ is present on Ariel and to measure its 3.6 μm feature, we fitted fourth-order polynomial
 615 models to the spectra of Ariel’s leading and trailing hemispheres between 3.45 and 3.7 μm and measured the resulting
 616 continuum-subtracted features (Figure A5). We find no evidence for the 3.505 μm H₂O₂ feature detected on Europa
 617 (e.g., Carlson et al. 1999), Enceladus (Newman et al. 2007), and Charon (Protopapa et al. 2024) (Figure A5). The


Figure A1. Synthetic spectra (section A2) comprised of areal (models 1-3) and particulate (models 4-8) mixtures, offset vertically for clarity. These spectral models include crystalline H_2O ice (Mastrapa et al. 2009), crystalline CO_2 ice (Quirico & Schmitt 1997a,b), crystalline CO ice (Robert Brown, private communication), and amorphous carbon (Rouleau & Martin 1991), with grain diameters of 2, 10, 10, and 1 μm , respectively. Each model includes 10% CO ice and 0.5% amorphous carbon mixed with: (1) 84.5% H_2O ice and 5% CO_2 ice; (2) 79.5% H_2O ice and 10% CO_2 ice; (3) 64.5% H_2O ice and 25% CO_2 ice; (4) 64.5% H_2O ice and 25% CO_2 ice; (5) 49.5% H_2O ice and 40% CO_2 ice; (6) 39.5% H_2O ice and 50% CO_2 ice; ^a(7) 14.5% H_2O ice and 75% CO_2 ice; (8) 14.5% H_2O ice and 75% CO_2 ice. ^aModel 7 includes 25% CO_2 (Quirico & Schmitt 1997a; 10 μm grains) and 50% CO_2 (Gerakines & Hudson 2020; 100 μm grains). These models demonstrate that the Ariel features between 4.19 and 4.30 μm and 4.65 and 4.80 μm , which are associated with the ν_3 modes of CO_2 and CO ice, respectively, are exhibited by all eight models (dotted lines with bold text). In contrast, weak CO_2 features tentatively observed on Ariel, near 3.01 μm , 3.33 μm , 4.84 μm , and 4.93 μm (dotted lines, italicized text), are only exhibited by areal mixtures that include $\geq 10\%$ CO_2 (models 2-3), and are not observed in any of the particulate mixtures (25 - 75% CO_2 ice; models 4-8). The 4.90 μm band is expressed by all areal mixtures (5 - 25% CO_2 , models 1-3) and particulate mixtures with $\geq 40\%$ CO_2 (models 5-8). The presence of weak CO_2 ice features in the areal mixtures, and their absence from the particulate models, demonstrates that concentrated deposits of pure CO_2 on Ariel's surface are required for these features to be expressed (section 4.1). None of the areal or particulate mixtures exhibit a $\sim 4 \mu m$ feature, suggesting that carbonates, or another component, contribute to Ariel's 4.02 μm band (dashed line, italicized text).

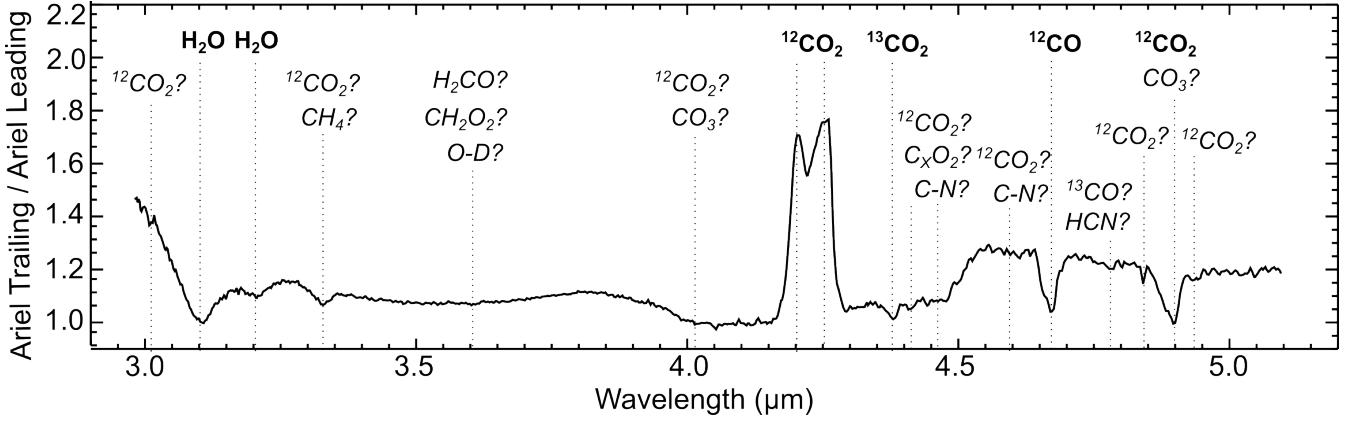

continuum-subtracted data show weak features centered near 3.55 and 3.60 μm on Ariel's trailing hemisphere. Whether these two features result from different species or are two subtle lobes of the same component is difficult to discern. We consider candidate species for the 3.55 μm and 3.60 μm features in section A7.

