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Preface

My interest in spacecraft modeling, attitude determination and control started at
Orbital Science Corporation. At the end of the summer of 2005, I was looking
for a job that would best use my background in controls and optimization. There
was an open house for job applicants at Dulles campus of the company. That was
the first time I visited Orbital Science Corporation. I was very fortunate to have
a chance to talk to Dr. Brian Keller, the deputy director of GNC (guidance, nav-
igation, and controls) at the time. I showed him my publications in controls and
explained my work at previous companies, he listened and immediately promised
to set up an interview for me. A few weeks later, my future manager at Orbital
Science Corporation, Mr. James Bobbett, called me and an interview was sched-
uled. Both Brian and James knew that I did not have a background in spacecraft
and launch vehicles, however they trusted my background in controls and be-
lieved that my prior experience to be beneficial in this work. They offered me the
job! I joined Orbital Science Corporation in November 2005.

My time at Orbital Science Corporation was delightful. I was deeply involved
in the control system designs for two spacecrafts and one launch vehicle. My first
assignment was to review and learn the design of ROCSAT III in preparation for
designing the next spacecraft. In a few weeks, I realized that the design could be
improved and I proposed an alternative method. I was surprised that my manager,
Mr. Bobbett, quickly replied to my email with his strong support for my proposal.
The proposed changes were implemented and six satellites were launched in
April, 2006, all achieving their design requirements.

During my time at Orbital Science Corporation, several textbooks on space-
craft controls, such as M.J. Sidi’s book “Spacecraft Dynamics and Control: A
Practical Engineering Approach”, B. Wie’s book “Space Vehicle Dynamics and
Control”, and J.R. Wertz’s book ““Spacecraft Attitude Determination and Con-
trol”, were great source to me in understanding this topic. Although all these
books are excellent, I believed that some materials could be improved, espe-
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cially, the control system design methods. However, my work assignments at
Orbital Science Corporation were very challenging and I did not have time to
think about the specific of these improvements.

I left Orbital Science Corporation to join the US NRC in 2008. At NRC, I
have had more free time, after eight hours in office, to think about these prob-
lems. I started to publish papers in 2010 on new methods for spacecraft control
and algorithms to design spacecraft control systems, trying to address control
related problems in different stages of different missions using different sensors
and actuators to cover as many design problems as possible. After a few years,
my publications covered a few important areas in spacecraft modeling, attitude
determination and control.

On May 1, 2015, I received an email from Vijay Primlani from CRC Press,
asking if [ was interested in publishing a book with this established publisher. My
immediate thought was: that is a cool idea. I said “yes, but it might take some
time because I want to consider a few more design problems that I have not done
yet, besides I had been working and would continue to work only in my spare
time for this project.” I did not know that the delay would be a few years but the
promise has been the motivation for me to work continuously on this interesting
project.

When this project approaches the finish line, I would like to thank a few
people, who helped me along the way. First, I would like to thank Dr. Keller and
Mr. Bobbett at Orbital Science Corporation for giving me the chance to work in
this amazing area. Second, I would like to thank Mr. Primlani at CRC Press for
his invitation to write a book with my choice of topic and for his patience with
my slow progress. I am also indebted to my former colleague, Dr. Z. Zhou at
NASA, who co-authored two papers which are included in this book. Last but
not the least, I am grateful to my manager, Mr. Ronaldo Jenkins at the US NRC
for his support and approval of writing this book in my spare time.
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Chapter 1

Introduction

CONTENTS
1.1 Organization of the book .......... ... ... o i i 3
1.2 Some basic notations and identities ................coiiiiiiaa... 6

Spacecraft attitude determination and control is an important part of a spacecraft
to achieve its designed mission. As of today, many spacecrafts have been suc-
cessfully launched, and most of them have performed well as they were designed.
Many research papers have been published to address the attitude determination
and control design problems. Several text books are available for students to learn
the technology and for engineers to use as references.

The most popular spacecraft models for attitude determination algorithms
and control design methods are the Euler angle models and the quaternion mod-
els. The Euler angle models have been proved very efficient as the linearized
models are controllable, and all standard linear control system design methods
are directly applicable. The drawbacks related to the Euler angle methods are
(a) the designs based on linearized models may not globally stabilize the origi-
nal nonlinear spacecraft, i.e., the design may not work when the attitude of the
spacecraft is far away from the point where the linearization is performed; (b)
the models depend on the rotational sequences, this can be error prone if several
teams work on the same project and they use different rotational sequences; (c)
for any rotational sequence, there is a singular point where the model is not appli-
cable; and (d) since most attitude determination methods use quaternion to rep-
resent the spacecraft attitude, there is a need to transform quaternion into Euler
angles. On the other hand, for quaternion models, people have found controllers

(=Y
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that can globally stabilize nonlinear spacecraft systems; the models do not de-
pend on rotational sequences and they have no singular point; and the quaternion
is provided by attitude determination system and ready to use. The main prob-
lem with the quaternion model based control system design is that the linearized
quaternion model is not controllable. Therefore, most published design meth-
ods heavily rely on Lyapunov functions for the nonlinear spacecraft system. But
there is no systematic way to obtain a desired Lyapunov functions. Moreover, the
Lyapunov function based designs focus on the closed-loop system stability but
pay little attention to the closed-loop system performance.

In a series of papers, the author proposed some reduced quaternion mod-
els which lead to some controllable linearized spacecraft models. Therefore, all
standard linear system theory can be directly applied to analyze and design the
spacecraft control systems. We showed that, in some cases, the designed control
system is not only optimal for the linearized system, but also globally stabilize
the original nonlinear system. Clearly, the reduced quaternion models do not
depend on rotational sequences. Due to the special structure of the linearized
spacecraft model, some most important design methods, such as LQR design
and robust pole assignment design are very simple, enjoy the analytical solutions
for some problems, have direct connection to the performance measures, such
as settling time, rising time, and percentage of overshoot. All these features are
attractive for high quality control system designs.

The idea mentioned above is then extended to more spacecraft control prob-
lems using specific actuators such as magnetic torque bars and control mo-
mentum gyroscopes. These types of actuators may not provide exactly desired
torques. Most existing methods use different conversions to get approximate so-
lutions, meaning that these actuators may generate a torque close to but not equal
to the desired one. Using the reduced quaternion models that incorporate the ac-
tuators into the system model, the control inputs are not torques but the oper-
ational parameters. The main benefit of this idea is that the control actions are
not approximate but accurate. As all actuators have their operational limit, de-
sign with input constraints are also considered in this book by using recently
developed interior-point optimization techniques.

This book grows up from my research on the spacecraft attitude determi-
nation and control design methods in more than a decade which is focused on
using reduced quaternion models because of their merits stated above. The book
provides all necessary background materials on orbital dynamics, rotations and
quaternion, frequently used reference frames, transformations between reference
frames, space environment and disturbance torques, ephemeris astronomical vec-
tor calculations and measurement instruments, spacecraft control actuators and
their models, so that the readers will get a global picture and can apply all
these information into the spacecraft system modeling, attitude determination,
and spacecraft control system designs, which is the main purpose of this book.

This book is different from existing books in that we focus on quaternion
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based spacecraft control system designs and we consider only attitude control
system design related problems, from spacecraft modeling, to attitude determi-
nation and estimation, to control system design method selection, to control al-
gorithm development, and to the simulation of the control system designs. More-
over, this book addresses different attitude control tasks in the spacecraft life
cycle, including spacecraft maneuver, orbit raising, attitude control, and ren-
dezvous. Finally, this book emphasizes the state space design methods rather
than the classical frequency design methods.

1.1 Organization of the book

This book is organized as follows: Chapter 2 is a brief description of orbit dy-
namics and properties. The treatment is focused on two body systems, which
provides necessary background to be used in other chapters, for example, chap-
ters 3, 11, and 15.

Chapter 3 discusses the frequently used coordinate system, the rotational se-
quences, and the quaternion mathematics. Similar to Chapter 2, this chapter pro-
vides readers the tools and background that will be repeatedly used in the rest
chapters.

Chapter 4 introduces two spacecraft dynamical systems based on the space-
craft missions, and their representations using the reduced quaternion models.
The merit of using reduced quaternion models is that their linearized spacecraft
models are controllable while the spacecraft models using full quaternion are
not. It is well-known that all modern linear control system design methods re-
quire that the systems are controllable. This makes the reduced quaternion space-
craft model very attractive. The ultimate goal of this chapter is to establish some
linearized controllable spacecraft models for some mostly desired attitudes for
spacecraft, i.e., the inertial pointing attitude and the nadir pointing attitude.

Chapter 5 explains the space environment and the major disturbance torques
introduced in the space environment. Most of these torques are difficult to be in-
cluded in the spacecraft models which are used in spacecraft attitude control sys-
tem designs. This means that the designed controllers do not consider the effects
of these disturbance torques. As a result, the designed controllers may not work
in the real space environment because the control torques may not compensate
these unmodeled torques. Because of this reason, there is a need to have some
simulation test for the designed spacecraft feedback control system to make sure
that the designed controller works in the space environment that includes these
disturbance torques. Chapter 5 will provide the necessary information so that
control engineers can build the simulated space environment to test the designed
controller.

Chapter 6 discusses the quaternion based attitude determination methods us-
ing vector measurements, including some recently proposed methods. In princi-
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ple, spacecraft attitude can be determined by a set of observed (measured) astro-
nomical vectors and corresponding ephemeris astronomical vectors at the given
time. An important problem is to find some fast, accurate, and robust algorithms
to calculate the spacecraft attitude. Although there are other attitude determina-
tion methods based on rotational matrix or Euler angle representation, it should
be pointed out that quaternion based attitude determination methods are the most
efficient ones.

Chapter 7 explains how to measure the astronomical vectors and how to cal-
culate the corresponding ephemeris astronomical vectors at any given time. most
widely used astronomical vectors are considered. Given the ephemeris informa-
tion of the astronomical objects represented in reference frame and measured
astronomical vectors represented in body frame, the spacecraft attitude can be
obtained using the methods described in Chapter 6.

Since there always exist some random measurement noises, there is a need to
have some filtering techniques to reduce the measurement noise effect. Kalman
filter was developed in 1960’s just for this purpose and this technique was widely
used in spacecraft attitude determination. Chapter 8 discusses the attitude esti-
mation problem using extended and traditional Kalman filters.

Chapter 9 is about attitude control system designs with the desired torques
as control variables. We focus on state-space Linear Quadratic Regulator (LQR)
design method. For nadir pointing spacecraft, the solution described in Appendix
B can be applied directly. But for inertial pointing spacecraft, which has an ex-
tremely simple linearized model, an analytic solution exists. For this case, the
relation between the LQR design and the closed-loop pole positions is estab-
lished. The analytical solution provides insight for engineers to trade off many
conflict requirements. It is shown that the design globally stabilizes the nonlin-
ear spacecraft system even the design is based on the linearized system. As a
matter of fact, the LQR design discussed in this chapter is actually a robust pole
assignment design. Therefore, the design is insensitive to the modeling error and
is good for disturbance rejection.

All designs in chapter 9 calculate the desired torques that are used to control
the spacecraft attitude. These desired torques are supplied by using several differ-
ent actuators or their combinations. Chapter 10 reviews some widely used space-
craft actuators, including reaction wheel and momentum wheel, control moment
gyros, magnetic torque rods, and thrusters. This chapter reveals a fact that sev-
eral types of actuators are not able to provide desired torques in all directions.
Therefore, the methods discussed in Chapter 9 (when these actuators are used)
have a torque realization problem. A better design practice should include the
actuators’ models in the control system design. This consideration will be topics
of the rest chapters.

Chapter 11 discusses system designs for spacecraft using magnetic torque
rods. Although magnetic torque bars can provide torques only in a plane instead
of three dimensional space at any time, it is shown that the controllability of
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spacecraft using only magnetic torques is achievable under some mild conditions.
Using the fact that the magnetic field is approximately a periodic function of
the spacecraft orbit, periodic LQR design is considered in the controller design.
Some efficient solutions for the algebraic periodic Riccati equation are proposed.

Chapter 12 discusses spacecraft control system design using thrusters. A typ-
ical operation using thrusters, orbit-raising, is considered in this chapter. The
control system models and controller designs depend on the thruster configu-
rations. This chapter describes how to design the controller using the standard
linear system theory. Although a particular thruster configuration is considered
in this chapter, the idea can easily be used for any other thruster configurations.

Chapter 13 addresses Model Predictive Control (MPC) and its application to
the spacecraft attitude control problems. Since MPC needs extensive on-board
computation, it was not widely used in spacecraft control. As more powerful
computers are installed on spacecraft. MPC is expected to find more applica-
tions in aerospace in the future. This chapter establishes the relation between
constrained MPC and convex quadratic programming (QP) with box constraints.
This formulation is directly applicable to the controller design problem when ac-
tuator saturation exists. An efficient interior-point algorithm specifically for this
problem is proposed and its convergence is proved. The thruster control prob-
lem discussed in Chapter 12 is revisited and it is shown that the problem can be
solved by the MPC control method proposed in this chapter.

Chapter 14 is dedicated to the spacecraft attitude control system design using
control moment gyros. As we already knew in Chapter 10 that for given desired
torques obtained in Chapter 9, there are singular points where one cannot find
gimbal speeds of the CMGs to achieve the desired torques. This chapter presents
a new operational concept for control moment gyros and propose a MPC design
method for this problem. Simulation test is used to demonstrate the feasibility of
the proposed method.

Chapter 15 considers coupled orbit and attitude control that is the key tech-
nology for spacecraft rendezvous and soft docking. Coupled orbit and attitude
control is an extensively studied problem with renewed interest because of in-
stallations of powerful on-board computers, availability of advanced theoretical
results, and requirements for better performance in future missions. The method
considered in this chapter addresses a fundamental requirements for soft dock-
ing, i.e., there is no oscillation crossing the horizontal line for relative position
and relative attitude between chaser and target spacecraft to avoid collision dur-
ing the docking process.

Chapter 16 deals with the multi-body spacecraft. Some most advanced tele-
scopes, such as James Webb Space Telescope and LUVOIR telescope, are multi-
body systems. We present a systematic methodology for modeling and attitude
control of multi-body space systems. The modeling technique is based on Kane’s
method using Stoneking’s implementation. The nonlinear model has a nice ana-
lytic structure that can easily be extended to some general rigid multi-body sys-
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tems, connected via rotary joints having arbitrary degrees of freedom, arranged
in tree topologies. Then, we explain how to linearize this nonlinear symbolic
model into a linear symbolic model. The controller design is based on two pop-
ular linear controller design approach: the LQR and the robust pole assignment,
with the former as an effective first design step that inform the latter to select real
eigenvalue places. LUVOIR telescope is used as an example to show step by step
how this method works.

Three appendices are included for quick reference for the background used
in the control system design methods discussed in this book. Appendix A is
about the first order optimality conditions, which is used in several chapters and
in Appendix B. Appendix B provides LQR problem formulation and numerical
solutions. Appendix C summarizes background and solutions for robust pole as-
signment design which has been used in several chapters. For readers who need
to know more background information on optimization and control theory, they
are referred to some standard text books [9, 56, 117, 135, 185, 216, 294] listed
in the References.

1.2 Some basic notations and identities

In this book, vectors are denoted by small case letters with bold font, for example,
a is a vector. Vector magnitude is denoted by normal font, for example, a is the
magnitude of a. A n-dimensional linear space is denoted by R". A collection of
all real points is denoted by R. Matrices are denoted by capital letters with bold
font, for example, A is a matrix, its magnitude is denoted by 2-norm ||A|| unless
it is explicitly indicated that other matrix norm is used. A n X m matrix space, or
the collection of all n x m linear transformation, is denoted by R"*™.

Throughout this book, we will use some common notations. For a column
vector X = [x1,X2,...,%,|T, we sometimes write it as x = (x1,x2,...,X,) to save
space. For any two vectors x and y, we will denote by x -y = x'y the dot product
of x and y, by x x y the cross product of x and y, by xoy the element-wise or
Hadamard product of x and y, by ? the element-wise division of x and y if all
elements of y are not zero, by ||x|| the 2-norm of the vector of x. For a vector
X, we use X to denote a matrix whose diagonal elements are the vector x. Let a,
b, and ¢ be any three dimensional vectors, we will repeatedly use the following
identities.

axb=—-bxa, (1.1)
(axb)xec=(a-¢c)b—(b-c)a, (1.2)

and
ax(bxc)=(a-c)b—(a-b)c, (1.3)

and

(axb)-a=(axb)-b=0. (1.4)
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We denote
i=(1,0,0), j=(0,1,0), k=(0,0,1) (1.5)

for the standard basis for R3, and S(x) a skew-symmetric matrix function of
X = [x1,x2,x3]T defined by

0 —X3 X2
S(X) = X3 0 —X1 =x*. (16)
—X2 X1 0

The cross product of x X'y can then be represented by a matrix multiplication
S(x)y, i.e., x x y = S(x)y = x*y. We will use p, q, and T to denote quaternions
which will be defined later on.






Chapter 2

Orbit Dynamics and
Properties

CONTENTS
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2.5.2  Orbital parameters ... 25

This chapter introduces necessary background about orbit dynamics and prop-
erties, which will be used in the remaining chapters. The presentation of this
chapter follows closely the style of [50, 232, 265].

2.1 Orbit dynamics

Let f denote the force applied to a particle in space, m be the mass of the particle,
v be the velocity of the particle in space, p = mv be the linear momentum, and

o
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a= % be linear acceleration. The most important Newton’s law is

dp dmv
f: _——= — = . 2.1
a - ar ™ @1

For any two particles in space with masses m; and m, respectively, their dis-
tance in space is expressed by a vector r, and they attract to each other with a
force given by the expression

Gmlmzr
f=—7%—, (2.2)
r
where G = 6.669 x 10~!'m? /kg — s? is the universal constant of gravitation. The
magnitude of the forceis f = % Note that for any force f}, exerted by particle
1 on particle 2, there must exist a force f,; exerted by particle 2 on particle 1 with
the same magnitude but in opposite direction, i.e.,

£ = —fp,. (2.3)

For a selected coordinate, let O be the coordinate origin. For a particle with
mass m, its position can be defined by a vector r from origin O pointing to its
location. Then, the moment of the force f about the origin (also known as the
torque) is given by

t=rxf. (2.4)

The angular momentum about O is defined as
h=m(rxv). (2.5)
Taking derivative on both side of the equation gives:

dh d d
E:E(rxmv):vx(mv)—irrxa(mv) =0+rxf=t. (2.6)
Equation (2.6) is very important, which will be used throughout the book. For
two body system, if the mass of one particle is much larger than the other particle,
since the attracting force f is collinear with r, therefore, r xf=0=t = %, ie.,
h is a constant, the orbit of the smaller particle is a plane.

Now, let’s consider the motion of a small particle with mass of unit around a
much large particle with mass M in the coordinate system as described in Figure
2.1.

In view of (2.5), h =r X v, one has

h = rvsin(at) = rvcos(B) = r (r—> == 2.7)

In Figure 2.1, i and j are unit length vectors. Therefore, r = ri, and we have

di  dido  .do dj djdo  .do
i doar Yar ! 2.8)

dt  dodt dt’
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Y

Figure 2.1: Radial and transverse components of motion in a plane.

Hence d di d do .d
r 1 r r
i == i 2.9
arar U TV a 29
Since the particle has the mass of unit, from (2.1), it follows
f = a—d—zr—i 'r@—l—iﬂ
ST a\Ya
dj d6+_drd9+_ d29+didr+id2r
T T s T T
dr dt Jdt dt Jdﬂ drdt  dt?
.do do ,drﬁ . d*e  dedr .d*r

= Yaa Daa Vae VYaa e
d*r de\? d*0 _dedr
= il = —r (2 i(re2 2222 2.10
l(dﬂ r(dt>>ﬂ(rdt2Jr dtdt> (2.10)
Using (2.2) with m; = 1 unit and m, = M, we find
GM
f=a=——"rir 2.11)
14

Combining these two equations gives:

2 2 2
dr_r<d9> :_G_M d-0 d@ﬂ_o. (2.12)

a2 "\ ar o T
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The second equation implies

ld [ ,do
-z 27 = 2.1
rdt (r dt) 0 @13)
in view of (2.7), this implies
h= rzfjl_? = constant. (2.14)

The first equation of (2.12) is a nonlinear differential equation and cannot be
solved directly. Let r = 5 Taking derivative on both sides yields

dr ldu 1 dud6

=T 2.15
dt u?* dt u*>deo dr 2.15)
Substituting r = i into (2.14) yields
de
— =l 2.16
Pl (2.16)
Substituting this equation into (2.15) gives
dr 1 du du
A== 2.17
it~ 12de " d6 @17
Note that % = (0, taking the second derivative on both sides yields
d_zrz_ i@:_ i@ﬁ:_ @ﬁ:_;ﬂuzd_zu. (2.18)
dr? dtdo do do dt dez dt de?

Denote the standard gravitational parameter GM = 1 (U is also known as
the geocentric gravitational constant). Combining the first equations of (2.12),

(2.14), and (2.18) yields
dr Ao\ u
ar (49 _ K
dr? dt r2

r 1(de\>
. YT _ (YY) _
dr u \ dt H
h2u2d_2u 1h2 4—[.1142

— - =
de? u

2

d<u
—_ ——=— W 2.1

The last equation is a second order linear differential equation of # which has the

solution of the following form:

U= % +ccos(6—6y), (2.20)
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where c is a constant to be determined. Taking derivative of (2.20) yields

du .
0= —csin(0 — 6p). (2.21)

Let
E=v/2—u/r (2.22)

be the total energy per unit mass. The term of v? /2 is the kinetic energy and u/r
is potential energy of the unit mass. Invoking (2.17), (2.9), and (2.16), one can
write

dr\? do\? du\’> /1 2 du\?
2: “r i — [ —p== Zh 2 :hz bl 2 )
’ (dt) +<rdt> ( dG) +<u ! a6)

(2.23)
Substituting (2.21) and (2.20) into this equation gives
2¢ 2
Vv =h? [cz + h—éu cos(6 — 6p) + (%) } =?h? +2cpcos(0 — 6) + (u/h)*.
(2.24)

Using the principle of conservation of energy implies that E = v?/2 — u/r is a
constant for any 6. Taking 6 — 6y = 7 and using (2.20) yield

v/2—u/r
= (ch)?/2+ (u/h)/2—up
= (ch)/2+ (/) /2= 15u
ch)?  u?

E

= ——. 2.25
2 2h? ( )
This gives
_ KB n
Denote

h2
e=q/1+ ZEF, (2.27)

it can be seen later that e is the eccentricity of the orbit. Therefore, an important
relationship between the eccentricity and the total energy of the orbit is given by
2
u
E=(—1)——. 2.28

(e ) 2h2 ( )
Since 4 is a constant, E is a constant. Substituting ¢ = %e and r = 1 /u into (2.20)
yields one of the most important result so for.

W /u P

= = 2.29
' 1+ecos(0—6)) 1+ecos(0—6p) 2:29)
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where
p=h/u (2.30)

is called the semi-latus rectum.

2.2 Conic section and different orbits

Spacecraft orbits are closely related to conic sections. A conic section is the
intersection of a plane and a right circular cone. Different intersections result in
different orbital shapes: circle, ellipse, parabola, and hyperbola (see Figure 2.2).
Since parabolic orbit is of no importance in the context of spacecraft, we discuss
only the circle, ellipse, and hyperbola orbits.

Hyperbola =

\—parabola

—Ellipse

Hyperbola

Figure 2.2: The orbits defined by the conic section.

2.2.1 Circular orbits

For circular orbits, the eccentricity meets the condition of ¢ = 0 and r, the mag-
nitude of the radius vector r of the orbit from the only focus, is a constant that
meets the condition:

r=p=1/u = [rveos(B)*/ . (231)
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In view of Figure 2.1, for circular orbit, it has § = 0 (the velocity of the body is
perpendicular to the radius vector r), therefore, it follows that

v=u/r. (2.32)
This shows that the velocity v is a constant. Moreover, the energy is given by

E=—u®/(2h%). (2.33)

2.2.2 Elliptic orbits

For elliptic orbit, the eccentricity meets the condition of 0 < e < I, and from
(2.28), its energy is given by E < 0. Representing the ellipse in a two dimensional
space, it is shown in Figure 2.3.

Figure 2.3: The ellipse orbit defined on a plane.

The point on the ellipse at 0 = 0° is called perigee, which corresponds to
point A. The point on the ellipse at @ = 1807 is called apogee, which corresponds
to point B. The foci are the points F = (¢,0) and F’ = (—c,0). The prime focus
of the ellipse is F. For r at point A (the perigee, 8 — 6y = 0°), it follows from
(2.29) that

= : (2.34)
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For r at point B (the apogee, 6 — 6, = 180°), it follows from (2.29) that

r,=-2_, (2.35)

a1
fa _ 1 FE (2.36)
rp, l—e
from which it follows that
e=l""p (2.37)
rq+7p
In view of the Figure 2.3, the major axis of the ellipse is
2p
2a:ru+r,,=?ez7 (238)
this yields
p=a(l-e)=n/u, (2.39)

where a is called the semi-major axis. From (2.26) and (2.28), it follows that the
total energy of a body with unit mass in the orbit is

v op o (@-Dp (@-Dp (E-Dp o p

=Y _H_ - - - _K 2.40
2 r 2h? 2p 2a(1 —e?) 2a (240)
This yields
Vool
—_=_=2_7 2.41
2 r 2a ( )

Clearly, the velocity of orbiting body is a maximum at perigee and a minimum
at apogee. Therefore, for an orbit to be elliptic, it must have

2
Ly (2.42)
2 r

For an ellipse, it is known that ¢ = ae. In view of (2.39), it follows that
s S a4 S
b=va*—c?=ay1—e>= =& Ji—o (2.43)

where b is called semi-minor axis of the elliptic orbit. Combining (2.39) and
¢ = ae yields

e
c:ﬁ%? (2.44)
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2.2.3 Hyperbolic orbits

In this orbit, e > 0, in view of (2.28), it follows that £ > 0. This means that the
kinetic energy of the spacecraft is larger than its potential energy. Therefore, the
spacecraft is about to leave the gravitational attraction field of the central body.

2.3 Property of Keplerian orbits

This section discusses elliptic orbit. The location of the spacecraft in an orbit
can be presented either by its angular deviation from the major axis or by the
time elapsed from its passage at the perigee. In Figure 2.3, the true anomaly 0 is
defined as an angle between the major axis pointing to the perigee and the radius
vector from the prime focus F to the spacecraft. To define the eccentric anomaly,
an auxiliary circle with radius a centered at the middle of the major axis. The
eccentric anomaly v is the angle between OA and OC defined in Figure 2.3.

The relation between true anomaly and eccentric anomaly is derived as fol-
lows. Note

xX+y=ae=c, (2.45a)
x=acos(y), (2.45b)
y=rcos(180 — 0) = —rcos(0), (2.45¢)
it follows
x+y=acos(y)—rcos(6) = ae. (2.46)
From equations (2.29) and (2.39), it follows
B B B pcos(0)
x = acos(y)=ae+rcos(0)=ae+ Tt ecos(8)
a(l1—e*)cos(0) ae+acos()
= == . 2.47
aet 1+ecos(0) 1+ecos(0) (247)
Therefore,
e+cos(0) _ sin(0)v1—e?
_ — /1 —cost(p) = O)VI—e” 548
cos(y) 1+ecos(6)’ sin(y) cos* () 1+ecos(0) (248)
This gives
_ ' Ji—e
cos(0) = cos(y) —e sin(0) = sin(y)vil—e? (2.49)

~ 1—ecos(y)’ 1 —ecos(y)

Applying standard trigonometry yields

0\  sin(6) _\/Tre v
tan<§>_1+cos(6)_ l—etan(Z)' (2.50)
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Substituting (2.39) and (2.49) into (2.29) yields

P a(l—é?) a(1—eé?)

- = = =a(l— . (251
r 1+ecos(0) 1+ecos(H) 1_~_61ch(‘,,)(,‘;) a(l—ecos(y)). (2.51)
A
r+A8
20 :

\

Figure 2.4: Geometry for deriving the law of area.

Now, it is ready to derive Kepler’s second and third law. In Figure 2.4, the
spacecraft position vector r is swept in a differential period of time, the differen-
tial area AA = (ABr?) /2. Therefore, it follows from (2.7) and (2.14) that

dA 1 de 1
a = 3 <r25> = Eh = constant. (2.52)
This proves Kepler’s second law: the time rate of change in area is a constant.
Integration of the above equation, the area swept in time ¢ is given by

1
A= —ht. 2.
21‘ (2.53)

Because the area of a ellipse is A = mab, if the time period of the orbitis ¢t =T,
from (2.53), (2.39), and (2.43) it follows that the orbit period of the spacecraft
is given by

2A _ 2mab _ 2mab B 21a*V/1 — €2

h VPR Ja(l—e)u  /a(l—eP)u

T =
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32
= o L2 (2.54)
uo o
where
u 2z

=4/==— 2.55
o AT (2.55)

is named the mean motion, and

21

M=awy(t—1,) = 7(r —1,) (2.56)

is named the mean anomaly, where t,, is the passing time from perigee. Equation
(2.54) is the so-called Kepler’s third law.

The last formula to be derived in this section is the so-called Kepler’s time
equation. Let the area (AFC’) be denoted by S(AFC’) and the area (AFC) be
denoted by S(AFC) in Figure 2.3. Let #,, = t —t,,. Then, it follows from the law
of the area that

I T
_— = —. 2.57
S(AFC'")  mab @57
Since b
S(AFC') = =S(AFC), (2.58)
a
and
_ Y
S(AFC) = E(na ) —S(OCF)
N
= 3 2acsm(l//)
_ ¥ L ingy) (2.59)
= 5 Jae V), .
it follows from (2.57) and (2.58) that
b T (ya® 1, . T .
tm = E% (T — Ea eSlH(W)) = E[W—esm(l]/)]. (260)
In view of (2.56), this is equivalent to
2n .
tm7:(t—tp)a)0:M:l//—esm(q/). (2.61)

The last equation is named as Kepler’s equation and its solution is fundamental
to the problem of finding the orbital position at a given time. It is also important
for optimal trajectory design problem.
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Figure 2.5: The two dimensional Hohmann transfer.

2.4 Hohmann transfer

Hohmann transfers is an orbital maneuver which uses the least fuel to transfer a
spacecraft between two orbits of different altitudes around a central body. This
subsection considers the simplest two dimensional Hohmann transfer [179, 192].
We denote by x -y the inner product of a pair of vectors x and y. In view of
Figure 2.5, the smallest circle is the initial orbit of the spacecraft. At point A,
a thrust is applied in the tangent direction showed in the figure. The transfer
orbit is an ellipse. The middle circle is an ancillary inscribing circle that is used
to determine ry, the coordinate of the spacecraft in the x —y coordinate system
given the angle of 6 or y. At point B, another thrust is applied in the tangent
direction showed in the figure, and the final orbit of the spacecraft is the out-most
circle. Let x; = (r1, v ) be the state of the spacecraft at A before the impulse
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Av, is applied, x| is composed of the position vector of r; and the velocity
vector v; of the spacecraft. We assume that the orbit is planar. Therefore, r| =
(ri(x)),r2(x;)) and vi = (vi1(x]),vi2(x; ). We denote the magnitude of r;
by r = \/rll(xl_)z + }"12<X1_)2. LetAv, = (Avn,Avlz) and Av, = (AVZI,AVQZ) be

the impulses at point A and B (see Figure 2.5), Av; = \/Avi, +Av?, and Av, =

\/Av3, + Av3, be the magnitude of Avy and Av,, respectively. Given X, , we can
calculate the semi-major axis of the initial orbit from (2.41), which gives

a(x7) = H nek (2.62)

S 2(p/r =3 2) 2u—rvy vy
The eccentricity vector e is defined as:
e:VXh_f:VX(rXV)—E:(u—l>r—(r.—v>v. (2.63)
u r u r u r u

The last equation immediately follows from the vector identity (1.3). Therefore
the eccentricity of the initial circular orbit is given by

o= (5 D5

Letx;{ = (r1,v] )+ (03,Av;) be the state of the spacecraft at A immediately after
the impulse Av, is applied, which is composed of the position vector of r; and
the velocity vector v{ = v| + Av; of the spacecraft. Given x;, we can calculate
the semi-major axis and eccentricity of the ellipse

(2.64)

a(xf) = — (2.65)

+ .yt vt
(it o (5]
u T H

Solving Kepler’s equation (2.61), we can calculate the spacecraft state x; at
any position of the elliptic orbit, which is composed of the position vector of r;
and the velocity vector v, , before the impluse Av; is applied. Let Az be the time
for the spacecraft to travel from A to a point where the second impulse is applied.
From (2.56), we have:

(2.66)

etxi) =

M = wyAt, (2.67)

where @y is the mean motion. The solution of Kepler’s equation can be given in
terms of the mean anomaly M defined as:

W —e(x?)sin(y) = M = a(XLwAz. (2.68)

Given M, we can solve (2.68) to obtain y. Let r, = (r21(X; ), 722(X; )) be the
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position vector of the spacecraft on the ellipse orbit corresponding to the given
y. Then, r> = (r21(X; ),r22(X; )) can be calculated as follows. Let X and y be the
coordinate system with origin at the center of the ellipse (in red line) of Figure
2.5, the axis of ¥ be parallel to the axis of x and the axis of y be parallel to the
axis of y. Then the trajectory of the ellipse is given by

2\ 2 N 2
(_) N (X) _1 (2.69)
a b
where b = a\/1 — €? is the semi-minor axis of the ellipse. From Figure 2.5, we
have X = acos(y), therefore
7 = b sin?(y) = a*(1 — &%) sin’(y).

Expressing r; in (x,y) coordinate and noticing a = a(x;") and e = e(x] ) in this
case, we have

) | cos(y) —e(x7)
I, = [ ;;Z(XE) } =a(xy) { l—e(xf)zsiri(y/) . (2.70)

Differentiating (2.51) we have

_dr d ( a(1-¢%) >—a“i“(9)(1—ez) do __rebsin(0) ;o)

Tar T dr 1+ecos(8) ) (14ecos(9))? di  (1+ecos(6))
In view of (2.14), (2.39), and (2.55), we have

0 =h=/au(l —e?) = apa*\/1 —e?. (2.72)
Substituting (2.72) into (2.71) and using (2.51) yield

P = 7‘%“‘; Sine(f) , (2.73)

and
mpa(l+ecos(0))

r =
V1—e?

(2.74)

From Figure 2.5, we have
ri1(x; ) =ryc08(0), rn(x; ) =rysin(0). (2.75)

Taking time derivative for r,;(x, ) and using (2.73), (2.74), (2.49), and (2.51),
we have

in(xy) = Farcos(8)—r0sin(0)
@ya(x; )e(x;)sin(0)cos(8)  apa(x;)(1 +e(x])cos())sin(6)
—ex, e )
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_ apa(x])sin(0)
1 —e(x})?
~opa(x{)sin(y) /1 —e(x;)?
VI e(x (1~ e(x{ ) cos(y))
woa(x;) sin(y)
(1 —e(x;)cos(y))
woa(x;)* sin(y)

= 2P (2.76)
r

Taking time derivative for r5,(x; ) and using (2.73), (2.74), (2.49), and (2.51),
we have
in(xy) = iysin(@)+r0cos(0)
wpa(x; )e(x;)sin*(6) N moa(x])(1+e(x])cos(0))cos(0)
I—e(x])? 1—e(x{)?
@oa(x;)(e(x]) +cos())
T—e(?
valx) (e(xf) + 2=l
1—e(x])?
apa(x;)?(e(x]) —e(x])?cos(y) +cos(y) —e(x]))
a(x) ) (1 —e(x))cos(y)) /1 —e(x])?
val(x) P T el cos(w)

= : (2.77)
mn

Combining the above two equations, we obtain the velocity vector v, which is
given by

__ ma(x)? —sin(y)
V2 = )2

| T=eltx)cos(w)
This yields x; = (r2,v5 ). Given X, , we can calculate x5 = x; + (03,Avy),

which is the spacecraft state after the impulse Av; is applied. Given x5, we can
calculate

(2.78)

.
alxf)=-—2"8 (2.79)

oyt +
o[ (E 1Y, (v
d&)_H< u m)m ( u )”'

Let a; and a, be the semi-major axis of the initial circular trajectory that passes
A and the desired major semi-major axis of the circular trajectory that passes B.
Let 77 and T, be the orbit periods corresponding to the known initial circular

and
(2.80)




24 W Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

orbit and the desired final circular orbit, respectively, then in view of (2.55), they
should satisfy the following conditions.

a3
T, =2my| -, (2.81)
u

(2.82)

For the decision vector y = (V] ,a(x]),e(x]), w0, M, y,Ar,x; V3, Avy,Av,) €
R!6, a Hohmann transfer can be formulated as an optimization problem as fol-
lows:

min  [|Avy|| + ||Av,| (2.83a)
st V=V —Av =0 (2.83b)
axf) - —"H___¢ (2.83¢)

+ . vt
2U—r1v] V]

+ .yt vt
e@q)_H (&_l)rl_ (_) —0 @83
u | H
- —E——0 (2.83¢)
a(x{)?
M — @At =0 (2.83f)
v —e(x])sin(y)—-M =0 (2.83g)
et cos(y) —e(x)) | _

r—a(x}) { e Psin(y) | = (2.83h)
_ pa(x))? —sin(y) _ .
V2 = r2 V1—e(x)cos(y) | 0 (2.831)
X3 —x, —(0,Avy) =0 (2.83))

ok
T E 0 (2.83k)
+ . ot vt
(2D (e o
u ) u
[Avy]]> <1 (2.83m)
|Av,]]* <1 (2.83n)
a(xf)>a (2.830)
e(xy) >0 (2.83p)

IL+T1

—Ar>0. (2.83q)
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Remark 2.1 Inequality constraints (2.83m) and (2.83n) are introduced because
we would like to restrict the magnitude of the thrust in a reasonable range. Inequal-
ity constraints (2.83m) and (2.83n) are introduced based on the range of a(xfr) and

ex). 1

2.5 Keplerian orbits in three dimensional space

In Section 2.3, we discussed Keplerian orbits in the orbital plane, which is easy to
deal with. In real world, a convenient spacecraft coordinate system is most likely
in three dimensional space and the orbital plane is more likely a plane embedded
in three dimensional space.

2.5.1 Celestial inertial coordinate system

For Earth-orbiting spacecraft, it is convenient to define the center of mass of the
Earth as its origin (a geocentric system). To make it easy to use the formulas
developed in the previous sections of this chapter, the coordinate system should
be an inertial coordinate system without acceleration or deceleration. Since the
Earth moves in an almost circular orbit around the Sun with a long period, there-
fore, it is practically acceptable as an inertial system. Let Z be the axis of the
Earth rotational axis, and this axis is selected as the Z axis of the inertial coordi-
nate system. The Z direction is perpendicular to the Earth’s equator which is in
the X — Y plane of this coordinate system.

Next, we define the X axis of the geocentric inertial system. It is known that
the Earth’s equator plane is not on the same plane of the ecliptic plane, which
is the plane of the earth orbiting around the sun. The Earth’s equator plane is
inclined to the ecliptic plane by an angle of about 23.5°. The two planes intersect
along a line that is called the vernal equinox vector (see Figure 2.6). While the
Earth rotates around the Sun, it crosses this line twice a year. The point when
Earth cross this line in March is called vernal equinox. The direction from the
center of mass of the Sun to the vernal points is defined as the X direction of
the geocentric inertial system. The third axis Y completes an orthogonal right-
hand system. Both equator plane and ecliptic plane move slowly because of the
force of attraction of astronomical bodies. The coordinate axes may need some
corrections over the time.

2.5.2 Orbital parameters

Given the geocentric inertial coordinate system, the spacecraft orbit in this sys-
tem can be described in Figure 2.7. As explained, the X-Y plane is the equator
plane. Z-axis is the rotational axis of the Earth. The vector r, is the vector from
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Figure 2.6: Vernal equinox description.
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Figure 2.7: Parameters in orbit.

the center of the mass of the Earth pointing to the perigee. The vector r is a
moving vector from the center of the Earth to the position of the spacecraft,
which moves along the direction v. The angle between r, and r, 0, is called
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true anomaly which was defined in Figure 2.3 in two dimensional orbit plane.
A coordinate system in the orbit plane is given by three vectors P, Q, and W,
where P is the unit length vector from the primary focus (the center of the mass
of the Earth) pointing to the perigee of the orbit. The unit length vector Q is on
the orbit plane and 90° from P in the direction of the moving spacecraft. W is
defined by P x Q, which is the unit length vector along the momentum axis of
the orbit. The angle between the orbit plane and the equator plane, i, is named as
the inclination of the orbit. The orbit crosses the X-Y plane in two points, one is
ascending node, the other one is descending node. The line passes through the
ascending node and descending node is called the node line. The angle between
X axis and the node line pointing to the ascending node is called the right ascen-
sion, Q. The angle between the node line pointing to the ascending node and P
is @ which is called the argument of perigee. The three angles, i, Q, and ®, plus
three parameters discussed before, a, e, and M = n(t —1y), are known as classical
orbit parameters. It is convenient to define a vector o = [a, e,i,Q, ®,M] for the
orbit parameters, which are summarized below:

a, the semi-major axis;

e, the eccentricity;

i, the inclination;

Q, the right ascension of the ascending node;
, the argument of the perigee; and

M = ay(t — 1y), the mean anomaly.

Clearly, there is another way to present the spacecraft moving around the orbit
by given (v,r) at any time. Chapter 3, provides in details, the transformations
between these two different presentations.
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Based on the missions of a spacecraft, the attitude of the spacecraft represented
by the body frame should be aligned with some desired frame. Spacecraft atti-
tude determination is to provide the information of the difference between the
spacecraft body frame and the desired frame. The desired spacecraft frame also
depends on the spacecraft position and the current time, GPS signals may be used
to determine the spacecraft current position and the time. The mostly used time
in aerospace engineering is the universal time (UT) [265]. The time and position
can be used to calculate the ephemeris astronomical direction information, such
as star directions, the Sun direction, the Earth direction, the Earth magnet field
direction, observed from the spacecraft position at the current time and repre-
sented in the desired frame. The body frame information can be obtained by the
measurements about these directions from the spacecraft on-board instruments.
When the body frame is perfectly aligned with the desired frame, the calculated
ephemeris star directions, the Sun direction, the Earth direction, and the Earth
magnet field direction at the given time should be identical or very close to the
measurements from spacecraft instruments. When the body frame is significantly
different from the desired frame, the measured astronomical directions are sig-
nificantly different from the ephemeris astronomical directions at the given time.
This difference can be represented by a single rotation if quaternion is used or
a series of rotations if Euler angles are used. In the latter case, the sequence of
the rotations is very important. These rotations rotate some angle around cer-
tain rotational axis, thereby estimate the distance between the spacecraft body
frame and the desired frame. Therefore, mathematical definition on rotation and
rotational sequences are the most important concepts in spacecraft attitude de-
termination and control. There are many ways to characterize the rotation and
rotational sequences. We believe that the quaternion representation is one of the
best characterizations, and we will focus our attention on this representation. Our
presentation in this chapter follows the style of [124, 265, 280].

3.1 Some frequently used frames

Many coordinate frames are used in spacecraft related application. This section
discusses some most important frames. For more detailed discussion, readers are
referred to [265].
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3.1.1 Body-fixed frame

The body coordinate system is vehicle-carried and is directly defined on the body
of the spacecraft. Its origin is located at the center of the mass of the spacecraft.
There may be different ways to define its axes. In this book, the axes are defined
by using the so-called principal axes of rotation of the rigid body. Let J be the
moment of inertia matrix of the spacecraft, which is a three-dimensional and real
symmetric matrix. Because J is real symmetric, it has three mutually orthogo-
nal eigenvectors which are associated with three real eigenvalues, i.e., there are
Aii=1,2,3,and x;,i = 1,2,3 such that

JX,': )q'Xl', (31)

where, assuming that the spacecraft is in the normal operation, x; defines the
axis X, which points forward the direction of the spacecraft velocity (but may
not be identical unless the orbit is circular), x, defines the axis Z; which points
downward and is on the orbit plane, and x3 defines the axis Y, which complies
with the right-hand rule.

3.1.2 The Earth centered inertial (ECI) frame

The Earth centered inertial (ECI) frame is important because of two reasons.
First, the Newton’s laws of motion and gravity applied to the spacecraft are
defined in inertial frame. Second, many types of satellites are inertial pointing
spacecraft. This frame is defined relative to the rotation axis of the Earth and the
plane of the Earth’s orbit (the ecliptic plane) about the Sun. The Earth’s equator
is perpendicular to the rotation axis of the Earth. As the Earth moving along the
ecliptic orbit, the equator plane and the ecliptic have two cross points. These two
cross points are special as the tilt of the Earth’s rotational axis is inclined neither
away nor towards the Sun (the center of the Sun being in the same plane as the
Earth’s equator). The ECI frame is defined at one of these equinoxes, the ver-
nal equinox (or March equinox). Because of many less significant (but may not
be negligible) factors, such as the precession of the equinoxes, vernal equinox
used by aerospace engineers is defined by 2000 coordinates and the true of date
(TOD)!. The X; of inertial frame is the direction from the Earth center to the
vernal equinox. The Z; axis is the Earth rotational axis. The Y; follows the right-
hand rule.

3.1.3 Local vertical local horizontal frame

The local vertical local horizontal frame (LVLH) is one of the most desired
frames for many satellites because its Z;,;, direction is always pointing to the
center of the Earth (nadir pointing), which is a desired feature of many satellites.

!For the rigorous and precise definition, please read [265].
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The origin of the local vertical local horizontal frame is the center of mass of an
orbital spacecraft. The X;,;; direction is along the spacecraft velocity direction
and perpendicular to Z;,;,, and Yy, is perpendicular to the orbit plan and follows
the right-hand rule.

3.1.4 South east zenith (SEZ) frame

The south east zenith frame is useful for ground stations to track a spacecraft. The
location of the tracking instrument is the origin. Xgg7 is the direction pointing
to the south, Yggz is the direction pointing to the east, and Zggy is the direction
pointing to the zenith. In this system, the azimuth is the angle measured from
north, clockwise to the location beneath the object of interest. The elevation is
measured from local horizon, positive up to the object of interest.

3.1.5 North east nadir (NED) frame

The north east nadir frame is opposite to the SEZ frame which is defined by the
local horizontal plane. The center of the horizontal plane is the origin. Xygp is
the direction pointing to the north, Yygp is the direction pointing to the east, and
ZnEp 18 the nadir direction.