Figure A2. Comparison between a continuum-divided version of Ariel's $4.90 \mu\text{m}$ band on its trailing hemisphere and a $4.89 \mu\text{m}$ CO_3 band generated via irradiation of CO_2 ice thin film with 100 keV H^+ protons, scaled in optical depth units ($-\ln(R/R_0)$, where R is the reflectance of the film and gold substrate and R_0 is the reflectance of the bare gold substrate (Raut & Baragiola 2013)). All spectra are normalized to one at their maxima. The offset between the CO_3 features and Ariel's $4.90 \mu\text{m}$ band supports the interpretation that this feature results from collective oscillations across a crystalline CO_2 ice lattice (Bini et al. 1991) (Figure 2). It is possible that radiolytically produced CO_3 contributes to the broad short-wavelength side of Ariel's $4.90 \mu\text{m}$ band. However, additional experiments are required to determine whether this broadening of Ariel's $4.90 \mu\text{m}$ band results from mixing with CO_3 or other variables such as the temperature of CO_2 on Ariel.

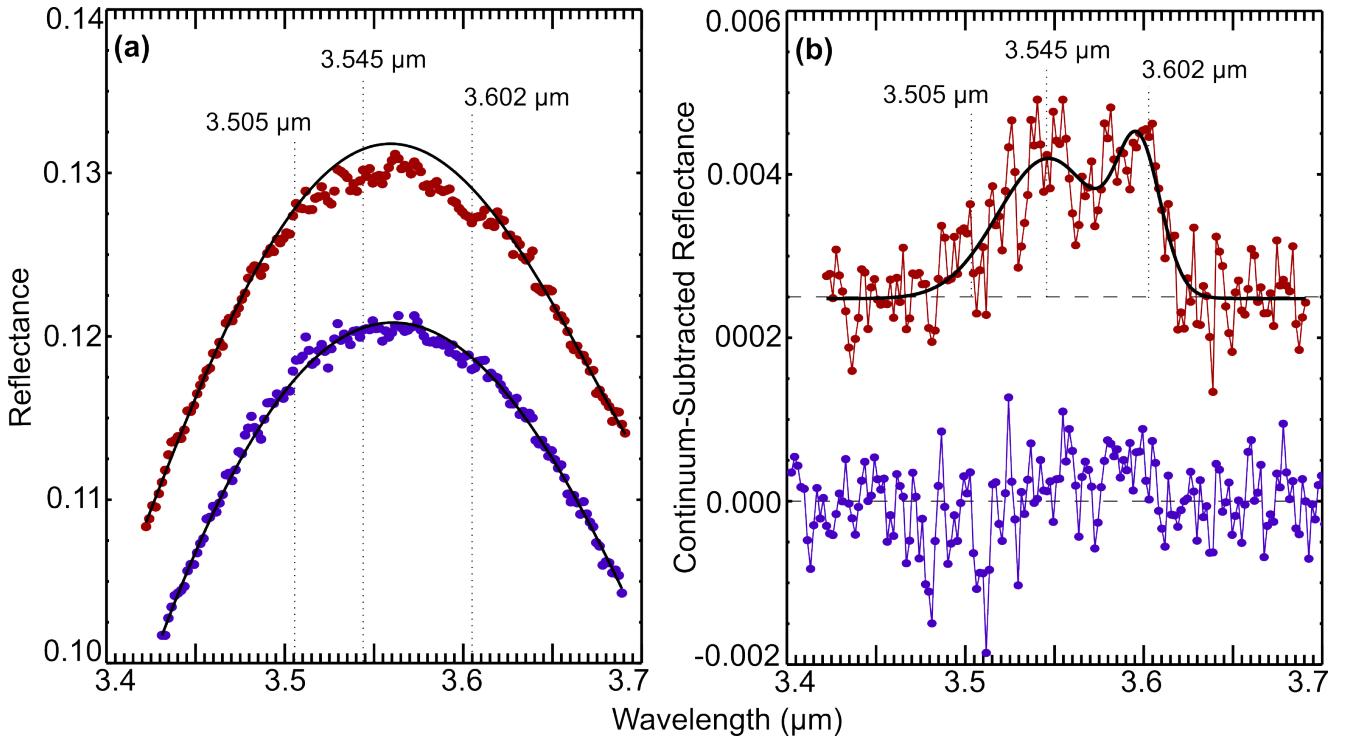


Figure A3. The real 'n' (blue) and imaginary 'k' (red) complex refractive indices for crystalline CO_2 ice measured in the laboratory at 70 K (Gerakines & Hudson 2020) compared to arbitrarily scaled spectra (1σ errors) of Ariel's leading and trailing (offset upward for clarity) hemispheres. Dashed lines indicate spectral features identified on Ariel that result from $^{12}\text{CO}_2$ and $^{13}\text{CO}_2$ ice and correspond to changes in n and k as a function of wavelength. Ariel's $^{12}\text{CO}_2$ scattering peak starts close to $4.175 \mu\text{m}$, where k substantially increases above n , and ends near $4.265 \mu\text{m}$, where k drops off steeply and n increases above 6 . The $4.30 \mu\text{m}$ $^{16}\text{O}^{12}\text{C}^{18}\text{O}$ and $4.38 \mu\text{m}$ $^{13}\text{CO}_2$ features coincide with small increases in k above zero and slight dips in n .

Figure A4. Ratio between Ariel's trailing and leading hemispheres, normalized to 1 at 4 μm . Dashed lines highlight the spectral features identified in the Ariel data (Figure 1) that show notable trailing/leading hemispherical asymmetries, including subtle features near 3.33, 4.84, and 4.93 μm that could result from deposits of CO_2 ice upward of ~ 10 mm thick (section 4.1, Figure 4). Candidate species are described in section A7.

Figure A5. left: Spectra of Ariel's leading (purple) and trailing (red) hemispheres, scaled to arbitrary reflectance, fit by fourth-order polynomials simulating their continua. Dashed lines highlight the central wavelength position of H_2O_2 measured in the laboratory (3.505 μm) and two other subtle features centered near 3.545 μm and 3.602 μm . Right: Continuum-subtracted spectra of Ariel's leading (purple) and trailing (red, offset upwards by 0.0025) hemispheres, spanning the 3.4 to 3.7 μm wavelength range. A two-Gaussian model (black) has been fit to the weak 3.55 and 3.60 μm features observed on Ariel's trailing hemisphere that are not seen on its leading hemisphere. Neither spectrum exhibits a 3.505 μm band resulting from a H_2O_2 combination mode (Bain & Giguère 1955).

623 A7. Discussion: Candidate Constituents

624 Of the fifteen features we identified and measured, seven are confidently attributed to H_2O , $^{12}\text{CO}_2$, or ^{12}CO (Table
 625 1). The other eight are centered near 3.33, 4.02, 4.15, 4.30, 4.41, 4.47, 4.59, and 4.78 μm . The 3.33 μm and 4.15
 626 μm features are likely dominated by CO_2 , but the 3.33 μm feature may include species exhibiting C-H stretching
 627 modes (e.g., Clark et al. 2009; Grundy et al. 2002; Dartois et al. 2010), whereas the 4.15 μm feature may also include
 628 contributions from deuterated water ice ($\text{D}_2\text{O}/\text{HDO}$; Clark et al. 2019).

629 Ariel's 4.02 μm feature might result from a broad $\nu_1 + \nu_3$ combination mode expressed by CO_3 -bearing minerals
 630 (Hexter 1958; Bishop et al. 2021). Additionally, S-bearing species have been suggested to explain Callisto's broad 4.02
 631 μm feature, including disulfanide (HS_2^-) and hydrogen disulfide (H_2S_2 ; (Cartwright et al. 2020b), or perhaps even
 632 a wavelength shifted sulfur dioxide (SO_2) band (e.g., McCord et al. 1998). H_2CO_3 , formed via irradiation of H_2O
 633 mixed with CO_2 , expresses a broad band between 3.8 and 3.9 μm due to the CO_3^{-1} anion (e.g., Hage et al. 1998) that
 634 might contribute to Ariel's 4.02 μm , assuming some process is able to shift its band center closer to 4 μm . Conversely,
 635 Ariel's 4.02 μm feature might be associated with the Christiansen band exhibited by $^{12}\text{CO}_2$ ice near 4.07 μm (seen in
 636 the CO_2 spectral models 1-3 shown in Figures 2 and A1). However, there is a sizeable wavelength gap ($\sim 0.05 \mu\text{m}$)
 637 between the Christiansen features displayed by these spectral models and Ariel's 4.02 μm band, and it is uncertain
 638 why the Christiansen band would exhibit such a large shift, especially given that the feature is not shifted in spectra
 639 of CO_2 -rich TNOs (Figure A6).

640 Because of the strength of H_2O ice absorption, and the shape of the H_2O ice continuum in the 4 μm wavelength range,
 641 exact identification of Ariel's 4.02 μm band center is difficult, and it may be centered at slightly shorter wavelengths,
 642 between 3.98 and 4 μm . Similarly, Ceres exhibit a 4 μm feature that shifts between 3.95 and 4.02 μm , with Mg-Ca
 643 carbonates shifting its 4 μm feature to the global average of 3.95 μm and Na carbonates shifting the band feature
 644 to 4.02 μm (e.g., Carrozzo et al. 2018). Therefore, if Ariel's 4.02 μm band is in reality centered at slightly shorter
 645 wavelengths, it could still be consistent with the broad $\nu_1 + \nu_3$ combination mode expressed by carbonate minerals.