3.1.6 The Earth-centered Earth-fixed (ECEF) frame

Like the Earth Centered Inertial (ECI) frame, the Earth-centered Earth-fixed
(ECEF) frame is the Earth-based frame. The ECI frame is independent from the
motion and the rotation of the Earth. However, it may not be convenient in some
case as observatories on the ground rotate with the Earth. The center of ECEF
frame is the center of the Earth. Using the convention adopted at the Interna-
tional Meridian Conference in Washington D.C. 1884, the primary meridian for
the Earth is the meridian that the Royal Observatory at Greenwich lies on. The
Xzcer 18 the direction from the center of the Earth pointing to the cross point of
the primary meridian and equator. The Zgcgr is the direction from the center of
the Earth pointing to the north pole. The Ygcgr is the direction that follows the
right-hand rule. The ECEF frame is sometimes called International Terrestrial
Reference Frame (ITRF). Because of the plate tectonic motion, the frame may
need some adjustment every year for certain applications.

3.1.7 The Orbit (Perifocal PQW) frame

In Perifocal PQW frame, the fundamental plane is the spacecraft orbit, and the
origin is at the center of the Earth (see Figure 2.7). The P, axis points towards
perigee, and the Q, is 90° from P, axis in the direction of spacecraft motion. The
W, is normal to the orbit represented by W, = P, x Q,.
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3.1.8 The spacecraft coordinate (RSW) frame

The spacecraft coordinate (RSW) frame is closely related to LVLH frame (see
Figure 2.7). The R, axis always points from the Earth’s center towards the space-
craft as it moves through the orbit. The S, axis points in the direction of (but not
necessarily parallel to) the velocity vector and is perpendicular to the R, axis,
an important additional requirement. The W, axis is normal to the orbital plane
represented by W, = R, x S,

3.2 Rotation sequences and mathematical representa-
tions

“nobreak

3.2.1 Representing a fixed point in a rotational frame

As we discussed at the beginning of this chapter, we determine the spacecraft
attitude by locating the astronomical objects in the sky from the spacecraft in-
struments which gives the directions in the body frame; from the ephemeris in-
formation, we know these directions represented in the desired frame. Therefore,
we have the information on some fixed (astronomical object) point in a rotational
frame when the spacecraft body frame is different from the desired frame. This
is equivalent to represent a fixed point in a rotational frame.

Let (X,Y,Z) be the axes of a frame (see Figure 3.1 where Z-axis points out
of the paper), and (x,y,z) be the axes of another frame which rotates an angle of
0 about Z axis. Let P be a fixed point in (X,Y) plane. Assume that the distance
of P from the origin is r, then we can express P in the first frame coordinate as
(x1,y1,21)

x; =rcos(a), y,=rsin(a), z1=0; (3.2)

and in the second frame coordinate as (x,,y2,22)
x, =rcos(ax—0), y,=rsin(x—0), z=0.

Thus, in view of (3.2), we have

x» = rcos(or)cos(0)+rsin(a)sin(0)
= xjcos(0)+y;sin(6),
y2 = rsin(a)cos(8)—rcos(o)sin(0)

y1cos(6) —x;sin(6),
z = 0. (3.3)
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Figure 3.1: A fixed point in a rotational frame.

‘We can write this transformation in a matrix form

X2 cos(6) sin(f) O X
y2 | = | —sin(0) cos(6) 0 yi | :=Rot3(0). (3.4)
22 0 0 1 21

Similarly, for a fixed point, if the frame rotates about Y axis for an angle 6, then
the transformation can be expressed as

X2 cos(6) 0 —sin(0) X
2 | = 0 1 0 yi | :=Rotz(9). (3.5)
2 sin(@) 0 cos(0) 71

For a fixed point, if the frame rotates about X axis for an angle 6, then the trans-
formation can be expressed as

X2 1 0 0 X1
y2 | =10 cos(6) sin(6) y1 | :=Rot1(0). (3.6)
) 0 —sin(B) cos(0) 21
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Rotational matrices of (3.4), (3.5), and (3.6) are all unitary matrices. By def-
inition, the length of each column of a unitary matrix is one, each column is
orthogonal to other columns. Unitary matrices have many useful properties. Let
C, and C, be two unitary matrices and v be a vector. Some most important prop-
erties of the unitary matrix are (see [77]):

m ||Cyv|| = ||Cov| =] V|, i.e., transformation by a unitary matrix does not
change the vector length.

m C,C,; is a unitary matrix. For rotational matrices, it means that the con-
secutive rotations can be expressed by the product of the rotational ma-
trices, where C; is the first rotation and C, is the second rotation.

u Cl_1 = CT, i.e., the inverse of a rotational matrix is simply a transpose of
the rotational matrix.

3.2.2 Representing a rotational point in a fixed frame

When analyzing relationship between frames, we sometimes need to represent a
rotational point in a fixed frame. Let P, be a point obtained by rotating P an angle
of 0 around Z axis (see Figure 3.2 where Z-axis points out of the paper). Then
P, can be expressed as

x, =rcos(a+0), y,=rsin(a+0), z=0.
Thus, in view of (3.2), we have
X2 =x1c08(0) —y;sin(0), y, =y;cos(0)+x;sin(0), z, =0.

‘We can write this transformation in a matrix form

X2 cos(6) —sin(0) 0 X
y2 | = | sin(@) cos(8) 0 yi | :=Rot;(—0). (3.7)
22 0 0 1 21

Similarly, for a rotational point, if it rotates about Y axis for an angle 6, then the
transformation can be expressed

X2 cos(6) 0 sin(0) X
v | = 0 1 0 y1 | :=Rot,(—0). (3.8)
2 —sin(0) 0 cos(0) 21

For a rotational point, if it rotates about X axis for an angle 6, then the transfor-
mation can be expressed

X2 1 0 0 X1
y2 | =] 0 cos(6) —sin(0) yi | :=Rot;(—0). (3.9)
2 0 sin(B) cos(6) 7
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Figure 3.2: A rotational point in a fixed frame.

3.2.3 Rotations in three dimensional space

The rotations discussed above are simple rotations in two dimensional space.
They are special cases in that the rotational axis is one of the coordinates which
is perpendicular to the plane spanned by vectors before and after the rotation.
Spacecraft attitude determination and control involve general rotations in three
dimensional space. Considering the rotation described in Figure 3.3 where we
rotate the axis X to the axis x. A popular method to represent this rotation is to
use a series of rotations about coordinate described in the previous subsections,
i.e., first we rotate the frame an o angle around —Y axis, then we rotate the
intermediate x” a § angle around the new Z axis (z’ axis). The o and 8 angles
are the so-called Euler angles. Therefore, the rotational matrix is given by

cos(B) sin(B) O cos(ar) O sin(a)
C = —sin(f) cos(f) 0O 0 1 0
0 0 1 —sin(a) 0 cos(o)
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Figure 3.3: An axis rotation in three dimensional space.
cos(B)cos(or) sin(B)  cos(B)sin(cx)
= —sin(B)cos(a) cos(f) —sin(f)sin(x)
| —sin(@) 0 cos(cr)
[ Cii Ci Ci3
= Gy Crn Gy (3.10)
| Gi G Gss

which provides a different explanation of the rotation from X axis to x axis,
i.e., the series of rotations can also be represented by a general rotational matrix

(3.10). Let
Ci1+Cn+C3—1),

1
0)=—
cos(0) 2(
| [ Gz —C3 el

€= 2sin(0)

Gi—Ci | =| e |,
Cio—Cy e3

(3.11)

(3.12)
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1 0 —es3 ()
E— T_C)= 0o - +kn, k=0,1,2,..
2s1n(6) (C C) €3 €l ) 0 7& T, Oa bl
—ey e 0
(3.13)
the general rotational matrix (3.10) can be expressed as
C = cos(0)I+ (1 —cos(0))ée" —sin(0)E. (3.14)

It can be verified that C is a rotational matrix, € is the rotational axis, and 0 is
the rotational angle [95]. C is called the direction cosine matrix.

Figure 3.4: All possible rotations for one axis.

Actually, there may be infinitely many combinations of rotational axes and
rotational angles that can rotate X to x. Moreover, Figure 3.4 and the following
analysis show that in general case, the rotational axis of the direction cosine
matrix may not be one of the coordinates. Let P be the middle point between X
and x and y be the angle between Ox and OP. Let OQ be the unit vector that is
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perpendicular to the plane spanned by X and x vectors. Obviously, the rotation
can be achieved by rotating 2y around OQ. Alternatively, another rotation with
rotational axis OP and rotational angle 7 can also rotates X to x. In fact, we can
use any vector on the plane spanned by OP and OQ as the rotational axis and
find an appropriate rotational angle which will rotate X to x. The first rotation we
described above is sometimes called the minimum-angle rotation, and the second
rotation we described above is called the maximum-angle rotation.

3.2.4 Rotation from one frame to another frame

Figure 3.5: Rotation from one frame to another frame.

In spacecraft attitude determination, we are oftentimes required to find a ro-
tation that brings one frame to another one. This means that we need to find a
rotational axis and an appropriate rotational angle that rotates one given frame
(X,Y,Z) to another given frame (x,y,z). Let S be the middle point of Y and



40 W Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

y. OR be the unit length vector that is perpendicular to the plane spanned by
Y and y. The rotation that brings the frame (X,Y,Z) to (x,y,z) is described in
Figure 3.5, where the plane OPQ spanned by OP and OQ defines all the rota-
tional axes that can rotate X to x; the plane OSR spanned by OR and OS defines
all the rotational axes that can rotate Y to y. Therefore, the intersection of these
two planes defines the unique rotational axis that can rotate X to x and Y to y
simultaneously. We will provide a rigorous derivation in Section 3.4.

3.2.5 Rate of change of the direction cosine matrix

In spacecraft dynamics modeling and controls, we need to know not only the
attitude of the spacecraft, which is represented by the rotation from one frame to
another frame, but also the rate of this rotation. The time dependence of the di-
rection cosine matrix A at time ¢ can be expressed by A(z). The time dependence
of the direction cosine matrix A at time ¢ + Af can be expressed by

A(r+Ar) = CA(r),

where C is a rotation around € with rotational angle 68 = QAr, and Q is the rate
of the rotation around the rotational axis. From (3.14),

C = cos(QANI+ (1 — cos(QAr))ée" —sin(QAr)E. (3.15)

As At — 0, using the notation of (1.6),

0 -3 W
C—oI-EQAr=1-S(w)At=1— w3 0 —w |As
- W 0

where ® = (@, @,, @3) is the rate vector along the rotational axis €, and

0 -3
EQ = [0y 0 —w | =S).
- W 0
This gives
A(t+Ar) = (I—-S(w)Ar)A(t),
or

A(t+Ar)—A(r) = —S(w)A(r)Ar,
therefore, we get
dA

= —S(0)A®). (3.16)
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3.2.6 Rate of change of vectors in rotational frame

In spacecraft dynamics modeling and controls, vectors and their rates of changes
are oftentimes represented in different frames. For the modeling and control pur-
pose, we need to convert the vectors and their rates of changes represented in
different frames into a single frame. Therefore, the relationship between the time
derivatives of an arbitrary vector resolved along a coordinate axes of one system
and the derivatives in a different system is needed. Let a’ be the vector repre-
sented in a reference system and a be the same vector represented in body frame.
Then there is a rotational matrix C expressed in (3.14) such that

a=Ca'

The product rule for differentiation gives
da dC , da’
i b cl==
<dt> at T ( dt )

where the derivative (%) is represented in the body frame, and the deriva-
b

Y
r

is represented in the reference frame. Since C is the rotation from

da’ _ (aa
reference frame to body frame, C (d—"t) ‘ = (d—"t)

(@)

. From (3.16),
b

i
~ _S(w)ca+c™®
b dt

—S(w)a+ (%)

— —oxar (™
N dt

where o is the rate of the rotation between the reference frame and the body
frame.

r

b

, (3.17)
b

3.3 Transformation between coordinate systems

This section discusses some rotational matrix applications. We will focus on the
transformation between different coordinate systems.

3.3.1 Transformation from ECI (XYZ) to PQW coordinate

In view of Figure 2.7, one can see that the transformation of XYZ coordinate
to PQW coordinate can be done by (a) rotate around Z axis by an angle Q; (b)
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then rotate around X axis by an angle 7, and (c) then rotate around Z axis by an
angle ®. Let ¢ be a short notation for cos and s be a short notation for sin. In
mathematics formula, this transformation can be expressed as:

P
0
w
X
= [Rotz3()][Rot; (i)][Rotz(Q)] | Y
Z
co so 0 1 0 O cQ sQ 0 X
= —so co 0 0 c i —sQ cQ 0 Y
0 0 1 0 —si ci 0 0 1 Z

(3.18)

3.3.2 Transformation from ECI (XYZ) to RSW coordinate

In view of Figure 2.7, one can see that the transformation of XYZ coordinate to
RSW coordinate can be done by (a) rotate around Z axis by an angle Q; (b) then
rotate around X axis by an angle i, and (c) then rotate around Z axis by an angle
(w+ 6). Let ¢ be a short notation for cos and s be a short notation for sin. In
mathematics formula, this transformation can be expressed as:

R
S
w

= [RO[3((J)+ 9)][ROZ‘1 (l)][ROl‘g(Q)}

c(w+06) s(o+6) 0 1 0 0 cQ  sQ 0 X
= —s(w+06) c(w+6) 0 0 ci i —sQ Q 0 Y |,
0 0 1 0 —si ci

N~ X

(3.19)

where Q is the right ascension of the ascending node of the orbit, i is the incli-
nation of the orbit, @ is the argument of perigee, and 0 is the true anomaly. The
sum of w and 6 represents the location of the spacecraft relative to the ascending
node.

3.3.3 Transformation from six classical parameters to (v,r)

In this section, we will find the spacecraft position and speed in the ECI co-
ordinate system given six classical orbit parameters |a,e,i,Q, @, M]. Since all
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Y

Figure 3.6: Transformation between orbit parameters and ECI frame.

Keplerian orbits are in a plane, we can define a coordinate system X, y in a plane
with z = 0. It follows from Figure 3.6 and (2.49) that

x=acos(y)—c=a(cos(y)—e), (3.20)
and
y = xtan(9):a(cos(w)—e)zgg(z))
- a(cos(lp)—e)% V)l__eezz[asin(w)}\/l—ez. (3.21)

Given M and e, to find y, one can use Newton’s method for the equation (2.61)
which is provided again below

M =y —esin(y). (3.22)

Given Y, x and y are obtained from (3.20) and (3.21). In view of Figure 2.7,
(x,¥,z) determines the spacecraft location in the PQW coordinate frame with
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z = 0. Therefore, to find r and v, it follows that

r =xP+yQ =a(cos(y) —e)P+av/ 1 —e?sin(y)Q. (3.23)

From this equation, the location of the spacecraft in ECI frame is given by the
inverse transformation of Equation (3.18) which is given by

X X
Y | =[Ro3(Q)] " [Rori (i)] "' [Rotz(@)] ™" |y (3.24)
z 0,

where (X,Y,Z) is the ECI coordinate of the spacecraft.
To calculate the velocity vector, one simply needs to use v = % which gives

dr drdy
=—=—— 3.25
Vo U T dy (3-25)
It follows from (3.22) and (2.56) that
amM — dy dy
S %= ecos(y) o (3.26)
which gives
d_ll, __ % _ @' (3.27)

dt  1—ecos(y) r
The last equation follows from (2.51). Differentiating (3.23) and using (3.27)
yield
ydr_ o
==

where (v,,v,,0) is the spacecraft velocity in PQW coordinate frame. Using the
inverse transformation of Equation (3.18) gives

[— sin(y)P+ /1 —ezcos(w)Q} —v,P+1,Q,  (3.28)

v | = [Rons(Q)]' [Roty (i)] ' [Rors(@)] " | v, (3.29)
v, 0

where (vy, vy, v;) is the spacecraft velocity in the ECI coordinate frame.

3.3.4 Transformation from (v,r) to six classical parameters

Now, we consider the inverse transformation, i.e., given (v,r) in Cartesian coor-
dinates, X, Y, Z, vy, vy, and v, the task is to find the classical orbit parameters
o =la,ei,Q,©,M]. From (2.41), it follows immediately that

P (3.30)

23]

~ =
SIS
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Leth = [hy,hy, h,]" be the orbit momentum represented in ECI frame and /= |h|.
Since h =r x v = |h|W is a given, in view of Figure 2.7, it follows that

cos(i) = h;/h. (3.31)
From Figure 2.7 again, it follows that

sin(Q) = M cos(Q) = ———— (3.32)

NLE:

In view of (2.39), it follows that

2
e= 1= (3.33)
apt

From (3.22), to obtain M = y — esin(y), one needs to know y. Given a, e, and
r, from (2.51), it follows that

y=cos™! (—1 — r') . (3.34)

ae

From (3.23), (3.28), and (2.51), it follows that

a’ay
v = Cin(y) [(eos(y) —e) + (1 - ) cos(y)]
= a‘ra)o sin(y)e(1 —e)cos(y)
= aay sin(y)er = a> wpesin(y). (3.35)

,
This yields, in view of (2.55), that
r-v r-v
i = = . 3.36
sin(y) = — e eVl (3.36)
Equations (3.34) and (3.36) gives y with correct sign. Therefore, M is obtained
by using (2.61) which is given again below

M =y —esin(y). (3.37)

The last parameter is the argument of perigee ®. In view of Figure 3.6, in
orbit plane, we have
x=rcos(0), y=rsin(0). (3.38)

Since r = [X,Y,Z|T is known in ECI frame, substituting x, y, X, ¥, and Z into
(3.19) gives

cos(+ 0) = Xcos(Q) +Ysin(Q).

nw+0) = ——
sin(@+6) rsin(i)’ r

(3.39)

Since 6 is given in (2.49), @ can be obtained from (3.39).
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3.4 Quaternion and its properties

Unlike the Euler angles which represent a rotation by a series of rotations ro-
tating around X, or Y or Z axes, quaternion represents a rotation by a rota-
tional angle around a rotational axis, which is not necessarily around X, or Y,
or Z axes. Quaternion was first introduced by the Irish mathematician William
Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space.
A striking feature of quaternion is that the product of two quaternion is non-
commutative, meaning that the product of two quaternions depends on which
factor is to the left of the multiplication sign and which factor is to the right. Let
the standard basis i, j, and k for the R? satisfy the following condition

iP=j =k*>=ijk=—1. (3.40)
Let a 4-tuple of real numbers
4= (40,91,92,93); (3.41)
we define a quaternion as the sum of a scalar and a vector
4 =qo+iq1 +jq> + kg3 =qo +q, (3.42)

where g is called the scalar part of the quaternion and
q =iq +jg> + kg3

is called the vector part of the quaternion. People use (3.41) and (3.42) inter-
changeably if no confusion is introduced. Though in aerospace engineering, we

always use a special normalized quaternion qo = cos(% ), and q = ésin( 3 ), where

€ is rotational axis, and ¢ is the rotational angle. We will derive some useful
properties for the general form of quaternion.

3.4.1 Equality and addition
Let
P =po+ipi+ip>+kps
and
q=qo+iq1 +jg+Kkq3
be two quaternions, then the two quaternions are equal if and only if
Po=4o0, P1=4q1, P2=4q2, P3=4q3.

For the special normalized quaternion used in the aerospace engineering, if two
quaternions are equal, they have the same rotational angle and the same rotational
axis. The sum of the two quaternions is defined as

P+a= (po+qo) +i(p1+q1) +j(p2+q2) +k(p3+g3).

The zero quaternion has scalar part 0 and vector part (0,0,0). The negative or an
additive inverse of q is —q.
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3.4.2 Multiplication and the identity
From (3.40), we have
ij=k=—ji, jk=i=—kj, ki=j==—ik. (3.43)

Let p and q be defined as before, use (3.40) and (3.43), we define the multiplica-
tion of two quaternions p and q by

P®q=pogo—P-q+poq+qop+PpPXxq, (3.44)

with the scalar part pogo — p - q and vector part poq+ qop + P X q. The quaternion
multiplicative identity has scalar part 1 and vector part (0,0,0).

The quaternion multiplication can be used to represent two consecutive ro-
tations. Let p and q be the two consecutive rotations (p represent the first ro-
tation and q represent the second rotation). The composed rotation is given by
r = p® q. The derivation is given in Section 3.4.4 (see also [281, pages 319-
320]).

3.4.3 Complex conjugate, norm, and inverse
The complex conjugate of quaternion q is denoted by
Q" =q0—q=qo—iq1 —jq2 — kgs. (3.45)

It is easy to see
q4+q" = (q0+4a) + (90— ) = 240 (3.46)

Given two quaternions p and q, we have
(P®q)" =q @p" (3.47)

The norm of a quaternion is defined as ||q|| = /q* ® q. It is also easy to verify

that the norm satisfies
lall = \/a5+47 + 45+ 45 (3.48)

We define the inverse of a quaternion by
1 '®q=q9q =1
Pre- and post-multiplying by @* gives
17'®qeq =0 ®qeq ' =q".

2 we have

Since * ®q=q®q" = ||q

q = . (3.49)
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For normalized quaternion which satisfies ||q|| = /g3 +¢7 + 3+ 4¢3 = 1,
q'=q. (3.50)

Finally, the norm of the product of two quaternions p and q is the product of the
individual norms because

—~

PRYPq)”

PRAVT ®P”

p®|q/*®p*

= pep|all* = [pl|al* (3.51)

peall* =

3.4.4 Rotation by quaternion operator

Now we are ready to show how to rotate a vector using quaternion operator.
For this purpose, we will consider only the normalized quaternion q = go+q =
cos(5) +&sin(5 ), where & is the unit length rotational axis and ¢ is the ro-
tational angle. Clearly, quaternion does have the information about the rota-
tional angle and the rotational axis. Similar to rotational matrices, we need
the product of quaternions to be all;)le to represent consecutive rotations. Let

p =cos(%)+ésin(%) and q = cos(75) —Q—ésin(%), from (3.44), we have

= poan (on(2) on() (s () rein(2))
— con(&eo (&) -osin (2)-n ()
s () sin () - sn () (2

+é (sin(§ ) eos (5 ) +eos (§)sin(5))
= cos( B e (210
= cos(<}/)—l-zési?1(—;)e < ’ ) (3.52)

This means that the product of two quaternions indeed represents two consecu-
tive rotations. Parallel to the vector rotation using rotational matrix, we expect
that a quaternion rotation operator involves multiplication of a quaternion and a
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vector. Therefore, the multiplication of a quaternion and a vector should be de-
fined. To this end, we consider a vector v as a pure quaternion in which the scalar
part is zero and the vector part is v, i.e., V = 0+ v. For the sake of notational
simplicity, we use Vv and v interchangeably for both vector and pure quaternion.
From (3.44), the multiplication of a vector and a quaternion is defined as

qv=(q0+qQ)®@(0+v)=—q-v+gov+qx V. (3.53)

We also expect that the quaternion operator will rotate a vector into another vec-
tor, or a pure quaternion. Simple evaluation shows that neither w = q ® v nor
W = v® q is necessarily a pure vector. However, using (3.53) and (1.2), we have

W o= qveq = (q+9) @ (0+v)®(q—q)

(—q-v+qov+qxVv)®(q —q)

= —qo(q-v)+qo(v-q)+(gxv)-q
+(q-V)q+qov+qo(q x V) —qo(v X q) — (@ X V) x q
(a-v)q+q5v+2q0(q x v) — (q-q)v+ (v-q)q

= (2g—1)v+2(q-v)q+2490(q x V)

= <c052 (%) — sin? (%)) v+2(q-v)q+2qg0(q x V), (3.54)

which is a vector. In fact, the quaternion operator can be expressed by direction
cosine matrix which may be more convenient in some cases. From (3.54), since

(2¢3—1) 0 0 Vi
Ag-tyv=| 0  @g-1 0 v
0 0 (2¢5—1) V3

29 29192 2q193 Vi
2(v-q)q= | 2q19> 295 29243 v,

29193 292935 243 V3
0 —2q0q3 249092 Vi
2go(qx V) = | 2q0gs 0 —2q0q1 v |,
—2q092  2q0q1 0 V3
we have

w1 23— 14247 29192 — 24093 29193+ 29092 vy
wr | = | 20192 +29093 243+245—1 29293 —2q0q V2
w3 2193 —2q09> 29293 +2q0q1  2¢3+2q%—1 V3

(3.55)
This means that we can use either (3.54) or (3.55) for quaternion rotation. We
will use them in different applications in the rest of the book. It is worthwhile to
note, in view of (3.54), that (3.55) defines a general rotational matrix as

C=(q5—q"q)I+2qq" +2490S(q). (3.56)
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We now show that q ® v® q* is indeed the quaternion operator that rotates
v an ¢ angle around &. First, it is easy to verify that @ ® v® @™ is linear operator,
i.e., for two vectors a, b, and a scalar k, the following relation holds.

Q2 (ka+b)Rq =kqRa®q +qoboq". (3.57)

Then, we decompose vector v into two components, v = V, + v,, where v, is
parallel to q and v, is perpendicular to q. We show (a) under quaternion operator
q®v®q*, the first component v, is invariant and (b) the second component v,,
rotates an angle of «. Since v, = kq, where k <1 is a constant, from (3.57),
(3.53), and (3.44), using the fact that q is a normalized quaternion, we have

2V 4" =q® (kq) ©q" =kq® (q) ®q" =k(—q-q+40q) ® (90 — q) = kq.
This proves (a). Using the facts that

q-Vvy :Oa
cos (a) = cos? (%) — sin’ (%) )
sin(a) = 2cos (%) sin (%) ,
o
go = cos (5) ,
. (o
lall =sin (3.

. T
a > vo = [l [villsin (5 ) ve = llal [valIv..

where v is a unit length vector perpendicular to both q and v,,, and from (3.54),
we have
_ . 2 o .2/
Q2 (v)Rq" = (cos (E) —sin (3)) Vo +2(q-v,)q+2q0(q X vy)
= cos(a)v,+2qo(q xV,)

= cos(a)v,+2cos )

(5
= cos(o)v,+2cos ( )sm( ) |VallvL
)

= cos(a)v,+sin(a)||v,||vL. (3.58)

Since v, and ||v,||v, have the same length, and they both perpendicular to v,,
equation (3.58) indicates that q® (v,) ® q@* rotates v,, an angle of ¢ around axis
q. This proves (b).

A fact parallel to the rotational matrix is that § @ (v) ® @* does not change the
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length of v, which is a direct result of (3.51) and the fact that q is a normalized
quaternion.

la@veq | =lallvilal™=Ivl. (3.59)
Similar to the rotational matrix, the inverse of the quaternion operator w = q®
(v) ®q" on v is simple and it is given by

IFeWeI=0"®@e(V)®q)0q=(q"2q)eve (1" ®q) =V

which rotates w an angle of o around —q and brings w back to v. It is easy to
verify that

V=" 0oweq=(2¢;—1)w+2(q-w)q—2q0(q x W). (3.60)
This gives
Vi 26514247 2q192+2q9095 29195 — 29092 wi
v | = | 20192 —2q0q5 2¢5—1+245 24293+ 2q0q: wa
V3 20193+ 29092 292q3 — 24091 2q5— 1+ 243 w3
(3.61)

It is worthwhile to note, in view of (3.60), that (3.61) defines a general rotational
matrix as
A= (q5—q"9)T+2qq" —240S(q). (3.62)

Formula (3.62) is another form of the rotational matrix (3.14).

3.4.5 Matrix form of quaternion production

We also find that in some applications, a matrix form of quaternion production is
more convenient than the form of (3.44). Let ¥ = (ry,r1,2,r3) be the composed
quaternion of two consecutive quaternions of p and q, i.e., F = p ® q. Expanding
(3.44) gives

Yo = Poqo — P191 — P292 — P393 (3.63a)

Y1 = poq1 + p1qo + P2g3 — P3q2 (3.63b)

r2 = poqz2 — P193 + P290 + pP3q1 (3.63¢)

r3 = poq3 + p192 — p2q1 + P3qo- (3.63d)

(3.63) can be written in matrix form

ro [ po —p1 —p2 —p3 40

r _| Pt Po —DP3 P2 q1 (3.642)
) P2 D3 pPo  —Di q2
r3 L P3 —P2 D1 Po q3
I g0 —41 —42 —q3 Po

_ |9 490 43 —42 2 (3.64b)
92 —493 4o q1 )2}
L93 492 —q1 4o pP3
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3.4.6 Derivative of the quaternion

The derivative of quaternion is obtained as follows. Let q() be the quaternion
to a reference frame at time ¢, q(7 + At) be the quaternion to the reference frame
at t + Ar, and p(r) = cos(2%) + &(t) sin(52) be the quaternion that brings §(t)
to q(z + At), i.e., p(¢) is an incremental quaternion with rotational axis &(¢) and
rotational angle Ac.. For Ar — 0, cos(2%) — 1 and sin(4%) — 22, therefore,

P(r) ~ 1 +@&(r)22. This gives

G+ A) = () @ (1 +é(z)%“> ,

or
Ao

qr+A)—q(t) =q(r)® (0 + é(t)7> :
Divide Ar at both sides and let Ar — 0, we obtain
q _ 1, _ 1
e (0456000 ) =aie (0+ 300 ).

where Q(r) = limy 0 52 is a scalar, and ©(r) = &(r)Q(r) is a vector, and (0 +
1o(r)) = 1(0, 0, @,, w3) is a quaternion. Using matrix expression (3.64) for the
quaternion product, we obtain

4o [0 —o -~ —oy 4o
q1 _ e 0 o -o q1
G2 2| @ —aw; O ) 92
93 | o3 @& -—o 0 93
[0~ —q2 —g; 0
1 _
_ |49t 9o q3  q2 o (3.65)
219 g  q —q
L 93 —492 4q1 q0 3
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The quaternion based model has several advantages over Euler angle based
model. For example, the quaternion based model is uniquely defined because
it does not depend on rotational sequence, while a Euler angle based model can
be different for different rotational sequences. Therefore, Euler angle based mod-
els may be error-prone if different groups of people work on the same project but
use different rotational sequences. In engineering design practice, an agreement
is supposed to reach among different design groups working on the same project.
Another attractive feature of quaternion based model is that a full quaternion
model does not have any singular point in any rotational sequence. Therefore,
quaternion model-based control design methods using Lyapunov function have
been discussed in many research papers, for example, [32, 275, 279]. Though
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Lyapunov function is a powerful tool in global stability analysis, obtaining a
control law and the associated Lyapunov function for the nonlinear systems is
postulated by intuition, as noted in [191]. Moreover, most of these designs fo-
cus on the global stability and do not pay much attention on the performance
of the control system. In [191, 281], quaternion based linear error dynamics are
adapted to get desired performance for the attitude control system using classical
frequency domain methods. However, state space time domain design methods,
such as optimal control and pole assignment, are more attractive than the classical
frequency domain design methods. In [339], a linearized state space quaternion
model is derived. Unfortunately, the analysis shows that the linearized state space
representation of the full quaternion model using all four components of the
quaternion is uncontrollable. Therefore, pole assignment can only be achieved in
some controllable subspace in the linearized state space quaternion model using
all four components of the quaternion. In addition, the stability of the linearized
closed loop system is unknown because an uncontrollable eigenvalue is at the
origin of the complex plane.

In this chapter, firstly a controllable quaternion model for inertial pointing
spacecraft has been described, the simplest one in many applications. To obtain a
controllable quaternion model, only vector component of the quaternion is used
in the model. The cost of using only three components of the quaternion in the
model is that, similar to the Euler angle representation, the reduced model has
a singular point at o¢ = 47, where « is the rotation angle around the rotation
axis. However, this singular point is the farthest point to the point where the
linearization is carried out. Therefore, the model and designed controller will
work well in practice.

Secondly, a controllable quaternion model for nadir pointing spacecraft with
momentum wheel(s) has been presented. This is a different model from the in-
ertial pointing spacecraft without a momentum wheel discussed in many litera-
tures. This model includes five important features of many low orbit nadir point-
ing spacecraft: (a) an additional term for the momentum wheels is incorporated
to the nonlinear dynamic equations, (b) the local vertical local horizontal frame is
used as the reference frame and the rotation between local vertical local horizon-
tal frame and inertial frame is considered in the model similar to the treatment in
[232] for the Euler angle based models, (c) gravity gradient torque, a dominant
and predictable disturbance for low orbit spacecraft, is included to improve the
model accuracy, (d) unlike the Euler angle models, the reduced quaternion model
does not depend on the rotational sequence, and (e) the singularity of the reduced
quaternion model is at the farthest angle of & comparing to the singularity of Eu-
ler angle model at angle of /2.

This chapter will show by using only vector component of the quaternion, that
these linearized spacecraft models are fully controllable. Therefore, it is easier
to use these reduced models than the full quaternion models in controller design
because all modern state space control system design methods can be applied di-
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rectly. The stability of the designed closed-loop spacecraft system is guaranteed
because the linearized control system is fully controllable. The justification of us-
ing reduced quaternion models and their benefits were fully discussed [304]. The
similar strategy was used in [206, 211, 330] but the merits were not discussed.

4.1 The general spacecraft system equations
“nobreak

4.1.1 The dynamics equation

Let J be the inertia matrix of a spacecraft defined by

Juu Jiz Jis
J= | Ju Jn Js |, 4.1)
Ja1 Jxn U3

o; = [0, 0p, 6013}T be the angular velocity vector of the spacecraft body with
respect to the inertial frame, represented in the spacecraft body frame, h; be the
angular momentum vector of the spacecraft about its center of mass represented
in the inertial frame, h = Jw; be the same vector of h; but represented in the
body frame, m be the external torque acting on the body about its center of mass.

T'hen, from [227], we have
(dh, )
dt
In view of (3.17), we have
(dh[)
dt

dh
( ) =Jo;=—w; xJo; +m.

b

dh

= (E) + @ x h. 4.2)

This gives

dr
The external torques m are normally composed of (a) disturbance torques t; due
to gravitational, aerodynamic, solar radiation, and other environmental torques
in body frame, and is expressed by

te = [tar. a2, 1a3)" (4.3)
and (b) the control torque u expressed by

u=[u,u,u3]". (4.4)
Therefore,

Jo,=—0o; x (Jo;)+t;+u=—-S(0w;)Jo;) +t; +u, 4.5)
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4.1.2 The kinematics equation

Denote the rotational axis of a body frame relative to a reference frame by a
unit length vector &, the rotational angle around the rotational axis by «, the
scalar component of the quaternion by go = cos(% ), the vector component of the
quaternion by q = [g1,¢2,43]" = @sin(§), then, the quaternion that represents the
rotation of the body frame relative to the reference frame is given by

q= [qo,qT}T: [cos (%) ,éTsin (%)}T (4.6)

Let w be the spacecraft body rate with respect to reference frame represented in
the body frame. From (3.65), , which is repeated below,

do [0~ —o o3 | [ g
q1 _ e 0 o -o q1
7p) 2| 0 —w3 O ] 92
93 | o3 @& -—o 0 93

[0 a1 —q2 —qs | [ O

_ 1 9 40 —93 42 o : 4.7)
2192 g  q —q 0
L 93 —492 4qi1 q0 3

the nonlinear spacecraft kinematics equations of motion can be represented by
the quaternion as follows:

4= —30xq+ 3900

(4.8)
q0 = —%COT(]
In view of (4.7), using the fact that go = /1 — ¢ — g5 — g3, we have,
i 1 l—gi -6 —q —43 2 o
N 93 1—qi— g3 — a3 —q @
“ 0 Q l—qi—a5—q3 >
1
= 5Q(q17427t13)w:g(ql7qz7q37w)- 4.9
It is easy to verify
l—gi-a-a —43 7
det a3 1—qi—q5— a3 —a
—q Q 1—qi—q— a3
1
= (4.10)

- det(Q(qlanaq3)) = 3
Vi-gi-a-a
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hence Q(g1,42,93) is always a full rank matrix except for o = . This means
that unless o = £, the kinematics equation of motion using reduced quaternion
representation can be simplified from (4.7) to (4.9).

The main advantages of using (4.9) instead of (4.7) is as follows: (a) the sys-
tem dimension is reduced from 7 to 6, yielding a simpler model, (b) the linearized
system is controllable, (c) the stability analysis can be directly conducted based
on the linearized system (there is no uncontrollable unstable pole, see [339]),
and (d) all closed loop eigenvalues can be assigned to any position by appro-
priate feedback control law because the linearized system is controllable. The
results presented in this chapter are based on [304, 306].

4.2 The inertial pointing spacecraft model
“nobreak

4.2.1 The nonlinear inertial pointing spacecraft model

The inertial pointing spacecraft is desired in many applications. The inertial
pointing spacecraft model is one of the simplest spacecraft models. In this sec-
tion, we assume that the spacecraft does not have a momentum wheel (h,, = 0);
therefore, the control torques are either thrusters or magnet torque rods or their
combinations. (More details about spacecraft control actuators will be discussed
in Chapter 10). To simplify the model further, we assume that the disturbance
torque is negligible. In this case, (4.5) is reduced to

Jo; = —w; x (Jo;) +u=—S(w;)(Jo;) +u. 4.11)

Let q be the quaternion that represents the rotation of the spacecraft body frame
relative to the inertial frame, the reduced kinematics equation is then the same as
equation (4.9).

4.2.2 The linearized inertial pointing spacecraft models

We can derive the linearized spacecraft system from (4.11) and (4.9) by using
the first order Taylor expansion around the stationary point ¢, = g, = g3 = 0 and

®; = 0 as follows:
1

(OI ~ Ji u,

Jg 1
- ~ <1,
8(01 ;=0 2

q1=92=q3~0

d
o8 20,
8q ;=0

91=q2=q3~0
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Therefore,
@ | | 03 03 oy JU]
[ q ]—[%13 03]{ q }—l—{ 05 }u—Ax+Bu, 4.12)
where '
| 03 03 | o )
A_[%h 03], x—{ q }, and B—{ 05 } (4.13)

It is easy to verify that this linearized spacecraft system equation is controllable.

4.3 Nadir pointing momentum biased spacecraft model
“nobreak

4.3.1 The nonlinear nadir pointing spacecraft model

Momentum biased spacecraft is widely in practice, and is discussed extensively
in [232, chapter 8]. For momentum biased spacecraft, a momentum wheel is
installed in Y, axis which is perpendicular to the orbit plane. Normally, the mo-
mentum wheel spins in a constant speed, but it may also be used to generate
control torque by changing the speed. Let

h = [y, hy, h3]" = [0,h,,0]" (4.14)

be the angular momentum of the momentum wheel in the body frame. The space-
craft model (4.5) is therefore becomes

Jo;,=—w; x (J(D[ +h) +t;+u= —S((J)1)(JCO1 +h) +t; +u, (4.15)

For a nadir pointing spacecraft, the attitude of the spacecraft is represented
by the rotation of the spacecraft body frame relative to the local vertical and
local horizontal (LVLH) frame. Therefore, we will represent the quaternion and
spacecraft body rate in terms of the rotations of the spacecraft body frame relative
to the LVLH frame. Let @ = [@;, @», @3] be the body rate with respect to the
LVLH frame represented in the body frame, @;,;, = [0, — @y, 0] be the orbit rate
(or LVLH frame rate) with respect to the inertial frame, represented in the LVLH
frame. Let v be the speed of the spacecraft, r be the distance from the spacecraft
to the center of the Earth, p be the orbit period, then for circular orbit spacecraft,
we have (see also the definition of mean motion of (2.55))

v 2z
w=-=—.
r p
Let A;’ represent the transformation matrix from the LVLH frame to the space-
craft body frame. Then, @; can be expressed by

(4.16)

o;=0+AV oy, =0+ o, (4.17)
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where wf’vlh = Af’ o, 1s the rate of the LVLH frame with respect to the inertial
frame, represented in the body frame. From (3.16), A;’ =—X A;’ , therefore, ),
is given by

. . i b b - . b . b
O = D+ A O+ Al Opin = O — O X A O = O — @ X Oy, (4.18)

where we assumed that @y, is small and can be neglected!. Using Equations
(4.17) and (4.18), we can rewrite Equation (4.15) as

Jo = Joxaol,)—oxJo)—oxJob,)—ol, < Jo)
_w;?vlh X (Ja)?\/lh) —wxh-— w?\/lh xh+t;+u
= f(©,00,,h) +t;+u, (4.19)

where

f((l), w;)vlh’ h)
= J(ox a’fvzh) —0x(Jo)—-ox (Ja)g)vlh> - w?vlh x (Jo)
— @} X (Jof) — ® xh— o), xh (4.20)

Let 4 = [90,91,92,93]" = [q0.q"]" = [cos(%),&"sin(%)]" be the quaternion rep-
resenting the rotation of the body frame relative to the LVLH frame, where € is
the unit length rotational axis and « is the rotation angle about €. Therefore, the
reduced kinematics equation is given by (4.9). From (3.61), Af’ can be written as

25— 14247 29192424093 29193 — 290>
Al = | 2g19o—2q0q3 243— 14243 2q2q3+2q0q:
2193 +2q909> 2923 —2q0q1  2q5— 1+ 243

4.3.2 The linearized nadir pointing spacecraft model

It is difficult to design a controller with specified performance (such as settling
time, rising time, and percentage of overshoot) using the nonlinear spacecraft
system model described by (4.19) and (4.9). The common practice is to design
the controller using a linearized system and then check if the designed controller
works for the original nonlinear system using simulation. For a nadir pointing
spacecraft system, we need the closed loop spacecraft system to have the fol-
lowing features: (a) the spacecraft body rate with respect to the LVLH frame
is as small as possible, ideally, @ = 0; and (b) the spacecraft body frame is
aligned with the LVLH frame, i.e., the error is as small as possible, ideally,
q1 = q» = q3 = 0. Since the rotation axis length is always 1, this implies that
the rotation angle o = 0. Therefore the linearized model is the first order model

I This assumption is true for most satellites as long as the orbit eccentricity is small, i.e., the orbit is
close to a circle.
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of Taylor expansion of the nonlinear system (4.19) and (4.9) about ® = 0 and
¢1 = g2 = ¢ = 0. By using quaternion representation of A, assuming J is almost
diagonal (which is almost always true in real spacecraft designs), and neglecting
high order terms of g1, ¢», and g3, we have the following relations.

2q192 +2q0g3 —243
O = AT 0w = | 2q5—14+2q3 | (—en)| x| -1 oy,
2¢293 — 24091 q1=42=43~0 2g,
4.21)
Using (1.6) and
—2J11q3 09
Ja)?vlh ~ —J220 ’
2J33q1 @0
we have
w;]vlh x(J w;}vlh)
0~0
q1=42=q3~0
0 2q1 0 o 2J11g30
= —2q1ax 0 —2q3 Jo oy »
—wy 2y O —2J353100 | | gi=gp=gs~0
2(J2 —J33)q1
~ o 0 : (4.22)
2(J—J11)g3
and
0 2q1ax y 0
Of g % h‘ ot = —| 2qmm 0 —2q3ap hy -
G1=r=¢3~0 —@p 2q3an 0 0 G1=42=3~0
2hyq,
X~ —ay 0 . (4.23)
2hyq;3
Using (4.21), (4.22), and (4.23), we have
of
2o ~ —JS(0),,) + ST ,,) — S(wh,)J +S(h), (4.24)
w w0
q1=42=q3~0
ﬁ _ (=}, x Jop,,) — o), xh)
0 ~ N 0 ~
1 111=l?;=23z0 1 111=l?;:23%0
260&(]33 —Jzz) +2hgwy 0O 0
~ 0 0 0

0 0 2(03(.]11 —.122) + 2hoay
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(4.25)

Jg 1
— ~ -1 4.26
2X0) 00 2 ¥ ( )

q1=q2=q3~0
d 1
] ~ =0, 4.27)
aq 0~0 2

q1=q2=q3~0

where I3 is a 3 x 3 dimensional identity matrix, 03 is a 3 x 3 dimensional zero
matrix. Equation (4.24) can be simplified further as follows.

—Jizay 0 Jiap 0 0 —Jumw
IS(@p)=—| =Tz 0 Doy | = 0 0 0 . (4.28)
—Jazapy 0 J3ap Jyzap 0 JO
0 —J3nwy Jnwy
SJo),) = —| Jnw 0 —Jity
—Jnwy  Jipay 0
0 0 —Jpay
= 0 0 0 . (4.29)
Jpawy O 0

J3iwg  Jnpay  J330p

S(@))J = - 0 0 0
—Juwy —Jpwy —Jizmp
0 0 —J330)0
= 0 0 0 . (4.30)
J110)0 0 0
0 0 hy
Shy=| 0 0 0 4.31)
—h, 0 O
Therefore
of 0 0 (Ji1—Jnn+J33)@0+hs
o = 0 0 0
@ qn=t§g;2ﬁ0 —(Ju—Jun+Js3)—hy 0O 0
(4.32)

For many nadir pointing satellites, we need to model disturbance torque in the
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linearized model. For low Earth orbit spacecraft, aerodynamic torque and grav-
ity gradient torque are the dominant disturbance torques. It is difficult to model
the aerodynamic torque because it is related to solar activity, geomagnetic in-
dex, spacecraft geometry, spacecraft attitude, spacecraft altitude, and many other
factors, but it is known that the gravity gradient torque can be modeled by (see
derivation in Chapter 5 or [232, 85])

3603(]33 —Jzz)(p
tee= | 30¢(J3—J11)0 |, (4.33)
0

where ¢ and 0 are the Euler angles for the roll and the pitch. For small Euler
angles (see [280]), ¢ = 2g; and 6 = 2¢;, this gives

[ 603 (J33 —J2)q
te = | 605(Js3—J11)q2
i 0
[ 60)3(.]33 —Jzz) 0 0 q1
= 0 60)&(]33—]11) 0 q2 . (434)
i 0 0 0 q3
From (4.19),
of of
D~ — — t . 4.35
Jo 8ww+aqq+ 4+u (4.35)

Assuming t; = t,,, and combining equations (4.35), (4.25), (4.26), (4.27), (4.32),
and (4.34), we have the quaternion based linearized spacecraft system described
by

100 0 0 0 il
0100 0 0 i
001 0 0 0 iy
0 0 0 Joy Jn Jos ()
L0 0 0 U5y U2 Jiz | | &5
[0 0 0 S5 0 0 17 q1 i [0 7
O 0 0 0 5 0 & 0
o 0o 0 00 s lal|, |0
B far 00 0 0 fi ; Uy
0 f 0 0 0 0 || e 0,
0 0 f&s fea O O || @5 | [ u |

(4.36)

where fy; = 8(]33 —Jzz)wg +2hy0, fa6 = (Jll —J»n +J33)a)0+h2, Jo4 = — fae,
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fs2 = 6(J33 —J11) 03, and fo3 = 2(J11 — J22) O3 + 2ha . It is straightforward to
check that the linearized spacecraft model is fully controllable. Therefore, all
modern control design methods in linear system theory can be applied directly,
and the designed linear system is guaranteed to be stable. Clearly, it is easy to
modify the model to include three reaction wheels.
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The previous chapter briefly mentioned that disturbance torques affect space-
craft attitude. The gravitational torque was considered in the modeling process
because this torque is predictable and is easy to calculate. There are several other
disturbance torques induced by the space environment. These torques can signif-
icantly affect the attitude of spacecraft if the attitude control system is not well
designed because these torques are difficult to predict and they are likely not
incorporated into the spacecraft dynamics models used for the control system
design. These unmodeled torques introduce uncertainties. Although these distur-
bance torques are normally not considered in the analytical models that are used
to design the controllers, in engineering design practice, the designed controller
should be able to compensate these unmodeled disturbance torques to make sure
a spacecraft’s attitude is aligned with its desired frame.

On the other hand, given the information such as the geometry, the electri-
cal and the mechanical properties of the spacecraft, the attitude, the altitude,
the coordinate, the speed of the spacecraft, the current time, etc., we are still
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able to model the space environment and to approximately calculate these distur-
bance torques. Therefore, in engineering practice, the designed controllers’ per-
formances should be verified or tested in a simulation system that includes both
the space environment models and the disturbance torques omitted in the design
stage. In this chapter, we will discuss the models of the most significant space
environment phenomena and the associated unmodeled disturbance torques.

5.1 Gravitational torques

The study of a rigid body in a gravitational field is based on Newton’s laws. The
problem has been studied for hundreds of years. A good historical review in this
field can be found in [85]. The importance of gravitational torques on space-
craft were quickly realized in the early stage of the spacecraft development. For
example, a detailed analysis of various disturbance torques acted on Sputnik 3
has shown that the gravitational torque was the major disturbance torque and
was larger, by a factor of six, than the next largest disturbance torque, the mag-
netic torque acted on the spacecraft [17]. This large disturbance torque caused
some operational problems for some spacecraft when the designs did not con-
sider this disturbance torque. For example, the first Canadian spacecraft, Alouette
1, was spin stabilized and employed four long antennas. The long booms causes a
large inertia difference which introduced a comparatively rapid precession [190].
The adversary effect of the gravitational torques was carefully studied and the
formula of gravitational torque was derived. An experiment was conducted in
the spacecraft Explorer 11 where angular momentum vector was determined by
radio signals and spacecraft’s motion was checked against calculated gravita-
tional torque acting on the spacecraft. A good match between calculated torque
and measured torque is obtained [183]. The knowledge about the gravitational
torques are sometimes used in the spacecraft design to stabilize some spacecraft
[232]. Now, it becomes a widely accepted engineering practice to include the
gravitational torque in spacecraft models whenever it is appropriate. But still, in
some applications, gravitational torques are treated as unmodeled disturbance.

Our description about gravitational torques in this section follows the style of
[85, 232]. Let r be a vector of length r along the line connecting the centers of
mass of two objects whose masses are n; and m,. Let G = 6.669% 10~ "'m?3 /kg —
s* be the universal constant of gravitation. The force attracting the two objects
each other is given by (2.2) (see also [227])

f Gmymyr
rf?

If the first object is the Earth, and the second object is the spacecraft, since the
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mass of the Earth m, is a constant, we can simplify the formula as

umr
T
where u = Gm, is the geocentric gravitational constant of the Earth and m = m,
is the mass of the spacecraft. Let dm be an small element of the spacecraft, the
vector from the center of the mass of the spacecraft to dm be p, the vector from
the center of Earth to the center of the mass of the spacecraft be R. Since r =
R-+pand df = — “lrd"f r, the gravitational torque or the moment induced by dm

about the center of the mass of the spacecraft is given by

udm udm udm
dtg:pxdf:—pxWr:—wpxrz—wpxk 5.1

Since |p| << |R| and for small x, (1+x)*~ 1 —kx,

3
2

r| 7 = (R+p)"(R+p)) * = (R +2R-p+|p)*

B 2R-p\ ? B 3R-p
~R|73(1 ~ R (1- ) 5.2
R| (+|R2> R| ( R|2> 52

Integrating of (5.1) over the entire spacecraft body mass and using (5.2) yield

udm 3R-p
t, = - 1— R. 53
: / |R3( R|2>p>< G-

Because [ pdm = 0 by the definition of the center of mass, the gravitational
torque or gravity gradient torque is given by

3K
RP?

3u

t,=
©IRP

(R-p)(pxR)dm = R x /p(pdm ‘R). (5.4)

Using the definition of inertia dyadic (see for example [281, page 335])

J= / (p*1—pp)dm,

/ppdm=/pzldm—J,

N
RP

or

we can reduce (5.4) as

3u

tg:—|R—5R></(pZIdm—J)-R: R x JR, (5.5)

where the last relation uses the fact that R x p’IR = p?R x R = 0. We need



68 W Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

to represent the gravity gradient torque in the body frame. Notice that in local
vertical local horizontal frame,

0
R=| 0
—[R|

Let q be the quaternion transformation between body frame and local vertical
local horizontal frame. Then, using (3.61), we can represent R in body frame as

23— 14240 2q1g2+2q9095 20193 — 2q0q> 0
R=| 29192 —2q0q3 2q3—1+2q3 2¢>q3+2qoq 0
2q193+2q092 29293 —2q0q1  2q3— 14243 —|R|

When body frame is close to local vertical local horizontal frame, gy ~ 1, g; =0,
g2 =~ 0, and g3 ~ 0, this means

2q,
R=|R|| —2¢
—1
Assuming that J = diag(Jy1,J22,J33), we have

2q1(J33 —Jn)
RxJR~[R]* | 2¢2(J33—J11) |- (5.6)
0

Since the lateral velocity of a body in a circular orbit of radius |R| is given in

(2.32) (see also [281, page 221])
u
v=/—, (5.7)
V [R]

and angular orbital velocity of the body is given by (2.55)

L

substituting (5.6) and (5.8) into (5.5) yields

603 (J33 —J22)q1
to= | 60;(J3—J)g (5.9)
0

which is identical to (4.34) used in the linearized model for the controller design.
To verify the controller design in a simulation system, the more accurate formula
(5.5) should be used.
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5.2 Atmosphere-induced torques

Atmospheric condition is the source that causes one of the major disturbance
torques for spacecraft. The atmospheric condition is determined by many factors.
The most significant one is the air density that directly affects the torques which
result from aerodynamic interaction between the spacecraft and the atmosphere.
A simple conservative estimate of the aerodynamic force that involves only the
density is given in [150].

f=—pV?[(2—0,—0;)(e,-e,) e, +0i(e,-e,)e]dA, (5.10)

where f is the aerodynamic force on an element area dA, dA is the projected area
of spacecraft element normal to the incident flow which is related to the space-
craft geometry and attitude, V' is the spacecraft velocity which is related to the
altitude of the spacecraft, p is the atmospheric density, ¢, is the normal momen-
tum exchange coefficient, o; is the tangential momentum exchange coefficient,
e, is the unit spacecraft velocity vector, and e, is the outward unit vector normal
to dA. The momentum exchange coefficients are generally considered to be func-
tions of the surface material of the spacecraft. An empirical value of 0.8 has been
used for o; and o, in applications. For some simple geometric figures, formulas
of aerodynamic force are given in [280, page 575, table 17-3].
Having the aerodynamic force, the aerodynamic torque can be evaluated by

t, =rxf, (5.11)

where r is the moment arm.

The density is varied due to a lot of the factors, but a very simple graph that
represents density as a function of altitude can be used for the purpose of a coarse
estimation [280, page 107].

More accurate modeling atmospheres have been developed based on both
physical relationships and observed phenomena [271, 272]. A detailed descrip-
tion of the theory and observations are beyond the scope of this book. In [145],
seven different effects other than altitude that result in variations of density, tem-
perature, and composition of the upper atmosphere are listed as follows:

variations with solar activity

diurnal variation

variations with geomagnetic activity

semiannual variation

seasonal-latitudinal variations of the lower thermo-sphere

seasonal-latitudinal variations of helium
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rapid density fluctuations probably associated with tidal and gravity
waves

These effects are discussed in details and many references are provided in [145].
To compute more accurate atmospheric density that take these effects into ac-
count, a set of formulas that use 10.7-cm solar flux and geomagnetic activity as
inputs are also provided in Appendix A of [145].

It is easy to see that the density model is not simple but involves many factors.
Therefore, the aerodynamic disturbance torque are most likely not incorporated
into spacecraft dynamic models that are used for the controller design purpose.
This requires that the spacecraft attitude controller designs have good disturbance
rejection performance. Furthermore, the designed controller should be verified
in a simulation model that includes atmospheric density and aerodynamic torque
estimations.

5.3 Magnetic field-induced torques

Similar to the gravitational torques, the magnetic field induced torques can ad-
versely affect on-board equipment and can change spacecraft’s drag, attitude,
and direction of motion. A description on the degradation of the performance of
the attitude control system due to magnetic field induced torques was reported in
[222]. On the other hand, people quickly realized that the magnetic field induced
torques can be used with the magnet torque rods to control the spacecraft attitude
[4]. Many control algorithms are specifically designed for control systems using
only magnet torque rods, for example, [205, 233, 213].

Magnetic disturbance torques are results of the interaction between the
spacecraft’s residual magnetic field and the geomagnetic field. The dominant
source of the magnetic disturbance torque is spacecraft’s magnetic moment be-
cause the material selection in spacecraft design makes other magnetic distur-
bance sources negligible [14, 58]. The magnetic moment induced torque is given
by

t, =mXT,, (5.12)

where m (in A - m?) is the sum of the individual magnetic moments caused by
permanent and induced magnetism and the spacecraft-generated current loops,
and r,, is the geocentric magnetic flux density (in Wb/m?). The description of
geocentric magnetic field is discussed in [84, 63, 184]. Given the spacecraft geo-
centric spherical polar coordinates (r, 0, ¢), where r is the spacecraft geocentric
distance pointing down in nadir direction, 6 is the co-elevation pointing to the
north direction, and ¢ is the east longitude from Greenwich pointing to the east
(this information can be provided by GPS installed on spacecraft), the geomag-
netic flux density vector r,, = —grad(V) := 57 x V is obtained by taking gradient
of V(r,0,¢). The scalar potential function V(r,0,¢) is given by the following
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formula [84, 223, 52, 184]:

V(ro,9)=ad> Y (g)nHP,:”cos(G) (g" cos(m) +h"sin(mg)), (5.13)

n=1 m=0

where a = 6378km is the equatorial radius of the Earth, P (6) are Schmidt semi-
normalized Legendre polynomials of degree n and order m (the input to these
polynomials are actually in cos(0), rather than 6, but this has been dropped for
brevity), g and h) are Gauss coefficients in unit nanotesla (nT). The set of Gaus-
sian coefficients used in the analytical models are called the International Geo-
magnetic Reference Field IGRF). These coefficients are updated every five years
by a group of scientists from the International Association of Geomagnetism
and Aeronomy (IAGA). The recent one, which takes advantage of a comprehen-
sive set of observation data, including satellite measurements from the CHAMP,
Orsted and SAC-C missions, was published in 2015 [96, 258]. This version of
IGRF remains valid until 2020.

By using the conservative of the magnetic field (7 x B = 0), we have the
geomagnetic vector r,, = —grad (V) by taking minus gradient of V for (r,0,¢)
[280].

n

=2 3 (9) 0 )3 (5 costmo)-+17sin(n) 1 16)

n=1 r m=0
(5.14a)
—19V a2~ . opP"(0)
3927%:;(;) r;)(gn cos(m@) + hy' sin(m¢)) 3o (5.14b)
—1 9V -1 ~pa\mEg e m .
B = 15in(8) 95  sin(@) 2 (%) > m(=gf'sin(mp) + K cos(rn6)) 7€)
(5.14c)

In order to calculate the magnetic field, one must first calculate the associated
Legendre polynomials. Legendre polynomials are a set of orthogonal polynomi-
als that also satisfy the zero mean condition. The following equations for the Leg-
endre polynomials and associated Legendre polynomials are provided in [223].
The regular Legendre polynomials P,(v) are calculated to satisfy the following
equation:

(1=2vr+x%)—1/2=" P,(v)x". (5.15)
n=0

Solving this equation gives

Pa(v) =5 (E) (¥ -1)". (5.16)
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The above Legendre polynomials are related to the associated Legendre polyno-
mials through the following equation:

dm

Ponlv) = (1-9)"" 42

(B(v). (5.17)
Note that for all m > n, the associated Legendre polynomial is equal to zero.
The formulas in Equation (5.17) represent traditional associated Legendre poly-
nomials that have not been normalized. There are two commonly used normal-
izations. The first is the Gaussian normalized associated Legendre polynomials,
P which is related to the non-normalized set by the following equation

2 (n—m)!

Y b, (5.18)

P(v) Qn)t ™

The second is the Schmidt semi-normalized form, P, which is related to the
non-normalized set by the following equation

2(n—m)\'"?
sz(%) Pom. (5.19)

The two Gaussian normalized associated Legendre polynomials are related as
[280]:

P =S, P"", (5.20)
where S, , is defined by
o _(2=8)n—m) V2 (an—1)n 521)
e (n+m)! (n—m)!’ ’

where the Kronecker delta is defined as 5ij =1ifi=jand 5ij =0ifi# j,and
(2n—1)!1:=1-3--(2n—1). Due to the fact that these normalization values can
be calculated irrespective of the value of 6 at which the associated Legendre
polynomials are calculated, it is much simpler to instead normalize the model
coefficients, g/ and 4", such that

g =S m&n s (5.22)
and
W =S, . (5.23)

In order to produce efficient computer code, the preceding formulas should be
decomposed into recursive formulas as seen in [52, 280]. The following recursive
relationships is used in Matlab code of [52]. First, the recursive formulas for the
Gaussian normalized associated Legendre polynomials are as follows:

P =1, (5.24a)



Space Environment and Disturbance Torques B 73

Pn,n _ Sin(e)Pnfl,nfl’ (524b)
P = cos(0) P — KPR, (5.24¢)
KM — 07 n—= 17 (524d)

(n—1)2—m?

K = =3y

n>1. (5.24e)

The recursive formulas for the Gaussian normalized derivatives of the associated
Legendre polynomials are

opY0
aPn,n ) aPnfl,nfl T
50 = s1n(9)T +cos(0)P ) (5.25b)
9P aPnfl,m ) i nmaPn72,m
50 = cos(0) I sin(6)P -K T (5.25¢)

Using mathematical induction, one can get the recursive formulas for S, ,, as
follows:

Soo=1, (5.26a)
2n—1
Bo=P,_1p < & > , n>1, (5.26b)
' n
— 1 141
Sum = Sn‘ml\/(" m+ DO+ oy (5.26¢)
i n+m

The procedure to calculate (B,,Bg, By ) is summarized as follows:

Algorithm 5.1
1. Get the Gauss coefficients g\ and h}) from IGRF table.
2. Calculate S, , from (5.26).
3. Calculate P from (5.24).
4. Calculate P from (5.20).
5. Calculate %D';ifrom (5.25).

P QP
6. Calculate 20 — S*’hm 90 -

7. (Br,Bg,By) is given by (5.14).
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Similar to ECEF frame, the geocentric spherical polar coordinates (r,6,¢)
rotates with the Earth (relatively with ECI frame as described in [280, Appendix
H]). In order for the results of Equation (5.14) to be effective in spacecraft appli-
cation, they must be converted to geocentric inertial frame (ECI frame). This is
done by the following transformation [280, (H-14), page782].

= (B,cos(8) + Bgsin(6)) cos(a) — By sin(ox) (5.27a)
= (B,cos(8) + Bgsin(6))sin(a) + By cos(ox) (5.27b)
B! = (B, sin(8) — Bgcos(§)), (5.27¢)

where § is the latitude measured positive North from the equator (declination),
and o is the local sidereal time of the location in question (celestial time in
Greenwich). The details on the computation of (5.27) is provided in [52] and a
Matlab code is attached there.

The next step is to transform the magnetic field to the orbit (PQW) frame
using the following equation [265, Fig. 2-16 and (3.28)].

B® = Rot;(®)Rot, (i)Rot3(Q)B’, (5.28)

where @ is the argument of perigee, Q is the right ascension of the ascending
node, and i the inclination. Let s- and ¢- denote for sin(-) and cos(-). Expanding
(5.28) gives:

B co so 0 1 0 O cQ sQ 0 B!

B;’ =| —so co O 0 ci i —sQ cQ 0 B;

B? 0 0 1 0 —si ci 0 0 1 Bé
(5.29)

Then, a transformation from orbit frame to spacecraft coordinate (RSW) frame
is needed. This transformation is given by (3.18) (see also [265, Fig. 2-16 and
(3.29))):

B’ = Rot3(6)B°, (5.30)
where 0 is the true anomaly. Combining (5.29) and (5.30) gives (3.19) (see also
[232, (2.6.4), pages 25-26]):

B
Rot3(® + 8)Roty (i)Rot3 (Q)B!
c(@+0)cQ —cis(w+ 0)sQ c(w+0)sQ+s(w+0)cicQ  s(w+0)si :| |: Bl :|

—s(0+0)cQ —cisQc(w+0) —s(w+0)sQ+c(w+0)cicQ  c(w—+0)si BI
$isQ —sicQ ci B’
(5.31)

From spacecraft coordinate frame (see Figure 2.7), one can determine the mag-
netic field vector in LVLH coordinate

B = Rot,(m)B’. (5.32)

- O O
S O =
S = O
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Finally, to calculate the magnetic field vector described in (5.14) in body frame,
(BE, Bf, BL) needs to be transformed to the spacecraft body frame as r,,, one may
use 1-2-3 rotational sequence [280, Table E-1, page 764], the formula is given by
T, = cos(y) cos(0)BE
+(cos(y) sin(6) sin(¢) + sin(y) cos(9)) By
+(—cos(y)cos(¢)sin(0) +sin(y) sin(¢))B- (5.33a)
rm, = — sin(y) cos(0)BY

+(—sin(y)sin(0)sin(¢) + cos(y) cos(¢))B§
+(sin(y) sin(0) cos(9) + cos(y) sin(¢)) B (5.33b)
rm, = sin(6)BY —cos(6)sin(@)BY + cos(8) cos(¢)BE (5.33¢)

zZ)

where ¢, 0, and y are roll, pitch, and yaw angles respectively. When these
angles are small, equation (5.33) can be simplified as to

Fm, = By + WBY + OB (5.34a)
rm, = —WBL + B, + ¢BL (5.34b)
rm, = OB — B, + B (5.34¢)

5.4 Solar radiation torques

Solar radiation acting on the spacecraft surface generates radiation force or pres-
sure on the surface of the spacecraft. The magnitude of this force or pressure
depends on several factors, such as the intensity and spectral distribution of the
incident radiation, the geometry of the surface and its optical properties, and the
orientation of the Sun vector relative to the spacecraft [280, Section 17.2.2]. The
mean momentum flux pressure acting on the surface normal to the Sun’s radi-
ation is P = 4.563 x 107°N/m? 1AU from the sun. Let A be the surface area,
n be a unit vector normal to the surface and opposite to the vector of incoming
photons q, t be the transverse unit vector perpendicular to the n and in the plane
spanned by q and n, & be the photon incident angle between q and —n, p; be the
fraction of specularly reflected photons, p, be the fraction of diffusely reflected
photons, and p, be the fraction of absorbed photons (p; + ps + p, = 1), then the
solar radiation pressure induced force is given by [283]

f=Fn+FEt, (5.35)

where

F,=PA (1+ps)c0s2(a)+§pdcos(a) ,
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and
F, = PA(1 — p;)cos(o) sin(a).

For other simple geometric figures other than flat plate, the solar radiation pres-
sure induced force is given in [280, Table 17.2]. Given f in (5.35), the solar
pressure induced torque is given by [278]

tS =T X f, (5.36)

where r is the vector from body center of mass to the optical center of pressure.

5.5 Internal torques

Internal torques can be generated by moving parts of the spacecraft, the astro-
nauts inside a manned space station, or the leak of gas or liquid in thrusters.
When these leaks, motions, or rotations happen, they generate torques. It is rel-
ative easier to model these torques than the torques mentioned in the previous
sections. Some of these motion-induced torques are relatively large, such as the
deployments of the solar panels or booms. These torques must be incorporated at
least in the simulation systems to check if the designed controller can compen-
sate these torques or not. If not, these torques may have to be incorporated into
spacecraft dynamical models for the controller design purpose. If it is impossible
to design a controller based on a high fidelity physics model that includes these
large disturbance torques. Spacecraft design may have to be modified. For exam-
ple, it may require to reduce the forces or the torques generated by the instrument
deployments or increase the capacity of the actuators. We do not address this is-
sue in this Chapter because it is based on specific spacecraft designs.
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Spacecraft attitude determination is very important for two reasons. First, con-
trol engineers need to know if the spacecraft attitude is in the desired orientation.
Second, if the spacecraft attitude is not in the perfect position, the attitude in-
formation will be compared automatically to the desired attitude, and the error
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information is then used to calculate how much action is needed for each actuator
to bring the spacecraft to the desired attitude.

From Section 3.2.4, we have seen that to determine the frame rotation, one
needs to know the coordinates of at least two vector pairs in body frame and the
desired reference frame. Given this coordinate information, one can determine
the rotational axis and the rotational angle, which represent the attitude devia-
tion of the body frame from the desired reference frame. This intuition has been
used by many researchers to develop their attitude determination methods, such
as [13, 31, 159, 197, 212, 230, 231, 274, 295]. In this chapter, we will first intro-
duce Wahba’s problem [274], then Davenport’s formula [51], followed by a well-
known method QUEST [231], an analytic solution for a special case of Wahba’s
problem developed in [159], and an analytic solution to the general Wahba’s
problem. QUEST and the analytic solution divide the computation of the space-
craft attitude into two steps: (a) compute the largest eigenvalue of Davenport’s
K-matrix and (b) compute the corresponding eigenvector, and the second step is
sensitive to the accuracy of the first step. Therefore, some numerical method that
combines the two steps into one, i.e., directly solve the largest eigenvalue and
its corresponding eigenvector of the K-matrix is considered. Some simple analy-
sis is performed and some simulation results are presented to show the potential
advantages of the direct method.

6.1 Wahba’s problem

Suppose that we have measurements of two directions represented by two unit
vectors b; and b, in the spacecraft body frame. These measurements can be
unit vectors of some observed objects, such as stars, or the Sun, or the Earth, or
some ambient vector field such as the Earth’s magnetic field or gravity vector.
Engineers consider only unit vectors because the length of the vectors has no in-
formation relevant to the attitude determination and unit length makes expression
simpler. As pointed out earlier, engineers also need to know the representations
of these two unit vectors in some reference frame r; and r;. Depending on the
mission of the spacecraft, the reference frame is usually the inertial frame or the
local vertical local horizontal frame. The attitude to be determined is the rota-
tional matrix or the quaternion that rotates the reference frame to the spacecraft
body frame. Therefore one can find an attitude matrix A such that

Al'l :bh (6121)
AI‘2 = bz. (61b)

Since a rotational matrix is also orthogonal, equation (6.1) implies

b; -b, = (Ar;) - (Ar,) = rfATArz =r|-I). (6.2)
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In general, given two sets of m known reference vectors {ry,...,r,} and m ob-
servation vectors {by,...,b,,}, m > 2, find the proper rotational matrix A which
brings the first set into the best least squares coincidence with the second, i.e.,

) 1 m 2
ngnzgllbi—min : (6.3)

This problem was first defined by Wahba and is called Wahba’s problem [274]
which is the base of the most attitude determination methods.

A slightly more general assumption is that there is a set of weights a;, each
is associated with a corresponding observation b;, and ) _;a; = 1. Then Wahba’s
problem takes the following form:

1 >
rrgnigai||bi—Ari|| . (6.4)

6.2 Davenport’s formula

Most popular methods, such as QUEST [231], ESOQ [177], and FOMA [158],
use Davenport’s g-method [51] (K-matrix derivation is accessible in [116]).
Rewriting (6.3) by using equations (6.1) and (6.2), then using the facts: (a) b;
and r; are unit vectors, and (b) A is orthogonal matrix, we have

1 m
5 Dby = Ar? =
i=1

1 - T 1 T
= o3 Y AR =m - STHWIAY),  (65)

i=1

(b/b; —2b/Ar; +r]ATAr;)
1

m

N =

1

where W = [by,...,by], V= [ri,...,r,], and Tr(-) represents the trace of the
matrix in the argument. Using (3.62) and the fact that Tr(AB) = Tr(BA) for any
matrices A and B with appropriate dimensions, we have

Tr(WTAV)
= Tr(W' ((¢5—q"q)I+2qq" —2g0q*) V)
= (3—9"qQ)Tr(W'V)+2Tr(qq"VW") —2¢oTr(W'q* V). (6.6)

LetB = WVT, O = Tr(B), H= B+BT, andz' = [323 —B3,,B31 —B13,B1» —le].
The second term of (6.6) can be rewritten as

2Tr(qq" VW') = 2q'VW'q = " (VW' + WV')q = q"Hq. (6.7)
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Since zX =BT —B, ' = —q*, and Tr(q*z*) = —2q"z, the third term of (6.6)
can be rewritten as
2qoTr(q* VWT)
= qoTr(q"B" + BqXT)
= qTr(q" BT+q 'B)
qTr(q* (B"—B))
= qoTr(q*z*) = —2q0q"z. (6.8)

Substituting (6.7) and (6.8) into (6.6) produces

Tr(WTAV)
= (5—9"q)0+q"Hq+240q"z
T
_ T ) z q0
= [ d }{z H—olHq]
= q'Kq, (6.9)
where

K:[G ‘ ] (6.10)

Therefore,

& 2 1 T axn Tore
mf{nE;Hbl—Ar,H —m—imﬁler(W AV)=m— max g Kq. (6.11)

q

N =

By introducing the Lagrange multiplier A for the unit length constraint of ||q|| =
1, we reduce Wahba’s problem to Davenport’s problem

n}}qquK(j—)L(qTQ— 1). (6.12)
q

Taking the derivative of (6.12) gives the optimal solution which satisfies
Kq=1q. (6.13)

The optimization problem is reduced to finding the largest eigenvalue of K and
its corresponding eigenvector, which is Davenport’s formula.

6.3 Attitude determination using QUEST and FOMA

In the early of 1980s, the computation of the largest eigenvalue and its corre-
sponding eigenvector of the K-matrix in an on-board computer was a burden.
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Shuster [231] developed QUEST algorithm to approximately solve (6.13). By
using the Cayley-Hamilton theorem (cf. [217, pages 4-5]), Shuster [231] derived
the first analytic formula of the characteristic polynomial of the K-matrix which
is a polynomial of degree of 4, given as

fA)=A*—(a+b)A* —cA+ (ab+co—d) =0, (6.14)

where 6 = 0.5Tr(H) = Tr(B), k = Tr(ad j(H)), A=det(H), a = 6*> — k, b =
62+12%2,c = A+2"Hz, and d = z"H?z.

For many applications, the largest eigenvalue may be approximated by A ~
1. Shuster [231] suggested using Newton-Raphson iteration to find the A using
the initial guess A% = 1. To calculate the eigenvector using A, Shuster used the
Rodriguez parameters defined as follows:

o= qun (%),
q0 2

Since Kq = Aq, from the K-matrix, it is easy to see that
[(A+0o)I-Hjp=z.

p can be obtained by solving linear system equations. Once p is available, the
quaternion is given by

_ 1

qzi[ﬂ. (6.15)

V1+p'p

To avoid the possible singularity in Rodriguez parameter, Shuster and Oh devel-
oped a method of sequential rotations which avoids the singularity. This method
is widely recognized and is refereed to as the QUEST method. The operation
count for QUEST method was analyzed in [312] and is listed as follows.

1. constructing the characteristic polynomial (6.14): 67 flops in total.
2. in each iteration of Newton method: 18 flops.
3. constructing the quaternion (6.15): 33 flops.

This flop count shows that QUEST needs very small number of flops in every
iteration. The construction of the characteristic polynomial and the quaternion
may be the main effort in QUEST.

Markley [158] derived an equivalent characteristic polynomial for the K-
matrix and also used Newton’s method for his expression of the polynomial to
find the largest eigenvalue A iteratively. Using this largest eigenvalue, Markley’s
method finds the rotational matrix explicitly. This method is now referred to as
the FOMA algorithm. This method is more expensive than QUEST, and similar
to QUEST, is sensitive to the accuracy the solution of the largest eigenvalue.
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6.4 Analytic solution of two vector measurements

Though QUEST is very efficient, if the attitude determination is based on only
two vector measurements, there is a simpler method which is an analytic solution
[159].

6.4.1 The minimum-angle rotation quaternion

First, it is worthwhile to notice that for the quaternion which maps the reference
vector r; to the body frame vector b;, the minimal rotational angle « is deter-
mined by cos(c) = by - ry. Using the minimum-angle rotation quaternion (see
Figure 3.4), the rotational axis must be perpendicular to r; and b; and satisfy
the right-hand rule, which means that the unit length rotational axis is given by
& = BXIL Using the following identities of the trigonometry [203]

€= sin(at) *
1—
7%5(06) = sin’ (g) )
2 2

o 1 +cos(a)
cor () = LEeost@)
2 sin(c)
we can verify that the minimum-angle rotation quaternion is given by
1
\/2(1 +b, '1’1)
1
2(1+4cos(ar))

(1+b1 'I'l,bl XI’])

= (1+4cos(a),b; xr1y)

1 —cos(a)
2(1—cos?(a))

= (1+cos(a),b; x rl)ssiirlllgg))

(o o )sin(5)
(cor(£).&)sin (2)
= (eos(2) (%)) =a

6.4.2 The general rotation quaternion

= (1+4cos(a),b; xr1y)

(6.16)

Denote (€, ) as the quaternion that has rotational axis € and rotational angle
a. Then, the most general rotation that maps r; to by is given by

q :q(rl7¢r)®(]min®q(bla¢b)a (617)
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where ¢, and ¢, are arbitrary angles of rotation about b; and r;, respectively.
Using (1.2), (1.3), (1.4), (3.44), and the facts that

sin(a + B) = sin(a) cos(f) 4 cos() sin(f), (6.18)

and
cos(a+ ) = cos(er) cos(B) —sin(e) sin(f), (6.19)

equation (6.17) can be reduced by using (3.44) and (1.1), as follows:

(14+b;-ri,b; xr)® <cos <%> b, sm(%’))
= <(1 +b;-ry)cos <%> — (by x 1) by sin (%) ,
(% & e
+ (1+by-r;)b;sin (;) (b; X ry)cos ( 5 ) + (b; X1;) X by sin (?>>
= ((1+b1-r1)008(%>7

+ (14b;-r;)b;sin (%) + (b1 x 1) cos (%) (1= (by 1)y sin <%>>

= ((1 +b; -ry)cos <%> ,(by +1y)sin (%) + (by x 1) cos (%)) )

(6.20)
Thus, we have
(o(8) ()
@(1+by-ry,by xr)) ®(cos( ) b1s1n(q;b>>
(o () (2)
N <(1 i rcos (%) , (b1 +1y)sin (%) + (by X 11)cos (%)) :
(6.21)

Let go and q be the scalar part and vector part of the quaternion defined by (6.21).
Using (3.44), (1.4), and (6.19), and the fact that ||r{|| = 1 = ||b||, we have

g0 = (1+b;- rﬁcos(ﬁjcos(%)

—r; - (b; +1)sin <%> sin <%> —ry- (b X1ry)sin <q; > cos <q;b>
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= (I+bs- r1)008<q;>cos(¢b> (1+by- rl)sm<q;>sm<¢b>
(8 (2) (2) o)

= (1+b .rl)cos<¢r—;¢b>.

(6.22)

From (6.21), using (3.44), (1.3), (6.18), and (6.19), we have

qa = (1+b- rl)r1c0s<q;>sln<¢r>
+(by +1y)sin (%) cos (%) (by x 11) cos ("; ) cos (";)
+r1><(b1+r1)sln<q;>sm<q;>+r1><(b1><r1)sm(q;>cos(%>
- rwos(‘é)sm((pr) (by - rl)rlcos<q;>sm<q;>
(bl—H'l)sm(q;)cos((gr) (blxrl)cos<q;>cos<q;b>
~(by x r)sin (%) sin (%)
) (8)-o (803
- mra(§)(g) ml)
o= (G ()= (D) (8)
= (b1+r1)sin<¢r—;¢b>+(b1xr1)cos<¢r+¢b>

= (by+r;)sin (g) + (by x 1) cos (g) , (6.23)

where ¢ = @, + @. Combining (6.17), (6.16), (6.21), (6.22), and (6.23) yields

q = m ((l+b1 -T1)Cos (g) ,(by X ry)cos (%) + (b +1ry)sin (%)) . (6.24)

Similarly, the most general rotation that maps r; to b, is given by

qQ = m ((1 +by-12)cos (%) ,(b2 X r2) cos (%) + (by +1r2)sin (%)) (6.25)

for some angle .
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6.4.3 Attitude determination using two vector measurements

As every quaternion in the family of @;(¢) maps r; to b; and every quaternion
in the family of @, (y) maps r; to by, we need to find a quaternion @ which is in
both families so that it can maps r; to by and r;, to b, simultaneously. This means
that both the scalar part and the vector part of q; and q, are equal for some ¢ and
. For the scalar part, we need

Mcos (9> = MCOS (W)
2(1+4r;-by) 2 2(14r:-b) ’

vy _ [l+ri-by ¢
= cos(z)— 71+r2_b2c0s(2> (6.26a)

v 1+r2~b2—(1+r1~b1)c0s2(
in(— ) = . .26b
— () o2

[SIRSS
N———

For vector part, we need

(by x 1) o (by+r)) . [0

Tieos(§) + rtessin(3)

_ _(baxr) vy, (btr) Y
- (1+b2-rz)cos(2)Jr (1+b2~r2)5“(2) 6.27)

Substituting (6.26a) and (6.26b) into (6.27) yields

(b1 >ry) cos (g) + (by +ry)sin (g)

I 4bi -y cos (9> (b2 ><r2)+(b2+r2)‘(“rw\/l-i-bzmz—(l-&-bl -11) cos? (%)

14+br- -1 2 (I+b2-12)
Applying dot product of b, —r; on both side, the right-hand side vanishes be-
cause (by +13)-(by — 1) =0, and from (1.4), (by x 13) - (by — 1) = 0. Therefore,
we have

(by x17) - (by —13)cC08 <%) + (by+1y)- (by —ry)sin (%) =0,
(6.28)
or
sin (%) o (b] X 1’1) . (b2 - 1’2) (629)

cos (%) (b)) (ba—12)

For any two vectors a and b, if a is proportional to b, we denote this relation as
a x b. Clearly, if a < b, and b ¢, then a  ¢. from (6.24) and (6.29), we have

in(2
men)
2

q (1+b1~1‘17b1><l‘1+
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by x1) - (b — 1)

(b1+r1)- (b2 —12) (b +rl))

(by xrp)((br+11) - (by—12)) — ((by x11) - (b2 —12))(by +r1))
(1+b1 ~I'1)

o ((1+b1~r1)7b1><r1—

x ((bl +r1)- (b2 —12),
(6.30)

In view of (6.2), the scalar part of (6.30) implies
(b1+r1)~(b2—r2) =by-r; —by ;. (6.31)

For the numerator of the vector part of (6.30), using (1.3), (1.2), and the fact that
b; and r; are unit vectors, we have

(b1 x11)((b1+11) - (b2 —12)) — ((b1 X11) - (b2 —12)) (b1 +11)

(b2 —1r2) X ((b1 X 11) X (b1 +11))

(by —r2) X (r; — (ry-by)by + (by -ry)r; —by)
= (b2—r2) X (r; —=by 4 (r; —by)(r; -by))

((by —12) X (r1 —b1))(1+11-by)

((by —r1) X (by—12))(1+11-by) (6.32)
Combining (6.30), (6.31), and (6.32) yields

qx (by-ry —by 1y, (b —1) X (b —12)).
Normalizing the right-hand side gives
(by-ri —b; 1y, (by —11) X (b2 —12))
V(b2 11 —by12)7 +[[(b1 —11) x (b2 —12)[|?

Therefore, given known ephemeris r; and r;, observations b; and b,, the atti-
tude quaternion is uniquely defined. The attitude quaternion is extremely simple
though the derivation is tedious. It is worthwhile to note that this solution does
not need to compute the largest eigenvalue and its corresponding eigenvector.
The operation count is very low. In fact, the calculation of b, -r; —b; - r; needs
11 flops and the calculation of (b; —r;) x (by —r>) needs 15 flops. Given these
two quantities, the calculation of the square root needs 7 flops. Therefore, the
total flopsis 11+ 154744 = 37 flops.

q= (6.33)

6.5 Analytic formula for general case

Although all flight experiences were successful for QUEST method, using a spe-
cific example, Markley and Mortari [163] showed that QUEST does not always
converge. In fact, it is well known that Newton’s method (used in QUEST to find
zeros of a polynomial) is inadequate for general use since it may fail to converge
to a solution. Cheng and Shuster [43] find a fix for the specific problem raised
by Markley and Mortari [163]. But even if Newton’s method converge, its be-
havior may be erratic in regions where the function is not convex [185]. On the
other hand, equation (6.14) is a polynomial of degree 4 which admits analytic
solutions.
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6.5.1 Analytic formula

Since the characteristic polynomial of (6.14) has order of four, it admits analytic
solution. Mortari noticed this and proposed a closed-form solution which is now
referred to as the ESOQ algorithm [177]. This solution, however, was known not
numerically stable by experts for a long time but this issue was not discussed
openly in literatures.

In this section, we provide a different but more robust analytic solution based
on the characteristic polynomial of the K-matrix presented in [177] which is
given as follows.

p(x)=x*+ax* +bx’ +ex+d =0, (6.34)

where a = 0, b = —2(tr[B])? +tr[ad j(H)] — 2"z, H = B+ B", ad j(H) the adju-
gate matrix of H, ¢ = —rr[ad j(K)], and d = det(K) are all known parameters.
Several different methods were proposed in the last several hundred years [91]
to solve (6.34). A latest effort was by Shmakov [229] who found a universal
method to find the roots of the general quartic polynomial. A special case of this
method is simpler than all previous methods and it can be directly adopted to
solve (6.34). We summarize the steps as follows (see [324]).

First, equation (6.34) can be factorized as the product of two quadratic poly-
nomials as

(X +gix+hy) (X + g2+ o)
= X'+ (g1+8)7 +(g182+ i +h)x
+(g1ha 4 g2 )x+hyhy = 0. (6.35)

Moreover, g1, g2, 1, and h; are solutions of two quadratic equations defined by

2
2 b
h”— y—i—g h+d=0 (6.36b)
where y is the real root(s) of the following cubic polynomial
y +py+q=0, (6.37a)
b2

p=ac— 3 4d, (6.37b)

abc 2 5 5, 8

=——ad——=b"— =bd. 37

q 3 a“d 77 c+3bd (6.37¢)

The roots of the cubic equation can be obtained by the famous Cardano’s for-
mula [203]

ylz\z/—ng\/MJr\}/—g—\/m (6.38a)
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where @, = ’HT’\/g and 0, = ’I’T“/g It is well-known that (6.37) has either one
real solution or three real solutions. If the discriminate

a=(3) +(5) o
2) T\3) 7
then (6.37) has a real solution given by (6.38a), and a pair of complex conju-
gate solutions given by (6.38b) and (6.38c). If A = 0, the (6.37) has three zero

solutions. If A < 0, then (6.37) has three distinct real solutions. In this case, to
avoid complex operations, the solutions can be given in a different form. Let

r=1/— (%)3, 0= % arccos (—% ) , then the three real solutions are given by
y1 =2r3cos(6), (6.39a)
i 2
Y2 = 2r% cos (9 n ;) , (6.39b)
4
y3 = 2r% cos (e n %’) . (6.39¢)

Given a real y, from (6.36), we have

[ 2
glo =Ty~ §b’ (6.40a)

Y5+ +b/3)2—4d
B 2

hi» (6.40b)

In view of (6.35), it is worthwhile to notice that the following relations must be
held

(81+82) =a, (6.41a)
8182 +hi+hy=0b, (6.41b)
g1hy + g2h = c, (6.41c¢)
hih, =d, (6.41d)

where (6.41a), (6.41b), and (6.41d) do not depend on the selections of g, g2, 1,
and &, (these relations always hold), but (6.41c) does depend on the choices of
g1, &2, h1, and hy. In practice, it can always take g; as positive sign in (6.40a)
and g, as minus sign in (6.40a); it can then be tried that /; takes positive sign in
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(6.40b) and K, takes minus sign in (6.40b); if (6.41c¢) holds, the correct selection
is obtained; otherwise, i, takes minus sign in (6.40b) and £, takes positive sign
in (6.40b) so that (6.41c) holds. Finally, the roots of the quartic (6.34) are given
by

X1,.2

o1+ /2 —ah

i 2g1 L (6.42a)
— oy \/2l—4h

_ % 2g2 2| (6.42Db)

X34

A Matlab code of this method can be downloaded from Matlab file exchange
website https://www.mathworks.com/matlabcentral/fileexchange/54255-quartic-
roots-m.

6.5.2 Numerical test

The proposed analytic method and QUEST method have been implemented in
Matlab and tested against each other.

A simple problem: The first simple test is the following problem.

p(x) =x*+ax’ + bx* +cx+d =0, (6.43)
where a =0, b= —2, c =0, and d = 1. The problem has two positive solution
of x = 1 and two negative solution of x = —1. The analytic method finds all

solutions without numerical error. Starting from x = 1.1, the QUEST method
finds the largest positive solution x = 1.00000001251746 after 23 iterations.

Randomly generated problems: The simple problem shows that the analytic
method may be promising, we conducted extensive numerical test for tens of
thousands randomly generated problems. These test problems are generated as
follows. First, Euler angles a € [0,7], B € [0, 7], and y € [0, 7] are randomly
generated. This gives the true rotational matrix A which is converted as the true
rotational quaternion ¢, for each randomly generated problem. Then three unit
vectors representing the astronomic objectives r;, i = 1,2, 3, are randomly gener-
ated. It is then assumed that the measurement vectors b; is the rotation of r; with
measurement noise given by

Ar;=b;+n;,

where n; € [0,N] are random noise whose maximum magnitude N varies in our
test. The relative weight associated with each measurement is taken as a; = %,
where n is the total number of measurements. For each prescribed N, 1000
randomly generated Wahba’s problems are solved by both analytic method and
QUEST method, the results are denoted as q,, and g, respectively. The cumula-
tive errors between the true quaternions and estimated quaternions are calculated
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Table 6.1: Comparison of analytic method and QUEST method

Noise size

analytic method E,

QUEST method E,

N=0.01

4.50344692811497

4.50336882243908

N=0.001

0.46355508921313

0.46356102302689

N=0.0001

0.04633308474148

0.04636056974745

N=0.00001

0.00464952990550

0.00462173419676

N=0.000001

0.46855497718417E-3

0.45068048617712E-3

N=0.0000001

0.48374024654480E-4

0.46367084520959E-4

N=0.00000001

0.32071390174853E-4

0.04635740127652E-4

N=0.000000001

0.67150605970535E-5

0.04666503538671E-5

N=0.0000000001

0.93419725779054E-5

0.00465660360757E-5

as
1000

E,= j{: HQU _'qai”27
i=1

The results are given in Table 6.1.

This test result shows that if the upper bound of the noise is greater than
1078, the estimation accuracies for both analytic method and QUEST method are
very similar. For very small noise (the maximum magnitude is less than 10~%),
QUEST method is slightly better. The Matlab code for calculating the roots of
the quartic equation can be downloaded from [97]

1000

E,= 2{: HQU _'qﬂiHZ'
i=1

6.6 Riemann-Newton method

For problems with more than two measurements, both QUEST method and the
analytic method described in the previous section solve Davenport’s problem
in two steps. First, find the largest eigenvalue of the K matrix; then find the
quaternion using the analytic formula. It has been noticed that the second step is
sensitive to the accuracy of the the largest eigenvalue of the K-matrix but directly
solving Davenport’s method is much more robust, which was also observed in
[158]. Since q is a unit length vector, maximizing (6.11) is equivalent to solving
Rayleigh quotient problem [93]:

1
max —q Kq,

A'max::
lall=12

(6.44)

where q is also the eigenvector associated with the largest eigenvalue A, of the
K-matrix. Problem (6.44) is an optimization problem with a sphere constraint
||| = 1 which is much simpler than Wahba’s problem.
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As the size of the problem (6.44) is small, Newton’s method should be con-
sidered. Noticing that both Euclidean space and smooth algebraic equation sys-
tems are Riemannian manifolds, Smith [239] extended unconstrained Newton’s
method in Euclidean space to include all Riemannian manifolds (smoothly con-
strained optimization problem). The method derived from the idea is not only
mathematically elegant, but also turns out, for some cases including the unit
sphere constraint in (6.44), to be extremely efficient [239, 302]. In the follow-
ing discussion, a slightly different but more efficient method is proposed to solve
the problem defined in (6.44).

Instead of searching along straight line, optimization on sphere (or in general
on manifolds) searches along geodesics on the sphere (or in general on mani-
folds). The first important result is therefore to find the geodesic defined by the
current point on sphere and a descent direction. Let BS" ! := {g€R": ||q|| =1}
be a sphere in n-dimensional space, let y be a descent direction and the tangent
space of BS"™! at q be denoted as T3(BS"™'), then we have (see [303]) the
following

Theorem 6.1
Let q € BS?, y € T4(BS?) be any tangent vector at §, and ||y|| = 1. Then, the unique
geodesic g(t) on BS® emanating from q along the direction of y is given by

g(r) = qcos(r) +ysin(z). (6.45)

wheret € [0,5].

The main steps of the original Riemann-Newton method in [239] are: (a)
from current iterate q, calculate the Newton direction (a vector) in R”, (b) project
the vector onto the tangent space T3(BS"~!), (c) normalize the vector in the
tangent space to get y, and (d) search the optimizer along the geodesic (6.45)
to a new iterate (. Repeat Steps (a) to (d) until an optimal solution is obtained.
Using the simple structure of spheres and fixed step size, steps (a) and (b) can be
simplified as follows. Let Pg, = (I— @@} ) be the orthogonal projection from R*
to 75(BS?). Since the gradient of 1q"Kq is Pg,Kq, and the Hessian of 1q"Kq
on the sphere manifold can be expressed as Py, KPg, — q; KqiI. The Newton
equation for (6.44) is given by

(P4 KPg, — 4 Kqi)yx = —Pg K. (6.46)

Steps (c) and (d) can be approximated in a much more efficient way described
as follows. As y; must be on the tangent plane 73(BS" '), the Newton full size
update on the tangent plane is qx + yx. Because of the special structure of sphere,
searching along geodesic can be replaced by

qr + Y

— (6.47)
|Gk + vl

Qi1 =
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The algorithm is therefore given as follows.