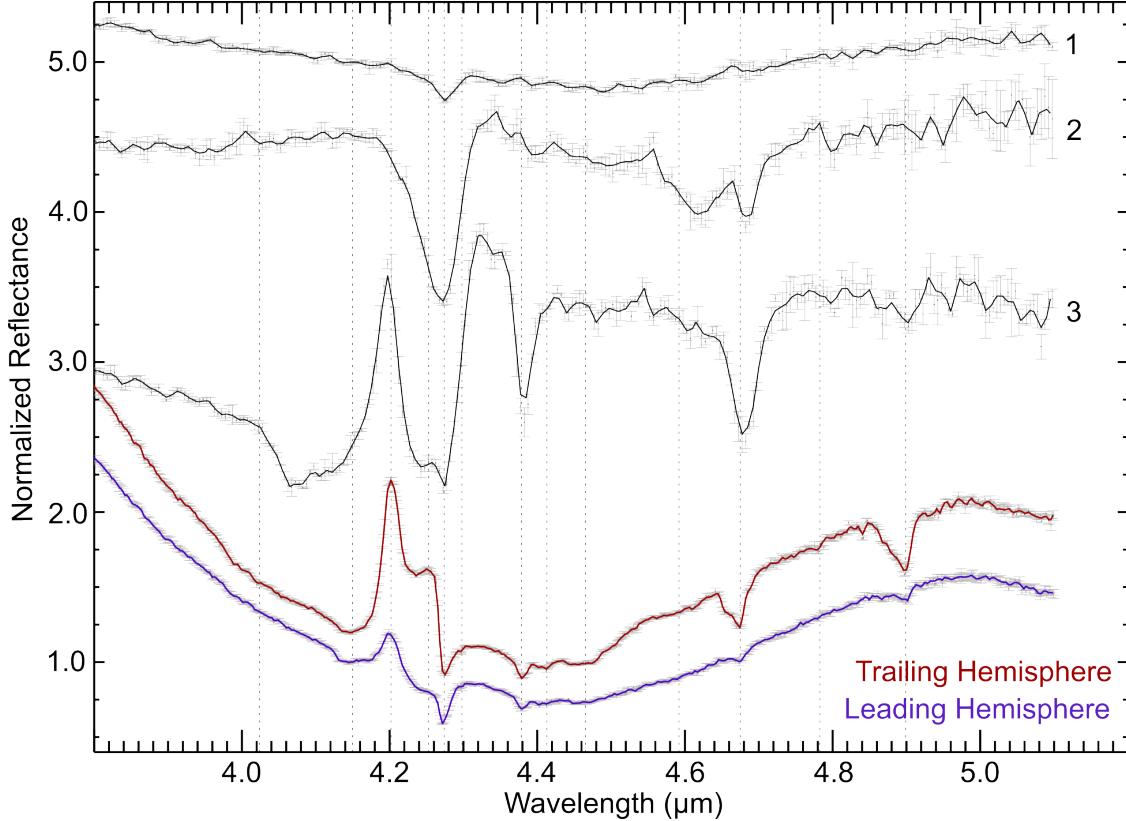
646 Ariel's 4.30 μm feature is embedded on the long-wavelength end of its 4.27 μm $^{12}\text{CO}_2$ ice band and probably
 647 results from the CO_2 isotopologue $^{16}\text{O}^{12}\text{C}^{18}\text{O}$ (Bennett et al. 2010b). Although amorphous CO_2 could hypothetically
 648 contribute to Ariel's 4.30 μm band, it is not expected to be present at Ariel's peak surface temperatures (e.g., Escribano
 649 et al. 2013).

650 The 4.41 μm and 4.47 μm features could result from irradiation of CO and CO_2 mixtures, forming C_3O_2 and other
 651 higher-order carbon chain oxides (e.g., Gerakines & Moore 2001; Strazzulla et al. 2007). Alternatively, these two
 652 features could result from irradiation of carbon oxides and ammonia (NH_3), forming CN-bearing compounds (e.g.,
 653 Strazzulla et al. 2007). The 4.41 μm feature might also (in part) result from $^{16}\text{O}^{13}\text{C}^{18}\text{O}$ ice (Bennett et al. 2010b).

654 Ariel's 4.59 μm feature could result from irradiation of H_2O , CO_2 , and NH_3 , forming OCN^- , a key tracer of nitrogen-
 655 bearing species in the interstellar medium and protoplanetary disks (e.g., McClure et al. 2023). If OCN^- is confirmed,
 656 then a complementary NH_4^+ feature should be present near 6.85 μm (e.g., Grim et al. 1989; Palumbo et al. 2000;
 657 Bennett et al. 2010a).

658 Ariel's 4.78 μm band most likely results from ^{13}CO (e.g., Bennett et al. 2010b), given that it is only detected on
 659 Ariel's trailing side, where the ^{12}CO feature is dramatically stronger (see section A8 for discussion of $^{13}\text{CO}/^{12}\text{CO}$
 660 isotopic ratios). Nonetheless, the ν_3 mode of hydrogen cyanide ice (HCN; e.g., Gerakines et al. 2022) might contribute
 661 to this feature as well, if nitriles are present.

662 Subtle features near 3.55 and 3.60 μm on Ariel's trailing side (Figure A5) may result from irradiation of CO_2 and
 663 H_2O , possibly generating formaldehyde (H_2CO ; Moore et al. 2004b), formic acid (CH_2O_2 ; Bisschop et al. 2007), or
 664 perhaps oxalates (C_2O_4 ; Applin et al. 2016). A 3.6 μm feature on Saturn's moon Phoebe has also been attributed to
 665 $\text{HDO}/\text{D}_2\text{O}$ ice (Clark et al. 2019), and perhaps deuterated water ice contributes to Ariel's 3.6 μm feature as well.


666 Finally, we identified, but did not measure, three other very subtle features centered near 3.01, 4.84, and 4.93 μm
 667 on Ariel's trailing hemisphere, which probably result from CO_2 (Figures 4 and A4; Hansen 1997; Quirico & Schmitt
 668 1997a).

669 Disentangling these various components requires follow-up laboratory experiments and associated modeling efforts.
 670 In particular, there is a need to determine whether NH_3 on Ariel may have been radiolytically converted into nitriles,
 671 thereby explaining the absence of N-H stretching modes in the NIRSpec data reported here. Additionally, Ariel's
 672 prominent double-lobed scattering peaks near 4.20 and 4.25 μm share morphological similarities to double-lobed CO_2
 673 gas emission peaks detected at Callisto (Carlson 1999), and more recently, the Centaur 39P/Oterma (Pinto et al.
 674 2023). However, there is a notable wavelength shift between these CO_2 gas emission peaks ($\sim 4.2 - 4.3 \mu\text{m}$), and

675 Ariel's scattering peaks ($4.16 - 4.26 \mu\text{m}$), which is more consistent with scattering within a thick layer of CO_2 ice
 676 (Model 3 in Figure 2; Figure A3).