Algorithm 6.1

Select qo € R* such that ||qol| = 1.
fork=0,1,2,...

Solve linear systems Pg, KPg, yx — yk(]zK(]k = —Pq Kq; and q{yk =0.
Set Q1 = % andk =k+1.

end (for)

For general problem, Riemann-Newton method in [239] does not have a
useful rule to choose a good initial point. For attitude determination problem,
however, Shuster observed [231] that the largest eigenvalue of K-matrix is very
close to one. Therefore, the initial point o can be determined as follows. Let
K = K —1I. Since Kq =~ q, or equivalently Kq ~ 0, using Matlab notation, this
gives

K(:,2:4)q=—-K(:,1) (6.48)
and set qo = %. Numerical experience shows that this selection of qq is
very close to the solution of (6.44). In many cases, there is no need for any
iteration. Another possible way to select the initial point is to use (6.33) for two
vector observations, which is slightly cheaper than the method of solving linear
system equations (6.48). Numerical test in [312] demonstrated the efficiency and
robustness of this method. The Matlab code of the method can be downloaded in
[98].

6.7 SVD method

Although most popular methods are based on Davenport’s g-method, Markley’s
SVD method [157] solves the Wahba’s problem (6.3) directly by finding the ro-
tational matrix A. Strictly speaking, SVD method is not a quaternion based ap-
proach, but it has been demonstrated good numerical stability [162], therefore,
we included it in this chapter. The SVD method uses a similar strategy that was
used in [62] (which is the first solution to Wahba’s problem) by considering
Frobenius norm in (6.3). SVD method had been implicitly used for attitude de-
termination in [18, 54] before Markley’s SVD method is published, but the latter
is significantly different from the ones in [18, 54] and becomes popular due to its
numerical robustness.
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6.7.1 The SVD-based attitude determination algorithm
Let B = [by,b,,...,b,] and R = [r},r;,...,1,]. Then, problem (6.3) becomes

1 >
rarE;HB—ARHF. (6.49)

For the orthogonal matrix A, since ATA =1, we have

1 m
5> IB-ARJ
i=1

= Tr[(B—AR)"(B—AR)]
= Tr(B"B)+Tr(R"R) —2Tr(B"AR)
= 2-2Tr(ARB"). (6.50)

The last equality holds because the columns of B and R are normalized. This
shows that

1 m
5Z||B—AR||,%:1—Tr(ARBT). (6.51)
i=1

Let
CT =RB". (6.52)

The singular value decomposition of C is given by
C=UDVT, (6.53)
where U and V are orthogonal matrices, and
D = diag(d;,d,d5) (6.54)

with
dy>dr>dy > 0. (6.55)

Notice det(U) = £1 = det(V). Define three orthogonal matrices as follows:

U, = Uldiag(1,1,det(U))], (6.56)
V. = V[diag(1,1,det(V))], (6.57)
W =UIAV,. (6.58)

Since W is an orthogonal matrix, it can be viewed as a rotational matrix with
an unit length rotational axis € and rotational angle ¢. In view of (3.15), we can
write W as follows:

W = cos(¢)I+ (1 —cos(¢))ée" —sin(¢)E, (6.59)
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where
0 —es3 ()
E= e3 0 —e |. (6.60)
—ey e 0
Let
d =det(U)det(V) = £1, (6.61)
and define
D, =diag(d,d>,dsd) (6.62)
Then (6.53) can be written as
C=U.D, V.. (6.63)

Substituting this equation into equation (6.51), using the cyclic invariance of the
trace and equation (6.59), and noticing 7r[D. E| = 0 yield

1 m
S IB-ARJE
i=1

1 —Tr(ARB") = 1 — Tr(AC")
1-Tr(AV,D,U) =1-Tr(D,UTAV,)
1 -Tr(D.W)
1 —Tr{D,[cos(¢)I+ (1 —cos(¢))ée" —sin(¢)E]}
1 —Tr[cos(¢)D,] —Tr[(1 —cos(¢))D,&&"] — Tr[sin(¢)D, E]
1 —Tr[cos(¢p)D] —Tr[(1 —cos(¢))D
(

[ ée']
[D.]+Tr[(1—cos(¢))D4] — Tr((1 —cos(¢))D.. &&"]
—Tr[Dy ]+ Tr[(1—cos(9)) (D, — D, &&"]
l—mm] +(1—cos(9))[d (1 —e}) +da(1 - €3) + dsd (1 —€3)].
(6.64)

Since e? = 1 — €3 — €3, noticing d» +dsd > 0, d; —d, > 0, and d; — d3d > 0, we

have

di(1—e}) +dr(1—e3) +dzd(1 —é3)
= dié}+dié&3+dy—drel +dyd — dsdél
dy +dzd + (dy — da)e3 + (dy — d3d)é3
> 0 (6.65)

Combining (6.64) and (6.65) yields

1 m
S IB-ARJE
i=1
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= 1-TrDy]+ (1 —cos(9))[dr +dsd + (dy — dr) €3 + (dy — dzd)€3].
(6.66)

which makes it clear that to minimize § >_" | |[B— AR||%, we should take ¢ = 0.
In view of (6.59), it follows that W,,; = I. From (6.58), we obtain

Aopr = U+V:F- = U[diag<17 lvd)}VT' (6.67)

From (6.66), the optimal objective value is given by
) 1 m
anEZ;HB—ARH%:l—dl—dz—d3d. (6.68)
The SVD-based attitude determination algorithm is summarized as follows:

Algorithm 6.2
1. Compute C from equation (6.52).
2. Find the SVD of C from equation (6.53).
3. Compute d from equation (6.61).
4. Compute A,y from equation (6.67).
5

Compute the optimal objective value from equation (6.68)

6.7.2 Uniqueness of the SVD solution

First, If
dy +dsd + (dy — da)e3 + (dy — dzd)e3 > 0, (6.69)

then we must take ¢ = 0, which is the unique optimal solution. However, if
dy + d3d = 0, then there may exist an rotational axis & = (ej,ez,e3) = (1,0,0)
such that the left hand side of (6.69) equals to zero. Substituting these numbers
into (6.59) yields
1 0 0
W= |0 cos(¢) sin(¢) |, (6.70)
0 —sin(¢) cos(9)

i.e., there is a family of optimizers W(¢) with any ¢ that minimizes the objective
function.

The uniqueness of the solution is closely related to the rank of the C ma-
trix, which is equal to the number of non-zero singular values [77]. The rank of
the C matrix is related to the number of independent attitude sensors. We have
seen in Chapter 3 that it must have at least two independent attitude sensors to
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uniquely determine the spacecraft attitude. Therefore, we will consider only the
cases where the rank of C is two or three, therefore, d, > 0.

If d, > d3, it follows that d, + d3d > 0, the previous analysis shows that the
optimal solution is unique. For a special case d3 = 0, it can be show that this is a
situation when the measurement errors are zero. Let & be the measurement error
of the ith-instrument. Then, the measurement equation can be modelled as

b; = Atrueri + &, (671)

where A, 1s the true attitude matrix. In the absence of errors, it follows from
(6.71) that B = A,,..R, hence, M = BBT = A, RBT = A,,,,CT. This gives
BBT = CAT  or

MAtrue = Ca (672)
and

det(C) = detM = mympms. (6.73)

where m; > my > m3 > 0 are non-negative eigenvalues of M, and m, > 0. Again,
using the previous analysis, the optimal solution is unique.

Remark 6.1 Many early solutions of Wahba’s problem were to find the rotational
matrix A,p, including the famous TRIAD method [31], among others [18, 10, 11,

12]. A comparison of these methods were performed in [170]. |

6.8 Rotation rate determination using vector measure-
ments

The information of the rotation rate of the spacecraft may be needed in the feed-
back controller design. Many spacecrafts have equipped with on-board three axis
rate-gyros to measure the angular rate [71]. But some spacecraft do not install the
rate-gyros because of the economical consideration. In this case, angular rate can
be estimated using vector measurements, for example, the method published in
[241]. In this section, we present a very simple method. Let

41 9 9 —q
E=| - —¢ 9 q |. (6.74)
—q93 492 —q1 4o

Pre-multiplying 2E on both sides of (3.65) gives,

dqo
()] —{q1 q0 q3 —q2 dditl dq
™ | =2 =2 —q3 qo q dg, | =2E—°. (6.75)
3 -3 @ —q fit

dq3
dt
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In theory, after getting the quaternion, then taking the differences Aq = q(#;) —
q(ti—1), At =t; — t;_y, and the division of %, we can approximate ‘fl—? and get the
angular rate. However, in practical application, due to the measurement noise,
this angular rate determination based on the differentiation may not be reliable
because of the high frequency noise. A low pass Butterworth digital filter [187],
whose input is the @ obtained from (6.75) and the output is the refined angular
rate, will significantly suppress the noise and thereby improving the angular rate
determination. Furthermore, this angular rate can be further refined by a Kalman
filter that will be discussed in Chapter 8.

The next problem for spacecraft attitude determination is about how to get
ephemeris and observation vectors. These vector pairs can be any astronomical
vectors, such as the Sun vector pairs, the Earth vector pairs, the Earth’s mag-
netic vector pairs, any star vector pair. There are a lot of literatures that discuss
these topics. For example, for the sun direction measurement, one can read [142].
For the ephemeris sun direction, the formula is given in [265]. For geomagnetic
vector measurement, a magnetometer can be used [99]. For the ephemeris geo-
magnetic vector, the formula is given in [280]. For star tracker and algorithms,
one can read [103]. We will discuss these topics in the next Chapter.






Chapter 7

Astronomical Vector
Measurements

CONTENTS

7.1 Stars’ vectors and star trackers ..., 99

7.2 Earth’s magnetic field vectors and magnetometer .................... 100
7.2.1  Ephemeris Earth’s magnetic field vector .................... 101
7.2.2  Measured Earth’s magnetic field vector ..................... 101

7.3 Sun vectors and SUN SENSOT . ... v.vutntntntne et eeeeaenns 101
7.3.1  Ephemeris sun vector .................ooiiiiiiiiiiii. 102
7.3.2  Sun vector Measurement ............c.eeeenenenennenenen.n. 103

As we have seen in the previous chapter that the attitude determination depends
primarily on the calculations of known reference vectors and the measurements
of the astronomical vectors. The most frequently used astronomical vector mea-
surements are Sun vector, the Earth vector, the Earth magnetic vector, and stars’
vectors. In this chapter, notations r;, i = o,m,s are used for reference vectors;
subscript o for the astronomical object, m for geomagnetic field, and s for the
Sun. Similarly we use b;, i = 0, m, s, for measured vectors for the astronomical
object, the geomagnetic field, and the Sun. We will discuss how these vectors are
obtained in principle.
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7.1 Stars’ vectors and star trackers

Using stars in navigation and attitude determination has a long history. On the
celestial sphere (an imaginary sphere of arbitrarily large radius, concentric with
the Earth, with celestial equator the same plane as Earth’s equator and celestial
poles the same directions as Earth’s poles), all objects in the sky can be pro-
jected upon the celestial sphere and they all have essentially fixed positions on
the celestial sphere. Therefore, if a spacecraft attitude is perfectly aligned with
LVLH frame, the —Z direction will point to certain astronomical object, which is
a known direction vector r, in the reference frame. If a Charge Coupled Device
(CCD) camera mounted on the spacecraft with the field of view (FOV) in the —Z
direction of the body detects some astronomical object, then a measured vector
b, is obtained. To make this idea work, several things are needed. First, we need
a map that gives us the information on what star is located in what position in the
celestial sphere (the spacecraft position is determined by a GPS mounted on the
spacecraft). Several requirements are needed for this map: (a) stars in this map
should be bright enough for CCD camera to see them, (b) stars in this map should
be uniformly distributed everywhere so that CCD camera is always pointing to
certain stars. This kind of map is called star catalogs. People has created many
star catalogs for the purpose of attitude determination, see for example, [220].
Second, after CCD detected some stars, we need to know where these stars are
located in the star catalogs. There are numerous methods to use, see the survey
paper by [243]. Based on ideas described above, star trackers can be built (see
[221]). Therefore, the observation vector and measurement vector are obtained as
follows. Giving the spacecraft position, the r, is immediately available from the
star catalog; using CCD camera, stars are found, using star identification algo-
rithm, stars observed on CCD are identified in the star catalog, thereby measured
vector b, is obtained.

A typical autonomous star tracker operates in two modes: (a) the initial at-
titude acquisition, and (b) the tracking mode. The main difference between the
two modes is whether the spacecraft attitude knowledge is approximately avail-
able or not. In the initial attitude acquisition mode, the task is, as described in the
previous paragraph, to perform pattern recognition based on the observed star
pattern in the field of view. Many algorithms have be developed for this purpose
[139, 141, 165, 189, 208, 249, 263, 266]. In the tracking mode, the previous
spacecraft attitude is available and the present spacecraft attitude is close the last
attitude updated less than a second ago. The task is much easier because the star
tracker has only to track the identified stars at their known positions. This involes
the calculation of the positions of the star centroids on the focal plane. Different
algorithms have been used for this calculation [140, 219, 246].
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7.2 Earth’s magnetic field vectors and magnetometer

To use Earth’s magnetic field vectors in attitude determination, given the space-
craft position, we need to know ephemeris Earth’s magnetic field vector in the
reference frame, for example, in ECI frame or in LVLH frame; and the measured
Earth’s magnetic field vector in the body frame.

7.2.1 Ephemeris Earth’s magnetic field vector

The geomagnetic vector is based on the International Geomagnetic Reference
Field (IGRF) model which is propagated by the flight software. Given the space-
craft geocentric spherical polar coordinates (1,0, ) ( spacecraft geocentric dis-
tance, co-elevation, and east longitude from Greenwich) provided by GPS, the
ephemeris Earth’s magnetic field vector r,, is related to the scalar magnetic po-
tential function V

V(r8,0)=a> Y (;)HIP,TCOS(G) (g" cos(m) + " sin(mg))  (7.1)

n=1 m=0

and r,, = —grad(V) is given in (5.14), this geomagnetic flux density should then
be expressed in reference frame i.e., ECI frame or LVLH frame. The transforma-
tions are discussed in Chapter 5 (see also [280, 184]).

7.2.2 Measured Earth’s magnetic field vector

There are many different magnetic sensors for various applications [133]. Among
these sensors, flux-gate type magnetometer is the one used most for spacecraft to
measure the Earth’s magnetic field vector. The sensor is installed on the space-
craft with the known orientation. The geomagnetic vector in the body frame by,
can be then obtained from the magnetometer (TAM) measurement without any
signal processing. A digital filter may also be used to reduce the measurement
noise, but that may introduce some signal delay. Since the measurement noise of
TAM is relatively small, a digital filter is likely not used. For some recent devel-
opment in magnetometer design, readers are referred to [46] and the references
therein.

7.3 Sun vectors and sun sensor

To use sun vector in attitude determination, given the spacecraft position, we
need to know the sun vector in the reference frame, for example, in ECI frame or
in LVLH frame; and the sun vector in the body frame.
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7.3.1 Ephemeris sun vector

The Sun vector in ECI frame is the vector from the center of ECI frame to the
Sun, which is described in Figure 7.1. In this frame, we image that the Sun rotates
around the Earth in the ecliptic plane which is tilted at an angle of € to the plane
of celestial equator. In this figure, (x,y,z) is the coordinators of the ECI frame.
(x’,y’,7') is the coordinators of a different frame in which x” coincides with x, and
7' is perpendicular to the ecliptic plane, y’ is in the ecliptic plane and completes
the right-hand rule. The A is the angle between the Sun vector and the x axis.
Clearly, the angle is time-dependent. The € is nearly a constant (= 23.44) but
changes over time. The Sun vector is clearly determined by A and € and it can
be expressed in ECI frame as follows

cos(A)
rs = | cos(€)sin(d) |. (7.2)
sin(€)sin(A)
The A and € can be calculated based on the mathematic model described in [280,
page 141], [264], or [265]. We provide the formulas of [265] as follows. First,

given year, month, day (January first is the first day), hour, minute, and second,
the Julian date JD is given as [265, page 186]

ear+ floor( menht?
JD =367(year)— floor (7(y ek 1 (e ))> +floor(—275’;"”’h)

hour minute second
+day +1721013.5 + 53" + 530" + 560 » (7.3)

where floor is the greatest integer smaller than its argument. From JD, we need
to convert the date to J2000 which is given by [265, page 188]

JD —2541545.0
TUTI = T3z~

36525
Then, the mean longitude L of the Sun is given by [265, pages 365-368]
L =280.4606184 + 36000.77005361 X Ty7;. (7.4)

Assume that Barycentric dynamical time Trgp = Tyr1. The mean anomaly g of
the Sun is given by

g =357.5277233 +35999.05034 x Trpp. (7.5)
The ecliptic longitude (1) of the sun is given by
A =L+ 1.914666471 x sin(g) +0.019994643 x sin(2 x g). (7.6)
The tilted angle is given by
€=23.439291°—0.0130042 x Trpp. (7.7)

Substituting (7.6) and (7.7) into (7.2) gives the Sun vector in ECI frame. The
sun vector in LVLH frame can be calculated by applying rotational matrix that
transforms ECI frame to LVLH frame, which has been discussed in Chapter 5.
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Figure 7.1: Sun vector represented in ECI frame.

7.3.2 Sun vector measurement

Unlike geomagnetic vector, the sun vector cannot be directly measured from the
Coarse Sun Sensors (CSS) and some signal processing is necessary. Based on
the specification of the view angle of coarse sun sensor, a total of n CSS are
needed to guarantee that at least two sun sensors are available at any orientation
when the spacecraft is not in eclipse. Each coarse sun sensor measures the current
proportional to the projection of the Sun vector onto the sensor bore-sight. Let
the measured current of the ith sun sensor n; be

by =1/l = (m; - by), (7.8)

where, i = 1,2,...,m < n, m is the number of Sun sensors that receive the Sun
light at current spacecraft attitude, /; is the measured current of the ith CSS, n;
is the known boresight unit vector of the ith CSS in body frame, b is the sun
direction vector to be determined, and [; is the known maximum CSS current.
There are two different cases that need two different methods to solve equa-
tion (7.8). In the first case, a valid current is measured from at least 3 of the n
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Sun Sensors. The CSS processing algorithm computes a measured sun vector
by solving the system of equations (7.8) for b, using a pseudo-inverse. The unit
sun vector by is then obtained by normalizing bs. All vectors n;, b, and by are
expressed in body frame.

In the second case, a valid current is measured from only 2 of the n Sun
Sensors. the resulting two linear system equations and quadratic constraint over
the unit sphere has two possible solutions, and some extra information is needed
to decide which solution is the true sun vector (a solution that is closer to the
previous valid solution is a reasonable guess but it can be wrong).

Clearly, the solution obtained in the first case gives better estimation in gen-
eral than the solution obtained in the second case. To avoid the second case, one
needs more CSS.
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In the previous two chapters, we have discussed spacecraft attitude determina-
tion methods based on the knowledge of astronomical object vectors r; at current
time and the location of the spacecraft, and the vector measurements b; at current
time. However, due to various reasons, these measurements are normally noise
signals, which oftentimes result in an inaccurate attitude determination. In 1960,
Kalman published his famous Kalman filter [109] and this technique quickly
found its use in some high-profile missions in the aerospace industry, such as
the Apollo project [173]. The success of the Apollo project made Kalman filter a
widely known method that has been used in many applications where measure-
ment signals are noisy. Spacecraft attitude estimation has been a major research
area since the Kalman filter was invented [132]. Because both quaternion kine-
matics and spacecraft dynamics are nonlinear, for spacecraft attitude estimation,
extended Kalman filter was developed by Smith et. al. [237] and is now widely
used in spacecraft attitude estimation.

In 2000, Julier et. al. [104] proposed a different filtering and estimation
method, the unscented Kalman filter, for nonlinear system estimation problem.
This estimation method has attracted a lot of attentions. Many research papers,
for example [44, 47, 48] and references therein, were published. Many reports
claim that the unscented Kalman filter produces better estimation result than ex-
tended Kalman filter. But some simulation comparison between the two methods
leads to different opinions about the potential advantages of unscented Kalman
filter [130]. We will not discuss the unscented Kalman filter method in this chap-
ter. The readers interested in this method and its application to the spacecraft
attitude estimation are directed to [48] which includes a lot of references.

In this chapter, we first present some basic concepts related to the estimation
theory. Then, we discuss the linear Kalman filter. Since spacecraft is intrinsically
a nonlinear system, we introduce the extended Kalman filter. In the final part of
this chapter, we apply the extended Kalman filter to the spacecraft quaternion
model.

8.1 A brief background review

This section provides a brief background that will be needed in the remainder of
the Chapter.

8.1.1 Probability and conditional probability

Consider an experiment with a number of possible outcomes. A set of these out-
comes is a sample space Q. An event A is a subset of the sample space. A prob-
ability measure p(-) is a mapping: A — R satisfying the axioms

(@) p(A)>0.
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(b p(Q)=1
(c) IfA;NA;=0,ie., A; and A; are disjoint, for any i and j, then p(UA;) =

> p(A).

From these axioms, the following relations can be derived.
F<1, p(0)=0, p(A) =1-p(A), p(UA;) <> p(A)). (8.1)

where A is the event in Q but not in A. The joint probability of two events A and
B is denoted by p(ANB). Suppose an experiment event A is performed after the
experiment event B occurred, and the probability that event A has also occurred,
then the conditional probability of A given B is

p(ANB)
p(B)

One of the most important concepts in probability theory is the mutually inde-
pendent events. The m events of Aj,A,,...,A, is mutually independent if

p(A|B) = (8.2)

P(A|B) = p(A1NA;...NA,) = p(A1)p(A2) ... p(An). (8.3)

For an experiment, if a variable’s outcome is one of possible real numbers but
it is not predictable which number will occur, then the variable X is a random
variable. A random variable is discrete if it has only countable outcome numbers.
A random variable is continuous if its outcome values is in some interval [a,b].

8.1.2 One dimensional random variable

For a random variable, although we cannot predict what number it will take, but
we assume that we know its cumulative distribution. Given a random variable X,
the cumulative distribution function F, is a mapping: R — [0, 1] such that

F(x) = p(X <u). (8.4)

The cumulative distribution function is monotonic increasing and satisfying
lim,_,_ -, = 0 and lim,_, ., = 1. For continuous random variables, we assume
the corresponding cumulative distribution function F(x) is differentiable every-
where. Then we can define the density function of the random variable X as

flx) = dZix) (8.5)

and f(x)dx to the first order is f(x < X < x+dx).
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8.1.3 Higher dimensional random variables

We discuss only two dimensional random variables as the extension to the higher
dimensional random variables is straightforward but with more complex nota-
tions.

For a two dimensional random variable, its cumulative distribution function
F(x,y) is a mapping: R? — [0, 1] such that

F(x,y)=pX <xY <y). (8.6)
The following properties hold for any two dimensional random variable:
F(x,00) = Fi(x), F(00,y) = F(y), F(o0,00) = 1. (8.7)

Assume that the two dimensional cumulative distribution function is continu-
ously differentiable, then its density function is given by

JoF (x,
flxy) = 85{;;). (8.8)
Therefore, . .
Foy)= [ [ sy (5.9)
This yields
A =Fioo) = [ [ sy (5.10)
and o
F(y) = Fi(o0,y) :/ / f(x,y)dxdy. (8.11)
Furthermore, we have
JF o
fl(x) = w = / f(xay)dya (812)
X — 00
and IF -
fly) = 20D | s (8.13)
Yy —00
8.1.4 Conditional distribution
From (8.2), we have
X y+Ay
,y)dxd
PX < y—dy<¥ <yt dy) = meeloa SO

+A;
yy_Aj f2 (y)dy
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where f>(y) is given in (8.13). Applying the mean value theorem for integrals

b
/ f(x)dx= f(c)(b—a), wherec € [a,b], (8.15)
to (8.14) and letting Ay — 0 yield
J2 o fx,y)dx
PX<x|Y=y)="2" ~ | (8.16)
( | ) L)

Similar to (8.4), we may define the conditional cumulative distribution as

Flx[y)=pX<x|Y=y). (8.17)

Then, similar to (8.5), The conditional density function of the random variable X
given Y =y is defined as

_dF(xy) _ f(xy)

Y = = . 8.18
fxlY =y) Tn 70) (8.18)
Similarly, we can obtain
dF(y|x) _ f(x.y)

X=x)= = . 8.19
e TR e &

From the above two formulas, it follows the Bayes’ theorem:
fxy)=fx Y =y)f()=f0 X =x)fi(x). (8.20)

8.1.5 Independent random variables

Two random variables X and Y are independent if one variable’s conditional
density function does not depend on the given condition of the other random
variable, i.e.,

fx|Y=y)=filx), fO|X=x)= () (8.21)

In view of the Bayes’ theorem, the necessary and sufficient condition for the two
random variables to be independent is

fx,y) = fix) fa(y). (8.22)

This is true if X and Y are two random vectors.
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8.1.6 mean, variance, and covariance

For a discrete random variable X, its mean is given by
n
X)=> xipi, (8.23)
1

where x; is one of all possible values, p; is the probability of X = x;, and n is all
possible outcomes. Some times, we denote E(X) by X. For continuous random
variable X, its mean is given by

E(X)= /00 xf(x)dx, (8.24)

which is also known as expectation. For a continuous random vector X whose
elements are random variables, i.e., X = (Xj,...,X,). Since X is random, it may
take value x = (x,...,%,) € (—00,00). We denote its mean as

EX) = /OO Xf(X1,%2, ... X0 )dxy -+ dx, = /00 xf(x)dx. (8.25)

—00

Let X be a random vector whose elements are random variables, its covariant
matrix Var is given by

Var(X) = (X))(X — E(X))T]
- / / x—E(X))(x—E(X))"f(x1,%2,....x.)dx; -+ ,dx,

/ / (x—E(X))(x—EX))"f(x)dx, (8.26)

The (i, j) element of Var(X) is expressed as follows.

//(x,-—E(X,»))(xj—E(Xj))Tf(xl,xz,...,x,,)dxl---,dx,,. (8.27)

If i = j, this item is named as the variance of X; and denoted as Var(X;). If i # j,
this item is named as the covariance of X; and X; and denoted as Cov(X;,X;).

8.1.7 Conditional expectation and variance matrix

Let X and Y be two random vectors. Given the condition of Y =y, the condi-
tional expectation of X for the given Y =y is defined as

E(X|y)= / xf(x | y)dx, (8.28)

[ee]
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Then, we can define the conditional variance matrix as

Var(X|y) = E[(X-E(X|y))(X-E(X|y)"]
_ / (x—E(X | y))(x—E(X | y))"f(x | y)dx

(8.29)

8.1.8 Discrete time stochastic processes

A discrete-time random process is a sequence of random variables (random vec-
tors) that is also a function of discrete-time. Let {X;,Xo,...,X,} be a discrete-
time stochastic processes. Its probabilistic properties are described by the joint
cumulative distribution function

F(Xiyeeo %) = p(X1 < X1y, Xy < %), (8.30)
or by the joint density distribution function

_ IF(xy,...,X,)
f(Xh...,Xn)—m. (831)

Similar to the previous sections, we can define the expectation of the random
process at time k by

E(Xk) = / kak(xk)dxk, (832)

—00
where f} is defined similar to the ones in (8.12) and (8.13).
Consider a discrete-time random process X = {X1,Xa,...,X,} whose ele-
ments are random vectors, its covariant matrix Var is given by

Var(X) = X))(X-E(X))"]
= / / x—EX))(x—EX)Tf(x1,X2,...,X,)dX; - - ,dX,

= /_ /_ (x—E(X))(x—E(X))"f(x)dx. (8.33)

For two discrete-time random processes {X;,X», ..., X, } and {Y1,Y2,..., Y, },
where Xy, ...,X, are m dimensional vectors and yy,...,y, are s dimensional vec-
tors, the joint cumulative distribution is given by

F(Xh...,Xn) = p(Xl S X17...7Xn S XmY] S y17---;Yn S yn) (834)
Similarly, we can define the joint density distribution

aF<X1a"'7XVlayla"'ayn)
A AR AN MR A S I

(8.35)
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Moreover, similar to the ones in in (8.12) and (8.13), we can define

fx(xla"'axn)a .ﬂ'(yla"'ayn)~ (836)

We say the two discrete-time random processes {X1,Xs, ..., X, } and {Y,Y2,...,Y,}
are independent if

f(Xl7"'7Xn7yl7"'7yn) :fX(Xl7'"7Xﬂ)fy(YI7"'7YH)' (837)

For a discrete-time random processes {Xi,Xs,..., X, }, if {x1,X2,...,X,} is
taken at times {t1,1,,...,t, }, we denote the cumulative distribution as

F(X1,t1,X0,00 ., Xy, 1) (8.38)

For any time 7, if {x1,Xp,...,X,} is taken at times {t; + 7,5, + T,...,t, + T}, we
denote the cumulative distribution as

F(x1,t1 +T,%X0,50 + T, .., X, 1+ T). (8.39)

We say a discrete-time random processes {Xi,Xo,...,X,} is strictly stationary
if

F(Xl,tl +T,X2,12+T,...,Xn,l‘n+f) :F(Xl,tl,Xz,tz...,Xn,tn). (8.40)

8.1.9 Markov processes

A process is Markov if, given that the present is known, the past has no influence
on the future, i.e., for any discrete-times k; < k» ... < k, and the corresponding n
vectors Xi,X1,...,X, of dimension m,

p(Xn <x, ‘ Xoo1 =Xp1,..., X = Xl) = p(Xn <X | Xn1= Xn—l)- (8.41)
From Bayes’ theorem, it is easy to derive the following formula.

Sy %) = F (& [ X)) f (Gt [ Xn2) - f(x2 [ x0)f(x1). (8:42)

Sometimes, we refer a discrete-time random process to as a random sequence.
We say a random sequency {Xy,k =0,1,2,...} is a white noise sequence if

EXy) =0, k=0,1,2,... (8.43)
and
Cov(X;, X;) = R;§; j, (8.44)
where
1, ifi=j
Gj=1" 8.45
" {0, ifij (8.45)

is the Kronecker delta function.
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8.1.10 Gaussian-Markov processes

Let X be a Gaussian or normal random variable, then its density function is of

the form
1 _=w?
e ? (8.46)

X)) =
Pl =
where 4 = E(X) and 62 = Var(X) = E[(X — n)?].

Let X be a m-dimensional gaussian or normal random vector, then its density
function is of the form

1

p(x) = W

ETA (8.47)

where 4 = E(X) € R”, and R = Var(X) = E[(X — u)(X — u)T] € R™*™,
Let X = (X, k=0,1,2,...,n) be a discrete-time random process and X}, be
an m-dimensional gaussian vector, then its density function is of the form

1 |

- 4 hwRT(xp)

P = G F R , (8.48)
where i = E(X) € R, R = Var(X) = E[(X - )(X — )] € R™, x =
(X1,...,%,) € R™ and X = (X{,...,X,) € R™ is an mn-dimensional random
vector.

If a Markov random process has Gaussian density function of the form (8.48),
we say it is a Gaussian-Markov random process.

Remark 8.1 Gaussian-Markov processes are assumed for Kalman filter by many
books, such as [5, 235], which makes the treatment easier to follow. However,
Gaussian-Markov processes are not required and Kalman’s original proofs [109]
were based on the orthogonal properties, which makes the result applicable to more
general problems.

8.2 Discrete time linear Kalman filter

In Chapter 4, we discussed spacecraft model. Although, both inertial pointing
and nadir pointing spacecraft are intrinsically nonlinear, we may linearize the
model and the simplified model can be written as

X = Ax+Bu, (3.49)

where x € R” is the state variable, A € R"*", B € R"*" are the system matrices,
and u € R is the control vector.
From Chapter 5, we know that the spacecraft always experiences disturbance
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torques, which can be modeled as a n-dimensional random process w. Therefore,
the simplified model (8.49) should be written as

x=Ax+Bu+w. (8.50)

In Chapters 6 and 7, we discussed how to use sensors to measure the space-
craft attitude and this information can be used to control the spacecraft to achieve
the desired attitude. Since all measurements have noise, the measurement can be
modeled as

y=Cx+v (8.51)

where y € R? is the measurement vector, C € R?*" observation matrix, and v is
a p-dimensional measurement random noise vector.

Since computer is used in all spacecraft control system, instead of the con-
tinuous model (8.50) and (8.51), we will consider the discrete spacecraft model
given as follows.

Xp1 = Apxg + Bruy + wy, (8.52a)

Vi = CiXg + Vi (8.52b)

There are many different methods to convert the continuous model (8.50) and
(8.51) into a discrete model (8.52). Readers who are interested in this material
are directed to reference [8, 72, 127, 238]. But we would like to point out that a
Matlab function c2d can be applied to the continuous model to get the discrete
model (8.52).

Finally, we assume in the remainder of this chapter that all random processes
have the first order and second order statistics (mean and covariance matrix).

8.2.1 Assumptions on the stochastic linear system

To derive the linear Kalman filter, the following assumptions are made [109]:
For any k and j, the dynamical noise and measurement noise are zero mean
white noise that satisfy the following relations.

E(wi) =0, Cov(wi,w;)=E(Ww)) = Qi (8.53a)
E(vi) =0, Cov(vi,v;) =E(Viv}) = Ridy;, (8.53b)
Cov(wi,v;) = E(wv]) =0, (8.53¢c)

where 0y is the Kronecker delta function defined in (8.45). Moreover, the initial
state satisfies the following conditions.

E(X()) = Uo, COV(X(),X()) =F [(X() — ‘u())(X() — ‘LL())T} = P(), (8.54a)
COV(XO,Wk) = 0, (854b)
Cov(x¢,vr) =0, (8.54¢)
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8.2.2 Orthogonal projection

Let x be the n-dimensional dynamic random vector, y be the m-dimensional mea-
surement random vector, and x* be a n-dimensional random vector that satisfies
the following three conditions:

1. There is a constant vector of a € R”, and a constant matrix D € R"*"™
such that x* can be expressed as x* = a + Dy.

2. E(x) = E(x*),i.e., the orthogonal projection is unbiased.
3. E[(x—x")yT]=0.

Then, we say x* is the orthogonal projection of x on y, and denote x* = E(x | y).

Remark 8.2 If x and x* meet the second condition, we say x* is a unbiased esti-
mation of x. If x, x*, and y meet the third estimation, we say X = x —x* and y are
orthogonal.

8.2.3 Minimal linear covariance estimation

For an n-dimensional dynamic random vector X, given an m-dimensional mea-
surement random vector y, we would like to estimate x based on the measurement
y. In this section, we restrict that the estimator is linear:

f=a+Dy=E(x|y), (8.55)

where a is a constant vector and D is a constant matrix, i.e., the estimator is
a linear function of the measurement random vector y. Therefore, the estima-
tor satisfies the first condition of orthogonal projection. Denote the error of the
estimation as

b=E(RX)—E(x)=a+DE(y) — E(x). (8.56)

We want to minimize

E[(x—X(y ))(X &(y))"]
= E[(x—a—Dy)(x—a—Dy)]
= E[(x—b+DE(y) — E(x) —Dy)(x —b+DE(x) — E(x) — Dy)"]

E{[(x—E(x)) =b—D(y —E(y)][(x— E(x)) =b—D(y — E(y)]"}
Var(x) +bb" + DVar(y)D" — Cov(x,y)D" — DCov(y,x)
= bb' +[D—Cov(x,y)(Var(y))~'](Var(y))[D — Cov(x,y)(Var(y))~']"
+[Var(x) — Cov(x,y)(Var(y)) ~'Cov(y,x)]. (8.57)
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The first two items in (8.57) are positive semi-definite matrices and last item in
(8.57) is independent to b and D. Therefore, to minimize (8.57), we must take

b=0, (8.58a)
D = Cov(x,y)(Var(y))~". (8.58b)

Substituting (8.58) into (8.56) yields
a= E(x) —Cov(x,y)(Var(y)) " 'E(y). (8.59)

Substituting (8.58) and (8.59) into (8.55) yields the minimal linear covariance
estimation:

% = E(x)—Cov(x,y)(Var(y)) 'E(y)+Cov(x,y)(Var(y)) 'y
E(x)+Cov(x,y)(Var(y))~'(y — E(y))- (8.60)

In view of (8.57), we obtain the estimation covariance matrix as follows.

E[(x = %(y))(x —X(y))]
= Var(x) —Cov(x,y)(Var(x)) " 'Cov(y,x). (8.61)

From (8.60), it follows
E(R) = E(x) +Cov(x,y)(Var(y)) " (E(y) —E(y)) = E(). (8.62)

Therefore, the estimation is unbiased, which satisfies the second condition of or-
thogonal projection. Now we show that the estimate satisfies the third condition
of orthogonal projection. In view of (8.62), we have

E[(x—R)E(y)"] = E(x—R)E(y)" = 0. (8.63)
Using this formula and (8.60) yields

E[(x=%(y))y'] = E[(x—%(y))(y - E(y))"]
E{[x—E(x) —Cov(x,y)(Var(y)) "' (y —E(¥))](y —E(y))"}
= Cov(x,y) —Cov(x,y)(Var(y))'Var(y) = 0. (8.64)

Therefore, we have shown that the minimal linear covariance estimation is an
orthogonal projection of X on y.

8.2.4 Three lemmas

First, we show that the orthogonal projection is unique.
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Lemma 8.1
Let x and 'y be n-dimensional and m-dimensional random vectors, the orthogonal
projection of X on'y is unique and is given by

E(x|y) = E(x)+Cov(x,y)(Var(y)) "' (y — E(y)). (8.65)

Proof 8.1 From the orthogonal projection conditions 1 and 2, we have
E(x) =E(X)=E(a+Dy)=a+DE(y)
< a=E(x)-DE(y)
«— Ekx|y)=a+Dy=EX)+D(y—E(y)). (8.66)
Then, from the orthogonal projection condition 3, (8.63), and (8.60), we have
0=E(x—%)y' =E(x—%)(y—E(y))"
= E{[(x—Ex)-Dy-E)(y—E)"}

= Cov(x,y) —DVar(y). (8.67)
This shows that D = (Var(y)) ~'Cov(x,y). Substituting this formula into (8.66) gives
(8.65). This completes the proof. |
Lemma 8.2

Let C € R™*" be constant matrix, and x € R" and 'y € R™ be two random vectors.
Then,

E(Cx|y)=CE(x|y). (8.68)

Proof 8.2 In view of Lemma 8.1, it follows

E(Cx|y) = E(Cx)+Cov(Cx,y)(Var(y)™'(y—E(y))
= CE(x)+CCov(x,y)(Var(y)) ' (y — E(y))
= CE(x|y). (8.69)
This completes the proof. |

Lemma 8.3
Let x € R", y € R™, and z € RP be three random vectors. Let s = (y,z) € R"P.
Then,

Ex|s)=Ex|y)+Ex|z)=Ex|y)+E&z")(E@zz")) 'z, (8.70)
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where

x=x—E(x|y), i=z—E(z|y). (8.71)

Proof 8.3 From Lemma 8.1, and since orthogonal projection is unbiased, we have

E(X) = E[x—E(x|y)]
= E[x—E(x)—Cov(x,y)(Var(y)) 'y —E(y)] =0,  (8.72)

and

E(z) = Elz-Ez]|y)
= E[z—E(z)—Cov(z,y)(Var(y))"'(y —E(y)] =0,  (8.73)

Using (8.72), (8.73), and Lemma 8.1 again, we have

z)(Var(z))~ ( E(z))
(E(zz"))~! (8.74)

Ex|Z) = E®&)+Cov(x,
= E®)+EGRZ)

This proves the second equality of (8.70). To prove the first equality of (8.70), using
the uniqueness of the orthogonal projection, we just need to verify that

x*=E(x|y)+E&")(E@zi")) 'z (8.75)

is the orthogonal projection of x on s = (y, z), i.e., it satisfies the three conditions for
orthogonal projection. First, since £(x | y) and E(z | y) are linear function of y, and
Z=1z—E(z|y) is a linear function of s = (y,z), we conclude that £(x | y) + E (%X | Z)
is a linear function of s = (y,z), so is x*. Second, using (8.73) and (8.65), we have

E[E(x|y)+E(RZ")(E(zz")) "7
= E[E(x|y)+ER")(E(z2") " El2]
= E[E(x|y)]
= E(x). (8.76)

This shows that x* is unbiased. Finally, since £(z | y) is a linear function of y and
is unbiased, from condition 3 of orthogonal projection, we know that X and Z are
orthogonal to y, therefore, we have

E[RE(z]y)] =0, (8.77a)

E[zE(z|y)] =0. (8.77b)
In view of (8.71), this implies

E(xz') =E(XZ")+E[XE(z | y)| = E(x2"), (8.78a)
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E(7z") = E(#1") + E[ZE(z | y)] = E(77"). (8.78b)
Using (8.75), (8.78), s = (y,z), and E(zy") = 0, we have

E[(x—x")s"] = E{[(x—E(x | y) — E(%2")(E(22")) " '2Js" }
= E[(”sT (sz)(E(iiT) _IE(iST)
E(xy"),E(x2")) - E(x2")(E(z2")) " (E(zy"),E(22"))
E(xz")) — (0,E(xz"
JE(x2')) - (0,E(xz"
,0) (8.79)

3

(
(0
_—
(0

This proves that x — x* and s are orthogonal. Since the orthogonal project is unique,
x* is the projection of x on s. This proves (8.70). |

8.2.5 Discrete-time linear Kalman filter

Let the first kK measurement be s; = (y1,y2,...,¥x) and denote the estimation of
x; based on the measurement is Xy, = £ (x; | s¢). Then we have the one-step state
prediction:

E(Xk+1 | sk) = Xpv 1k
= E(Aka + Biuy + wy ‘ Sk)
= Akﬁk\k + Bruy +E(Wk ‘ Sk). (8.80)

Since s = (¥1,¥2,---,¥x) is a linear combination of (vy, vy, ...,vx) and E(wy) =
0, according to (8.53), wy is orthogonal to (vy,V,,...,v,). Therefore,

E(wi | s) =E(Wi | Vi,V2,...,v) =0, (8.81)
and
Rir 1k = AuXppr + Brug. (8.82)
For one-step measurement prediction, we have

Verip = E(CrarXesr + Virr | se)
= CrpXepi T E(Virr | se) (8.83)

Since sy = (y1,¥2, - - -,¥x) is a linear combination of (v, vz, ...,v,) and E (v ) =
0, according to (8.53b), vy is orthogonal to (vy,Va,..., V). Therefore,

E(Vig1 | 8k) = E(Vie1 | Vi,V2,..., V) =0, (8.84)
and

Viriik = Crr1Xpp1 k- (8.85)
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Note that §; |« is an orthogonal projection of y; 1 on sy, i.e.,

E[(Ykt1 — is1je)8] = 0. (8.86)

Let §x11jx = Yi+1 — Yx+1jx and be termed as the innovation (¥4 1|x includes new
information y; ). In view of Lemma 8.3, the updated state estimation is given

by
Rpctprr = ERXel s +E&en] ey
= Exer| s+ ERern i) EFeeii)) ™ eiix8.87)
Denote Xiyijx = X1 — K and Proype = E(Rep1uKeqr )T Since Kiqpp

is a linear combination of (vy,vz,...,v4) and is unbiased, it follows that
E(ikﬂ‘kvz“) = 0. Therefore, using (8.85), we have

Sl

< ~T
Yi+1|6Yr+1 \k]

[
= E[(Yir1 = 1) e = Fa16) ']
E[(Cip1Xi1 + Vet — Crp1Res 1) (Chr1Xir1 + Vi1 — Crp1 R i)'
= E[(Cip1%r1k + Vi) (Crorr Ry 1 g+ Vir) ']
= Ce1PrapCiyy +Res, (8.88)

and
ERir1 ¥ = ERicere Vet — Fagap) ']
= ERip(CoriRigipe+ Vir1)'] =P pCiy - (8.89)

Let K1 = Py, Cy (CrrtPret G, + Ryqr) ! Substituting (8.80), (8.88),
and (8.89) into (8.87) yields

Keriperr = Reprpe + Koot (Ve — ey 1)
= R+ Kip1 [Yar1 — CoprReipel- (8.90)

Now, we derive the one-step update formula for covariance Py ;. From (8.52)
and (8.82), we have

Xit1 —)A(k+1| = Ak(Xk —)A(k| k) + W, = Akik\k + Wy (8.91)

In view of item 3 in Section 8.2.2, it follows E[(x; — Ry 1) W] = E X w;] = 0.
Using (8.53), we have

Pk+1|k = E[<Akik|k + Wk)(Akik\k + Wk)T] = AkPk\kAz + Q. (8.92)

Finally, we can update covariance P 1| x1;. From (8.90), (8.85), and (8.52), we
have

Xirt = Rert k1 = Xt — R & — Kir1 Vi1 — Cor R ]
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Xpr1 — Ry 1] & — Kot [Crr1Xar1 + Vit — Cropr X1
K1) & — Kt [Cro1 Rpg1 g + Vi 1]
= (=K1 Crip1) X1k — Kip1vigr. (8.93)

Noticing that E[&; 1| ¢v;,] = 0, this gives
| JURY
E[(Xk1 = K1) k1) (it — Rier1 1) ']

E[(1— K1 Crp1)Xpp1) & — Kir 1 Vi 1) (T = Kip 1 Crog 1) Kigon) « — Ki1Vie1)")
= (=K 1Cri1)Pry1 1 (T = Kir 1 Coit) T + Ker 1 Re 1 Ki - (8.94)

Summarizing the results in this section gives the following theorem.

Theorem 8.1
For dynamical system with the measurement (8.52), assume the measurement noises
satisfy the condition (8.53), and initial conditions are given by

Koo = X0 = Mo, Pojo =Po. (8.95)

Then, the optimal filtering Xy11 | k11 0f Xk+1 can be calculated iteratively

)/ZkJrl | k= Akﬁk|k +Bkllk. (8963)

P i = AcPAL + Qr. (8.96b)

K1 =Py Gy (Crot Proa fCy g + Resr) ™ (8.96¢)

Pt = (T= K )Py k(I — Ky 1 Copt) " + K R K. (8.96d)
K11 = K1+ Keet [Yer 1 — Crop 1 Rpes 1 i (8.96¢)

8.3 Discrete-time extended Kalman filter

Since most real world systems are nonlinear, to use the linear Kalman filter, one
has to first linearize the nonlinear system before s/he applies the linear Kalman
filter. Modeling error is introduced during the linearization process. For this rea-
son, NASA engineers and researchers at MIT worked on the extended Kalman
filter right after Kalman filter was developed. According to Stanley F. Schmidt
[226], the authors in the following papers [15, 16, 152, 153, 236, 237] should be
credited for the development of the extended Kalman filter.
Consider the nonlinear system model:
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X = f1 (Xe—1, W1, -1, (8.97a)

Yie = e (Xe, i), (8.97b)

E[¢] =0, E[(Pk(i)jT] = &, Qx; (8.97¢)

Elyi] =0, E[yiv]] = &Ry, (8.97d)
E[Xoj0] = E(x0), Poo=Po, E[py]]=0, (8.97¢)

To save space, in this section, we use X, = X, and f(,:’ = Xy Taking
Taylor expansion of the state equation at x,_; = X;_, and ¢_; = 0 yields

. of,_ . of,_
x¢ = b (R, wme1,0)+ akxl (Xe—1 — %)+ ﬁ Pr—1
&, &,
= o1& w1, 0) +Feo i (xm1 — %)) + L1 et
= Foxer + B & we1,0) —Fe % ]+ L1 9y
= FroiXp— — 1+ G, (8.98)
where ¢ o
Fp = —! , Ly = L (8.99a)
) S 20 |+
k—1 k—1
U = (R we1,0) —F &, (8.99b)
-1 =Li_i1de1, E($—1)=0, (8.99¢)
E( 1l ) =L Qi L. (8.994)

Taking Taylor expansion of the measurement equation at x;_; =X, and y; =0
yields

_ Jdhy _.  Jh;
p— h X e _A I—
Vi (& 0)+ - . (xc—%, )+ v, Vi
'k k
= h(%,,0) +Hi(x; — %, ) + My
= Hka + [hk<ﬁ;,0) — Hkﬁ;] + Mkl[/k
Hixi + 21 + W, (8.100)
where oh oh
H = — == 101
= oy . “= Sy . (8.101a)
7 = hy(%,0) — Hik (8.101b)

Ve =My, E(W) =0, (8.101¢)
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E(Wy ) = MiR(M. (8.101d)

We have a linear state-space system of equation (8.98) and a linear measurement
equation (8.100). Therefore, we can use the linear Kalman filter equations to
estimate the state. This gives the discrete-time extended Kalman filter:

R =Rt ke =H1 (R w1, 0) =i (R o1, we—1,0). (8.102a)
Piici =Fe P F + Lo Qe L. (8.102b)

K = Py HY (HiPy o HY + MURM) (8.102c¢)

Py = (1— KH )Py (T- KHy) T+ KRKG (8.102d)

Kipe = Rp—1 + Klyr — Hikepe— 1 — 2] (8.102¢)

8.4 Extended Kalman filter for spacecraft state estima-
tion

Although many different methods have been proposed, most models suggest us-
ing only quaternion kinematics equations of motion for the attitude estimation
without considering spacecraft dynamics, see for example, some widely cited
survey papers [48, 132] and references therein. This model reduces the problem
size but discards useful spacecraft attitude information available in the space-
craft dynamics equation. The drawbacks of this simplified model are (a) when
gyros measurements have significant noise, the spacecraft dynamics information
is not used to prevent the degradation of the attitude estimation, and (b) when
gyro measurements are not available (as a matter of fact, gyros are not used in
most small spacecraft for economical consideration), the simplified model cannot
be used to estimate the spacecraft attitude. There are some papers that consider
models including the spacecraft dynamics in Kalman filter designs, for example,
[118, 148], but comparison about which model is a better fit of the application
of spacecraft attitude estimation was not carried out for a long time. In a recent
research [325], the performance comparison for Kalman filters using the two
different models was performed. The result shows that the Kalman filter should
include spacecraft dynamics. This section is based on the [325].

The spacecraft model with Gaussian noise considered in this section can be
expressed as follows [304, 310]:

o=-J"oxJo)+J u+t¢,, (8.103a)

q= %Q(a)+¢2)7 (8.103b)
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where q is the vector part of the quaternion (q is referred as the reduced quater-
nion in this book), @ is the spacecraft rotational rate with respect to the inertial
frame, ¢ = [¢,,9,]" is the process Gaussian noise, J is the inertia matrix of the
spacecraft, and € is a matrix given by

gq) —a3 @
Q= ¢ gla -aq |, (8.104)
- q gq)

with g(q) = /1— ¢} — 43 — ¢

It is worthwhile to note that unlike ¢, the noise ¢, is added to @ so that the
kinematic equations are consistent with the form of (4.8). Depending on the de-
sign, we may have angular rate measurements @, and quaternion measurement
q,; or we may have only quaternion measurement ¢,. Assuming that three gyros
and quaternion measurement sensors are installed on board, then the measure-
ment equation can be written as [47]

B =0, (8.105a)
0, =0+B+vy, (8.105b)
qQ=q+Vy,, (8.105c¢)

where f3 is a drift in the angular rate measurement, ¢ is the process noise, @, is
the angular rate measurement, q, is the quaternion measurement, and y; and y,
are measurement noise. The overall system equations are given as follows:

o=-J"oxJo)+J u+¢,, (8.106a)
q= %Q(w+¢2), (8.106b)

B = ¢s, (8.106¢)

0y =0+B+v,, (8.106d)

9 =q+Yy,, (8.106¢)

which can be rewritten as a standard state space model as follows:

x =f(x,u,¢), (8.107a)
y=Hx+y, (8.107b)

where x = [0",q", 8"]", y = [0}, q]", ¢ = [¢7,97,93]", v = [y}, y3]", and

L 03 Is
H_[03 I 03].

Some noticeable differences between this model and other popular models
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are (a) it is a reduced quaternion model rather than a full quaternion model and
(b) it uses the additive noise rather than the multiplicative noise expression.

The reduced quaternion geometry of q, can be seen from the following argu-
ment. First, the noise y, can be viewed as a reduced rotational quaternion whose

rotational axis is HX'I 7 and rotational angle & meets the condition sin (2) =,

For small noise y, and the quaternion q = esm( ) which is bounded away
from a singular point (||q|| < 1), we can see that q, = q+ y, = Hq T sin(2£2)
is a reduced quaternion whose rotational axis is a perturbation of q satisfying
llayll < llq|| + ||y, and ||qy|| < 1 (where ||y, || is small), and the rotational an-
gle around ¢, is & + A and A is small. Therefore, the mathematical treatment for
this model is much easier than the multiplicative perturbation model.

Let dt be the sampling time period . The discrete version of (8.106) is given

by

O 11 Oy —J o x (J wk) +J 'y ¢y,
Qs | =| | & |+ 5 Qo dt |+ | 3 0, |dt
:F(Xk,Uk)+G Xkauk)¢ka (81083)
Wy
Oy, L 0 I; } [ v, ]
= + ol = Hx+ vy, 8.108b
|: qy, :| |: 0; Iy 03 g]]i wzk Kkt Yy ( )
where
\/ l—qi —q5, — 43, —q3, e
Q= qs, \/1 — q%k — q%k — q%k —q1,
—q, q1, \/ l—qi —q¢5, — a3,
(8.109)

Note that for two vectors w = [wy,wy,ws3]T and v = [v,v2,v3]T, the cross product
of w X v can be written as the product of matrix w* and vector v where

0 —WwW3 %)
wi=| ws 0 —w
—wy W 0

We also assume ¢, and y, are white noise signals satisfying the following equa-
tions

E(¢,)=0, E(y,)=0, Vk, (8.110a)

E(¢:91) = Q. E(w,y{)=Ri, E(y;9])=0, Vi, jk,  (8110b)
E(¢,0])=0, E(y;y])=0, Vi#]. (8.110c)
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For

Fi(x,u) = (—Jflwk x (Jo) +Jflllk) dt + oy,
we have

or, _

ox

For F>(x,u) = % Qi wrdt + qi, we have

[ I-J Yo - (Jox)*)dr 03 03 ].

JF, OF,  OF
el A U
with e % _%3 4_22 1
| & & D= _Qdr 8.111
2 2 2
and
1 qor W3 G0 _ g3
OF, dt 2g(q) 2 2(q) 2 2(q)
o | Lo g, 1 @ O _ s gy (8.112)
aq 2 2l(q) dt  2¢(q) 2 2(q) : :
o 4103 _ 0 g3 1 g3
2 2(q) 2 2(q) dr 2g(q)
For F3(x,u) = 3,, we have
0F;
—=10; 0; I
Ix [ 3 03 I3 ]
Therefore,
JF
Fi_ = —
-t Jx R 1k—1,Uk—1
I—J_I(COXJ—(JCO)X)CZ[ 0; 05
= o &® 0 . (8.113)
03 0; I R 1]k—1
Similarly
I 0 0
G 3 3 3
Ly, = a— . = 0; % Qi1 05 |dr. (8.114)
¢k Xi—1k—15Wk—1 03 03 13

The extended Kalman filter iteration (8.102) can be applied to solve the problem.

The beauty of the Kalman filter using spacecraft dynamics can be seen from
(8.102¢). The best estimation is composed of two parts. The first part is a pre-
diction X, _; which includes the spacecraft dynamics and the inertia matrix in-
formation for the specific spacecraft. The second part is a correction y; which is
based on observations. The filter gain K is constantly adjusted such that (a) if
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the noise is higher, the gain is reduced so that the estimation depends more on
the information of the system dynamics, and (b) if the noise is lower, the gain is
increased so that the estimation depends more on the measurement. That is the
reason why spacecraft dynamics should be included in the attitude estimation
problem even if angular rate measurements are available.

The simulation test in [325] shows that the extended Kalman filter is robust
to the modeling errors, in particular, when the spacecraft inertia matrix is not
accurate, the estimation is still accurate enough for the practical application.

As mentioned before, the Kalman filter with spacecraft dynamics works with-
out the (gyro) measurement of spacecraft angular velocity vector with respect to
the inertial frame. In this case, gyro measurement drift S does not exist. There-
fore, the continuous system (8.106) is reduced to

o=-J"oxJo)+J u+¢,, (8.115a)
1

1= 5Q(0+9,), (8.115b)

G =q+y. (8.115¢)

We still use (8.107) for this system but x = [@0",q"|", y = q,, ¢ = [¢],9,]", and
C=[ 0; I3 ]. The discrete version of (8.115) is given by

(31 (310810 it

Qict1 (1] % Qo % Qo
= F(x¢, u) + G (X, ug ) G, (8.116a)
(O]
q,=[0: L] { q]f }erk:kawk, (8.116b)

where €, is the same as in (8.109). We also assume that ¢ and y; are white
noise signals satisfying equations (8.110). For

Fi(x,u) = (—J_la)k X (Jooy) +J_1uk) dt + oy,

we have 9F
a—X‘: [1-J (@)~ Ja)*)dr 05 ].

For F,(x,u) = % Qi dt + qi, we have

9Fs 1ok ok
ax_ Jw dq ’

with % and %—qu the same as (8.111) and (8.112). Therefore,

JF I-J Y o*J—Jo)*)dt 0
Fioi:= | = [ ( 6 (Je)) P } (8.117)
X IR 1 We—1 T Jq

Xe—1|k—1
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Let

IG L 0 }
L =5~ = ’ dr. 8.118
P N [03 Lo, (8.118)

The extended Kalman filter will be a special form of (8.102).

8.5 Linear Kalman filter for spacecraft state estimation

The idea of the extended Kalman filter is to use as much (nonlinear) information
as possible and hopefully to improve the estimation performance. Therefore, part
of the iteration uses the nonlinear equation (8.102a). But linearization has to be
done in (8.113) and (8.114) and the linear approximation is used in (8.102b). The
drawbacks of this method are (a) in general, the extended Kalman filter is not an
optimal estimator [5], (b) if the initial estimate of the state is wrong, the filter
may diverge [87, 198], and (c) the estimated covariance matrix tends to under-
estimate the true covariance matrix and therefore risks becoming inconsistent in
the statistical sense [198].

On the other hand, if the nonlinear spacecraft system equations are linearized
and Kalman filter for the linear system is used, the accuracy in state prediction
may be lost. In exchange, some benefits will be gained: (a) the estimate is optimal
for the linearized system, (b) the initial guess is not as crucial as the extended
Kalman filter, (c) the numerically stable algorithms have been fully investigated,
and (d) Kalman filter design and linear quadratic optimal control system design
can be separated [291].

Therefore, In this section, we will briefly discuss a Kalman filter implemen-
tation for the spacecraft estimation problem using a reduced quaternion model
proposed in [304]. Unlike most models [48] used in the spacecraft attitude esti-
mation problem, we will include the spacecraft dynamics discussed in the previ-
ous section to make full use of the available information. We also adopt a sim-
ple additive noise model as suggested in the previous section rather than a more
complex multiplicative noise model used in [47, 48, 132, 160, 161, 199]. Another
benefit of using the reduced model is that the unit norm constraint for quaternion
is not required as in [44, 67, 331], which greatly simplifies the problem and re-
duces the cost of computation. Other merits of using reduced quaternion model
can be found in [306, 311].

As discussed in the previous sections, we can first linearize the nonlinear
system equation and then use (linear) Kalman filter for the attitude estimation
problem. Using exactly the same method in previous section, to simplify the dis-
cussion, assuming that there is no measurement drafting, we have the linearized
system given as follows.

® _ 03 03 [0)] J—l
{q}_[%b 03}{(1}4_{03 ]“ (8.119a)
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o, | _| Iz 03 o
|:qy:|_|:03 I3:||:q:|’ (8.119b)

The corresponding discrete system with added noise is therefore as follows.

I /TR I; 03 ()7 Jldr q)lk
i o R R AP R B

=Ax; +Bu+ ¢, (8.120a)
el ]
= e + k
Vit [ka] [03 I qx Vo,
=Cxe+ v, (8.120b)

Assume Koo = E(xo) and Py = E([xo — E(x0)]"[xo — E(X0)]), the update pro-
cess described in Theorem 8.1 can be used to solve the problem.

There are alternative schemes to update Py . What we described in this chap-
ter is Joseph-form stabilized Kalman filter, which is computationally slightly
more expensive than others but numerically more stable because Py is guaran-
teed to be positive semidefinite [74]. Other schemes exist, such as root square
filter proposed by Potter, Stern, and Carlson in [36, 204], and Chandrasekhar
square root filter introduced by Morf and Kailath in [164]. Some detailed nu-
merical analysis and test were conducted by Verhaegen and Van Dooren [270] in
which a root square fitler algorithm described in [5] was recommended because
of its overall performance and robustness. When R; matrix is diagonal, Bier-
man [27] suggested U-D factorization method which sequentially calculates the
Kalman gain matrix Ky and covariance matrix Py, (one observation at a time).

8.6 A short comment

In this Chapter, we presented two Kalman filters to estimate the spacecraft atti-
tude and body rate. In aerospace industry, the extended Kalman filter is widely
used. But we have seen pros and cons from theoretical point of view for both
methods. However, to the best knowledge of this author, it is not clear which
one is a best fit of a specific application and no one has done an extensive test
comparison.
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Control design methods based on quaternion spacecraft model have been in-
vestigated for decades. Most quaternion based design methods use Lyapunov
functions and focus on the global stability; these methods pay little attention to
the control system performance which is important in practical system design.
Not many researchers considered the performance of the quaternion based con-
trol systems. Using classical frequency domain method, Paielli and Bach [191]
adopted quaternion based linear error dynamics to get desired performance for
the attitude control system; Wie, Weiss, and Arapostathis [285] showed that there
exists some state feedback that globally stabilizes the nonlinear spacecraft system

131
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and the feedback matrix assigns the closed loop poles for the dynamics described
by the rotational angle about the rotational axis. These methods are in classical
domain and they are not easy to extend to modern designs. Zhou, and Colgren
[339] obtained a linearized state space model with all components of the quater-
nion in the state variables. However, this linearized state space model is not fully
controllable. This explains why many powerful design methods in linear control
system theory such as pole assignment, linear quadratic regulator (LQR) con-
trol, and Ho, control were not directly applied to the spacecraft control system
design if full quaternion based linearized model is used.

On the other hand, although the Euler angle representation has a singular
point and the representation depends on the rotational sequential, the linearized
Euler angle based spacecraft model has been proved to be fully controllable.
Therefore, all linear system design methods can be directly applied to spacecraft
control system design for the Euler angle model and these methods are described
in many standard text books, for example, [232, 280, 281]. More importantly,
there are many successful applications of using these powerful control design
methods, for example, [245, 290].

It is shown in Chapter 4 that the reduced quaternion model that uses only
vector components of the quaternion is fully controllable. Also the linearized
reduced quaternion models have some simple and special structure, we will con-
sider the design methods based on the reduced quaternion models in the rest
of the book. For nadir pointing spacecraft, one can directly use standard linear
control system design methods, such as LQR design [9], robust pole assignment
design [115, 260, 302], H, design [57], for the linearized system. The designed
controller can then be checked by simulation with the original nonlinear space-
craft system in the space environment discussed in Chapter 5. For inertial point-
ing spacecraft, since the linearized system has a very simple structure, using
this linearized reduced quaternion model, one can derive an analytical formula
for LQR optimal control that is explicitly related to the cost matrices Q and R.
Moreover, it can be shown that under some mild restriction, the LQR feedback
controller globally stabilizes the original nonlinear spacecraft. In addition, the
LQR controller has a diagonal structure in the state feedback matrices D and K.
Using this structure, it can be proved that the LQR design is actually a robust pole
assignment design. The main results presented here are based on [9, 306, 310].

9.1 LQR design for nadir pointing spacecraft

We first consider the general linear system described as follows.

X = Ax+ Bu,

y—Cx. 9.1)
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The LQR design is to find a state feedback matrix
u=—[DK]x=—-Gx

to minimize the following cost function

L= % / (XTQX+uTRu) dt. (9.2)
0

where Q and R are positive definite matrices, x'Qx represents the cost of the
deviation from desired equilibrium point, u” Ru represents the cost of the energy
consumption. The LQR control problem was first considered by Hall [83] and
Wiener [286], but Kalman [110] provided a much better solution and popular-
ized the design. If Kalman filter [109] is used as part of the feedback loop, then
the control design method is the LQG control. Surprisingly, Kalman filter and
LQR control law can be designed separately because of the separation theorem
obtained by Wonham [291].

For nadir pointing spacecraft system given by (4.36), the optimal control of
LQR design is uniquely given by (see Appendix B or a comprehensive treatment
of [9])

u(t) = —R7'B"Fx(r) = —Gx, (9.3)

where F is a constant positive definite matrix which is the solution of the alge-
braic Riccati matrix equation

—FA—A"F+FBR 'B'TF—-Q =0. (9.4)

This control law can be directly used for the nadir pointing spacecraft without
any modification.

For inertial pointing spacecraft, due to the simple structure of the linearized
reduced quaternion model, analytic solution to LQR design can be obtained. In
the remainder of this chapter, we will focus on the controller design for inertial
pointing spacecraft.

9.2 The LQR design for inertial pointing spacecraft

In this section, we consider LQR design for inertial pointing spacecraft for which
A and B are defined in (4.13). We assume further that the constant inertia matrix
of the spacecraft J defined in (4.1) is diagonal. This assumption is reasonable
because in practical spacecraft design, J is always designed close to a diagonal
matrix. In the rest of the discussion of this subsection, we assume further that
Q, and R are diagonal matrices because Q and R are oftentimes selected to be
diagonal in engineering design practice. With these assumptions, the problem
can greatly be simplified.
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9.2.1 The analytic solution

It is well known that the LQR feedback based on (9.3) and (9.4) guarantees the
stability of the linearized closed loop system and minimizes the cost function of
(9.2) that is a combined cost of cumulative control system error and cumulative
energy consumption.

First, we derive the analytical solution for the spacecraft model (4.12). Let

_ | Fu Fn 1 Qu 0
F_[le Fzz}’ Q_{ 0 sz}’ ©-5)

where the elements of F and Q in (9.5) are all 3 by 3 matrices. Substituting A
and B defined in (4.13), F and Q defined in (9.5) into (9.4), after simple manip-
ulations, we get

FiJ'RTIJF FlJ 7 'RTITF) ] _ { s (FL+F)+Qu  3F»
FL J7'RTUIJTF FLIT'RJIF, | 3Fy Qx
(9.6)
Since J, Q and R are positive definite, noticing that F1; = Fy,, comparing the
(2,2) block on both sides of (9.6) yields,
1
Fi, = JRIQ;,. 9.7)

Since J, Qi = diag(qi;), Q2> = diag(¢»;), and R = diag(r;) are diagonal, we
conclude that F, is diagonal. Substituting (9.7) into the (1,1) block of (9.6) gives,

1
1 1 1 2
F,, = JR? <Q11 +5 (JR%Q;2 +Q§2R%J)> . (9.8)
Therefore, F; is diagonal. Substituting (9.7) and (9.8) into the (2,1) block of
(9.6) gives
1
1 13
Fx =205, (Qu+JR'Q;,) 9.9)

which is also diagonal. Equations (9.7), (9.8), and (9.9) give a complete solution
of Riccati matrix equation (9.4). Therefore, (9.3) can be rewritten as

u(t) = R 'B'Fx(t) = -[R'J7'F;;,R'J'Fpo)x = —[D,K]x.  (9.10)

Clearly, matrices D and K are diagonal.

9.2.2 The global stability of the design

To show the global stability of the design, we first review the definition of global
stability for nonlinear systems [117, page 111].

Definition 9.1 Let x(7) be the solution of the nonlinear inertial pointing spacecraft
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system defined by (4.11) and (4.9). If for any initial state x(0), the trajectory x(7)
approaches the origin as ¢ — 0o, no matter how large ||x(0)]| is, then the region of
attraction (also called region of asymptotic stability) is the entire space R”. If an
asymptotically stable equilibrium point at the origin has this property, it is said to be
globally asymptotically stable.

A theorem on globally asymptotically stable is given in [117, Corollary 3.2]",
which is restated below.

Theorem 9.1

Let x = 0 be an equilibrium point for the system defined by (4.11) and (4.9). Let a
Lyapunov function V : R* — R be a continuously differentiable, radially unbounded,
positive definite function such that V(x) < 0 for all x € R". Let S = {x € R"|V (x) =
0}, and suppose that no solution can stay forever in S, other than the trivial solution
(equilibrium). Then, the origin is globally asymptotically stable.

Next, we show that under some additional conditions, the LQR optimal con-
trol given by (9.10) globally stabilizes the nonlinear system described by (4.11)

and (4.8). Let P = Q;z%R%J , and the Lyapunov function be

1
V=S0/Po+qi+q;+q3+ (1 - qo)’. (9.11)

It is easy to check, in view of (4.8), that

d
- (i + @+ a5+ (1—q0)°)
= 2q"q—2(1—q0)do

1 1 1
= 2q- <—50)1 xXq+ 56]0601> +2(1—qo) (Equ,>

= qoq o+ (1—q0)q o,
q o 9.12)

Using definition of P and (9.7), it is easy to see that
o PJ7'R™'J"'Fioq

— 0f(Qu'RINIT'RIT'(JRIQL)q
o] q. (9.13)

Therefore, using (9.12), (9.13), (9.3), and (4.13), the derivative of the Lyapunov

!"The original result is applicable to a much more general case.
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function along the trajectory described by the nonlinear system equations (4.11)
and (4.8) is given by

v d (1
= o (Jomrart @+ i+ dri-wp?)
F F 0]
T —1 —lp-1 —1 11 12 1
= o,P{-J o, xJo,—J 'R J 0
po(crteda—rw o o) [ pn ][ 7])
—i—a),Tq
= —oPJ 'o;xJo;,— 0PI 'RTJIF 0, — 0 PJ'R'JFq
+o]q

_1 1 1 1 2
= 0PI o x Jo; — 0T QY (Qn +5 (JR%Q;2 + Q;ZR%J)> o,

1

_1 1 1 [ 1 1 2
= —601TQ222R% o x Jo; — 0] Q) (Q11+§ (JR2Q§2+Q222R2J)> ©;
(9.14)

Since P, Q, R, and J are all diagonal positive definite matrices, the second term
of the last expression is negative definite. If Q;le =clie,

R =cQx» (9.15)

or Q2_21R =cJ, ie.,
R =cQxnlJ, (9.16)

where c is a constant, then the first term vanishes; therefore dd—‘t/ is negative semi-
definite, and the nonlinear system described by (4.11) and (4.8) is globally stable
with the optimal controller given by (9.10). To show that the closed loop non-
linear system is asymptotically stable, we define S = {x|V(x) = 0}. Since J,
Q. and R are positive definite matrices, clearly, equation (9.14) indicates that
S={x|x=(w;,q) = (0,q)}. From (4.11), since D and K are full rank matrices
and u = —Dw; — Kq # 0 if q # 0, no solution can always stay in S except a
subset §; = {x = (@;,q) = (0,0)} C S. Using Theorem 9.1, the origin is glob-
ally asymptotically stable. Therefore, the region of attraction (see [117]) of the
nonlinear system is the whole space spanned by R”".

Remark 9.1  Spacecraft rotation is a special case of the attitude motion of a rigid
body which can be expressed mathematically by SO(3), the group of rotational ma-
trices. Bhat and Bernstein [26] showed that there is an intrinsic windup problem as-
sociated with the attitude motion of a rigid body when g < 0. But many researchers
realize that there are designs that eventually stabilize the system at § = [1,0,0,0].
Tayebi in his paper [257] referred this type of designs as to “almost global asymp-
totic stability” design.
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In system design practice, if the performance and the local stability are the
only design considerations, Q and R can be chosen without any restriction; if
the global stability is also required for the nonlinear spacecraft system, some
restriction, though it is mild, should be placed on Q and R, i.e., either R = ¢Q»;

or R = ¢Q»,J, where ¢ is any positive constant.

9.2.3 The closed-loop poles

To establish the relationship between the closed loop poles and the design matri-

ces Q and R, we can simplify (9.10) further as follows.

1 1 1 L L 2
D = R <Q11+E(JR7Q222+Q§2R5J)>

1

- diag(d,-)zdiag( @JFJ,»,-,/@) (9.17)
ri ri
with
di= /@4.][.. @’
ri ri
and
1 1 . . q2i
K=R 2Q§2:dlag(k,-):d1ag< —) (9.18)
ri
with
k= |2
ri
Therefore, (9.10) becomes
u(x) = —[D,K]x
I (51
d 0 0 k 0 0 g’z
0 &b 0 0 k 0O 3
0 0 ds 0 0 kK a
q2
L 493
(9.19)

From (4.12), it is straightforward to write the closed loop system as follows:
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r 1
_ ~J7'R: (Q11+% -]R%Qz%z"‘Qz%zR%J))2 —JflRféQz%z { o }
i 513 03 1
- d k . r .
00 —f 0 0 Tay
0 20 0 -z 0 op
_ o 0 -%& 0o 0 -3 3
0.5 0 0 0 0 0 q1
0 0.5 0 0 0 0 q2
L 0 0 0.5 0 0 0 1L 93 |
= Ax. (9.20)
Fori=1, 2, and 3, let s; = %, 1= IJ(—', and
2
d; d k
Ju Ju J,, i 7 _2tl
C = ’ _ StV (9.21)
2% 21
Jii
Then, we have
[ —S1 0 0 —h 0 0 ]
0 —8 0 0 —b 0
< 0 0 —-s3 O 0 —n
A= 0.5 0 0 0 0 0 ©.22)
0 05 0 0 0 0
| 0 0 05 O 0 0 |

Let the linear matrix transformation T;;(C) be a matrix with the following prop-
erties: (a) the (i,j) element of T;;(C) is C, (b) the diagonal elements are ones, (c)
all the remaining elements are zeros. It is well known that the inverse of T;;(C)
is Tl-;l (0) :_T,» i(—C). Pre-multiplying T4; (C)) to A is equivalent to multiply the
first row of A by C; and add this result to the 4th row of the matrix. This gives

—51 0 0 —1 0 0
0 ) 0 0 ) 0
_ 0 0 —s53 0 0 -1
T4 (C1)A = _sf+s1\2{f%——2n+015 0 0 _s1+\/2s%——2r1 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
) (9.23)

Post-multiplying T4;(—C) to this matrix is equivalent to multiply the 4th col-
umn by —C; and add this result to the first column of the matrix. Since

n (S1+\/S%—2ll) B —s + /S%—Ztl
= 5 ,

2h

—51 +
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and
S1H /82 =20 51+ /5720 sTHsiy/sT =21 _o0s
2 2t N 2t -
this gives,
VA T 1 0 0 |
0 —8? 0 0 ) 0
_ 0 0 —s53 0 0 -n
T41(C1)AT4 (—Ci) =
0 0 0 Mo
0 0.5 0 0 0 0
L 0 0 0.5 0 0 0
(9.24)
Repeating the similar manipulation, we have
To3(C3)Ts52(Co) Ta1 (C1)AT41 (—Cy) Tso(—Co) T3 (—C3)
diag <7Si+ VZ‘Y’ZZIi> diag (—t;)
_ . (9.25)
0 diag (7‘“_ Y SH”')
Since
di 1 |qu Qi qu 1 [q
== = m T
Jii Ju’\/ ri N ri \/J,%l’i +Jii ri
and
2 qi 1 [q Di /6121 [G2i
sl er, + ” ri J” er, ri
_ Y _l Qi
Jl%r,' J,'l' ri ’
(9.26)

the closed loop eigenvalues of the linear system (9.20) using LQR design are
given by, for i=1, 2, and 3,

T Y REr BB LE
_sii s7—2t ii Ti il il i ri
Ais i3 = 5 : = 3 . (9.27)

Equation (9.27) provides a lot of useful information for the LQR design. First,
as r; — 0, the corresponding pair of eigenvalues go to minus infinity of the com-
plex plane; as r; — oo, the corresponding pair of eigenvalues go to origin of the
complex plane. Second, As long as qi; > /q2i7iJii, the corresponding pair of
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-0.01273212110421 +/- 0.012723873262951;
-0.00798572833825 +/- 0.007983692058331;
-0.00947996395486 +/- 0.00947655794419i.

Table 9.1: Required closed-loop poles

eigenvalues are real and unequal; since }i > (j’—
ues are always negative. Third, if q; = |/q2i7:Ji;, there are two equal real negative
eigenvalues. Fourth, if q1; < \/q2;riJi;, there is a pair of complex eigenvalues with
negative real part. Therefore increasing ¢;; and decreasing g,; will increase the
dumping ratio; otherwise, it will decrease the dumping ratio. Finally, increasing
¢»; and decreasing r; will increase the natural frequency; otherwise, it will de-
crease the natural frequency. This information can be useful in spacecraft system
design.

Using the LQR design, we implicitly assign the closed loop poles as defined
by (9.20) and we can balance the requirements on accumulative control error and

power consumption (both are important in practical design).

2
) — 2;‘— these two eigenval-

9.2.4 The simulation result

We use an example in [339] to illustrate the design procedure. The spacecraft
inertia matrix is give by

1200 100 —200
J= 100 2200 300 (9.28)
—200 300 3100

Itis clear that the diagonal elements of the matrix are significantly larger than off-
diagonal elements. Assume that the spacecraft inertia matrix can be approximate
by a diagonal matrix whose diagonal elements are equal to these of J, let Q =
diag(5,5,5,5,5,5) and R = diag(8,8,8), the closed loop poles are then given as
in Table 9.1 and the feedback matrix D and K are as follows

31.06637549427606 0 0
D= 0 41.71184140316478 0
0 0 49.51151569716377
(9.29)
0.7905694150429 0 0
K= 0 0.7905694150429 0 (9.30)
0 0 0.7905694150429

We apply the designed feedback controller to the nonlinear spacecraft system de-
scribed by (4.5) and (4.8) with the full Monte Carlo perturbation model described
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as follows: (a) in inertia matrix J, the off-diagonal elements are randomly selected
between [0, 310], (b) the initial Euler angle errors of the nonlinear spacecraft
system are randomly selected between [0, 7] and these initial Euler angles are
converted into quaternion, and (c) the initial angular rates are randomly selected
between [0, 0.1] deg/second, and we conduct 300 Monte Carlo simulation runs;
the simulated runs are all asymptotically stable. This result is shown in Figure
9.1.

designed controller applied to the perturbed nonlinear spacecraft system
T T T T

— quaternion—1
quaternion—2|
—  — - quaternion—3

quaternion output

n n n n
[0} 200 400 600 800 1000
time in second

Figure 9.1: Monte Carlo simulation for the nonlinear spacecraft model with pertur-
bation.

9.3 LQR and robust pole assignment for inertial point
spacecraft

“nobreak

9.3.1 Robustness of the closed-loop poles

In the previous section, we have derived a simple analytic LQR control design
method. The closed loop eigenvalues are explicitly related to the spacecraft in-
ertia matrix and the selected Q and R matrices. Therefore, the LQR design is
equivalent to the pole assignment design. In this section, we will show that the
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pole assignment design is a robust pole assignment design which is insensitive
to the modeling error.

First, we have seen that the closed-loop system eigenvalues for the LQR de-
sign are

2
4 4\ ok
Jii Jii Jii
)~i7 A’i+3 = D) .

Let the desired spacecraft closed-loop eigenvalues be expressed as

AiyAis = =G £ jOu\/ 1 — §? = — i@ £ joiy. (9.32)

Comparing (9.31) and (9.32) yields the analytic feedback controller
ki =202 i, (9.33)
d; = 28w Jj;. (9.34)
Therefore, for any LQR design which minimizes (9.2), there is an implicit set of
desired spacecraft closed-loop eigenvalues defined by (9.27) or (9.31) or (9.32),
the diagonal feedback matrices D and K with diagonal elements given by (9.33)
and (9.34) assign the prescribed closed-loop eigenvalues. It is shown in the pre-
vious section that the closed-loop nonlinear system is globally asymptotically

stable if some additional condition holds.

It is well known that for any controllable linear system and for any prescribed
closed-loop pole locations, one can always find a state feedback controller such
that the closed-loop system has the prescribed pole locations. For multi-input
systems, the solution that achieves the closed-loop pole positions is not unique.
As an example, let (A, B) be a linear system with

selo ] omefo ]

The open-loop system has two eigenvalues (0, 1) and the system is not stable.
Assuming that the desired close-loop eigenvalues are (-1,-1), one may select two
different feedback matrices

-1 0 1 4%10°
Gl:{o —2]’(}2:{—10—10 —4 }

(9.31)

such that
_ 10
BG, { 1 0 1 4x%10 } .

0 -1 —10710 -3

It is easy to verify that det(A1— (A +BG;)) = det(AI - (A+BG,)) = (A +1)%
Both feedbacks achieve the desired closed-loop poles. The first system is robust
because any small perturbation will not destabilize the system. However, the
second system is not robust as a small perturbation of 10~! in the left low corner
of the matrix A + BG; will change the closed-loop eigenvalues to (1,—3). We
show that the LQR defined pole assignment is a robust pole assignment.

}7 A+BG2:{
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9.3.2 The robust pole assignment

For readers who are not familiar with the robust pole assignment, we refer them
to Appendix C.

The robust pole assignment design makes full use of the extra degrees of free-
dom in a multi-input system to find the most robust controller from indefinitely
many solutions of the pole assignment feedback matrices. Since the spacecraft at-
titude control system is a typical multi-input system that has three control torque
inputs (roll, pitch, and yaw), getting a robust pole assignment design that is in-
sensitive to the modeling error is very attractive and desirable. We will show that
the controller with diagonal D and K proposed in the previous subsection is a
robust pole assignment design.

There are many different robust metrics that can be used in robust pole as-
signment (see Appendix C or [288] [115]. We will adopt the robust measurement
proposed in [300] as the design criterion because some algorithms based on this
robust measurement lead to some efficient and effective design [234]. These de-
sign algorithms extend a well-known algorithm proposed by Kautsky, Nichols,
and Van Dooren (KNV) [115], in which the angles of closed loop eigenvectors
are intuitively maximized one by one in a cyclic manner. Let X be the matrix
whose columns are the unit length closed-loop eigenvectors. The robustness of
the closed-loop eigenvalues (poles) can be measured by the absolute value of the
determinant of X. Geometrically, this determinant measures how close the ma-
trix X is to an orthogonal matrix. Yang and Tits [323] showed that one of the
KNV algorithm is equivalent to maximizing the absolute value of the determi-
nant of X. The greater the absolute value of the determinant, the more robust
the closed-loop eigenvalues will be (see detailed discussions in Appendix C or
[300, 302]). By maximizing the absolute value of the determinant under some
constraints, we are guaranteed that the closed-loop poles obtained by the robust
pole assignment design are insensitive to the modeling errors [310]. For a con-
trollable linear system (A,B), where B is full column rank, and any given set of
desired closed-loop eigenvalues A;, the corresponding closed-loop eigenvectors
x; must be in the subspace (see Appendix C)

Si={x:(A—ADx €R.(B)}, (9.35)
where
R.(B)={By:ye C"},

m is the rank of B, and C" is a m-dimensional complex space. First, using QR
decomposition on B, we have

B[ U UI}H]

Let A be the diagonal matrix whose diagonal elements are the desired closed-
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loop eigenvalues, and X be the matrix whose columns are composed of the eigen-
vectors corresponding to the desired eigenvalues. Then,

BG =U,VG = XAX ' —A. (9.36)
Pre-multiplication of U} and UT gives

VG =U(XAX ' —A) (9.37a)
0=U[(XAX"'-A) (9.37b)

The first relation gives the closed-loop feedback matrix as
G=V I'Uj(A-XAX). (9.38)
The second relation shows that x; must be in the subspace S;, or
Ul (A—ADx; =0.
Therefore, x; must be in the null space of (AT — L,1)U;. Using QR decomposition

again on (AT — 4,I)U; gives

(AT-ADU = [ Wy; Wy | { 1(} }

W,; forms the basis of S;. We now apply the similar procedure to the linearized
spacecraft system (4.12). Since B can be written as

S

UO:[I], Ulz[(l)], v=J" (9.39)

therefore and

Since A is defined as in (4.13), we can write a similar decomposition of (AT —
A’iI)Ul as

T . o —)q'I lI 0
(A" -ADU, = { 0 a1

I 0.5 —Al I
- { Y| } - { A1 —0.51 } { 0 } - 049

0.51
Wy = { al ] ,

therefore,
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which is orthogonal to the subspace

Wz,:{ —Al ]

—0.51

Though [ Wi;  Wa; | may not be a unitary matrix, it is clear that Wy; forms the
basis of S; (and we can always normalize Wy; to make it orthonormal). For the
sake of simplicity, we prove, only for the case where all eigenvalues are real, that
the design given by (9.19) is a robust pole assignment. For robust pole assign-
ment design, since x; € S;, we can write x; = Wa;p;, where p; = [pi1, pia, i3] s
therefore, the closed-loop eigenvector matrix must have the form,

AMpu o Aapa Apsi Mpsi Aspsi Aepei
Mpi2 hprn Mpn Mpan Asps: Asper
Mpis Aapn A3pss Aapss Aspss Aspes
0.5p11 0.5p21 0.5p31 0.5psr 0.5psi 0.5psr |’
0.5p12 0.5p2 0.5p3; 0.5psp 0.5ps; 0.5ps2
| 0.5p13 0.5p23 0.5p33 0.5psz 0.5ps3 0.5pes

where p;;, i =1,2,3,4,5,6 and j = 1,2,3, are the real parameters that will be
used to optimize the objective function. Therefore, the robust pole assignment
design for linearized spacecraft system (11) becomes?

max det(X)

3
s.t. ST (AP +05%) p% =1, i=1,2,3,4,5,6. (9.41)

j=1
It is well-known that an optimal solution for a general optimization problem
has to satisfy the KKT conditions (see Appendix A). For (9.41), let the u; i =
1,2,3,4,5,6 be the Lagrangian multipliers, the Lagrangian function of (9.41) is

given by

3 3

L= detX)—p [ > (IMP+0.57)pi,—1 ] = [ D (14> +0.5%) p3;— 1
j=1 j=1

3 3

- 3 Z(\7L3\2+0~52)P§j—1 — Ha Z(\7L4\2+0~52)P42u—1
j=1 j=1
3 3

— s { D (AsP+0.57) p3—1 | —pe | D (16> +0.5%) pg,—1
j=1 j=1

2In [302], | det(X)]| is used as the measurement of the robustness. If the maximum of |det(X)| is
achieved at — det(X*), let X” be the matrix obtained by changing the sign of some column of X*, | det(X)]
is also achieved at X°. Therefore, we can simply use det(X) here as the objective function in our problem.
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The corresponding KKT conditions are as follows (see Appendix A):

oL =0, i=1,2,3,4,56, j=1,2,3, (9.42a)
dpij
3
_575 =3 (WP +052) pt,—1=0, (9.42b)
1 -
j=1
3
S 9L S (P4 0.5%) g -1 =0, (9.42¢)
6’,u2 i
3
_‘9_5:2(|A3|2+05)p31 1=0. (9.424d)
8,u3 sy
IL
B A|? +0.52 —1=0, 9.42¢
8,u4 ]Zl(| 4| )p4j ( )
IL
——=> (|As]*+0.5%) p3;— 1 =0, (9.42f)
aus i
L
g = 2 (AP +0.5°) gy —1=0. ©42¢)

<.
Il
—

It is tedious but straightforward to verify that the following solution satisfies the
KKT conditions:

pi,i:\lmu l:.]7 i:172737 .]:17273
Py = /o i=j, i=123, j=12,3

pi,j:()a l#]v l7é]+37 l:172737475767 ]:1,2,3
(9.43)
Clearly, this set of p;; meets (9.42b), (9.42c¢), (9.42d), (9.42¢), (9.42f), and
(9.42¢g). To show that the set of p;; satisfies (9.42a), we use the observation

that ade;.j X) — 0 for all pij defined in (9.43) except pi1, P22, P33, Pa1s P52, P63s

therefore, £>= = 0 for all p;; & {p11, P22, P33, P41, P52, P63 }- As an example, let us
consider 3‘9—5 since
0 0 l4p41 0 0
0 A 0 0 As
odet(X 3P33 P63
; X _ al o 0 05py O 0
p12 05pn 0 0 05ps; O

0 0.5[733 0 0 0.5[)63
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0 0 )u4p41 0 0
Yy 0 0 Asps2 0
+ 05| 0 A3p3s 0 0 Aspes | =0
0 0 0.5p4 0 0
0 0.5P33 0 0 0-5P63

(the last equation holds because the first row and the third row are proportional
in the first determinant and the first row and the fourth row are proportional in
the second determinant), we have
JdL  ddet(X)
Ipi Ipi

=212 ([P +05%)| _ =0. (9.44)

p12=0

Similarly, for all p;; ¢ {pi1, P22, P33, Pa1,P52, P63}, the same way can be
used to check that equation (9 42a) is valid. For each of these 6 p;; €

{P11, P22, P335 P41, P52, P63 }» adet ;é 0, one can select one of the multipliers ;,
WU, U3, Hg, Us, U tO make - = 0. Therefore, the set of p;; satisfying (9.43)

is a candidate of the optimal solutlon of (9.41). This proves that the closed-loop
eigenvector matrix has the form as

[ Aipia 0 0 Aapa 0 0
0 Aap2a 0 0 Asps2 0
X — 0 0 A3p3s 0 0 AsPe 3
o 0.5p1,1 0 0 0.5p4 0 0
0 0.5p22 0 0 0.5ps» 0
0 0 0.5p33 0 0 0.5p63 |
_ | diag(Aipiy) diag(Aipspissg) |
o |: dlag(05p,,,) diag(O.Sp,-+37,-) » 1= 1’2’ 3. (945)
It is easy to verify that
diag (ﬁ) dlag(os( A}L“ 3 )
X—l — . i _1:3 Pii A i+3)Pii , (9.46)
diag (W) diag (m)

Substituting (9.39), (9.45), and (9.46) into (9.38) gives the robust pole assign-
% g P g
e

ment state feedback
G =J[1I 0]

0 0| | diag(ipii)
051 0 diag(0.5p;)

— —J[ diag(lizpi,i) diag(ll.i3p,-+3,,-) ] |:

= —J[ diag(Aipii) diag(Airapissi) | { 1a%)( )

diag(Ais3pissi)
diag(0.5pi+3,)

0
diag(Ai13)

: 1
diag (7 == )
diag =%

l+3)171+3 i

diag(A;)
0 diag(A,

o
diag (55725770 ) }

. A
diag { 537=7

0i+3) }Xil)

i+3)Pit3.
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_ : A =27 . Myahi—A s
= J{ diag (%‘*&43 o diag{ G5

= -J [ diag(/l,- + li+3)7 diag(—Z/l,»/liH) ] s (9.47)

or
G= [ diag(—],-,»(?t,»—i—/’l,,%)), diag(2J,»,-(/'L,-7L,»+3)) ] (948)

Substituting (9.27) into (9.48) yields (9.19). Therefore, we conclude that the
LQR design method is actually a robust pole assignment design for the linearized
system (4.12), and the feedback matrix G = —[D, K] is composed of two diago-
nal matrices D and K. With the same restriction as discussed before, the robust
pole assignment controller globally stabilizes the nonlinear spacecraft system.

9.3.3 Disturbance rejection of robust pole assignment

In Appendix C, we have shown that maximizing det(X) amounts to minimizing
an upper bound of the condition number k,, which improves the robustness of
the closed-loop eigenvalues to the modeling uncertainties (see [288] and [244]).
We show now that minimizing the upper bound of the condition number also
reduces the impact of disturbance torques on the system output. It is easy to see
that the spacecraft system with disturbance torques can be modeled as

X =Ax+Bu-+ty,, y = Cx, (9.49)

where t, is the vector of disturbance torques. Since u = Gx, taking Laplace trans-
formation, we have

sx(s) = Ax(s) +Bu(s) +t4(s), y(s) = Cx(s), (9.50)
In view of (9.36), this gives
Y(s) = C(sT— (A+BG)) 'ty(s) = CX(sT— A) "' X 'ty(s).

Therefore,
1Y ()| = ICIIX(sT—=A) = X[ ta(s) -

Since A is a diagonal matrix whose elements are the prescribed closed-loop
eigenvalues, and C is fixed by a spacecraft design, minimizing condition num-
ber k, = || X]|||||IX~!|| will reduce the impact of the disturbance torques on the
system output.

9.3.4 A design example

The same example used in the previous subsection is used to describe the pole
assignment design procedure. The spacecraft inertia matrix is given in (9.28).



Spacecraft Attitude Control B 149

The spacecraft inertia matrix is approximated by a diagonal matrix whose diag-
onal elements are equal to the diagonal elements of J. First, assuming that the
desired closed-loop linear system has a fast settling time of 7; < 10 seconds, and
small percentage of overshoot (smaller than 5%), we design the system by first
considering the dominant pole positions and then loosely assigning the remain-
ing poles to certain desired regions such that their real parts are smaller than the
real parts of the dominant poles. Since the settling time is (see for example, [56,
pages 84-85])

4

C3 () ’

o3, = 0.4, We select {3 = 0.8 to meet the requirement of low percentage of
overshoot (smaller than 5%). This gives w3, = 0.5. Therefore, the dominant poles
are at —0.4 + j0.3. To make sure the design is globally asymptotically stable (see
(9.33) and (9.15)), we use

T

o= = 1 T
T @il 025%3100 3100 @2n @l

Similarly, we select

1 3100
= - = 0.5935,
® Vo 42200
W1y ! 3100 = 0.8036.