677 A8. Discussion: Comparison between Ariel and CO_2 -bearing TNOs

678 Here we compare NIRSpec data of Ariel's leading and trailing hemispheres to spectra of three TNOs observed as part
 679 of General Observer program 2418 (Pinilla-Alonso et al. 2021). These TNOs are representative of the three spectral
 680 types identified by this program (de Pra et al. 2024).

681 **Figure A6.** Comparison between NIRSpec IFU spectra and 1σ uncertainties for Ariel's leading (purple) and trailing (red)
 682 hemispheres and the TNOs 47171 Lempo (1999 TC36) (1), 2013 LU28 (2), and 2004 XA192 (3), selected to represent members
 683 of the 'bowl,' 'cliff,' and 'double-dip' TNOs types (Pinilla-Alonso et al. 2021; de Pra et al. 2024), respectively. All spectra are
 684 normalized to 1 at $4.15 \mu\text{m}$ and offset vertically for clarity. Similar to other double-dip TNOs, 2004 XA192 exhibits strong
 $^{12}\text{CO}_2$ and $^{13}\text{CO}_2$ bands, with a CO_2 scattering peak similar to Ariel's $4.202 \mu\text{m}$ peak. However, none of the TNOs display a
 685 strong $4.252 \mu\text{m}$ peak, unlike Ariel. 2004 XA192 also exhibits a strong $\sim 4.07 \mu\text{m}$ band resulting from the Christiansen effect,
 686 where $n=1$ and $k=0$ in crystalline CO_2 ice (Figure A3). This Christiansen band is notably absent from the Ariel spectra and
 687 synthetic spectra composed of large grain sizes (diameters $\sim 100 \mu\text{m}$; Gerakines & Hudson 2020), generated using our Hapke-Mie
 688 approach (section A2).

689 A9. Discussion: $^{13}\text{CO}/^{12}\text{CO}$ isotopic ratios

690 Prior studies have used remotely sensed H_2O , $\text{HDO}/\text{D}_2\text{O}$ ice, $^{12}\text{CH}_4$, $^{13}\text{CH}_4$, $^{12}\text{CH}_3\text{D}$, $^{13}\text{CO}_2$, and $^{12}\text{CO}_2$ spectral
 691 features to estimate D/H and $^{13}\text{C}/^{12}\text{C}$ isotopic ratios and gain insight into the formation conditions for different icy
 692 bodies and possible endogenic sources of material on their surfaces (Clark et al. 2019; Grundy et al. 2024b; Glein et al.
 693 2024; Cartwright et al. 2024). Ariel's strong $^{12}\text{CO}_2$ scattering peaks makes reliable determination of its $^{13}\text{CO}_2/^{12}\text{CO}_2$
 694 isotopic ratios difficult from analysis of ν_3 band parameters for $^{12}\text{CO}_2$, and we did not attempt to retrieve a $^{12}\text{CO}_2$
 695 abundance from other spectral features (e.g., at $4.90 \mu\text{m}$). However, using the $4.67 \mu\text{m}$ ^{12}CO and $4.78 \mu\text{m}$ (likely)
 696 ^{13}CO bands detected on Ariel's trailing hemisphere, we calculated $^{13}\text{CO}/^{12}\text{CO}$ band area and depth ratios of 0.045
 697 ± 0.010 and 0.146 ± 0.023 , respectively. These results are comparable to Phoebe's $^{13}\text{CO}_2/^{12}\text{CO}_2$ band area (0.059

690 ± 0.005) and depth (0.186 ± 0.036) ratios (Cartwright et al. 2024), and the ratios on Ariel's leading hemisphere
 691 appear qualitatively to be higher, hinting that Ariel may be significantly enhanced in ^{13}C relative to 'terrestrial'
 692 values ($^{13}\text{C}/^{12}\text{C} \approx 0.010 - 0.012$) exhibited by most bodies in the inner Solar System and Saturn's rings and regular
 693 satellites (e.g., Clark et al. 2019). Whether $^{13}\text{C}/^{12}\text{C}$ ratios derived from CO at Ariel would yield similar results to
 694 carbon isotopic ratios derived from CO_2 at Phoebe is uncertain. Furthermore, CO is likely contaminated by CO_2 at
 695 Ariel and its $4.78 \mu\text{m}$ band may be enhanced by HCN ice, assuming nitriles are present, complicating analysis of its
 696 carbon isotopes. We report a preliminary analysis of possible ^{13}C enrichment of CO and CO_2 ices on Ariel in Appendix
 697 A10. More detailed modeling of Ariel's carbon isotopes and their spectral expression at infrared wavelengths is likely
 698 required to corroborate the CO band ratios present here, to convert band ratios to number ratios, and to fully explore
 699 their significance, e.g., in terms of formation of its carbon source material (e.g., Cartwright et al. 2024).

A10. Discussion: Modeling $^{13}\text{CO}_2$ Enrichment

700 The pronounced $4.38 \mu\text{m}$ absorption due to $^{13}\text{CO}_2$ and high apparent ratios of $^{13}\text{CO}/^{12}\text{CO}$ (assuming that CO is a
 701 radiolytic product of CO_2) provide hints that Ariel's surface CO_2 ice is enriched in ^{13}C , perhaps substantially. Here
 702 we seek to outline explanations of how CO_2 could acquire a large ^{13}C enrichment via a balance between production
 703 and escape processes. We then consider a different scenario in which there is long-term isotopic fractionation of CO_2
 704 driven only by escape.