~ Val, V41200

Clearly, by selecting §; = &, = 1, we have two closed-loop poles at —0.5935 and
two closed-loop poles at —0.8036. All of these poles have smaller real parts than
the real part of the dominant poles. Therefore, from (9.34), the feedback matrices
are given by

28V
- Va

and from (9.33),

28V
Ja

2831/ 33
\/&

di =1928.73, d, = =2611.513, ds= = 2480.

2
1 2 3 o

Noticing that K = diag(k;, &z, k3) = 15501, from (9.18), we have K? = 15001 =
R~'Qy,, i.e., R=cQy,, which is the condition of (9.15). Therefore, the designed
system is globally asymptotically stable.

Applying the designed feedback controller to the linearized system (4.12)
with diagonal inertia matrix (9.28), assuming that the initial Euler angle errors of
the linearized system are 10 degrees in roll, pitch, and yaw, and converting these
initial Euler angles into quaternion, we have the simulated quaternion response
as shown by Figure 9.2. It is clear that the designed control system meets the
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design criteria, i.e., the settling time is less than 10 seconds and the percentage
overshoot is smaller than 5% even though the design is focused on the dominant
poles while the remaining poles are loosely placed left to the dominant poles.
The closed-loop system is globally asymptotically stable as we expected.

designed controller applied to the linearized spacecraft system

quaternion output

. . . . L . L
5 10 15 20 25 30 35 40
time in second

Figure 9.2: Designed controller applied to the linear spacecraft model.

Applying the same designed feedback controller to the original nonlinear sys-
tem with non-diagonal matrix J given by (9.28), again assuming that the initial
Euler angle errors of the linearized system are 10 degrees in roll, pitch, and yaw,
and converting these initial Euler angles into quaternion, we have the simulated
quaternion response as shown by Figure 9.3. This simulation result shows that the
robust pole assignment design is insensitive to the perturbation in off-diagonal
elements of J.

As real spacecraft control torques are normally restricted by the solar panel
size, energy consumption of the on-board instruments, fuel, etc., we prefer to
have a slow response with a low percentage overshoot to reduce energy consump-
tion. Therefore, we consider a different but a representative design. We choose
Q = diag(5,5,5,5,5,5) and R = diag(8,8,8). This is equivalent to select the
closed-loop poles as

—0.0127+ / —0.0127i;—0.0080 + / — 0.0080i; —0.0095 + / — 0.0095:.

Notice that this is the same design of the LQR as we described in the previous

subsection. The feedback matrices D and K in this design are given in (9.29) and

(9.30) which are significantly smaller than the ones in the previous design.
Applying the designed feedback controller to the linearized system (4.12)
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designed controller applied to the perturbed linsarized spacecraft system

guaternion-1
— —-— quaternion-2
———-quaternion-3 ||

quaternion output

002 . . . . L . L
o} 5 10 15 20 25 30 35 40
time in second

Figure 9.3: Designed controller applied to the nonlinear spacecraft model.

Quaternion 1 Quaternion 2 Quaternion 3

Rising time (seconds) 140 196 222
Settling time (seconds) 310 430 500
Overshoot (percentage) 3.4% 4% 3.4%

Table 9.2: Performance of the nominal linearized system

with diagonal inertia matrix (9.28), and assuming that the initial Euler angle
errors of the linearized system are 10 degrees in roll, pitch, and yaw, convert-
ing these initial Euler angles into quaternion, the simulation result is shown in
Figure 9.4, the rising time, settling time, and overshoot of the three quaternion
components for the nominal linearized system are given in Table 9.2.

We have done a very aggressive test for this design (see the previous sub-
section, i.e., apply the same designed feedback controller to the nonlinear space-
craft system described by (4.11) and (4.8) with the full Monte Carlo perturbation
model described as follows: (a) in inertia matrix J, the off-diagonal elements
are randomly selected between [0,310], (b) the initial Euler angle errors of the
nonlinear spacecraft system are randomly selected between [0, 7] and these ini-
tial Euler angles are converted into quaternion, and (c) the initial angular rates
are randomly selected between [0,0.1] deg/second. We conduct 300 Monte Carlo
simulation runs; the simulated quaternion response is given in Figure 9.1. This
simulation result shows that although the designed robust pole assignment con-
troller is obtained from the linearized system with diagonal inertia matrix, it ac-
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designed controller applied to the linearized spacecraft system
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Figure 9.4: Designed controller applied to the linear spacecraft model.

Quaternion 1 Quaternion 2 Quaternion 3

Mean rising time (seconds) 225 227 259
Std rising time 88 71 107
Mean settling time (seconds) 430 612 666
Std settling time 64 86 93
Mean overshoot (percentage) 15% 45% 30%
Std overshoot 18 37 29

Table 9.3: Performance of the perturbed nonlinear system

tually stabilizes the original nonlinear spacecraft system with any initial Euler
angles, any small initial angular rates (less than 0.1deg/second), and any pertur-
bation in off-diagonal elements whose magnitudes are smaller than 10% of the
magnitude of the largest element in the inertia matrix. Table 9.3 provides the
means and standard deviations of the rising time, settling time, and overshoot
of the perturbed nonlinear systems. Although these standard deviations appear
somewhat large, the design meets the most important design target which is to
stabilize the system in a few hours under all uncertainties related to the model-
ing error and initial conditions. A similar simulation is done for the Euler angle
controller. The system is first designed for a linearized Euler angle model (see
[232]) using LQR method and exactly the same set of closed-loop eigenvalues

—0.0127 4 / —0.0127i;—0.0080 + / — 0.0080i; —0.0095 + / — 0.0095i

to get the feedback control matrices D and K. Use the same Monte Carlo pertur-
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bation model described as above with perturbed nonlinear system (a) in inertia
matrix J, the off-diagonal elements are randomly selected between [0,310], (b)
the initial Euler angle errors of the nonlinear spacecraft system are randomly
selected between [0, 7], and (c) the initial angular rates are randomly selected
between [0,0.1] deg/second. In 300 Monte Carlo runs, the Euler angle controller
stabilizes only 132 cases. The comparison is clearly in favor of the quaternion
design described in this section. Sidi [232, page 156-158] has done some inter-
esting comparisons of Euler angle design and quaternion design for maneuvers
operation. The result shows that for small maneuvers, both designs have similar
performance, but for large maneuvers, the quaternion design is clearly superior.
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Spacecraft actuators are components that produce the control torques to achieve
the desired attitude. The desired control torques can be calculated using the meth-
ods proposed in the previous chapter. The most frequently used actuators are re-
action wheel, momentum wheel, control moment gyros (CMG), magnetic torque
rods, and thrusters. In this chapter, we will discuss these actuators. We will see
that given the designed torques, some actuators, such as reaction wheels and
thruster, can easily provide the desired torques. But some other actuators, such as
magnetic torque bars and CMGs, may not be able to provide the desired torques,
at least in some situations, which means that we need to have alternative design
methods specifically for those actuators. We will discuss these topics in Chapters
11 and 14.

10.1 Reaction wheel and momentum wheel

Reaction wheel and momentum wheel are very similar. They all have flywheel(s)
and are all driven by electric motors, they are both used for attitude control. A
reaction wheel is spun up and down to create the torque to either compensate

155
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disturbance torque to stabilize the spacecraft or to create a torque and force the
spacecraft to rotate for attitude manipulation. A momentum wheel is always spin-
ning at a very high speed, which creates a momentum bias, making it resistant
to changing its attitude. But a momentum wheel can also be used as a reaction
wheel, meaning that the acceleration and deceleration is near a momentum bi-
ased high speed instead of near the zero speed. The torques of both reaction
wheel and the momentum wheel are generated from acceleration or deceleration
of the rotational flywheel and torque can be calculated by the following relation
[136]

u=-h,=-J,0, (10.1)

where the h,, is the angular momentum vector of the flywheel, J,, is the moment
of inertia about the flywheel rotation axis, m is the angular velocity vector of the
flywheel. The electricity that drives a flywheel of reaction wheel or momentum
wheel, comes from the batteries which are charged by solar panels.

Both reaction wheel and momentum wheel are normally aligned with body
axes. [232] has a chapter to discuss momentum biased spacecraft attitude sta-
bilization. Since flywheels have maximum speed, once the maximum speed is
reached, from (10.1), one cannot get the torque by increasing the flywheel speed.
Therefore, the momentum management control, which makes sure that the fly-
wheel speed does not approach to the maximum speed, is necessary. The momen-
tum management control uses magnetic torque rods or thrusters to balance the
total torques required by the attitude control, thereby maintaining the flywheel’s
speed within its limit. There are many papers discuss this topic, for example,
[41, 71]. This issue will be discussed later in Chapter 11.

Many times, the simple reaction wheel model (10.1) is good enough for
spacecraft control system designs. However, there are space missions, where
the higher performance requirements for the spacecraft attitude control system
(ACS) need more accurate reaction models, such as the one discussed in [1, 209].
Some most challenging space missions will consider spacecraft jitter effect. Most
jitter phenomena is excited by moving components, such as reaction wheel, due
to the offset from wheel center of mass (CM) to wheel mounting interface which
will cause the lateral disturbance forces to create a moment at the interface. The
rocking dynamics model is therefore considered in [143].

10.2 Control moment gyros

Like a reaction wheel, a control moment gyro has a spinning flywheels controlled
by an electrical motor. Unlike a reaction wheel, which has a fixed rotational axis,
the spinning axis of a control moment gyros changes as the flywheel is suspended
in a gimbal and a second motor controls the gimbal axis. Another difference be-
tween a reaction wheel and a control moment gyro is that the torque of a reaction
wheel is produced by changing the flywheel speed, while flywheel in a CMG
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rotate in a constant speed, the torque of a CMG is obtained by changing the gim-
bal’s rotational speed. There are two different CMGs. One is single gimbal CMG
and the other is double gimbal CMG. The advantage of the single CMG is the
well-known torque amplification property, i.e., a rate about the gimbal axis can
produce an output torque orthogonal to both the gimbal and spin axes which is
much greater than the gimbal axis torque [68]. But CMG is more complicate
to model and more expensive. Only the single gimbal control moment gyro is
discussed because it is the most effective CMG. Some good references about
CMG are [125, 126]. A thorough performance comparison between CMGs and
reaction wheels is discussed in [273].

Figure 10.1: Orthonormal vectors of a CMG unit.

Three mutually orthogonal unit vectors are shown in Fig. 10.1 and defined
as follows: Let & be the unit-length gimbal vector, h be the angular momentum
vector of the flywheel, ¢ = g x h be the normalized CMG torque vector, then the
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torque of the CMG is given by
t. =cw, = (g xh)w, =g xh, (10.2)

where the @, is the rotational speed of the gimbal and g = gw,. Therefore, the
control variable is ®,. If n identical single control moment gimbals are used, the
total torque is given by

te=[cr,...,¢.)[@,...,0,]" = Ca,, (10.3)

where ¢; is the ith CMG’s torque vector. Using the control system design method
described in Chapter 9, we can find the desired control torque t.. Then the gimbal
rotational speed m, is given by

0, =CT(CCT)'¢.. (10.4)

A solution does not exist when det(CCT) = 0. This is the so-called gimbal sin-
gularity.

It is worthwhile to note that although the gimbal vector g is a constant in
body frame, the angular momentum vector h and therefore the normalized CMG
torque vector ¢ depend on the gimbal angle 6. Several methods are proposed to
deal with the gimbal singularity problem, for example, [182, 186, 70, 284, 282].
An experimental comparison for these methods is given in [105]. Chapter 14 will
discuss a novel method of CMG control.

10.3 Magnetic torque rods

Magnetic torque rods has been used in most low orbit earth satellites. Mag-
netic torque rods are generally planar coils of uniform wire rigidly placed along
the spacecraft body axes. When electricity passes through the coils, a magnetic
dipole is created. The strength of the dipole depends on several factors, such as
amount of electricity and total area enclosed by the coils, etc. This dipole inter-
acts with Earth’s magnetic field, causing the coils to attempt to align their own
magnetic field in the direction opposite to that of Earth’s.

The advantages of magnetic torque rods are that they are lightweight, reliable,
and energy-efficient. The electricity comes from battery which is charged by
solar panels. Unlike reaction wheel and momentum wheel, magnetic torque rods
do not have moving parts; therefore, they are much more reliable.

The disadvantages are the magnetic torques generated by the magnetic tongue
rods depends not only on the electricity applied, but also on the spacecraft loca-
tion or the orbit, i.e., depends on Earth’s magnetic field strength and direction. It
is also impossible to control attitude in all three axes at any time even if the full
three coils are used because the torque can be generated only perpendicular to
the Earth’s magnetic field vector.
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Let m be the magnetic moment created by the magnetic torque rods, r,, be the
Earth’s magnetic field intensity, the mechanical torque t,, applied to the space-
craft, due to the interaction between m and r,, is given by

t, =m X1, (10.5)

which should be equal to the required torque u obtained by attitude controller
design described in Chapter 9. But in the implementation of attitude control,
given the desired u and the geomagnetic field r,, which is given by (5.14) (we
need to represent the field r,, in the body frame), one can only select m such that
|la —m X r,|| is minimized. Since t,, can be generated only perpendicular to the
Earth’s magnetic field vector, it is very likely that u # t,,. The best we can do
is to find a minimum norm solution to the least squared problem. Denote t,, the
normalized vector of r,,, since t,, = m X r,,, we have

Iy Xt, = r,x(Mmxr,)=rr,m-—r,r m
T
r, T
= rr,m-r'r,————"_m=r'r,(I-t,t )m.
([ {0
This gives
Ly Xty o AT
T (I-t,t, )m.
It is clear that ¢
Iy X
T (10.6)
) .

is the solution of the above equation because r,, X t,, is orthogonal to r,,. There-
fore, from the vector m, the current applied to each magnetic torque rods can be
obtained.

10.4 Thrusters

Thrusters are another type of actuators. They can be used for attitude control for
any spacecraft. Fuels have to be loaded to thrusters and fuel budget is a major
limitation on the use of thrusters. Thrusters use different propellants, such as
cold gas propellant, solid chemical propellant, liquid chemical propellant, and
electrical propellant. The same basic equation of propulsion holds for all kinds
of propellants. The thrust force F is related to the exhaust velocity V, relative to
the satellite body, the fuel consumption rate ¢, the gas and ambient pressures P,

dr >
and P,, and the area of the nozzle exit A,. More specifically (see [232]),

d
F:Ved—'f AP —P). (10.7)

Given the force and the thruster mounting information, the torques generated by
thrusters can be obtained. We will discuss this later in Chapters 12 and 15.
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Table 10.1: Summary of Propulsion Technologies

Technology Thrust range | Specific impulse I,
Hydrazine Monopropellant 0.25-28 N 180 — 285
Alternative Mono- and Bipropellants 50 mN -22N 150-310
Hybrids 8-222N 215-300
Cold Gas 10 uN-3.6 N 40-110
Solid Motors 37-461 N 187 — 269
Electrothermal 0.lmN-1N 20 —-350
Electrosprays 20 uN - 20 mN 225-3,000
Gridded Ion 0.1 -20 mN 500 - 3,000
Hall-Effect 0.25 - 55 mN 200 - 1,920
Pulsed Plasma and Vacuum Arc Thrusters 4 -500 uN 87 - 3,200
Ambipolar 0.5-17 mN 400 -1,100

To select thrusters in a specific application, besides the force of the thrusters,

at least two more factors should be considered, i.e., the thrusters’ efficiency and
their cost. A thruster’s efficiency is defined by the thruster’s specific impulse

which is give as
F

by = gy’

(10.8)

where 7 < 0 is the rate of fuel consumption, and gy ~ 9.8m/s” is the standard
gravitational constant at sea level. Reference [181] provides a table that summa-
rizes different thrusters’ thrust range and specific impulse range.
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In principle, the control system design methods presented in Chapter 9 can be
implemented using any control actuators. But we have seen in Chapter 10 that
this may not be a good idea for magnetic torque control because given a desired
control torque vector u, one can only obtain an approximate solution t,, = m X r,,
given by m which minimizes the norm of ||u—t,,||. For thrust control system, the
torques generated by thruster(s) depend on the selections of the thrusters and the
thrusters’ configuration design. For control system using CMGs, given the de-
sired torques, there are singular points where the desired torques are not achiev-
able by any CMG gimbals’ speeds. Therefore, to improve the control system
design involving actuators other than reaction wheels only, we need to use mod-
els with more detailed information such as geomagnetic field in magnetic torque
control system design and thrusters’ installation information in thrust control
system design. In this chapter, we focus on the control system design involving
magnetic torque bars/coils!. The materials of this chapter are mainly based on
[313, 314, 315, 317].

Spacecraft attitude control using magnetic torque is a very attractive tech-
nique because the implementation is seamless, the system is reliable (without
moving mechanical parts), the torque coils are inexpensive, and their weights are
light. The main issue of using only magnetic torques to control the attitude is that
the magnetic torques generated by magnetic coils are not available in all desired
axes at any time [232]. However, because of the constant change of the Earth’s
magnetic field as a spacecraft circles around the earth, the controllable subspace
changes all the time, many researchers believe that spacecraft’s attitude is actu-
ally controllable by using only magnetic torques. Numerous spacecraft attitude
control designs were proposed in the last twenty five years exploring the features
of the time-varying systems [206, 330, 211, 205, 180, 202, 289, 146, 233, 147,
298, 42]. Some of these papers tried Euler angle model and Linear Quadratic
Regulator (LQR) formulations [205, 180, 202, 289, 42] which are explicitly or
implicitly assumed that the controllability for the linear time-varying system
holds so that the optimal solutions exist [109]. Therefore, we need to establish
the controllability conditions for the problem of spacecraft attitude control using
only magnetic torque.

Other researchers [146, 233, 147] proposed direct design methods using Lya-

I'Since the functions of magnetic torque bar and magnetic torque coils are the same, we use these
names interchangeably.
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punov stability theory. The existence of the solutions for these methods implic-
itly depends on the controllability for the nonlinear time-varying system. There-
fore, Bhat [25] investigated controllability of the nonlinear time-varying systems.
However, the condition for the controllability of the nonlinear time-varying sys-
tems obtained by Bhat is hard to be verified and is a sufficient condition.

A reduced quaternion model was discussed in previous chapters and its mer-
its over Euler angle model were discussed (see also in [304, 306, 310]). The
reduced quaternion model was also used for the design of spacecraft attitude
control system using magnetic torque [206, 211, 330]. Because the controllabil-
ity of the linear time-varying (LTV) systems was not established, the existence
of the solutions was not guaranteed.

In this chapter, we first consider the reduced linear quaternion model pro-
posed in [304] for the case that magnetic torques are the only control torques.
We establish the conditions of the controllability for this linear time-varying sys-
tem. The same strategy can easily be used to prove the controllability of the
Euler angle based linear time-varying system considered in [205]. However, we
will not derive the similar result because of the merits of the reduced quaternion
model as discussed in [304, 306, 310]. In Section 11.3, the LQR design is dis-
cussed for the linear periodic system. Instead of directly applying a well-known
algorithm, the author has proposed a different algorithm that makes full use of
the feature that only input matrix B of the system is a periodic matrix. Then, a
combined method is suggested in Section 11.4 to design the attitude control and
the momentum management system at the same time, which were normally con-
sidered as two different problems in separate designs. In the last section of this
Chapter, a different LQR design for the linear periodic system is discussed. This
design uses a novel lifting method to convert the linear periodic system into an
augmented linear time-invariant system and then proposed a new method to solve
the Riccati equation. Numerical simulation is performed to show the efficiency
of the new method.

11.1 The linear time-varying model

We focus our discussion in this section on the nadir pointing spacecraft using
a reduced quaternion model?. Therefore, the attitude of the spacecraft is repre-
sented by the rotation of the spacecraft body fixed frame relative to the local
vertical and local horizontal (LVLH) frame. Let @ = [, @, @3]T be the body
rate with respect to the LVLH frame represented in the body frame, @y be the
orbit (and LVLH frame) rate with respect to the inertial frame, represented in

the LVLH frame. Let (_1 = [QOaQIaQZa%}T = [qqu}T = [COS(%),éT sin(%)}T be

2The same idea can be used to derive the controllability condition for inertial pointing spacecraft and/or
using Euler angle model.
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the quaternion representing the rotation of the body frame relative to the LVLH
frame, where € is the unit length rotational axis and ¢ is the rotational angle about
€. Therefore, the reduced quaternion-based kinematics equation can be expressed
as (4.9).

Assume that the inertia matrix of the spacecraft is diagonal which is approx-
imately correct for real systems, let the control torque vector be w = [uy, uy, u;]",
then the linearized nadir pointing spacecraft model with gravity gradient distur-
bance torque is a special case of (4.36) and is given as follows:

0 0 0 0 5 0 071[a 0
o 0 0 0 0 5 0 ||aq 0
g3 00 0 0 0 5 || a 0
. = + 11.1
(o) far 00 0 0 fi ; ur/J11 (1.1
(0)) 0 f2 0 0 0 O [0)) uy/Jn
L& | | 0 0 fes fau O O || @3 | | w/J3 |
where
fa=[8(J33 — Ja2) @3] /T11 (11.2a)
fas = (Ji1 —J2+J33) a0 /11 (11.2b)
Joa = (—J11 + I —J33) 0/ J33 (11.2¢)
fs2 = [6(J33 —J11) @]/ Tz (11.24d)
fos = [2(J11 — Jn) @3] ) J33. (11.2¢)

The control torques generated by magnetic coils interacting with the Earth’s
magnetic field is given by (see [232])

u=mx>hb

where the vector of the Earth’s magnetic field represented in spacecraft coor-
dinates, b(¢) = [b1(t),b2(t),b3(t)]T, is computed using the spacecraft position,
the spacecraft attitude, and a spherical harmonic model of the Earth’s magnetic
field as we discussed in Section 5.3 (see also [280]); and m = [m,my,m3]" is
the spacecraft magnetic coils’ induced magnetic moment in the spacecraft body
coordinates.

The time-variation of the system is an approximate periodic function of
b(t) =b(t+T) where T = % is the orbital period (see (2.55)). This magnetic
field b(z) can be approximately expressed as follows [205]:

cos(@yt) sin(iy,)
by(t) | === —co8(im) , (11.3)
b3 (1) @ | 2sin( o) sin(iy)

where i, is the inclination of the spacecraft orbit with respect to the magnetic
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equator, [y = 7.9 x 10! Wb-m is the field’s dipole strength, and a is the orbit’s
semi-major axis. The time ¢ = 0 is measured at the ascending node crossing of the
magnetic equator. Therefore, the reduced quaternion linear time-varying system
is given as follows:

1 0O 0 0o 5 0 O q1
i 0O 0 0 0 5 0 o
| 0O 0 0 0 0 5 %
ol fau 0 0 0 0 fa o
o) 0 f2 0 0 0 0 @
s | | 0 0 fes fau O O || o5 |
0 0 0
0 0 0
0 0 0 "
+ 0 bit)  _bal) "
w0 g o | Lm
wE  _n B
e
. 0; %13 q 05
= [ A% o |7 B |™
— Ax+B()m. (11.4)

Substituting (11.3) into (11.4) yields
0 ba(t) bas(
Bz(l‘)z b51(l) 0 b53([) (11.5)
b61(l) b@(l) 0

where
bas(t) = ;‘;lfl sin(iyy) sin( o) (11.62)
bas() = afjfl -cos(in) (11.6b)
bs3(t) = aiijfzz sin(i,, ) cos(myt) (11.6¢)
bsi () = —ai‘;; in(i) sin(@of) = —b42% (11.6d)
be1 (1) = _35‘23 cos(iy) = —b43%; (11.6¢)
bea (1) = _;T; sin(in) cos(@yr) = —b53;—z. (11.60)

Therefore, taking the first order and second order derivatives, we have

2
bl (1) = ;;?:0 sin(i,,) cos(mot) (11.7a)
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bls(t) =0 (11.7b)
Bla(t) = — L2 sin(i,,) sin (@) (11.7¢)
a .122
2Urmy . . Ji
L) =— i 1) = —bh,— 11.7d
51(1) B sin(iy,) cos( @yt ) 27 ( )
bl (1) =0 (11.7¢)
Wewo . .. . J2
b, (1) = 2= i 1) = —bs3 == 11.7
o6) = S sin(i) sin(ont) = —bss 72 (1.7
and
2 2
Bj(t) = — 2L sin(i,,) sin( @) (11.82)
a’Jiy
(1) =0 (11.8b)
w02
43(0) = =220 in(i), ' 1138
53(7) iy sin(i,, ) cos(mot) (11.8¢)
2up08 . Ju
b (1) = % sin(iy, 1) = —bl,— 11.8d
51(1) PE sin(i,) sin(@ot) 27 ( )
bl(1) =0 (11.8¢)
0)2 Jon
() = B9 gn i) cos(myt) = —b ===, 11.8
6a(t) pE (im) cos(pt) 5T ( f)
In matrix format, we have
0 b, 0]
B)()=| b, O by |, (11.9)
| 0 b O
and ~ _
0 b, 0
B/()=| b, 0 bl |. (11.10)
| 0 b O]

A special case is when i, = 0, i.e., the spacecraft orbit is on the equator plane
of the Earth’s magnetic field. In this case, b(z) = [0, —££,0]" is a constant vector.
The linear time-varying system of this special case is reduced to a linear time-
invariant system whose model is given by

i 0 0 0 5 0 0 7
é> 0 0 0 0 5 0 &
| o 0o 0o 0 0 5||a
(o) N far 00 0 0 fi ;
(0)) 0O f2 0 0 0 O 10}
| @ | 0 0 Jfos fao O O || o5 |
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0 0 0
0 0 0
0 0 0 =
oo 0 by || ™
0 0 0 "3
 boflis O 0
— Ax+Bm. (11.11)

11.2 Spacecraft controllability using magnetic torques

The definition of controllability of linear time-varying systems can be found in
[217, page 124].

Definition 11.1  The linear state equation (11.4) is called controllable on [z, ] if
given any X, there exists a continuous input signal m(z) defined on [fy,#¢] such that
the corresponding solution of (11.4) satisfies x(z7) = 0.

A main theorem used to prove the controllability of (11.4) is also given in
[217, page 127].

Theorem 11.1

Let the state transition matrix ®(t,7) = e*!=7). Denote
9/
K;(1) = — [@(,1)B(r)]| , j=1.2,... (11.12)
at/ T=t

if p is a positive integer such that, fort € [to,t¢], B(t) is p time continuously differ-
entiable. Then, the linear time-varying equation (11.4) is controllable on [ty,t;] if for
some 1. € [to,ty]

rank [Ko(t0), K (1), ..., K, (t.)] = n. (11.13)

Remark 11.1 If A and B are constant matrices, the rank condition of (11.13) for
the linear time-varying system is reduced to the rank condition for the linear time-
invariant system [217, page 128], i.e., if

rank [B,AB,...,A""'B| =n. (11.14)

then the linear time-invariant system (A,B) is controllable. |

First, we consider the special case of (11.11), the time-invariant system when
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the spacecraft orbit is on the equator plane of the Earth’s magnetic field (i,, = 0).
Let X denote any 3 x 3 anti-diagonal and IT be any diagonal matrix with the
second row composed of zeros

0 X x 0 0
Z::{ 0 0 } and H::{ 0 0 O }7
X 0 0 0 x

and A denote any 3 x 3 diagonal matrix with the form

x 0 0
A::{ 0 x O }
0 0 x

Itis easy to verify thatif ¥; € X, X; € X,and Ay € A, then LY, € £, X, + X, € X,
and AY; € X. A similar claim is true for I1. Using this fact to expand the matrix
[B,AB,A’B,A’B,A*B, AB], where A and B are defined in (11.11), shows that
the second row of the controllability matrix in (11.14) is composed of all zeros.
This proves that if the spacecraft orbit is on the equator plane of the Earth’s mag-
netic field, the spacecraft attitude cannot be stabilized by using only magnetic
torques.

Now we show that under some simple conditions, the linear time-varying
system (11.4) is controllable for any orbit which is not on the equator plane of
the Earth’s magnetic field, i.e., i,, # 0. From (11.12), we have

0o ooo

Ko(t) = ®(1,1)B(1) = AB(1) = B(r),

Kil) = ~ (0080 =2 [A9B)|
= |[FAMTIB(D)+ AU (1) |
— _AB()+B(), (11.15)
82
Kolt) = S [@(oB(D)|
_ [A%AU*ﬂB(r)—2AeA<’*f>B/(r)+eA<f*T>B”(r)} _
= A’B(r) —2AB'(t) +B"(1). (11.16)

Using the notation of (11.4), we can rewrite equation (11.15) as

[0y ][0 0,7 [ -IB,
Ki(t) = {Al || B | T BT =B 4B, |
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A2B— A I3 0; | _[0: 3L 3By | 5Z1B,
A X B, A X 1B, %Ale -+ Z%Bz

11 0 —-B,
_ I _ 743 3 _ 2
2AB 2{ AT B 0B, |

equation (11.16) is reduced to

1 _ R/
Kz(t)ZAzB—zAB/JrB”:[ 22182~ B, ]

1A1B,+X{B, —2%,B) + B
Hence,
[Ko(t),Ki(2), Ka(1)]

= [B(t) | —AB(t)+B'(t) | A*B(t) —2AB'(¢) + B" ()]

0, —1B $Z1B2—B; (1)
By | —%B,+B) | JA|B,+X{B,—2%B)+BY |

(11.17)

Notice that

rank[Ko(7), K (7), K2 (7)]

_ I 03 |[o| -iB, 15,B,— B} (1)
o rank({ 2% I :| |:B32 —21];2""33 %AleiZfBz—zleBé—&-Bé/}
- 0, | —1B, | 1B —Bj (1)
- rank |:B2 l;é ’ 2%A]B2+l§£/ :|
N 0; | —B> | Z1B.—2B) (1)
= rank || 5 e | (11.18)
B, — 2B}(1)
0 0 f46 0 b42(l) b43(l) 0 bgz 0
= 0 0 O b51(l) 0 b53(l) -2 bgl 0 bg3
L f64 0 O bsl(l‘) béz(l‘) 0 0 b/62 0
[ fasher(1)  fasbea(t) — 20l 0
= | -, 0 2w, (11.19)
0 Joabar(t) =20, foabas(1)
and
1 "
§A1B2+B2 (t)
1 f41 0 0 0 b42(l) b43(l) 0 bf{z 0
= E 0 f52 0 b51(l) 0 b53(l) + bg’l 0 bgg

0 0 f63 be1 (l) ben (l) 0 0 bgz 0
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0 1 farbar () + by 1 farbas(1)
= 1 f52bsi (1) +bY, 0 T fabs3(t) +bYy |, (11.20)
3 fo3be (1) 5 feabea (1) + b 0
we have
0; | =B | ZiB,—2B5 (1)
By | B, | 1AB,+BY
i 0 0 0 0 ays dije dy17 aig 0 i
0 0 0 any 0 are A7 0 ang
. 0 0 0 asy dss 0 0 azg  djzg
0 ap az 0 as 0 0 asg ag |’
asi 0 as3 ass 0 ase as; 0 aso
| ae1 a2 0 0 aes O as7 aes O |
where

ais = —ba(t), are = —bus(t), ar7 = fasbe(t), ais = faber(t) —2b,,
ars = —bsi (1), are = —bs3(t), axy = —2b%;, axg = 2bl;,

azs = —bgi (1), ass = —bey(1), asg = foabar(t) —2bjsy, azo = feabas(t),
1 1
agy = by (1), a3 =bas(1), ass =Dbly, as = §f41b42(t) +bi, a0 = §f41b43(t),
as) = bs (1), asy = bs3(t), ass = b5y, ass = bs3(t),

1 1
as7 = §f52b51(f) +05), asy = §f52b53(t) +b53,

1 1
as1 = be1 (1), agx = bex(t), ass = bg,, as1 = §f63b61<t)7 aey = §f63b62(t) + by

To show that this matrix is full rank for some ., we show that there is a6 x 6
sub-matrix whose determinant is not zero for wyt, = % In view of (11.6), (11.7),
and (11.8), for this 7., we have

bs3(te) = bea(te) = bs) () = bl (tc) = bss(te) = bey (1) = 0. (11.21)

Considering the sub-matrix composed of the 1st, 2nd, 4th, Sth, 7th, 8th columns,
and using (11.21), we have

0 0 a5 a7 as

0 ary 0 ary 0

0 ay axs 0 asg
ap 0 ass 0 ag
as; 0 ass4 0 as; O
as1 asx 0  ass aer  des

(el el e )

det
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0 0 0 ayis diy 0
0 0 ary 0 0 0
. 0 0 ass 0 0 ass
= det 0 agn 0 0 0 asg
asy 0 0 0 asy 0
L ass 0 0 aes as7 0 |
0 0 ay;s dpy 0 i
0 0 0 0 asg
= —apydet 0 ap O 0 aug
asy 0 0 asy 0
asr 0 aes as7 0 |
0 0 a5 ap
= asgansdet 0 an 0 0

asy 0 0 asy
as1 0 ass aer

0 a5 ap
= agpaszgaxydet | as; 0 as;
ag1 aes der
= apazsa (a15as7ae) + as aesay7 — a15as1de7)
= —bu(te) (faabar(tc) — 2bg,y) bsi (1)

1 1
bsibg, fasber — bar (§f52b51 + b§'1> be1 + §f63b61b42b51 .
(11.22)

Therefore, in view of Theorem 11.1, the time-varying system is controllable if

f64b42(lc) — 2b/62 #0, (11.23)

and

1 1
bsibg, fasber — baa <§f52b51 + béﬁ) be1 + §f63b61b42b51 #0. (11.24)

Using (11.2), (11.6), (11.7), (11.8), and noticing that sin(wpz.) = sin(5) = 1, we
have

feabar(t:) — 2b,
_ — 2
(It In—Jm)o 24y Sin<,~m)_2“fw0 sin(iy)

J33 a*Ji a’J33

2y e sin(iy,)
= ————(=2J)1—J33+J.
RIS (=201 =33+ Ja2),
the first condition (11.23) is reduced to

2J11 +J33 # Joo. (11.25)
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Repeatedly using the same relations, we have

bs1bg, fasbe1

up .. Ur@o . .
<_a3122 sm(zm)) <a3J33 sin(i,,)
((111—122+J33)0)()> <_ 1% cos(im)>

Ji a’Js;
Ul (Jiy —Jnn +J
_ o Un - ) G (i) cos(in). (11.26)
a9J11J22J33

1
—bap (Efszbm + bg’l) be1

= — ( 2Hy sin(im)) (3“33_]11)603 (— 23#f sin(im)> + 2u; 0 Sin(im))

a*Ji J» a’Jr a*lr

<_a§LJf cos(im)>
33
2 2uy 0

(13.]1 1 a3 by

Uy .
<— a3—J33 COS(lm)>
4ui g (=373 +3J11 +J2)

_ . 2. .
= XN sin” (i) cos(ip), (11.27)
and
1 U —In)ay My
2f63b61b42b51 = s i cos(im)

2[.Lf . . 2[Jf - s
<a3J11 sm(zm)> (_a3J22 sin(iy,)

$in® (i) cOS(i). (11.28)

Combining (11.26), (11.27), and (11.28), we can rewrite (11.24) as

1 1
bsibg, fasber — baa <§f52b51 + béﬁ) be1 + §f63b61b42b51
pjog
09]11.]222]%3
(2020 (J11 — Jo2 + J33) +4J33(—3J33 4+ 3J11 + ) +4I0n (11 — In)]

sin® (i) c0S(im)
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3 02
= Nfizoz sin® (i) cos (i)
(2011020 — 203, + 200033 — 12055 + 12J11J33 + 4Ja0d33 + 41 1J20 — 45,
3,2
Uy @ .0, .
= % Sll’lz(lm) COS(lm) [6.]1 1]22 — 6]222 + 6.]22.]33 — 12]323 + 12.]1 1]33}
6u 0}
- 40 . 2. . 2 2
= m sin (lm) COS(lm)[Jll.]zz — J22 + JpJ3z — 2]33 +2J; 1]33}.
(11.29)
Therefore, the second condition of (11.24) is reduced to
(I —Jo2 +J33) # 2J33(J33 — J11)- (11.30)

‘We summarize the above result as the main theorem of this section.

Theorem 11.2

For the linear time-varying spacecraft attitude control system (11.4) using only mag-
netic torques, if the orbit is on the equator plane of the Earth’s magnetic field, then
the spacecraft attitude is not fully controllable. If the orbit is not on the equator plane
of the Earth’s magnetic field, and the following two conditions hold:

2711 +J33 # Jao, (11.31a)
Joa (11 —JIn+J33) # 2J033(J33 — J11), (11.31b)

then the spacecraft attitude is fully controllable by magnetic coils.

Remark 11.2  The controllability conditions include only the spacecraft orbit plane
and the spacecraft inertia matrix which can be easily verified.

The idea developed in this section is applied to attitude control of a 2U cube-
sat by magnetic and air drag torques [256].

11.3 LQR design based on periodic Riccati equation

In this section, we discuss the attitude control system design using only mag-
netic torque. We consider linear quadratic regulator (LQR) design method for this
problem. Riccati equation plays an important role in the LQR problem [135]. For
continuous-time linear systems, the optimal solution of the LQR problem is as-
sociated with the differential Riccati equation. For discrete-time linear systems,
the optimal solution of the LQR is associated with the algebraic Riccati equation.
The numerical algorithms for these Riccati equations have been thoroughly stud-
ied since the work of Macfarlane [151], Kleinman [120], and Vaughan [269]. If
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the linear system is periodic, the optimal solution of the LQR is then associated
with the periodic Riccati equation [28]. For continuous-time periodic linear sys-
tem, algorithms and solutions of the differential periodic Riccati equation have
been studied, for example, in [29, 30, 267]. For discrete-time periodic linear
system, an efficient algorithm was proposed for the algebraic periodic Riccati
equation in [90].

Because the spacecraft attitude control system using magnetic torques is
a time-varying period system, using a periodic feedback control will im-
prove the system performance [66]. However, many researches, for exam-
ple [205, 146, 147], were still focused on time-invariant feedbacks. Others
[298, 42] sought feedbacks that approximate the optimal solution even though
the optimal feedback exists. Most optimal control designs for this problem
[206, 330, 211, 180, 289] solved the continuous differential Riccati equation
using some traditional backward integration, which is inefficient and needs large
memory space. As a matter of fact, a more efficient algorithm [90] developed for
general periodic time-varying optimal control system has been available since
1994, even though the algorithm in [90] is not designed to use the features of this
specific problem.

In this section, we will explore the features of the problem of attitude control
using only magnetic torques. By utilizing these features, we are able to propose
an efficient algorithm to solve the discrete-time periodic Riccati equation. We
show that the new algorithm is more efficient than the widely recognized algo-
rithm developed in [90] for this problem.

Note that the orbital period in system (11.4) is given by (2.54) (see also [232])

T=""=2m—, (11.32)

where a is the orbital radius (for circular orbit) and p = 3.986005 * 10'4m? /s>
is the standard gravitational parameter (see also [280]). Oftentimes, a spacecraft
controller is implemented in a discrete computer system. Therefore, the follow-
ing discrete model is used for the design in real implementation:

X+l = Aka+Bkmk. (1133)

The system matrices (A, By) in the discrete model can be derived from (11.4)
and (11.5) by different methods. Let #; be the sample time, we use the following
formulations.

Av=(1+A1), B, =B(kt,)t,. (11.34)

Note that

det(I+ At;) = det

| 0.5¢1 _ det I 0.5¢,1
1A} I+ | 03 I+1,5; —0.512A,
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is invertible as long as f; is selected small enough. It is worthwhile to mention
that in both continuous-time and discrete-time models, the time-varying feature
is introduced by time-varying matrices B(¢) or By; the system matrices A and
Ay are constants and invertible, which are important for us to derive an efficient
computational algorithm.

The discussion about the computational algorithm is focused on the solution
of the periodic discrete Riccati equation using the special properties of (11.33),
i.e., Ay is constant and invertible for all k.

11.3.1 Preliminary Results

First, a matrix M is called a real quasi-upper-triangular if (a) M is a real block
triangular matrix, (b) each diagonal block is either 1 x 1 or 2 x 2, (c¢) for each
2 x 2 block, it has the form of

c —s

s ¢ |’

and ¢+ js is a pair of complex conjugate eigenvalues of M. We use (M) to
denote the set of all eigenvalues of M. Let

o 0 I 2nx2n
L_{_I 0 }ER , (11.35)

where 7 is the dimension of A or A;. Note that LT =L~! = —L. A matrix M €
R?>"*2" is said to be symplectic if it meets the condition L~'MTL = M~!. The
symplectic matrix plays a fundamental role in finding the solution of the Riccati
equation [129]. An important property for the symplectic matrix is given as the
following theorem which is shown in [128, 269].

Theorem 11.3
IfM is symplectic, then A € 6(M) implies % € 6(M) with the same multiplicity.

Proof11.1 Let A € (M) be an eigenvalue of M, f and g be n-dimensional vectors

such that
f M“ M12 f f
MR MEIM
Then,
0 —1I M MI 0 I
-1 _ —1naTyr 11 21
weo= e[yt e[S e ]

_ [ M, M,
-M; M|
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Therefore,
1| & | _| Mxn -—My g | _ g
IR [T g

which means that A is an eigenvalue of M~!. Since A is an eigenvalue of M~!, 1/
is an eigenvalue of M. |

A stable numerical solution of the Riccati equation depends on the so-called
real Schur decomposition [178]. The following Proposition is a natural extension
of the real Schur decomposition for the symplectic matrix.

Proposition 11.1
Let M € R*™2" pe symplectic. Then there exists an orthogonal similarity transfor-
mation U such that

T
Uy Up U Up St Si2
M = 11.36
[ Uy Uxn ] [ Uy Uxp ] { 0 Sx» ] ( )

where Uy1,U12,Uz1,Up, 811,812,820 € R™", and Sy1, Sy are quasi-upper-
triangular. Moreover, 6(S11) lies inside (or outside) the unit circle and c(Sy,) lies
outside (or inside) the unit circle.

We will also use a simple result in our derivation of the main result.

Proposition 11.2
If M and M, are symplectic, then MM, is symplectic.
Proof11.2  Since L~'MJL =M, ' and L~'MJL =M, ', we have
L~ '(M;M)"L=L"'"M;M[L =L~'MJLL~'MJL =M, 'M; ! = (M;M,)"!

This concludes the proof. |

11.3.2 Solution of the Algebraic Riccati Equation

For a discrete linear time-varying system (11.33), the LQR state feedback con-
trol is to find the optimal solution m; to minimize the following quadratic cost
function

1 1=
min — XNQNXN 3 Z Qkxk + mEkak (11.37)
k=0

where

Q: >0, (11.38)
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R; >0, (11.39)

and the initial condition X is given. The existence of the solution implicitly de-
pends on the controllability of spacecraft attitude control using only magnetic
torques which is discussed in the previous section. Let the co-state vector of x; is
denoted by y;. A very important assumption in the so-called sweep method [33]
to solve the optimization problem (11.37) under the state constraint of (11.33) is
the relation between y; and x; which is given as follows:

Y = Pka, (1 140)

If (A, Q) is detectable or Q; > 0, the optimal feedback my, is given in Appendix
B (B.21) (see also [90, 135])

m; = — (R + B P By) 7' B P Arxy, (11.41)

where Py defined in (11.40) is the unique positive semi-definite solution of the
discrete Riccati equation (B.19) (see also [90, 129, 135])

Pi= Qi+ A{Pi 1A — AP By (Ry + B{P . By) 'BiPr Ay, (11.42)

with the boundary condition Py = Qy. For this discrete Riccati equation (not
necessarily periodic) given as (11.42), it can be solved using a symplectic system
associated with (11.33) and (11.37) as follows :

Letz, = [x;,y;|". Appendix B gives (B.26), which is repeated below.

Xk _ Ak_l Ak_lBkRk_lBE Xk+1 —H Xk+1
Vi QA" AT+QA'BIR'B] | | virt | vk |

(11.43)
Let -
_ | T BiR B
E, = { 0 AT } , (11.44)
A, 0
F, = 11.45
k [ Q1 ] ( )

Assume that E; is invertible, which is true for det(I+ 7%, — %TzAl) #£0. Itis
easy to verify that

7, = H'= [ Ak+BkR1?1TBEA;TQk —BkRz:llT;ZA;T ]
¢ —Ar Qk Ay
_ I —-B.R, 'BFA; T Ar 0
= E'F, = ko okf . 11.46
k k |: 0 Ak_T _Qk 1 ( )

Therefore, (11.43) can be rewritten as

Eklk—H ZEk|: Xict1 :| ZFk|: Xk :| ZFka. (1147)
Yie+1 Yk
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It is straightforward to verify that L™'Z]L = Zk_l, therefore, from Proposi-
tion 11.1, there exists an orthogonal matrix U such that

T
U Up U Up Sii Si2
z - : 11.48
[ Uy Ux ] k[ Uy Ux ] [ 0 S» ] ( )

and all eigenvalues of S;; are inside unit circle. For linear time-invariant system,
A=A, B, =B, Q. =Q, R, =R, and Z; = Z are all constant matrices, the
(steady state) solution of (11.42) is given as follows (see Appendix B.3 and [129,
Theorem 6])

P=U,U;".

11.3.3 Solution of the Periodic Riccati Algebraic Equation
Now, we consider the periodic time-varying system

N—1

. L1 1
Allgr;() min ExﬁQNxN + 5 ; szkxk + mEkak , (11.49a)
X1 = Arxg + Brmy, (11.49b)

where

Ar=Arp1 = ... = Ay, (11.50)
By =By ), (11.51)
Q=Qu1=...=Qxp >0, (11.52)
Rk:Rk+p>0, (11.53)

only By (and possibly Ry) are periodic with period p = [Z It is worthwhile to
mention that A; and Qg are actually constant matrices. The optimal feedback
given by (11.42) is periodic with Py = P, a unique periodic positive semi-
definite solution of the periodic Riccati equation (cf. [28]). Therefore, using the
similar process for the general discrete Riccati equation and noticing that Fy =F

in (11.45) is a constant matrix because A; and Q; are constant matrices, we get

Eka_H = FZk (1 154)
Eiiziy = Fziyy (11.55)

: (11.56)

Ek+pflzk+p = sz+p71~ (11.57)

This gives
Ziyp = Hka, (1 158)
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with

—1 -1
=K F. EZ

FE, 'F. (11.59)
Using Proposition 11.2, we conclude that IT; is a symplectic matrix. Therefore,

from Proposition 11.1 there is an orthogonal matrix T such that

{ T Ti ]Tl'lk[ T Tix } _ { St Siax } (11.60)

Toie Tox Toie Tox 0 Sox

According to [90, pp. 1197-1198], the matrix S;;; has eigenvalues in the open
unit disk, and for each sampling time k € {0,1,..., p — 1} the steady state solu-
tion of the Riccati equation corresponding to (11.58) is given by

P = To T (11.61)

Since F is invertible in the problem of spacecraft attitude control using only
magnetic torques, this method is more efficient than the one in [196] because
the latter is designed for singular F. However, the method of calculating (11.59),
(11.60), and (11.61) as described above (proposed in [90]) is still not the best
way for the problem of spacecraft attitude control using only magnetic torques.
As a matter of fact, equation (11.58) can be written as

X Xk+p
=z, =1z =1 11.62
[ Vi } k k€k+p k [ Vi ] ( )

with the initial state Xy, the boundary condition [135]

ynv = Qnxy, (11.63)

and
T =F 'EF 'Ery .. . F By, oF "B,y (11.64)

Remark 11.3  Since the same F~! is a constant matrix and is used repeatedly in
I}, the computation of I'; avoids p — 1 matrix inverse comparing to the computation
of I1. For large p, the difference is tremendous.

We propose a better way to solve (11.49). The derivations is similar to the
method proposed in [129]. Since

o[ At o
F _|:QkAk—1 1 )

M - F‘IE—{ A OHI BkR,;lB{]
- L =

QA" T][0  Af
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_ [ Al A 'BiR;'B ] (11.65)

QA" QA 'B{R,'B] +A]
which is a similar formula as given in [269]. It is straightforward to verify that
M is symplectic.

I | AT A TQ
—IaaT _ k k k
LML I 0 HBkRk—lB{Ak—T A +BR,'BJATQ, L
~B:R,'BJA,;T A, —BR'BJATQ; } { 0 I]

I AT ATQr -1 0
[ Ac+BR'BJATQ, —BkRk_lBZAk_T}
I —A T AT
= ML (11.66)

Since M is symplectic, using Proposition 11.2 again, I'; is symplectic. Let

Vie Vi
V, —
g { Vo Vo ]

be a matrix that transform I'}, into a Jordon form, we have

Ako}

0 A (11.67)

Vi = Vi [
where Ay is the Jordan block matrix of the n eigenvalues outside of the unit circle.
One of the main results of this section is the following theorem.

Theorem 11.4
The solution of the Riccati equation corresponding to (11.62) is given by

P, =VouVig, k=0,....,p—1. (11.68)

Proof 11.3  The proof uses similar ideas to [269, 135]. Since the system is pe-
riodic, the Riccati equation corresponding to (11.62) represents any one of k €
{0,1,...,p— 1} equations, which has a sample period increasing by p with the patent
k.k+ p,k+2p,....k+{p,.... In the following discussion, we consider one Riccati
equation and drop the subscript k to simplify the notation to 0, p,2p,...,¢p,.... To
make the notation simpler, we will drop p and use ¢ for this step increment. Assume
that the solution has the form

Yy = PXZ. (1 1.69)

Using the method described in Appendix B, one can show that P satisfies the discrete-
time periodic Riccati equation

0=Q+A"PA—P—A"PB(R+B"PB)BPA.
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Further, we assume for simplicity that the eigenvalues of I" are distinct; therefore, A
is diagonal. For any integer ¢ > 0, let

Xy Vi Vo | [t
- , 11.70
[Yz] |:V21 sz]_sz] ( )

from (11.62), (11.67) and (11.70), we have
AR R
Sy Yo Yer1 | Se+1 | 0 A Se+1

which is equivalent to
te] [A 0 tg
sp | L 0 A! Ser1 |

t, ] [ AV 0 ty
L[ lE) e

Using the boundary condition (11.63) and (11.70), we have

Hence,

Qn(Viity + Viasy) = Quxy = ynv = Vaity + Vaosy,

this gives
— (V21 = QnVin)ty = (V2o —QnVi2)sw,

or equivalently
sv =—(Va— QnV12) " (Va1 — QuVi1)ty := Hty. (11.72)
Combining (11.71) and (11.72) yields
so=A"WN=0gy = A=W=0OHty = A~ V-OHA=N=0¢, .= Gt,,

with G = A~N=OgA= V=0, Finally, using this relation, equations (6.22) and
(11.69), we conclude that

Yo =Vaut;+Vasy = (Vo1 + V. G)ty = Pxy =P(Vy1ty+ Vias,) = P(V1 + V2G)ty
holds for all t,; therefore
(V21 +V22G) =P(V11 + V12G)

or
P= (V21+V22G)(V11+V12G)_1. (11.73)

Note that G — 0 as N — oo. This finishes the proof. |

Since the eigen-decomposition is not numerically stable, we suggest using
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the Schur decomposition instead. Since I'y is symplectic, Proposition 11.1 claims
that there is an orthogonal matrix W such that

[ Wi Wi Trk{ Wik Wiz ] _ [ Stk Siak ] (11.74)

Woie Woy Woie Waoy 0 Sox

where Sy is upper-triangular and has all of its eigenvalues outside the unit circle.
We have the main result of the section as follows.

Theorem 11.5
Let the Schur decomposition of Ty be given by (11.74). The solution of the Riccati
equation corresponding to (11.62) is given by

P = Wao Wik (11.75)

Proof 11.4  The proof follows the same argument of [129, Remark 1]. From
(11.67), we have i
Vi ] [ Vi
I’ = Ay. 11.76
k[ Voux Vo | F ( )
From (11.74), we have

Fk[ Wik ] _ { Wi | S

Let T be an invertible transformation matrix such that

T'S,T = Ay,
then we have
Wik ] [ Wik ] -1 [ Wik ]
I T= TT 'S/ T= TA,. 11.77
k { Wik Waik Hk Wik k ( )

Comparing (11.76) and (11.77) we must have
Wik Vi
T= D
{ Wik Vauk
where D is a diagonal and invertible matrix. Thus,
W Wik = VauDT'TD ™!V 1 = Vo Vi
This finishes the proof. |

We can apply the algorithm to the problem described in (11.49).
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Algorithm 11.1

Step 0: Data J, in, Q, R, altitude of the spacecraft, and selected sample
period t;.

Step 1: Calculate Ay and By using (11.33-11.34).
Step 2: Calculate Ey and ¥, using (11.44-11.45).
Step 3: Calculate Ty, using (11.64).

Step 4: Use Schur decomposition (11.74) to get Wy.
Step 5: Calculate Py, using (11.75).

Remark 11.4  This algorithm makes full use of the fact that A is a constant matrix
in (11.45). Therefore, F is a constant matrix and the inverse of F in (11.64) does not
need to be repeated many times which is the main difference between the method
discussed in this section and the method in [90].

11.3.4 Simulation test

The following problem is used to demonstrate the effectiveness of proposed de-
sign algorithm. Let the spacecraft inertia matrix be J = diag (250, 150,100)kg -
m?. The orbital inclination i, = 57°, the orbit is circular with an altitude of
657 km. In view of equation (11.32), the orbital period is 5863 seconds, and
the orbital rate is @y = 0.0011 rad/second. Assuming that the total number of
samplestaken in one orbit is p = 100, then, each sample period is 58.6352 sec-
onds. Select Q = diag(1.5%107°,1.5%107°,1.5%1072,0.001,0.001,0.001) and
R = diag(2+1073,2 % 1073,2 % 10~%). The Riccati equation solutions P; for
k=0,1,2,...,99 are calculated using Algorithm 11.1 and are stored. Assuming
that the initial quaternion error is (0.01,0.01,0.01) and the initial body rate is
(0.00001,0.00001,0.00001) radians per second, applying the feedback (11.41)
to the system (11.33), the simulated spacecraft attitude response is given in Fig-
ures 11.1-11.6.

The designed controller stabilizes the spacecraft using only magnetic torques.
This shows the effectiveness of the design method. Since this time-varying sys-
tem has a long period 5863 seconds and the number of samples in each period is
100, this means that using I'; in (11.64) instead of IT; in (11.59) saves about 100
matrix inverses, a significant improvement in the computation compared to the
well-known algorithm of [90]. For more detailed discussion of the computational
comparison, readers are referred to [315].



184 h. Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proac.

0.015

0.01

0.005

-0.005

.
0 2 4 6 8 10 12 14 16 18
time (hours)

-0.01 I I I I

Figure 11.1: Attitude response ¢;.
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Figure 11.2: Attitude response ¢;.
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Figure 11.3: Attitude response ¢3.
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Figure 11.4: Body rate response ;.
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11.4 Attitude and desaturation combined control

Spacecraft attitude control and reaction wheel desaturation are normally regarded
as two different control system design problems and are discussed in separate
chapters in text books, such as [232, 280]. While spacecraft attitude control us-
ing magnetic torques has been one of the main research areas (see, for example,
[214, 233] and extensive references therein), there are many research papers that
address reaction wheel momentum management, see for example, [41, 59, 75]
and references therein. In [59], Dzielsk et al. formulated the problem as an op-
timization problem and a nonlinear programming method was proposed to find
the solution. His method can be very expensive and there is no guarantee to
find the global optimal solution. Chen et al. [41] discussed optimal desaturation
controllers using magnetic torques and thrusters. Their methods find the optimal
torques which, however, may not be able to achieve by magnetic torque coils
because given the desired torques in a three dimensional space, magnetic torque
coils can only generate torques in a two dimensional plane [232]. Like most pub-
lications on this problem, the above two papers do not consider the time-varying
effect of the geomagnetic field in body frame, which arises when a spacecraft
flies around the Earth. Giulietti et al. [75] considered the same problem with
more details on the geomagnetic field, but the periodic feature of the magnetic
field along the orbit was not used in their proposed design. In addition, all these
proposed designs considered only momentum management but not attitude con-
trol.

Since both attitude control and reaction wheel desaturation are performed at
the same time using the same magnetic torque coils, the control system design
should consider these two design objectives at the same time and some recent
research papers tackled the problem in this direction, for example, [6, 262]. In
[262], Tregouet et al. studied the problem of the spacecraft stabilization and reac-
tion wheel desaturation at the same time. They considered time-variation of the
magnetic field in body frame, and their reference frame was the inertial frame.
However, for a Low Earth Orbit (LEO) spacecraft that uses Earth’s magnetic
field, the reference frame for the spacecraft is most likely Local Vertical Local
Horizontal (LVLH) frame. In addition, their design method depends on some as-
sumption which is not easy to verify and their proposed design does not use the
periodic feature of the magnetic field. Moreover, their design is composed of two
loops, which is essentially an idea of dealing with attitude control and wheel mo-
mentum management in separate considerations. In [6], a heuristic proportional
controller was proposed and a Lyapunov function was used to prove that the
controller can simultaneously stabilize the spacecraft with respect to the LVLH
frame and achieve reaction wheel management. But this design method does not
consider the the time-varying effect of the geomagnetic field in body frame. Al-
though these two designs are impressive, as we have seen, these designs do not
consider some factors in reality and their solutions are not optimal.
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This section proposes a more attractive design method which considers as
many factors as practical. The controlled attitude is aligned with LVLH frame.
A general reduced quaternion model, including (a) reaction wheels, (b) magnetic
torque coils, (c) the gravity gradient torque, and (d) the periodic time-varying
effects of the geomagnetic field along the orbit and its interaction with mag-
netic torque coils, is proposed. The model is an extension of the one discussed in
Chapter 4 (see also [304]). A single objective function, which considers the per-
formance of both attitude control and reaction wheel management at the same
time, is suggested. Since a well-designed periodic controller for a period sys-
tem is better than constant controllers as pointed out in [66, 119], this objective
function is optimized using the solution of a matrix periodic Riccati equation
described earlier in this Chapter, which leads to a periodic time-varying optimal
control. It is shown that the design can be calculated in an efficient way and the
designed controller is optimal for both the spacecraft attitude control and for the
reaction wheel momentum management at the same time. A simulation test is
then provided to demonstrate that the designed system achieves more accurate
attitude than the optimal control system that uses only magnetic torques. More-
over, it will be shown that the designed controller based on LQR method works
on the nonlinear spacecraft system.

11.4.1 Spacecraft model for attitude and reaction wheel desat-
uration control

Throughout the rest of this section, it is assumed that the inertia matrix of a
spacecraft J = diag(Jy,J2,J3) is a diagonal matrix. This assumption is reason-
able because in practical spacecraft design, spacecraft inertia matrix J is always
designed as close to a diagonal matrix as possible [307]. (It is actually very close
to a diagonal matrix.) For spacecraft using Earth’s magnetic torques, the nadir
pointing model is probably the mostly desired one by the missions. Therefore,
the attitude of the spacecraft is represented by the rotation of the spacecraft body
frame relative to the local vertical and local horizontal frame. This means that
the quaternion and spacecraft body rate should be represented in terms of the
rotation of the spacecraft body frame relative to the LVLH frame.

Let @ = [@;, @, ®s]T be the body rate with respect to the LVLH frame rep-
resented in the body frame, w;,;, = [0, —a)O,O]T the orbit rate (the rotation of
LVLH frame) with respect to the inertial frame represented in the LVLH frame?,
and @; = [0y, 0, a)13]T be the angular velocity vector of the spacecraft body
with respect to the inertial frame, represented in the spacecraft body frame. Let
Ab represent the rotational transformation matrix from the LVLH frame to the

3For a circular orbit, given the spacecraft orbital period around the Earth P, @y = 2Z is a known

P
constant.
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spacecraft body frame. Then, w; is expressed as in (4.17)
0 =0+Aw;, =0+, (11.78)

where cof’vlh is the rotational rate of LVLH frame relative to the inertial frame
represented in the spacecraft body frame. Assuming that the orbit is circular, i.e.,
oy, = 0, using the fact of (3.16)

Al = —wxA?, (11.79)
and taking the derivative of (11.78) give

. . L b b -
O = O+A/Op;+A] O,
O —0xAl o, =0—o0xaol,. (11.80)

Assuming that the three reaction wheels are aligned with the body frame axes,
the total angular momentum of the spacecraft hy in the body frame comprises
the angular momentum of the spacecraft Jo; and the angular momentum of the
reaction wheels h,, = [h,,1,h,2,h,3]" is given by

hr =Jo, +h,, (11.81)

where
h, =J,Q, (11.82)

J., =diag(J,,,Jw,,Jw,) is the inertia matrix of the three reaction wheels aligned
with the spacecraft body axes, and Q = [Q;,Q,Q3]" is the angular rate vector of
the three reaction wheels. Let h/, be the same vector of hy represented in inertial
frame. Let t be the total external torques acting on the spacecraft, then it must
have (see [227])

by
dt

Taking derivative of (11.81) and using the above equation and (3.17) lead to the
dynamics equations of the spacecraft as follows

o dhy dh),
h = (Z2)] =—w;xh
J(D1+ <dl>b @y X T+<dl‘>b
= —w;x(Jo;+hy,) +tr, (11.83)

tr

b

where tr includes the gravity gradient torque t,, magnetic control torque t,,,
and internal and external disturbance torque t; (including residual magnetic mo-
ment induced torque, atmosphere induced torque, solar radiation torque, etc).
The torques generated by the reaction wheels t,, are given by

t,=—h,=-J,Q.
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Substituting these relations into (11.83) gives
J('O,z—a),x(Ja)1+JWQ)+tW+tg+tm+td. (1184)

Substituting (11.78) and (11.80) into (11.84) yields

Jo = Joxof,—(o+ao),)xJ(o+o],)+IJ.Q
Syt + b+t (11.85)
Let
— T T|T a, . 0"
q= [6]0a611a612a613} - [Qan } - [COS(E)ae Sll’l(z):| (1186)

be the quaternion representing the rotation of the body frame relative to the
LVLH frame, where € is the unit length rotational axis and ¢« is the rotation
angle about €. Therefore, from the derivation of (4.9), the reduced kinematics
equation becomes ( see also [304])

q1 1 90 —493 92 (2]
q2 = 3 q3 90 —q1 (%)
q3 42 g1 qo 3
= g(q17q27q37w)7 (1187)
since go = /1 — g7 — g3 — ¢3. It can be rewritten simply as
q=g(q,0). (11.88)

From (3.61), (see also [304, 307]),

2q5—1+2q1 2q192+2q093 29195 — 24092
AV = 2q192— 29095 2¢3—1+243 2q295+2q0q1 |,
2q193+2q0q> 29293 —2q0q1  2q%— 1+ 243

29192 +2q093
)= Aoy = | 2¢3—14243 | (—w), (11.89)
29293 — 2q0q1

which is a function of q. Interestingly, given spacecraft inertia matrix J, t, is also
a function of q. Using the facts (a) the spacecraft mass is negligible compared to
the Earth mass, and (b) the size of the spacecraft is negligible compared to the
magnitude of the vector from the center of the Earth to the center of the mass of
the spacecraft R, the gravitational torque is given by (5.5) (see also [281, page
367]):

_ 3u
t, = WRXJR7 (11.90)
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where 4 = GM, G = 6.669% 10~!'m? /kg — s? is the universal constant of gravita-
tion, and M is the mass of the Earth. Noticing that in local vertical local horizontal
frame, R; = [0,0, —|R|]", we can represent R in body frame as

26314241 2q192+29095 29193 —2909> 0
R=AR, = | 2q192— 29095 2q3—1+2¢% 29295 +2q0q 0
2193 +24909> 29293 —2q0q1  2q5— 1 +243 —|R|
(11.91)

Denote the last column of Af’ as Af(:7 3). Using the relation (2.55) (see also
[232, page 109])

U
=,/=—= 11.92
oy RF ( )

and (11.91), we can rewrite (11.90) as
t, = 303AY(:,3) x JAV(:,3). (11.93)

Let b(t) = [b1(t),b2(t),b3(t)]" be the Earth’s magnetic field in the space-
craft coordinates, computed using the spacecraft position, the spacecraft atti-
tude, and a spherical harmonic model of the Earth’s magnetic field [280]. Let
m = [m;,my,m3]" be the spacecraft magnetic torque coils’ induced magnetic
moment in the spacecraft coordinates. The desired magnetic control torque t,,
may not be achievable because

t.,=mxb=—-bxm (11.94)

provides only a torque in a two dimensional plane but not in the three di-
mensional space [232]. However, the spacecraft magnetic torque coils’ induced
magnetic moment m is an achievable engineering variable. Therefore, equation
(11.85) should be rewritten as

Jo=£(0,9Q,q) +t, +t, —bxm+t, (11.95)
where
f(0,Q,q) =Jo x o}, — (0 + afy,) X [J(0+ of,;) + J,.Q). (11.96)

Notice that the cross product of b x m can be expressed as product of an asym-
metric matrix b* and the vector m with

0 —b3(l) bz(l)
b<=| bst) 0  —bi(1) |. (11.97)
—bz(l‘) bl(l) 0

Denote the system states x = [@", Q",q"]" and control inputs u = [t} m"]T. The
spacecraft control system model can be written as follows:

Joo = f(0,Q,q) +t,+ [I, —b Ju+t,, (11.98a)
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J,Q = —t,, (11.98b)
4=g(q, ). (11.98c)

Remark 11.5  The reduced quaternion, instead of the full quaternion, is proposed
in this model because of many merits discussed in Chapter 9 (see also [304, 306,

3.

11.4.2 Linearized model for attitude and reaction wheel desat-
uration control

The nonlinear model of (11.98) can be used to design control systems. One pop-
ular design method for nonlinear model involves Lyapunov stability theorem,
which is actually used in [6, 262]. A design based on this method focuses on
stability but not on performance. Another widely known method is nonlinear op-
timal control design [59], it normally produces an open loop controller which is
not robust [135] and its computational cost is high. Therefore, it is proposed to
use Linear Quadratic Regulator (LQR) which achieves the optimal performance
for the linearized system and is a closed-loop feedback control. Our task in this
section is to derive the linearized model for the nonlinear system (11.98).

In view of (4.21), @? , in (11.89) can be expressed approximately as a linear
function of q as follows

0 0 —2am 0
oy~ 0 0 0 |q—| w |. (11.99)
20 0 0 0

Similarly, t, in (11.93) can be expressed approximately as a linear function of ¢
as in (5.9):

6603(]3—]2) 0 0
t, ~ 0 6w0(/s—Ji1) 0 |q:=Tq. (11.100)
0 0 0

Since t, and ®?, are functions of q, the linearized spacecraft model can be
expressed as follows:

J 0 0 o Jo 99 Jq o
0J, 0||Q]| = 0 0 0 Q
0 0 I]||q % 0 £ q
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(11.101)

of of of Jg og . et .
where Jo° 9% 99’ 96° and Jc are evaluated at the desired equilibrium point

ow=0,Q=0,and q =0. Usin(é the definition of (11.97), (11.99), (11.100), and
(11.96), we have

of
Jo om0 ™ —~J(@) "+ (Jgy)* = (05,) T =0
Q=0 Q=0
q~0 q~
[0 0 —ay 0 0 —Jhay 0 0 —ay
= -J|lo o o [+] 0 0o o |-{o0 o0 0 |J
| o O 0 JHay 0O 0 w O 0
0 0 wy(/y —Jh+J)
- 0 0 0 , (11.102)
0)0(—]1+J2—J3) 0 0
of
oo X (@) T — (@) T o
Q|80 S v
q=0 q=0
[0 0
= 0 o 0 (J,
| —®» 0 0
0 0 wyl,,
= 0 0 0 , (11.103)
| — oy, 0 0
and
Sy P (wlvthlevlh) ~
q (830 J 820
q= q~
b dwb
_ b \x 9P p DO
Jor) 9q in X J Jq |9
q~
0 0 —2ay 0 0 —2m
R (J(O?vm)x 0 0 0 (w?vm)x-] 0 0 0
200 0 0 200 O 0
0 8 0 0 —ay 0 0 —2m
~ — o> — 0 O 0 J 0O O 0
0 @ 0 0 200 0 0
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0 0 —ap(a—J3) 0 0 —2a
~ 0 0 0 0 0 0
| —a(Ji—J2) O 0 200 O 0
_2603(.]3—.]2) 0 0
= 0 0 0 : (11.104)
i 0 0 203(J; —J)

From (11.88), we have

Jg 1

— ~ =1 .

0w |o~0 27 (11.105)
q=0

d

8 s (11.106)

aq ws(())

Substituting (11.100), (11.97), (11.102), (11.103), (11.104), (11.105), and
(11.106) into (11.101) yields

(0]
X = Q
L 4
IS s (A1) ] [ o
= 0 0 0 Q
a0 5 a
B J—l _J—1b>< J—l
0 0 m 0
i 0 0 a3 0 0 ae a7 0 0 17 (0] i
0 0 0 0O 0 O 0 ay O (0))
asy 0 0 azs O 0 0 0 asg (0
0 0 0 0O 0 O 0 0 0 Q
= 0 0 0 0O 0 O 0 0 0 Q,
0 0 0 0O 0 O 0 0 0 Q3
05 O 0 0O 0 O 0 0 0 q1
0 05 O 0O 0 O 0 0 0 q2
0 0 05 0 0 0 0 0 0 || g |
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Jr! 0 0 0 BO 20 Ex
0 N A . 5
! 0 0 0 0 0 f, 0
* g0 0 0 0 m | T 0
0 0o -, 0 0 0 o 0
0 0 0 0 0 0 m3 0
0 0 0 0 0 0 ) } 0
. 0 0 0 0 0 0 | | 0]
= Ax+Bu+d. (11.107)
where a3 = (l)o%, ale = a)(}i a7 = 8@, 2 31112 arg = 6(1)0 L)y , a3 =
Coojlfifrj3 az woJJ ,a39 = 2602]‘ —L 1t is worthwhile to notice that (11.107)

isin general a time-varying system. The time-variation of the system arises from
an approximately periodic function of b(r) = b(z + T'), where T is the orbital
period given in (11.32). This magnetic field b(¢) is given in (11.3). The time 7 =0
is measured at the ascending-node crossing of the magnetic equator. Therefore,
the periodic time-varying matrix B in (11.107) can be written as

U0 0 0 bis b |
0 5! 0 b 0 b
0 0 J;' by by O
;b0 0 0 0 0
B=| 0o -J! 0 0 0 0 |, (11.108)
0O 0 —J;' 0 0 0
0 0 0 0 0 O
0 0 0 0 0 O
0 0 O 0 0 0 |
where
bis = 2—“/ sin(iy, ) sin( oot ),
b= 3f cos (i),
by = — 2{3 sin(iy, ) sin( oot ),
by = a‘fj sin(i,, ) cos(myt ),
by = — “} cos(in),
bss = ’;J sin(i,,) cos(myt ).

A special case is when i, = 0, i.e., the spacecraft orbit is on the equator plane

of the Earth’s magnetic field. In this case, b(¢) = [0, —££,0]T is a constant vector
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and B is reduced to a constant matrix given as follows:

g 0 0 0 0 A7
o J5! 0 0 0 0
0 0 ' —E 0 0

—J;b 0 0 0 0 0

B=| o - o0 0 0 0 (11.109)

0 o -J,! 0o 0 0
0 0 0 0 0 0
0 0 0 0 0 0

L0 0 0 0 0 0 |

In the remainder of the discussion, we will consider the discrete time system of
(11.107) because it is more suitable for computer controlled system implemen-
tations. The discrete time system is given as follows:

X1 = Axg + Bruy +dy. (11.110)

Assuming that the sampling time is #;, the simplest but less accurate discretization
formulas to get A and By are given as (11.34). A slightly more complex but more
accurate discretization formulas to get A; and By are given as follows [135, page

53]:

Iy
Ap =M, Bk:/ ATB(T)dT. (11.111)
0

11.4.3 The LQR design

Given the linearized spacecraft model (11.107) which has the state variables
composed of spacecraft quaternion q, the spacecraft rotational rate with respect
to the LVLH frame ®, and the reaction wheel rotational speed €2, one can see that
to control the spacecraft attitude and to manage the reaction wheel momentum
are equivalent to minimize the following objective function

/ cm(XTQHuTRu)olt (11.112)
0

under the constraints of (11.107). The corresponding discrete time system is
given as follows:

N—1
. 1 op 1 T T
Nll}ngo (mm EXNQNXN + 3 kE_O X, QX +uy Rkuk>
S.t. X1 = Ax + Bruy + dy. (11.113)



Spacecraft Control Using Magnetic Torques B 197

This is clearly a LQR design problem which has known efficient methods to
solve. However, in each special case, this system has some special properties
which should be fully utilized to select the most efficient and effective method
for each of these cases.

11.4.3.1 Casel:i,=0

It was shown earlier in this Chapter that a spacecraft in this orbit is not control-
lable if only magnetic torque bars are used. But for a spacecraft with three reac-
tion wheels as we discussed in this section, the system is fully controllable. The
controllability condition can be checked straightforward but the check is tedious
and is omitted in this section (also the controllability check is not the focus of this
section). In this case, as we have seen from (11.107), (11.109), and (11.34) that
the linear system is time-invariant. Therefore, a method for time-varying system
is not appropriate for this simple problem. For this linear time-invariant system
(LTI), the optimal solution of (11.113) is given by (B.50) (see also [135, page
691)

w, = —(R+B"PB)"'B"PAx, = —Kx, (11.114)

where P is a constant positive semi-definite solution of the following discrete-
time algebraic Riccati equation (DARE) (B.29)

P=Q+ATPA—A"PB(R+BTPB) 'B"PA. (11.115)

The solution of (11.115) is discussed in Appendix B.3. There is an efficient algo-
rithms [7] for this DARE system and an Matlab function dare implements this
algorithm.

11.4.3.2 Case?2:i, #0

It was shown earlier in this Chapter that a spacecraft without any reaction wheel
in any orbit of this case is controllable if the spacecraft design satisfies some
additional conditions imposed on J matrix. By intuition, the system is also con-
trollable by adding reaction wheels. As a matter of fact, adding reaction wheels
will achieve better performance of spacecraft attitude as we will see later in this
section (which is also pointed out in [280, page 19]). A better algorithm for this
case is the one developed earlier in this Chapter because B is a time-varying ma-
trix but A is a constant matrix. The optimal solution of (11.113) is discussed in
the previous section, which is given by

w, = — (R, +B{P;B;) "'B] P Aix;, = —Kixy, (11.116)

where P is a periodic positive semi-definite solution of the periodic time-varying
Riccati (PTVR) equation (B.19) which is rewritten here

P = Qu+APA;
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—A;PB; (R, +B[P;B,) 'B[P/A;.
(11.117)

The periodic Riccati equation for this case is discussed in the previous section
and the algorithm is presented below:

Algorithm 11.2

Data: iy, J, Jy, Q, R, the altitude of the spacecraft (for the calculation of a
in (11.3)), ts (the selected sample time period), and p (the total samples in
one period T = %).

Step 1: For k=1,...,p, calculate Ay and By using (11.34) or (11.111).

Step 2: Calculate E; and Fy, using

E; = [ (I) B"ISBE } (11.118)
F, = [ _AQ (I) } =F. (11.119)
Step 3: Calculate Iy, fork =1,...,p, using
L =F '"EF "Bty .. FE , oF "By, 1. (11.120)
Step 4: Use Schur decomposition
[ Wik Wiz ]TF [ Wik Wiz ]
Woie  Wox Woie  Wa
- [ S;)lk SZZ ] (11.121)
Step 5: Calculate Py, using
P, = Wa Wik (11.122)

11.4.4 Simulation test and implementation consideration

This section has several goals. First, it shows, by using a design example, that the
proposed design achieves both attitude control and reaction wheel momentum
management. Second, it compares with the design in the previous section which



Spacecraft Control Using Magnetic Torques B 199

does not use reaction wheels for the purpose to show that using reaction wheels
achieves better attitude pointing accuracy. More important, it demonstrates that
the LQR design works very well for both attitude and desaturation control for the
nonlinear spacecraft in the environment close to the reality. Finally, it discusses
the strategy in real spacecraft control system implementation.

rad/second
N

. . . . . . . .
0 2 4 6 8 10 12 14 16 18
time (hours)

Figure 11.7: Body rate response ®;, @, and ®s.

11.4.4.1 Comparison with the design without reaction wheels

The proposed design algorithm has been tested using the same spacecraft model
and orbit parameters as in the previous section with the spacecraft inertia matrix
given by

J = diag (250,150, 100) kg - m”.

The orbital inclination i,, = 57° and the orbit is assumed to be circular with the
altitude 657 km. In view of equation (11.32), the orbital period is 5863 seconds
and the orbital rate is @y = 0.0011 rad/second. Assuming that the total number
of samples taken in one orbit is 100, then, each sample period is 58.6352 second.
It is easy to see that all parameters are selected the same as the simulation exam-
ple in the previous section so that the two different designs can be compared.
Select Q = diag([0.001,0.001,0.001,0.001,0.001,0.001,0.02,0.02,0.02]) and
R = diag([10%,10°,10%,10%,10?,10%]). The solution of the periodic Riccati equa-
tions Py for k =0,1,2,...,99 have been calculated and stored using Algorithm
11.2. Assuming that the initial quaternion error is (0.01,0.01,0.01), initial body
rate vector is (0.00001,0.00001,0.00001) radians/second, and the initial wheel
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Figure 11.8: Reaction wheel response Q;, Q,, and Q3.
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Figure 11.9: Attitude response ¢, ¢2, and ¢3.

speed vector is (0.00001,0.00001,0.00001) radians/second, applying the feed-
back (11.116) to the linearized system (11.107) and (11.108), the linearized
spacecraft rotational rate response is obtained and given in Figure 11.7, the reac-
tion wheel response is given in Figure 11.8, and the spacecraft attitude response
is given in Figures 11.9.

Comparing the response obtained here using both reaction wheels and mag-
netic torque coils and the response obtained in previous section that uses mag-
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Figure 11.10: Body rate response m;, @, and ®;3.
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Figure 11.11: Reaction wheel response Q;, Q,, and Q3.

netic torques only, one can see that both control methods stabilize the spacecraft,
but using reaction wheels achieve much accurate nadir pointing. Also reaction
wheel speeds approach to zero as t goes to infinity. Therefore, the second design
goal for reaction wheel desaturation is achieved nicely.
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Figure 11.12: Attitude response ¢, ¢2, and g3.

11.4.4.2  Control of the nonlinear system

It is nature to ask the following question: can the designed controller (11.116),
which is based on the linearized model, stabilize the original nonlinear spacecraft
system (11.98) with satisfied performance? This question is answered by apply-
ing the designed controller to the original nonlinear spacecraft system (11.98).
More specifically, the LVLH frame rotational rate @?,, is calculated using the
accurate nonlinear formula (11.89) rather than the approximated linear model
(11.99). The gravity gradient torque t, is calculated using the accurate nonlinear
formula (11.93) rather than the approximated linear model (11.100). The Earth’s
magnetic field is calculated using the much accurate International Geomagnetic
Reference Field (IGRF) model [64] rather than the simplified model (11.3). This
is done as follows. First, combining (2.32) and (2.55) gives the lateral speed of
the spacecraft v = R@y. Given the altitude of the spacecraft (657 km) and the or-
bital radius R is 7028 kilometers, the lateral speed of the spacecraft is obtained.
Assuming that the ascending node at ¢ = 0 (“now”) is the X axis of the ECEF
frame, the velocity vector v = [0,vcos(i,),vsin(i,)]T. Using Algorithm 3.4 of
[50, page 142], one can get the spacecraft coordinate in ECI frame at any time
after + = 0. Converting ECI coordinate to ECEF coordinate, one can calculate a
much accurate Earth magnetic field vector b using IGRF model [64], which has
been implemented in Matlab. Applying this Earth magnetic field vector b and
feedback control u; = —K;x; designed by the LQR method to (11.98), the non-
linear spacecraft system is controlled by using the LQR controller. Also, larger
initial errors in 100 test cases (possibly 10 time larger than they were used in the
previous simulation test) are randomly generated.



Spacecraft Control Using Magnetic Torques B 203

The nonlinear spacecraft system response to the LQR controller is given in
Figures 11.10, 11.11, and 11.12. These figures show that the proposed design
does achieve the design goals. Moreover, the difference between the linear (ap-
proximate) system response and nonlinear (true) system response for the LQR
design is very small.

11.4.4.3 Implementation to real system

In real space environment, even the magnetic field vector obtained from the high
fidelity IGRF model may not be identical to the real magnetic field vector which
can be measured by magnetometer installed on spacecraft. Therefore, it is sug-
gested to use the measured magnetic field vector b to form By in the state feed-
back (11.116). Because of the interaction between the magnetic torque coils and
the magnetometer, it is a common practice that measurement and control are not
taken at the same time (some time slot in a sample period is allocated to the
measurement and the rest time in the sample period is allocated for control).
Therefore, a scaling for the control gain should be taken to compensate for the
time loss in the sample period when measurement is taken. For example, if the
magnetic field measurement uses half time of the sample period, the control gain
should be doubled because only half sample period is used for control. This is
similar to the method used in [311], which will be discussed in the next Chapter.

11.5 LQR design based on a novel lifting method

It has been known for about six decades that linear periodic time-varying system
can be converted to some equivalent linear time-invariant systems [107, 108].
The most popular and widely used methods that convert the linear periodic time-
varying model into linear time-invariant models are the so-called lifting methods
proposed in [79, 169]. But the LQR design for linear periodic system has been
focused on the periodic system not on the equivalent linear time-invariant sys-
tems proposed in [79, 169]. This strategy leads to extensive research on the solu-
tions of the periodic Riccati equations (see [28, 29, 30, 267, 268] and references
therein). For the discrete-time linear periodic system, two efficient algorithms
are discussed in this chapter for Discrete-time Periodic Algebraic Riccati Equa-
tion (DPARE).

This section considers a novel lifting method that converts the linear periodic
system to an augmented Linear Time-Invariant (LTI) system. It shows that the
LQR design method can be directly applied to this LTI system. Moreover, by
making full use of the structure of the augmented LTI system, one can derive a
very efficient algorithm. The new algorithm is compared to the ones discussed
in the previous sections of this chapter. In addition to some simple analysis, the
efficiency and effectiveness of the new algorithm is demonstrated by the simu-
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lation test for the design problems of spacecraft attitude control using magnetic
torques.

11.5.1 Periodic LQR design based on linear periodic system

First, the two efficient algorithms for solving DPARE discussed in the previous
sections are briefly reviewed. This will be beneficial later in the comparison of
the proposed method to the existing methods.

Let p be an integer representing the total number of samples in one period
of a periodic discrete-time system. The following discrete-time linear periodic
system is considered:

X1 = Arxg + Bruy, (11.123)

where Ay = A, € R"*" and By = By, € R"*™ are periodic time-varying matri-
ces. For this discrete-time linear periodic system (11.33), the LQR state feedback
control is to find the optimal u; to minimize the following quadratic cost function

N—1
. 1 1
NILII;O (mln EXIT\,QNXN + 3 ; XEQka + uERkuk> (11.124)
where
Qx = Qisp >0, (11.125)
Ry =Ry, >0, (11.126)

and the initial condition X is given. It is now known that the LQR design
for problem (11.33-11.37) can be solved by using the periodic solution of the
discrete-time periodic algebraic Riccati equation described in the previous sec-
tions. These two algorithms solve p n-dimensional matrix Riccati equations to
find p positive semidefinite matrices Py, k=1, ..., p. Given Py, the periodic feed-
back controllers are given by the following equations:

u, = — (Rk + B;CFPkBk) 71B;£PkAka. (11.127)

These two algorithms are summarized as follows: Let

—1pT
E,= { (I) BkikT B, ] =Esy ), (11.128)
k
Ay 0
F, = [ _ék I } =Fiip (11.129)

If A, is invertible, then E; and F; are invertible, and

o [1 —BkRlezAkT]
E ' =

_ -1
0 AT =

k+p*
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and |
A 0
-1 _ k _ -1
Fk - |: QkAk_l 1 :| _Fk+p'
Let y; be the costate of xi, z; = [x,y; |7, and

m=E. _\Feip B Fep o E\F B =Ty, (11.130)

o =F 'EF L B F B, oF B, =Ty, (11131)

The solutions of p discrete-time periodic algebraic Riccati equations are sym-
metric positive semi-definite matrices, Py, k = 1,..., p, which are related to the
solutions of either one of the two linear systems of equations:

2y = iz, (11.132)

z = 1ziy p. (11.133)

Therefore, Py, k = 1,..., p, can be obtained by two methods. The first method
uses Schur decomposition:

{ Tie T ]Tﬂk[ Tie T } _ { Stk Six } (11.134)

Toie Tox Toe Tox 0 Sox

where S, is upper-triangular and has all of its eigenvalues inside the unit circle.
The periodic solution Py, k =1,..., p, is given by

P; = T T} (11.135)

The second method uses Schur decomposition:

(11.136)

T
Wi Wix r Wik Win | _ | Ui Uix
Woie Woy | Waie Way 0 Uxx |’

where Uy, is upper-triangular and has all of its eigenvalues outside the unit
circle. The periodic solution Py, k =1,..., p, is given by

Pr =W, Wi . (11.137)

Remark 11.6 When A and Qy, are constant matrices, the second method is much
efficient because F; becomes a constant matrix and Fk_l = .. = ijrlp_ = F!,
which makes the computation of (11.131) much more efficient than the computation

of (11.130). 1
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11.5.2 Periodic LQR design based on linear time-invariant
system
This section discusses a lifting method that converts the discrete-time linear pe-
riodic system into an augmented linear time-invariant system. Thereby, the peri-
odic LQR design is reduced to the LQR design for the augmented linear time-
invariant system.
To simplify the discussion, assume that the number of samples in a period is

p = 3. In this section, the small case k is used for the discrete-time in the periodic
system and the capital K is used for the discrete-time in the augmented system.

X1 = AgXo + Bouy,

X2 = Aix; +Bjuy,

X3 = Aox; + Bouwy,

X4 = Aox3 + Bous,

Xs = A1x3 + Bjuy,

X6 = Aoxs + Bous,

x7 = AoXe + Boug,

It is ease to regroup the periodic system and to rewrite it as the following form:

X1 0 0 Ay 0
X, = xx | =100 AAg 0
L X3 0 0 A2A1A0 X0

[ B() 0 0 11 1))

—+ A]Bo B] 0 u

| A2A By A2B; B w

= Axo+ By,

[ x4 0 0 A X
X, = Xs [ =10 0 AAg Xo
L X6 0 0 A2A1A0 X3

[ B() 0 0 u3

+ ABg B, 0 uy

L A2A1B0 A2B1 B2 us

= Ax,+Bu,
in general, for k > 0 (K > 0), we have

Xpk+1
Xg+1 = Xpk+2
Xpk+3
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[0 0 Ay Xp(k—1)+1
= 0 0 A Xp(k—1)+2
L 0 0 AxA Ao X,, k—1)43
F B,
+ ABy upk+1
| A2ABy AZBI Wpi2
= Axg + Biig, (11.139)
where
X_» 0 Uy
Xp = X_1 = 0 , Up= u;
X0 X0 up

It is worthwhile to note that (11.139) is a linear time-invariant system. It is ease
to extend the result to the general case. Let

Xp(k—1)+1 0 W
X .
p(k—1)+2 . 1 Y2
5. G : = pk+1
Xk = . , X0:= , Ug = )
0
(k—1) X0 Upkt+p—1
and
X
pk+1 up(k+1)
Xpk+2
- Pkt _ Wy (k- 1)+1
XK1 = . , Ug4] = plietl)
Xpktp Wp(kt1)+p—1

Theorem 11.6
Given a linear periodic discrete-time system with period of p as follows:

Xpkt1 =  AoXpr+Bouyy,
Xpkt2 = ArXpe+Brugg,
Xpktp = Ap—lxpk+p71+Bp—lupk+p71- (11.140)

Then, this discrete-time periodic system is equivalent to the linear time-invariant
system given as follows:

Xpk+1 0 ... 0 AQ Xp(k—1)+

1
) Xpk42 AAy Xp(k—1)+2
XK+1 = . = . .

(=]
=

kaer 0 ... 0 Ap_l...A2A1A0 Xp(k—1)+p
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R

N 1- 0 .1 . Wy 1
Ap—l---AlBO Ap—l---AZBl Bp—l Upitp—1

= AXg+Big, (11.141)

where A € RP"™P" and B € RP"™P™. Moreover, the structure of B matrix guarantees
the causality of the system (11.141). |

It is worthwhile to emphasize that there is no overlap between Xx | and Xk; in
addition, there is no overlap between x| and tig. This is the major difference
between the proposed lifting method and the existing lifting methods in [79,
169] (see also [268]). This feature makes it possible to apply existing design
methods to the linear time-invariant system (11.141) which is equivalent to the
linear periodic system (11.140). The remainder of this section discusses the LQR
design for the system (11.141). Again, let

Qr=Qrp >0, (11.142)
R, =Ry, >0, (11.143)

hold and

QK = diag(Qlu .. ‘7Qp717Q0) Z 07

Ry := diag(Ry,...,R,_;) >0, (11.144)

be the constant matrices. Since the initial condition X, is given. The LQR state
feedback control is to find the optimal g to minimize the following quadratic
cost function

Np—1
lim minl X5 QupXyp + (XTQka—I—uTRkuk)
mmin = Xy, QX /?o k k

. !
= lim min—= ngoxo
N—oo 2 N——
ngK’_(O

T T
+uyRoup ... —l—up_lR,,,lu,,,l

“TH =
u()RKUO

T T T
+x;Qixi + ...+ X, 1Qp1X,—1 +X,Q0X,

xTQkx,

T T
+llpR()llp +... +U2P,IR,,,1U2,,,1

“TH
l.l]RKl.l]
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T T T
+X,1QiXpr1+. .+ X0, 1Qp_1X2p—1 +X5,QoX2p + . ...

%1Qx%;

+u;(N71)R0“P(N71) +ot u;NflRpfluprl

I
ay_ Reuy

+ X;(Nfl)HQlXﬂ(Nfl)H +oot XF[EN—IQP*lXprl + X};NQ()XpN )

%1 Qrky
1 N—1
= Jlim min > LQuEy + [;) (x5 QxXk + xRy i) (11.145)

It is straightforward to see that the optimal control problem described by (11.141)
and (11.145) is time-invariant but equivalent to the time-varying periodic system
described by (11.33) and (11.37). Moreover, the optimal feedback matrix of the
system (11.141 -11.145) is given in (B.21) as follows:

iix = —(R+B"PB) 'B"PA%, (11.146)

where P is the solution of the following time-invariant algebraic Riccati equation
(see (B.29) and (B.50)):

ATPA-P-ATPB(R+B"PB) " 'BTPA+Q=0. (11.147)

Notice that A is not invertible, this time-invariant algebraic Riccati equation can-
not be directly solved by using the algorithms either described in Appendix B.3
or proposed in [129, 269], but it can be solved by using the algorithm proposed in
[196]. However, because of the structure of A, there is a more efficient algorithm
than the one of [196]. The new algorithm makes full use of the specific structure
of A in which the first (p — 1)n columns are zeros. Denote

~ = [ diag(Qi,....Q,—1) | 0
Q~—QK—|: 0 L Q

where Q; = diag(Qy,...,Q,_;) € RP=VX(P=1n and Q, = Qo € R™",

} = diag(Q1,Q»), (11.148)

Ro— Ry — { diag(Ro,....,R,—2) | 0 ] _ diag(Ry, Ry). (11.149)
0 R,
where R; = diag(Ry,...,R,_;) € RP=Umx(=Dmapnd Ry = R,,_; € R™"™. Let
0 ... 0 Ao N
0 0 AiAg g g AIRO
A = : =1::: :
1] 0| A, »...AlA 8 8 mﬁi:f:"?]?oo

=
(=]
>
i

[;;? :
g
>
(=)
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Ay
0 - _
- A = [o]F], (11.150)

(p—1)n columns | , columns

where A € R~ X, e R™" and F = [AT,Al]" € R

By 0 0 0
. A1B0 B1 0 0 Bl
B= : : : : : = .
Ap>..ABy A, 2. AB, ... By, 0 ]
A, ... ABy A,_|..AB, ... A, B,, B, B,
(11.151)
where B; € RP—Dmxrm and B, € R™*P™; and
5 P, P
P=| - - , 11.152
{ Py Py ] ( )

where Pll S R(p—l)nx(p—l)n’ P]z S R(p—l)nxn’ 1_)21 S R”X(p_l)”, and Pzz € R"™",
Let
Y =PB(R+B"PB)'B"P. (11.153)
Substituting (11.148), (11.149), (11.150), (11.151), (11.152), and (11.153) into
(11.147) yields
0 |5 = Py Pp 0 |¢ = Q o0 ]
(11.154)
or equivalently

0 0 P, Pp 0 0 Q 0]
{0 FTPF}_[le f’zz}_{O FTYF]+[ 0 Qz}_o‘ (11.155)

This proves P, = PI, = 0 and P;; = PT, = Q,. By examining the lower right
block of (11.155), it is easy to see

F'PF =A{Q,A, +AJP»A, c R™, (11.156)
and
FYF _
= [AraT [ 2% ][ Renjom BipLe: | B0 BIR || ]

nxpm pmXxpm pmxn
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(11.157)
Let
A=A, e R, (11.158a)
B =B, c R, (11.158b)
Q=0Q,+ATQA, e R, (11.158¢)
R=R+B[Q,B, e R (11.158d)
S=ATQB; e R/, (11.158¢)
P =P, c RV, (11.158f)

The lower right block of (11.155) can be rewritten as follows:

ATPA—P— (A"PB+8) (B"PB+R) ' (BTPA+ST)+Q=0. (11.159)

nxpm pmX pm pmxn

The Riccati equation (11.159) is a special case discussed in [7, Eq. (6)]. An
efficient Matlab function dare that implements an algorithm of [7] is available
to solve (11.159).