705 Since CO_2 is concentrated on the trailing hemisphere, it may be produced by radiolytically driven oxidation reactions
 706 of, e.g., organic compounds. An alternative or complementary source of CO_2 would be outgassing from the interior
 707 (e.g., a soda ocean). It may not be essential to specify the nature of the CO_2 source since both options would provide
 708 CO_2 with roughly similar C isotope ratios (see below). The exception would be if radiolytic processes result in isotopic
 709 fractionation, but high-energy processes are not generally associated with strong isotope effects because they usually
 710 lack selectivity. We can formulate two equations for the evolution of CO_2 isotopologues in the surface environment of
 711 Ariel:

$$\frac{dN_{44}}{dt} = J_{44} - k_{44} [^{12}\text{CO}_2]_{\text{exob}} \quad (1)$$

712 and

$$\frac{dN_{45}}{dt} = J_{45} - k_{45} [^{13}\text{CO}_2]_{\text{exob}} \quad (2)$$

713 where N represents the number of molecules, subscripts refer to the masses of CO_2 isotopologues, t stands for time,
 714 J designates production rate, k represents a rate constant for atmospheric escape, and brackets indicate the number
 715 density of the CO_2 isotopologue of interest at the exobase. We adopt the classic concept of the exobase as a dividing
 716 line between nominally collisional and collisionless parts of the atmosphere. We wish to explore the simplest case in
 717 which a steady state could be established. Equations 1 and 2 then imply that

$$\left(\frac{^{13}\text{CO}_2}{^{12}\text{CO}_2} \right)_{\text{exob}} = \frac{J_{45}/J_{44}}{k_{45}/k_{44}} = \frac{R_{\text{pro}}}{\alpha_{\text{esc}}} \quad (3)$$

718 where R_{pro} stands for a ratio characteristic of a given production process, and α_{esc} is a fractionation factor due to
 719 CO_2 loss by atmospheric escape.

720 We treat R_{pro} as a fixed parameter that may assume $^{13}\text{C}/^{12}\text{C}$ ratios between those measured in primitive organic
 721 matter (1/92; Alexander et al. (2007)) and carbonate minerals (1/83; Fujiya et al. (2023)) in carbonaceous chondrites.
 722 The former would reflect an organic source of Ariel's CO_2 ice (e.g., carbonaceous dust), while the latter can serve as
 723 an analog for carbonate-bearing subsurface fluids that might erupt CO_2 . The second value would be inherited from
 724 protosolar nebula CO_2 ice that may have been accreted by Ariel at the time of its formation. The overall range of
 725 $^{13}\text{C}/^{12}\text{C}$ ratios considered here encompasses a broad range of primordial carbon isotope ratios observed across the
 726 solar system.

727 We consider CO_2 loss by Jeans escape. This mechanism has the potential to discriminate between species with
 728 different masses (hydrodynamic escape and sputtering are other possibilities, but they are less effective than Jeans
 729 escape at fractionating isotopes). For Jeans escape,

$$\alpha_{\text{esc}} = \sqrt{\frac{44}{45}} \left(\frac{1 + \lambda_{45}^{\text{exob}}}{1 + \lambda_{44}^{\text{exob}}} \right) \exp \left(\lambda_{44}^{\text{exob}} - \lambda_{45}^{\text{exob}} \right), \quad (4)$$

731 where λ_i^{exob} represents the escape parameter of species i at the exobase, as defined below:

$$\lambda_i^{\text{exob}} = \frac{GMm_i}{k_B T_{\text{exob}} r_{\text{exob}}}, \quad (5)$$

732 where $GM = 8.23 \times 10^{10} \text{ m}^3 \text{ s}^{-2}$; m_i corresponds to the mass of a molecule of species i ; $k_B = 1.381 \times 10^{-23} \text{ kg m}^2 \text{ s}^{-2} \text{ K}^{-1}$; T_{exob} denotes the exobase temperature, which is assumed to be the same as the rest of the atmosphere (as a first-order approximation); and r_{exob} indicates the distance between the exobase and the center of Ariel.

735 The isotope ratio at the surface can be related to that at the exobase via

$$\left(\frac{^{13}\text{CO}_2}{^{12}\text{CO}_2} \right)_{\text{surf}} = \frac{1}{\alpha_{\text{diff}}} \left(\frac{^{13}\text{CO}_2}{^{12}\text{CO}_2} \right)_{\text{exob}} \quad (6)$$

736 where α_{diff} denotes an isotope fractionation factor due to molecular diffusion between the surface and exobase. We
737 assume that turbulent mixing is unimportant in Ariel's tenuous atmosphere (i.e., the homopause is always at the
738 surface). For an isothermal atmosphere, the diffusive fractionation factor can be computed using:

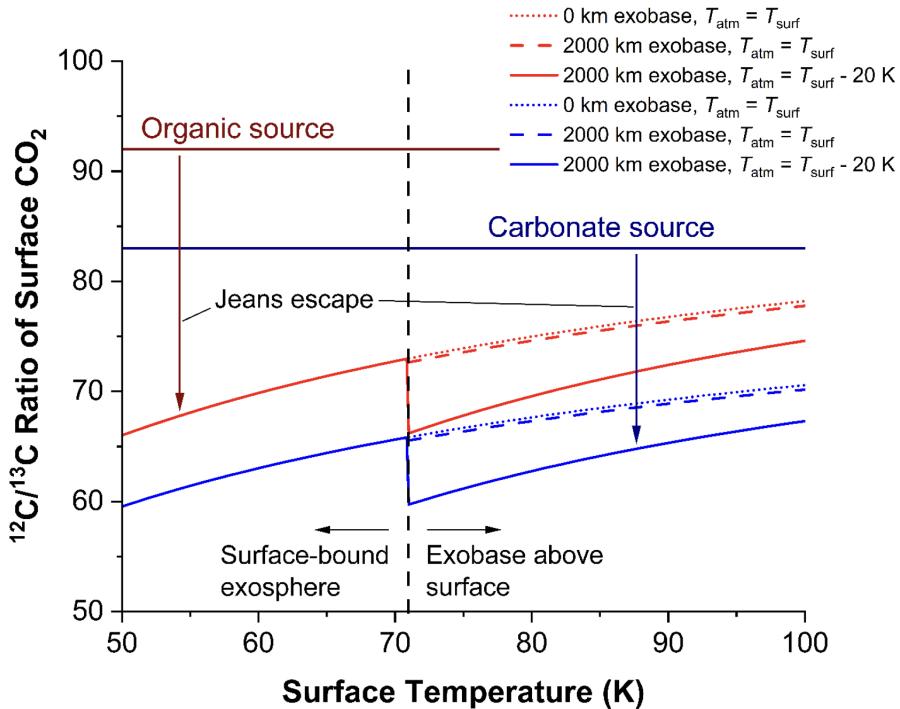
$$\alpha_{\text{diff}} = \exp \left(\frac{GM (m_{45} - m_{44}) (r_{\text{exob}}^{-1} - r_{\text{surf}}^{-1})}{k_B T_{\text{atm}}} \right), \quad (7)$$

739 where $r_{\text{surf}} = 579 \times 10^3 \text{ m}$. We introduce T_{atm} as a mean temperature at altitudes between the surface and exobase.

740 We do not know the location of Ariel's exobase. One possibility is that Ariel has a surface-bound exosphere. We
741 can determine if this is likely by computing the surface pressure (P_{surf}) that would satisfy the following relation:

$$\frac{\pi d_{\text{CO}_2}^2 r_{\text{surf}}^2 P_{\text{surf}}}{GM m_{\text{CO}_2}} = 1, \quad (8)$$

742 where d_{CO_2} corresponds to the kinetic diameter of CO_2 ($4.53 \times 10^{-10} \text{ m}$; [Haynes \(2016\)](#)). The pressure would need
743 to be $< 2.8 \times 10^{-8} \text{ Pa}$ for the exobase to be at the surface. If there is a sufficient CO_2 supply (as suggested by the
744 prominent CO_2 features in the JWST data), then we may assume vapor pressure equilibrium to set a constraint on
745 the maximum temperature that permits a surface-bound exosphere. We use [Fray & Schmitt \(2009\)](#)'s equation:


$$\ln p_{\text{CO}_2, \text{sat}} (\text{bar}) = A_0 + \sum_{j=1}^5 A_j T_{\text{surf}} (\text{K})^{-j} \quad (9)$$

746 where $p_{\text{CO}_2, \text{sat}}$ designates the saturation pressure of CO_2 ice, T_{surf} indicates the surface temperature, $A_0 = 14.76$,
747 $A_1 = -2571 \text{ K}$, $A_2 = -7.781 \times 10^4 \text{ K}^2$, $A_3 = 4.325 \times 10^6 \text{ K}^3$, $A_4 = -1.207 \times 10^8 \text{ K}^4$, and $A_5 = 1.35 \times 10^9 \text{ K}^5$. These parameters are applicable to temperatures between 40 and 195 K ([Fray & Schmitt 2009](#)). By calculating the
748 saturation pressure as a function of temperature, we find that the left side of Equation 8 is < 1 (meaning the mean
749 free path is longer than the scale height) when $T_{\text{surf}} < 71 \text{ K}$. Hence, the exobase will be at the surface (i.e., the whole
750 atmosphere is an exosphere) when the temperature is below 71 K; in this case, $\alpha_{\text{diff}} = 1$ and we can solve Equations
751 3-6 to determine the $^{13}\text{CO}_2/^{12}\text{CO}_2$ ratio at the surface of Ariel.

752 At higher surface temperatures, the exobase will be at higher altitudes. It is not straightforward to simulate the
753 structure of this type of atmosphere; this is an active area of research ([Mogan et al. 2020](#)). However, detailed modeling
754 is probably not needed for our application since we lack specific values of the $^{13}\text{CO}_2/^{12}\text{CO}_2$ ratio on Ariel to explain
755 (see section A8). Instead, we have the more basic goal of exploring the sensitivity of the isotope ratio to unknowns
756 that influence isotopic fractionation. The two parameters of interest here are the exobase altitude and temperature
757 of the atmosphere. In the present treatment, we still assume that the atmosphere is isothermal, but it could have a
758 different temperature than that of the surface. Parameters r_{exob} and T_{atm} in Equation 7 can be varied to assess how
759 much they could change α_{diff} . Equations 3-6 can then be used to estimate the steady-state $^{13}\text{C}/^{12}\text{C}$ ratio of Ariel's
760 surface CO_2 ice at $T_{\text{surf}} \geq 71 \text{ K}$. We do not account for any carbon isotopic fractionation between CO_2 gas and ice
761 at the surface, as laboratory experiments show that there is no more than $\sim 0.4\%$ fractionation down to 130 K ([Eiler
762 et al. 2000](#)).

763 As shown in Figure A7, CO_2 derived from organics or carbonates can be significantly enriched in ^{13}C in the surface
764 environment of Ariel due to atmospheric escape. The predicted enrichment is about 30%, i.e., 300%. This is very large.

For comparison, biological production of CH_4 from CO_2 is generally considered to have a large isotope effect, with a fractionation that can reach $\sim 80\text{\textperthousand}$ (Milkov & Etiope 2018). Our predictions appear to be qualitatively consistent with the ease of finding features from $^{13}\text{CO}_2$ and ^{13}CO in the JWST data. It can be seen in Figure A7 that increasing the exobase altitude may not have a significant effect on the isotope ratio, at least up to 2000 km. The atmospheric temperature can have a larger effect in enriching $^{13}\text{CO}_2$ at the surface. Yet, its effect on diffusive fractionation seems less important than Jeans fractionation, which is responsible for most of the total fractionation in our test cases. Isotopic fractionation by diffusion is limited by large scale heights of Ariel's atmosphere.

Figure A7. Carbon isotopic composition (light/heavy) of steady-state CO_2 at the surface of Ariel. These results show how input values of the $^{12}\text{C}/^{13}\text{C}$ ratio from organics or carbonates (dark horizontal lines) are shifted downward by Jeans escape. For each set of lighter-colored curves, we consider a case with a surface-bound exosphere at all temperatures and $T_{\text{atm}} = T_{\text{surf}}$ (dotted); a case where the exobase altitude has been increased to 2000 km while keeping $T_{\text{atm}} = T_{\text{surf}}$ (dashed); and a case where the exobase altitude remains at 2000 km, but the atmospheric temperature is 20 K lower than the surface temperature. The offsets for these cases are intended to be illustrative, and other values are possible.

The spurious drops at 71 K in Figure A7 arise from the arbitrary assumption that the exobase is at the surface at temperatures below 71 K, and at an altitude of 2000 km at higher temperatures. Although assuming a constant exobase level isolates its effects on the $^{13}\text{C}/^{12}\text{C}$ ratio, in a more realistic model, the exobase would progressively increase in altitude from the surface level with increasing surface temperature and pressure.

Whether a steady state is reached is an open question. In another end-member scenario, one can assume progressive depletion of a primordial surface CO_2 inventory, as a fraction sublimates each summer to form gaseous CO_2 that undergoes isotopic fractionation due to Jeans escape. From Equation 4, $\alpha_{\text{esc}} \approx 0.72$ assuming $T_{\text{surf}} = 55$ K and a surface-bound exobase, or 0.78 at $T_{\text{surf}} = 71$ K. Assuming escape of a modest fraction $f_{\text{esc}} = 0.1$ ppm of all the surface CO_2 each Uranian year, the $^{13}\text{C}/^{12}\text{C}$ ratio of primordial CO_2 would increase by a factor of $(f_{\text{esc}}/\alpha_{\text{esc}}) (4.57 \times 10^9 / 86) \approx 7$ (i.e., 7000‰) over the 4.57 Gyr of solar system history, assuming a constant orbital period for Uranus of 86 Earth years. This requires CO_2 to be gaseous for part, and only part, of the Uranian year.

This calculated enrichment in ^{13}C is even more considerable than in the steady-state scenario, as the ever-increasing $^{13}\text{C}/^{12}\text{C}$ ratio of the surface CO_2 is not diluted by constantly replenishing CO_2 with a canonical $^{13}\text{C}/^{12}\text{C} \approx 1/90$. This enrichment is of the same order of magnitude as the factors of ≈ 4.5 and 15 inferred, respectively, from the band area and depth ratios of ^{13}CO and ^{12}CO on Ariel (see section A8). The corresponding $f_{\text{esc}} = 0.1$ ppm is consistent with an CO_2 initial inventory $(1 + f_{\text{esc}})^{4.57 \times 10^9 / 86} \approx 200$ times greater than the present-day surface abundance; i.e., equivalent

layer thicknesses on the order of 10 m or larger based on the > 10 mm present-day deposit thicknesses discussed in Section 4.1. Compared to water inventories equivalent to global ice shell thicknesses of 100 km or more (e.g., Castillo-Rogez et al. 2023), this appears compatible with bulk CO₂/H₂O abundance ratios of less than a few mol% based on observations of comets (Mumma & Charnley 2011), which may be indicative of the composition of icy material accreted by Ariel. Such bulk compositions allow for greater values of f_{esc} , which would be required to obtain the same ¹³C enrichment in intermediate scenarios involving both primordial inventory depletion and some degree of endogenic (and, for CO, radiolytic) replenishment. We leave to future work the questions of what the absolute rate of CO₂ escape might have been through time, whether it is consistent with the removal of almost all of Ariel’s surface CO₂ inventory, and how much radiolytic production may be implied to account for trailing vs. leading hemisphere differences in the apparent abundance of CO₂. Future constraints on the ¹⁸O/¹⁶O ratio may enable further discrimination between steady-state and limited replenishment scenarios, as the larger mass difference between ¹⁶OC¹⁸O and ¹⁶OC¹⁶O can be expected to magnify the degree of fractionation.

The models outlined above may have more general applicability to other outer solar system bodies with abundant ¹³CO₂. In addition to the phenomena considered in this appendix, it may be useful to consider how lateral heterogeneities in the availability of CO₂ ice, seasonal effects on surface temperatures, kinetic inhibition of CO₂ sublimation, and possible vapor pressure isotope effects at low temperatures might come together to create a rich isotope geochemistry that we are just beginning to glimpse.