Remark 11.7 Comparing to the methods described in the previous section which
need to solve p n-dimensional discrete-time Riccati equations, one needs only to
solve one n-dimensional discrete-time Riccati equation using the method proposed
in this section. |

To compare the efficiency of the method to the ones discussed in Section
11.5.1, The Matlab function dare is not used directly because dare calculates
more information than the solution of the Riccati equation (11.159). Let B =38,
R=R, ) )

A=A-BR'ST, (11.160)
and L
Q=Q-SRrR'S". (11.161)
Riccati equation (11.159) can be solved by either eigen-decomposition or Schur
decomposition for the following generalized eigenvalue problem [7, page 1748,
equation (8)]:
I BR'BT A0
1[0 AT ]—[_Q I}.-?LE—F. (11.162)
If A is invertible, then det(E) # 0 and 0 = det(AE — F) = det(AI — E~'F), the
problem is reduced to solve the eigenvalue for problem (11.46):

_BR-IBTA-T A

I -BR'BTA HA 0]. (11.163)

_w-lp— _ 3
Z=E F_{o AT Q1
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Using Schur decomposition for (11.163), the following equation holds:

Wo Wy Wy Wy 0 S»

[Wn Wi, FZ[WM le]:{sn Slz]

(11.164)

where S;; is upper-triangular and has all of its eigenvalues inside the unit circle.
The solution of the discrete algebraic Riccati equation (11.159) is given by

P=Wy, W (11.165)
The proposed algorithm is as follows:
Algorithm 11.3
Data: Ay, ... aAp—l) Bo,... 7Bp—1) Qo, ... an—lr Ro,... aRp—l-
Step 1: Form
Ay
_ AiAo
A= ) , (11.166a)
A2 AdA A
By 0 0 0
_ A 1By B, 0 0
B, = . . ) , (11.166b)
Ap_z...AlB(), Ap_z...AzBl, BP_Z, 0
AzZApfl...AzAlA(), (11.1660)
B, = [ Ap_1...A1By, Ap_1... ABy, ... B, ], (11.166d)
Qi =diag(Qo,...,Qp—2), Q:=0Q,_1, (11.166e)
Rl :diag(RQ,...,RP_Q), RZZRP_I. (11166f)

Step 2: Form A, ﬁ, Q, ﬁ, and S using (11.158).

Step 3: Find the solution P of the discrete-time algebraic Riccati equation

(11.159) using the algorithm of [7] implemented as dare or using the algo-

rithm described in (11.164) and (11.165).

is given by .
P = diag(Q,,P).

Step 4: The solution of the discrete-time algebraic Riccati equation (11.147)

(11.167)

Given Xk, the feedback control can be calculated by (11.146). Applying this
feedback control to (11.141) yields the next state X .
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11.5.3 Implementation and numerical simulation

In this section, some details of implementation, which will reduce some compu-
tation time comparing to the directly implementation described in the previous
section, is discussed. The test result of the proposed algorithm for the problems
discussed in 11.3.4 and 11.4.4 is reported. The comparison of the test results ob-
tained from the method discussed here and the ones obtained in 11.3.4 and 11.4.4
is performed.

11.5.3.1 Implementation consideration

The most expensive calculations in Algorithm 11.3 are the calculation of Q R s
and S in Step 2, and the calculation of R™! = R™! in Step 3. It is easy to check
(cf. [77]):

(1) direct calculation of Q requires
O2(p—1)*n*)+02(p—1)n*) +O(n*) flops,
(2) direct calculation of R requires
O@2p(p—1)’n*m) +O2p*(p — 1)nm*) + O(p*m?) flops,
(3) direct calculation of S requires
O2(p—1)*n*) +0(2(p — 1)n*) flops,
(4) directly calculation of R~! requires
O(p*m?) flops.

For extremely large p, i.e., very long period of the system, the majority of the
computation is the computation of R and R™".

1 _ 1_
Let Qs = Q;A; € R~ and Qp = Q; By € RIP=1mP™ We use Matlab
notation for sub-matrices. Since Q;, Q,, and R are positive diagonal matrices,
Q1, Sy, and R in (11.158) can be calculated more efficiently as follows:

fori=1:(p—1)n

Qu(ir) = Q (i,i)A (i,:);
end
Q=QlQ.

fori=1:n
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A —

end

fori=1:(p—1)n

Qs(i,) = Q} (i.i)B (i.2):
end
R = Q}Q;
fori=1:pm
R(i,i) = R(i,i) + R(i,i);
end
$=0QlQs
It is easy to check (cf. [77]) the flops for the following calculations:

(1) the calculation of Q requires
O((p—1)n) +O((p—1)n*) + O(2(p — 1)’n*) + O(n) flops,
(2) the calculation of R requires
O(p(p—1)nm) +O(2p*(p — 1)nm*) + O(pm) flops,
(3) the calculation of S requires
O(2(p—1)pn’m) flops,

(4) this does not reduce the computation of R

11.5.3.2  Simulation test for the problem in Section 11.3

The first simulation test problem is the spacecraft attitude control design using
only magnetic torques discussed in Section 11.3. The number of states of this
system is n = 6. The number of control inputs of this system is m = 3. The
controllability of this problem is established in Section 11.2. In this simulation
test, the same discrete-time linear periodic model as in Section 11.3 with the
same parameters, such as the spacecraft inertia matrix, orbital inclination, orbital
altitude, weight matrices Q and R, and the same initial conditions, is used.

Using p =100, p = 500, and p = 1000, all three algorithms discussed in this
chapter are used for this design and the CPU times for all three algorithms are
recorded. The result is presented in Table 11.1.

Clearly, the proposed Algorithm 11.3 is significantly cheaper than the algo-
rithms 11.1 and the algorithm proposed in [90].
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Samples per period | Algorithm 11.3 | Algorithm 11.1 | Algorithm [90]
100 0.0097 (s) 0.0757 (s) 0.2711 (s)
500 0.2528 (s) 1.6042 (s) 6.5435 (s)
1000 4.2821 (s) 6.3155 (s) 25.8996 (s)

Table 11.1: CPU time comparison for problem in [315]

11.5.3.3  Simulation test for the problem in Section 11.4

The second simulation test problem is a combined method for the spacecraft
attitude and desaturation control design using both reaction wheels and magnetic
torques discussed in Section 11.4. The number of states of this system is n = 9.
The number of control inputs of this system is m = 6. The controllability of
problem is guaranteed because three reaction wheels are assumed to be available.

Using the parameters provided in Section 11.4, for p =100, p =500, and p =
1000, the solutions for the corresponding algebraic Riccati equations is obtained
and the CPU times for all three algorithms are recorded. The result is presented
in Table 11.2.

Samples per period | Algorithm 11.3 | Algorithm 11.2 | Algorithm [90]
100 0.0284 (s) 0.1120 (s) 0.3807 (s)
500 3.6376 (s) 2.5629 (s) 9.0144 (s)
1000 38.4912 (s) 10.0629 (s) 36.0690 (s)

Table 11.2: CPU time comparison for problem in [313]

For this problem, m = 6 is twice as large as the previous problem, the algo-
rithm 11.3 is faster than the algorithm 11.2 and the algorithm developed in [90]
when the total number of samples in one period is moderate (p = 100 samples
per period), but when the total number of samples in one period increases (to
p = 500 or p = 1000 samples per period), the advantage of the proposed algo-
rithm will be lost because the computation of the inverse of R € R6000x6000 jg
O(p*m?) which is very expensive.

11.5.3.4 A nonperiodic implementation

One drawback of the above implementation is that the actuation is periodic. If
there exist disturbances, because the acutators use the periodic feedback law,
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the feedback law will not make a timely change until the next period. To have a
timely response to the disturbances, A more efficient implementation is discussed
by Midoes et al in [171].
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Attitude Maneuver and
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During its life span, spacecraft normally needs to change the attitude from one
orientation to another one to accommodate different mission requirements. One
example is orbital-raising described in [245]. In this Chapter, we discuss the
same problem but with a design based on reduced quaternion model.

The coordinate system of Orbview-2 satellite is provided in [245], which
is defined in Figure 12.1. The satellite is sent to the parking orbit about 300
kilometers (km) above the earth by the launch vehicle. The spacecraft thrust
control system is designed to transfer the satellite from the parking orbit to a sun-
synchronous orbit. The attitude of the satellite before orbit-raising is stabilized
in the nadir-pointing orientation as in Figure 12.1. To perform the orbit raising
task, the spacecraft needs to rotate 90° degree around y-axis so that the thrusters,
which are mounted on the anti-nadir face, are aligned parallel to the velocity
vector as described in Figure 12.2. This is a typical example of spacecraft attitude
maneuver.

217
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thrusters
7
1
.

= C P =, velocity
&

Figure 12.1: Coordinate definition.

12.1 Attitude maneuver

Attitude maneuver has been discussed in most popular textbooks, such as [280],
[232], and [281]. The controller design is normally very simple, and it can use ei-
ther Euler angle error, the direction cosine error matrix, Euler axis command, or
the quaternion error vector. Among these different methods, Euler angle method
and quaternion method are the most widely used because they have fewer param-
eters and these parameters are measured directly in all spacecraft. Sidi [232] has
shown, by numerical simulations, that the quaternion based maneuver control
law is clearly superior to the Euler angle based maneuver control law.

Let the current attitude quaternions be q = (qo,41,92,93) = (¢o,q) and the
desired (or target) attitude quaternion be p = (po, p1, P2, P3) = (po,p)- Then the
error quaternion is defined by ¥ = (ro,71,72,73) = (ro,r) which is given by

P=p '®4=p"®q=(po—Pp) (g0 +0q).

In view of (3.64), T can be written as

o Po P1 P2 pP3 q0
r _ | —P1 Po p3  —DP2 q1 . (12.1)
m —pP2 —P3 Do P1 q2
r3 —pP3 P2 —P1 Po q3

The obvious PD controller is therefore given by

u=—Kr—-Do, (12.2)
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|5°
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thrusters Q P» =z velocity
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¥

Earth

Figure 12.2: Coordinate definition.

where K and D are positive gain matrix. This control law can be verified in-
tuitively using the example of Orbview-2 satellite where to perform the orbit
raising task, the spacecraft needs to rotate 90° degree around y-axis so that
the thrusters are aligned parallel to the velocity vector (see Figures 12.1 and
12.2). Assume that the initial attitude is perfectly aligned with local vertical lo-
cal horizontal frame, i.e., @ = (q0,91,92,¢3) = (1,0,0,0). The target quaternion
is p = (po, p1,p2,p3) = (cos (%) ,0,sin (%) ,0) which require the spacecraft to
rotate around y-axis 90°. Substituting q and p into (12.1) yields

ro % 0 4 0 1 %

nl_| 0 2 0o -2 lof_| 0 12.3)
S Y R R
r3 0 % 0 % 0 0

Therefore, —r! = (0, %,0

axis. If the spacecraft is rotated 90° degree around y-axis, the attitude quaternion

N———

is a vector that a torque should be applied around y-

is given by q = (%,0, %,0). From (12.1), the error quaternion F is given by

ro % 0 % 0 @ 1

nl | 0 ¥ oo -2 0 _|o 124

nl | =2 o £ 9 V2|10 (124
2 2 2

r3 0 % 0 % 0 0
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Therefore, —r' = (0,0,0) requires no torque as the spacecraft has been reached
the required attitude.

12.2 Orbit-raising

The quaternion model for orbit raising depends on the spacecraft design. This
section uses OrbView-2 spacecraft [245] as an example to describe the modeling
process. Most materials in this section is directly from [311].

OrbView-2 has a momentum wheel with the angular momentum vector
aligned parallel to the orbit-normal (-y axis), the spacecraft attitude control is
performed by this wheel and three magnetic torque bars. The parking-orbit of
OrbView-2 is about 300 km above the Earth surface, and the working-orbit is
about 705 km. Orbit-raising is performed by four thrusters which are mounted
on the anti-nadir face of the spacecraft in each corner of a square with a side
length of 2d as shown in Figure 12.3.

Figure 12.3: Thrusters coordinate definition.

The thrusters point to +z direction (into the page) and are canted 5° degree
from z-axis to produce moments to maintain the spacecraft attitude during the
burns. they are mounted a distance / along —z axis from the spacecraft center
of mass (based on the coordinate system origin). To conduct Hohmann transfers
[232] to raise the orbit, the momentum wheel provides the torque to rotate the
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spacecraft £90° degrees to align the thrusters along with or anti-parallel to the
velocity vector (see Figure 12.2).

At this orientation, the thruster burns will raise the spacecraft orbit. Let 4, be
the angular momentum produced by the momentum wheel, § = [qo,q1,q2,q3]" =
[90,q"]T be the quaternion that represents the rotation of the spacecraft body
frame relative to the frame described by Figure 12.2 (with x-axis aligned with
anti-nadir direction) represented in the body frame, ® = [®,, 0y, o.]T be the an-
gular rate of the rotation represented in the body frame,

Jo 0 0
J=10 J 0 (12.5)
0 0 J,

be the diagonal inertia matrix of the spacecraft, m = [m,, m,, m;|T be the control
torques generated by the thrusters, h = [J,@,,J,@, + h,,,J,,]" be the inertial an-
gular momentum vector of the spacecraft, then the spacecraft dynamics equation
is given by (4.2)

h=Jo=-woxh+m=hxw+m, (12.6)
or equivalently
(7. 0 0 ay
0 J, O W,
| 0 0 J; ,
0 —J.o, Jyw,+h, W, my
= J. o, 0 —J, 0 o, |+ | m |.(12.7)
| — Loy —hy,  Je0 0 , m,

From Figure 12.3, the matrices of thruster force directions F and moment arms
R in the body frame are given as

—a —a a a

F= [fl,fz,f3,f4] = a —a —a a y (128)
1 1 1 1
and
—d —d d d
R= [I’],I‘z,l’3,r4} = —d d d —d s (129)
- -l -1 -
where a = 4 sin(5 x %) ~0.707 x 5 x (&) Newtons, columns 1, 2, 3, and 4

represent the thruster 1, 2, 3, and 4. Denote T1, 73,73, and T; the thruster levels
of thrusters 1,2, 3,4, and u = [T}, T>, T3, T4]", then the control torque m can be
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expressed as

T
I
m— [ l'1><f1,1'2><f2,l'3><f3,1'4><f4 ] T (12.10)
3
Ty
Combining (12.7) and (12.10) gives
L, Jyoyth,
d)x JO _JMJTA. . w.}x (O
. L) NN
@y = I 0 - @y
, _ 0)} j_hw JXJ% 0 | ,
T —
B L 0 0 ry X f] T]
Nl b N (12.11)
0o 0 L 3 X13 3
L J; ry X f4 i n

From [304], the vector part of the quaternion ¢ meets the following relation

where f = \/1—¢? — 4% — ¢}

2

S o—q
s f
—q2 41

q2
—q1
f

(0N

@y |,

(12.12)

@,

. The linearized form of (12.11) is given as

W, 0 0 /}—; W,
oN = 0 0 O @,
o, | -% 0 0 @,
T
GO E
- 0 J' o s ; (12.13)
o o gt || mxb I
- < rq X f4 N
The linearized form of (12.12) is given as
1
q= 513(0. (12.14)

Combining (12.13) and (12.14) gives the linearized quaternion based thruster
control system equation as follows

=

C o ] -0

0 % 00 07T o
@y 0 00 000O0]]|
. B -~ 0 0 0 0 0 o,
Q| 00 000||a
92 0 5 0 000 9

L 95 | L 0 0 3 00 0]L[ 9
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[J 0 0 ]
0 J;l 0 r; xf; T Ti
n o o J! r, x £ T
0 0 0 r; x f3 T;
0 0 0 ry X 4 n
0 0 0 |
= Ax+Bu, (12.15)
where
[0 0 % 00 0]
0O 0 0 0 0 0
A ~ 0 0 000
10 0 000
0 2 0 000
L 0 0 3 00 0.
and _ _
J;l 0 0
0 J;l 0 r; xf;
B — 0 0 Jz_l r; X )
0 0 0 I'3><f3
0 0 0 I'4><f4
0 0 0 |

For the convenience of computer control system design, following the same steps
performed in [245], the continuous system is converted to discrete form given by

X6(l’l+ 1) = CI)GXG(I’I) +F6><4u(l’l), (12.16)

where X6 = [y, ®y, ©;,q1,2,q3)T, Do = €A, Txa = f(;“ eAl=UBd T, and 1, is the
sample period.

In [245], it is shown that a PID control design is very successful for orbit-
raising. To incorporate the integral terms, the discrete integrators defined by iq =

T
lig1,iq2,igs]" = [f(; a. fy a2 fy q3} are added simply as

iq(n+1) =iq(n) +1,%q(n), (12.17)

where q(n) is the vector value of the quaternion at n-sampling time. Combining
(12.16) and (12.17) gives

o) = [y

- D 0653 Xq(n) Dexa
N { [03x3 I3x3] Izx3 } [ iq(n) }—i_{ 034 ]u(n).
(12.18)
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The thrust control design is to select control u(n) to maintain the attitude in the
orbit-raising operation. This can be represented as a LQR design which mini-
mizes the cost function

oo

J= [x"(n)Qx(n) +u" (n)Ru(n)]
=0

N[ —

n

under the constraints of (12.18). Using Matlab control toolbox [78], the discrete
state feedback control can directly obtained by function dare as

u(n) = —Kxg(n), (12.19)

where K is the 4 x 9 state feedback matrix.

12.3 Comparing quaternion and Euler angle designs

This section compares two different orbit-raising designs, the design based on
the reduced quaternion model established in the previous section and the de-
sign based on the Euler angle model given in [245]. Both designs use the stan-
dard LQR method. The same spacecraft parameters as reported in [245] are
used in both designs. In particular, the sampling interval is 4 second; the di-
agonal elements of the inertia matrix are J, = 189(kg-m?), J, = 159 (kg - m?),
J, = 114(kg - m?); the momentum wheel moment is —2.8(N - m - sec); the di-
agonal elements of the Q matrix are Q; = Q> = Q3 = 1/(2.5rad /sec)? and
Q4= Qs = Qs = 1/(9rad)?, Q7 = Qs = Qo = 1/(182%rad*sec?); the diagonal
elements of the R matrix are R; = R, = Ry = Ry = IN?. It is assumed further
that the same thrusters are installed and the same alignments are used as in Fig-
ure 12.3 where d = 0.248m and [ = 0.815m.

The LQR design based on Euler angle model has been successfully used for
OrbView-2 orbit-raising and the results have been reported in [245]. Using the
parameters listed above and the design model described in [245] and applying
dlgr command in Matlab toolbox [78] yields the feedback matrix

23.3459 12.0068 40.7442 —0.0473 0.4753 1.1156 0.0002 0.0023 0.0034
17.4922 —12.0068 —25.5628 1.0759 —0.4753 —0.2488 0.0035 —0.0023 —0.0004

—23.3459 12.0068 —40.7442 0.0473 0.4753 —1.1156 —0.0002 0.0023 —0.0034
K, =
—17.4922 —12.0068 25.5628 —1.0759 —0.4753 0.2488 —0.0035 —0.0023 0.0004

For the reduced quaternion model (12.18) with the same set of parameters
listed above, applying d1qr command in Matlab toolbox gives the feedback ma-
trix of the LQR design

—19.0183 9.6756 —30.6404 0.2488 0.6127 —1.3928 0.0003 0.0024 —0.0035
19.0183 9.6756 30.6404 —0.2488 0.6127 1.3928 —0.0003 0.0024 0.0035
14.1902 —9.6756 —17.8344 1.4606 —0.6127 —0.1312 0.0036 —0.0024 0.0000

—14.1902 —9.6756 17.8344 —1.4606 —0.6127 0.1312 —0.0036 —0.0024 —0.0000

Ky =

These feedback matrices (K, and K,) are applied to the orginal nonlinear
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system (12.11) and (12.12) in their discretized form as follows:

o (n+1)
@y(n+1)
o (n+1)
r J.o,(n Jywy(n)+h,
J7a)17(n) Jx( ) J‘Jf'i)‘( ) ()
= 1 o 1 7 wy(n)
Lo (n)thy S (n) 1 w.(n)
L T, A
[ 0 0
+ 4| 0 % 0 | [ rixfi,ryxfrsxfiryxfy | Kxo(n),
0 0 +

(12.20)

where K is either K, or K,. For Euler angle model, the nonlinear kinematics
equation of motion is given as follows [124]:

(]:) 1 sin(¢)tan(6) cos(¢)tan(0) o8
6 |=1]0 cos(¢) —sin(¢) o, (12.21)
yr 0 sin(¢)sec(0) cos(9)sec() o,

which has its discretized form as follows:

¢(n+1) ¢(n)

O(n+1) | —| O6(n)

y(n+1) (n)

1 sin(¢(n))tan(6(n)) cos(¢(n))tan(6(n)) . (n)
= [0 cos(o(n) = sin((n) o, (n)

0 sin(0(n))sec(8(n) cos(9(n))sec(8(n) | | @.(n)

(12.22)

For reduced quaternion model, the nonlinear kinematics equation of motion has
its discretized form as follows:

qi(n+1) q1(n)
@(n+1) | = | q(n)
q3(n+1) q3(n)

‘, \/1—611 q5(n) — g5(n) 0(n) — g3(n) @,(n) + g2(n) @, (n)

= 3 \/1—61 (n) — g3(n) — g3(n)@, (1) — g1 (n) @ (n)

—612( ) ( )+CI1( Yy (n) + /1 —qi(n) — g3(n) — g3 (n)w.(n)

It is worthwhile to note that (12.17) is used to propagate for the last 3 integral



226 hl Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proac.

states for the feedback control. For the Euler angle feedback control, the discrete
Euler angle integrators

. . . . s 2 » T
ie = [ie], ies, le3}T:[ (;‘(]), (;9, fél]/]

is given by
ie(n+ 1) = ie(n) + 1, [0(n), O (n), y(n)]"
to propagate the last 3 integral states.

In the simulation test, it is assumed that the initial quaternion rates are ze-
ros; the initial Euler angles are 2 degrees in roll, pitch, and yaw which is about
27 /180 radians; the initial Euler angle is converted to initial quaternion and used
as the initial feedback in quaternion model based design; the initial integral terms
for quaternion and for Euler angles are all set to zeros. At the end of every itera-
tion for quaternion based design simulation, the quaternion is converted back to
the Euler angles and saved so that the responses of the two different designs can
be compared using the same error measurement. The simulation results are pro-
vided in Figures 12.4-12.9. In these figures, the solid lines are the response of the
closed loop system of quaternion based design; the dashed lines are the response
of the closed loop system of Euler angle based design. Clearly, the system based
on quaternion model design has slightly better responses than the system based
on Euler angle model design in terms of widely used metrics such as percentage
of overshoot, settling time, etc [56].

n — — — Euler angle based design
quaternion based design

rad/second

-10
(0]

100 200 300 400 500 600
time (second)

Figure 12.4: Design comparison for quaternion rate ..
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T T

T T
— — — Euler angle based design
quaternion based design

rad/second

. . . . .
100 200 300 400 500 600
time (second)

-10
(0]

Figure 12.5: Design comparison for quaternion rate ®,.
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// quaternion based design
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Figure 12.6: Design comparison for quaternion rate ©;.
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Figure 12.7: Design comparison for quaternion ¢ .
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Figure 12.8: Design comparison for quaternion ¢».
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Figure 12.9: Design comparison for quaternion ¢s.
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Model predictive control (MPC) design [19, 167, 207, 3] has been a major re-
search area and many successful applications have been reported [207]. The main
idea of the model predictive control is to repeatedly solve a continuously updated
control problem based on the latest information and apply the control action to
the system based on the latest solution of the updated control problem. This re-
quires significantly more on-line computational effort than most other control
strategies. Therefore, model predictive control was not immediately adopted in
spacecraft attitude control system designs when on-board computational power
was limited. But as computers become more and more powerful, research of
model predictive control designs for spacecraft application becomes very active,
for example, Hegrenas et. al. in [89, 292] discussed model predictive control

231
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in different scenarios for spacecraft attitude control, Hartley et. al. in [86] con-
sidered model predictive control design for spacecraft rendezvous problem, Di
Cairano et. al. in [35] investigated spacecraft rendezvous and proximity maneu-
vering, and Morgan et.al. in [176] proposed model predictive control design for
swarms of spacecraft using sequential convex programming.

One of the most attractive and popular methods in model predictive control
is to repeatedly solve a Constrained Linear Quadratic Regulator (CLQR) design
problem because (a) the problem is relatively easy to solve on-line and (b) most
nonlinear systems may be appropriately simplified as a linear system. To ensure
that the model predictive control will be workable for the purpose of on-line ap-
plication, researchers have been working on efficient and effective algorithms
for the CLQR even though some algorithms were available as early as 1982 (see
[24]). Since the CLQR problem can be reduced to a quadratic programming (QP)
problem, most efficient algorithms up to the date are focused on the efficient so-
lutions of QP. For example, Rao et. al. in [210] proposed an interior-point al-
gorithms with desirable theoretical properties (polynomial complexity). Bempo-
rad et. al. in [20, 261] proposed a multi-parametric program method which was
aimed at reducing on-line computational burden and use off-line computation
as much as possible. Wang et. al. in [277] suggested some fast algorithm spe-
cially designed for on-line convex QP for the model predictive control. Though
these methods proposed innovative ideas to enhance on-line optimization effi-
ciency, there are rooms and needs to further improve these methods. For example,
the most efficient interior-point algorithm for general QP problems is infeasible
interior-point algorithms (finding a feasible starting point for general QP is ex-
pensive) which is a defect for MPC application, i.e., if early termination has to be
enforced because of the on-line application requirement, the solution may not be
feasible (because the intermediate iterates of infeasible interior-point algorithm
are very likely infeasible). The multi-parametric QP proposed in [20, 261] would
generate a look-up table growing exponentially with the horizon, state, and in-
put dimensions, as noted in [277]; therefore, multi-parametric QP can be used
for some very small problems (state dimensions is no more than 5). The convex
QP algorithm proposed in [277] also uses infeasible interior-point; therefore, its
intermediate iterates are likely infeasible. Moreover, like the method in [210],
the size of the QP problem obtained by [277] is big (for a system of n = 20,
m = 3, and a horizon N = 30, the corresponding QP has 450 variables and 1260
constraints).

In this chapter, constrained MPC design problem subject to actuators satu-
ration is considered. This problem is slightly simpler than the problems con-
sidered in [210, 20, 261, 277] but is still general enough for most real world
problems. Several significant improvements over the aforementioned methods
are proposed. First, the numbers of the variables and constraints of the corre-
sponding QP problem can be reduced significantly and all equality constraints
can be removed. This means that the corresponding QP problem is not only much
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smaller but also has a special structure, i.e., the problem is reduced to a convex
quadratic programming subject to box constraints, for which we can easily find
a feasible starting point. This idea was first proposed by this author in [309], and
then reinvented in [332]. The second improvement over [210, 277] is to solve
the reduced problem using a feasible interior-point algorithm which has several
advantages over infeasible interior-point algorithms: (a) in general, the feasible
interior-point algorithms have lower polynomial bound (more efficient) and (b)
all intermediate iterates are feasible; therefore, early termination will give a fea-
sible near-optimal solution. To further reduce the on-line computational cost, the
third improvement is to devise a new algorithm that improves the efficiency of
existing algorithms. By using the special structures of the problem, one can show
that the algorithm proposed in this section enhances the general QP algorithm
proposed in [308] in two aspects: (a) search in a larger neighborhood (the algo-
rithm is more efficient) and (b) use an explicit initial feasible interior point (the
algorithm does not need a phase-one process to find a feasible point). It is also
shown that this algorithm has the best polynomial complexity bound, a very de-
sirable theoretical property. By using the Matlab code to a spacecraft orbit-raising
MPC design example, it is then verified that the proposed constrained MPC de-
sign has superior performance in computation because of the above mentioned
improvements. The content of this chapter is based on [309, 319, 322].

Throughout this chapter, the notation e denotes a vector whose elements are
all ones, and the notation o denotes Hadamard product.

13.1 Some technical lemmas

Some technical lemmas, which are independent of the problem, are introduced
in this section. The first two simple lemmas are given in [308, 309].

Lemma 13.1
Let p >0, g >0, and r > 0 be some constants. If p+q < r, then pq < .

(N

Lemma 13.2
For a € [0, 5],

sin(ot) > sin?(a) = 1 — cos?(at) > 1 —cos(a).

The next Lemma is proved in [175].
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Lemma 13.3
Let u, v, and w be real vectors of same size satisfying u+v = w and ulv > 0. Then,

2 2 2 2 2 2
2(ull (1l < [hall?+ [1VIZ < JJul?+ V]2 +2u"v = [Ju+v]* = [lwl®. 13.1)

The following technical lemma is from [294, page 88].

Lemma 13.4
Let u and v be any vectors of the same dimension, and u'v > 0. Then

lwov]| <273 utv|>

The famous Cardano’s formula can be found in [203].

Lemma 13.5
Let p and q be any real numbers that are related to the following cubic algebra
equation

X px4+g=0.

SOROR:

then the cubic equation has one real root that is given by
A @
x\/2+(2+3+2 2) *\3)-

For quartic polynomials, the roots can be represented by several different
formulas, which are not discussed here but are referred to [229] and references
therein. The last technical lemma in this section is as follows.

If

Lemma 13.6
Let u and v be any n-dimensional vectors. Then

e e < o]
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Proof 13.1  Simple calculation gives

1, T 2
Huov—; (u V)eH

2
n n
1
= E “iVi——E Uivi
- n-
i=1 i=1

n

2
n n
- 22 2u,~v,~ . 1 .
= E uivi—T E u,v,—i—ﬁ E U;v;
i=1

i=1 i=1

Y @) _% (iuiv,)z-i-% (i:“ivl)Z

i=1 i=1
1< ’

= Z (ulzvlz) - <Zuivi> < |luov].
i=1 i=1

This finishes the proof. |

13.2 Constrained MPC and convex QP with box con-
straints

Constrained MPC design under consideration repeatedly solves the following
CLQR design problem. Let x € R" be the system state, u € R” be the control
vector, A € R™" and B € R"™" be system matrices. The discrete linear time-
invariant system is given by

Xg11 = AX, + Bu,, (13.2)
while fulfilling the constraints
—e<u;<e, (13.3)

where s =1¢,...,t+N—1.Let P € R, Q € R™", and R € R™*" be positive
definite matrices. The design is to optimize the following cost function

N—1
. 1 1
/= Uz,ur+11;1‘l'n;}1:+N—l EX[T-,—NPXHrN + E ; |:XtT+kQXt+k + utT""kRutJrk} (134)
under the system dynamics equality constraints (13.2) and control saturation in-
equality constraints (13.3). Given current state x,, this CLQR (or MPC) design
problem is a typical convex quadratic programming problems with Nr+ Nm vari-
ables X, 1, ,X;4n, Uy, -+ , U y_1. Though this problem can be directly solved
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as suggested by [24], it can be significantly reduced to an equivalent but much
smaller convex quadratic programming problem subject only to box constraints.
Denote

Af=  A--A  =AER™V
—
product of k A
with Ay = 1. Since
k—1
Xk = Axyor +Bu =Afx + ZAjBuH—k—j—l

j=0

k—1

= A+ ABu g, (13.5)
j=0

equation (13.4) can be rewritten as

1 N—1 ' N—1
T i A A B | P A ) A By
Jj=0 Jj=0
T
= k—1 k—1
+3 Ax, + Z ABuy—j1 | Q| Awx,+ Z ABu
k=1 Jj=0 Jj=0
=
+3 (u/ Ru, ) (13.6)
k=0

Notice that x, is a constant vector, A;, P, Q, and R are constant matrices, the
(13.6) can be reduced to

T

N-1 N—1
) 1
Jo = u,,uH,I,lPI,}lHN,,E ZAjBUtJrN—j—l P ZAjBU;JrN—jfl
Jj=0 j=0
N—1
+ (ANX[)TP ZAjBuH-N—j—l
=0
1N—l k—1 T k—1
+ 3 ZAjBuH-k—j—l Q ZAjBuH-k—j—l
k=1 \ j=0 =0
N—1 k—1
+ (Arx,)"Q ZAjBqufjfl
k=1 =0
1N—l
+ 5 (u;r+kRut+k) . (137)

=~
Il
=}
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Denote
k—1 w
ZAjBuH—k—j—l = [Ax—1B,A¢,B, - B]
j=0 ¢, ER7km) Wrtk—1
———
Vkeka
= 0w, k€ {1,2,...,N}, (13.8)

_ (sz(pk 0 (Nm) X (Nm) T (km) x (km)
Qx 0 0 |€ R . 0,Q¢,€R ;

ke{l,2,....N—1}, (13.9)
R 0
Ry= | : - 1| eRWmxm (13.10)
0 --- R
————
N diagonal matrices
and
Sk — [AZQ(I)]( 0}6Rr><(Nm), Aqu)kERrX(km)y
ke{l,2,....N—1}, (13.11)

where 0’s are zero matrices with appropriate dimensions. The CLQR (or MPC)
design is reduced further to

N—1 N—1
Jo = min %V,TV <¢,TVP¢N+ZQk+RN> vy + X! <A,TVP¢N+ZS,(> Vi
U1 U N — | =1 =1
s.t. —e<vy<e. (13.12)
Letn = Nm,
X = Vy, (13.13)
N—1
H= <¢1TVP¢N+ZQk+RN>, (13.14)
k=1
N—1
cf=x' (AIT\,P¢N+ZS,(>. (13.15)
k=1

The CLQR (or MPC) design problem can be written in a standard form of convex
quadratic problem with box constraints:

(OP) min 1x"Hx+c"x, subjectto —e<x<e, (13.16)
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where 0 < H € R"*" is a positive definite matrix, ¢ € R” is given, and x € R" is
the control vector to be optimized. This convex quadratic programming problem
has Nm variables and 2Nm box constraints, and its size is independent of the
system dimension r, a much smaller and simpler problem than the original one.
A quick comparison of the MPC problem sizes and reduced QP sizes using the
method of this section and methods mentioned in [277] (cf. [277, Table 1]) is
given in Table 1.

Table 13.1: Comparison of reduced QP sizes of the proposed method and other
methods

system | control | horizon QP size of this section QP size of [277] and other papers
state r | input m N # of variables | # of constraints | # of variables | # of constraints
4 2 20 40 80 100 320
10 3 30 90 180 360 1080
16 4 30 120 240 570 1680
30 8 30 240 480 1110 3180

The bigger the linear system is, the more advantage of the proposed method
will be. A bigger advantage of the proposed method is that the constraints in
(13.16) is very simple that admits an feasible initial interior point (see Section
13.6), and the proposed method allows users to use more efficient feasible (ini-
tial) interior-point algorithms rather than an infeasible (initial) interior-point al-
gorithm as used in [277]. Moreover, if a premature termination is enforced due
to the on-line computational requirement, the solution is feasible.

All the simplifications described in this section is off-line. But it greatly re-
duces the on-line problem size and simplifies the problem constraints. However,
it is not wise to use an interior-point algorithm designed for general problems for
this very special convex quadratic programming problem which has only box
constraints. In the remainder of this chapter, the structure of the box con-
straints will be fully investigated and a every efficient algorithm for the problem
(13.16) will be devised.

13.3 Central path of convex QP with box constraints

In view of the KKT conditions (see Appendix A or [185]), since H is positive
definite matrix, x is an optimal solution of (13.16) if and only if x, A, and ¥
satisfy

—A+y—Hx=c, (13.17a)
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—e<x<e, (13.17b)
(,7) >0, (13.17¢)
A,'(@,'—)C[):O, ')/[(6[+)C[):0, i:1,...,l’l. (1317d)

Denotey =e—x>0,z=e+x > 0. The KKT conditions can be rewritten as

Hx+c+A—-y=0, (13.18a)

X+y=e, X—Z=—e¢, (13.18b)
(v,2,4,7) >0, (13.18¢)

Ayi=0, 7zi=0, i=1,...,n. (13.184)

For the convex (QP) problem, the KKT conditions are also sufficient for x to
be a global optimal solution (see Appendix A). Denote the feasible set F as a
collection of all points that meet the constraints (13.18a), (13.18b), (13.18c)

F: {(X7Y7Z7A’7/}/> : HX+C+A _y: 07 (y7z7l7’}/) Z 07X+y = e,X—Z: _e}7

(13.19)
and the strictly feasible set F° as a collection of all points that meet the con-
straints (13.18a), (13.18b), and are strictly positive in (13.18c)

F={(x,y,z,A,7) : Hx+¢c+ A —7y=0,(y,z,A,y) >0, x+y=e,x—z= —e}.

(13.20)

Similar to the linear programming, the central path C € F° C F is defined as

a curve in finite dimensional space parameterized by a scalar 7 > 0 as follows.

For each interior point (x,y,z,A,y) € F° on the central path, there isa 7 > 0
such that

Hx+c+A—-7y=0, (13.21a)

X+y=e, X—z=—e¢, (13.21b)
(y,z,A,7) >0, (13.21¢)

Ayi=1, Yz=1, i=1,...n. (13.21d)

Therefore, the central path is an arc that is parameterized as a function of 7 and
is denoted as

C={(x(1),y(7),2z(7),A(7),y(7)) : T > 0}. (13.22)

As T — 0, the moving point (x(7),y(7),z(7),A(7),y(7)) on the central path
represented by (13.21) approaches the solution of (QP) represented by (13.16).
Throughout the rest of this chapter, the following assumption is made.

Assumption:

1. F°isnot empty.
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Assumption 1 implies the existence of a central path. This assumption is always
true for the CLQR problem. An explicit initial interior point will be provided
later in this chapter.

Let 1 > 0 >0, denote p = (y,z), ® = (A,7), and the duality measure

B ATy + 7z _p'o

= . 13.23
2n 2n ( )

A set of neighborhood of the central path is defined as
Na(0) ={(x,y,2,4,7) € F*: [po @ — pe|| < Bu} C F*. (13.24)

As the duality measure is reduced to zero, the neighborhood of A;(6) will be
a neighborhood of the central path that approaches the optimizer(s) of the QP
problem, therefore, all points inside N> () will approach the optimizer(s) of the
QP problem. For (x,y,z,A,7) € N2(6),since (1 —0)u < w;p; < (1+6)u, where
w; are either A; or ¥, and p; are either y; or z;, it must have

W;pi < max; @;p; <u< min; @;p; < COiPi.
1+6 1+6 1-6 1-6

(13.25)

13.4 An algorithm for convex QP with box constraints

The idea of arc-search proposed in this section is very simple. The algorithm
starts from a feasible point in NV>(0) close to the central path, constructs an arc
that passes through the point and approximates the central path, searches along
the arc to a new point in a larger area N,(20) that reduces the duality measure
p’® and meets (13.21a), (13.21b), and (13.21c). The process is repeated by find-
ing a better point close to the central path or on the central path in N>(6) that
simultaneously meets (13.21a), (13.21b), and (13.21c).

Following the idea used in [308], an ellipse £ [37] in an appropriate dimen-
sional space will be used to approximate the central path C described by (13.21),
where

a), (06))25 s(a) +bsin(or) +¢},
(13.26)

4 e R¥ and b € R are the axes of the ellipse, ¢ € R™ is the center of the
ellipse. Given a point (X,y,z,4,y) = ( (_qo),y(ao),z(ao),l(ao) (o)) € €
which is close to or on the central path, &, b, ¢ are functions of ¢, (x,1,7,y,z),
(x,¥,z,A,7), and (X,¥,%,A,7), where (X,¥,2,4,7) and (%,¥,% A, ) are defined
as
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HO 0 I —I X 0
I T 0 0 0 y 0
I 0 -I 0 0 =] 0 |, (13.27)
0 A 0 Y 0 A Aoy
0 0 I' 0 Z ¥ yoz
HOoO 0 I —I % 0
I T 0 0 0 y 0
I 0 -1 0 0 i|= 0 , (13.28)
0 A 0 Y O A —2Aoy
0 0 0 Z y —2jo1z

where A = diag(A), I = diag(y), Y = diag(y), and Z = diag(z). The first rows
of (13.27) and (13.28) are equivalent to

Hx=%—1, Hx=y—A1. (13.29)

The next 2 rows of (13.27) and (13.28) are equivalent to
X=-y, Xx=1, X=-§, X=i. (13.30)

The last 2 rows of (13.27) and (13.28) are equivalent to
po®@+pow=pow, (13.31)

pod+pow=—2poa, (13.32)

where o denotes the Hadamard product which will be used in the remainder of
this chapter.

It has been shown in [306, 308] that one can avoid the calculation of a, B, and
¢ in the expression of the ellipse. The following formulas are used instead.

Theorem 13.1

Let (x(a),y(o),z(e),A(@),y(e)) be an arc defined by (13.26) passing through
a point (X,y,z,A,Y) € &, and its first and second derivatives at (x,y,z,A,y) be
(X,¥,2,A,7) and (%,¥,%,X,¥) which are defined by (13.27) and (13.28). Then an
ellipse approximation of the central path is given by

x(a) =x—xsin(a) +%(1 — cos(@)), (13.33)
y(a) =y —ysin(a) +¥(1 —cos(a)), (13.34)
z(a) —z—zsm( )+i(1 —cos(a)), (13.35)
AMa)=A— lsm(a)—i—i(l —cos(a)), (13.36)

y(a) =y—¥sin(er) + ¥(1 — cos(a)). (13.37)
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|
Two compact representations for p(a) = (y(a),z(a)) and o(a) =
(A(a),y(ex)) are given below:
p(a) =p—psin(a) +p(1 —cos(ar)), (13.38)
o(a) = o — osin(a) + d(1 —cos(@)). (13.39)
The duality measure at point (x(ct),p(a), @()) is defined as:

2n 2n

; i f¥Y oz A Yy oz A ¥
Assuming (y,z,A,7y) > 0, one can easily see that if v Ay y o oy are

bounded (this will be shown to be true), and if o is small enough, then, y(a) > 0,
z(o) > 0, A(a) > 0, and y(or) > 0. It will also be shown that searching along
this ellipse will reduce the duality measure, i.e., g(a) < (.

Lemma 13.7

Let (x,y,z,A,Y) be a strictly feasible point of (QP), (x,y,z,i,y) and (X,y,i,i,j'/)
meet (13.27) and (13.28), (x(a),y(a),z(a),A(@),y(e)) be calculated using
(13.33), (13.34), (13.35), (13.36), and (13.37), then the following conditions hold.

x(a)+y(a)=e, x(ax)—z(ct)=—e, Hx(ot)+c+A(a)+y(e)=0.

Proof 13.2  Since (x,y,z,A,7) is a strictly feasible point, the result follows from
direct calculation by using (13.20), (13.27), (13.28), and Theorem 13.1. |

Lemma 13.8
Let (X,p, @) be defined by (13.27), (X,p, ®) be defined by (13.28), and H be positive
definite matrix. Then the following relations hold:

pro=x"(y—1)=x"Hx >0, (13.41)

the equality holds if and only if ||X|| = 0;
plo=x"(y—1)=x"Hx >0, (13.42)

the equality holds if and only if ||X|| = 0;
pro=x"(y—1)=x"(y—A) =p' & =x"Hx; (13.43)

—(x"Hx)(1 — cos(ax))? — (xTHX) sin’ ()
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< (&= A)+x" (7 A))sin(a) (1 - cos(a))
< (XTHX)(1 —cos(a))? 4 (xTH) sin*(ax); (13.44)
and
— (xTHx) sin? (o) — (XTH%) (1 — cos(a))?
< &(7=A)+xT(y—A))sin(a)(1 — cos(ax))
< (X"Hx)sin?(a) + (XTH%)(1 — cos(a))>. (13.45)

For a = %, (13.44) and (13.45) reduce to

— (X"Hx+X"Hx) < (X"HX+x"Hx) < X"Hx+ %" Hx. (13.46)

The proof of this lemma is given in the last section.

From Lemmas 13.8, 13.1, and 13.3, it can be shown that g = (%,%)

% = (%, 7—;), g = (%,f), and % = (%, %:) are all bounded as claimed in the
following two Lemmas.

Lemma 13.9 )
(13.27). Then,

B2l < 2 1347

Hp + ol —1-6’ (13.47)

. . 2

S EEGE 1348

Hp oll =\1-6) " (13.48)
.T. 1 9

0< P _*TY _sn (13.49)
u 1-6

The proof of this lemma is given in the last section.

Lemma 13.10 . )
Let (x,p,®) = (x,¥,2,1.,7) € No(8), (%,¥,2,1.,7) and (x,9,7,1.,7) meet equations
(13.27) and (13.28). Then
. .o 2
B3 < S 1350
Hp ol = a=ep (13.50)

HEHZHgHZS <284_F72522>27 (13.51)
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< < = &n® .
0s= =< oy 82, (13.52)
T - 3 T - 3
p @  (2n(1+0))2 3 p o)  (2n(1+0))?2 3
< = < = . .
‘ i ‘ il ‘ (e =0t (13

The proof of this lemma is given in the last section.
From the bounds established in Lemmas 13.8, 13.9, 13.10, and 13.2, the
lower bound and upper bound for p () can be obtained.

Lemma 13.11

Let (x,p,0) = (X,y,2,4,7) € N2(0), (X,¥,z,A,7) and (X,¥,%, A, ¥) meet equations
(13.27) and (13.28). Let x(@), y(&), z(at), A(a), and y(et) be defined by (13.33),
(13.34), (13.35), (13.36), and (13.37). Then,

w(1 = sin(a)) — zl—nxTHx (1~ cos(a))? +sin*(@))

suau::um—xm«u>+5%(f%v—i>—xW7—10<1—cmauf

_ 2_1’1 (XTO'/— A)+xT(y— )L)) sin(ot)(1 —cos(a))

<u(1—sin(a)) + %XTHX ((1 —cos(a))? + sinz(a)) : (13.54)

The proof of this lemma is given in the last section.

To keep all the iterates of the algorithm inside the strictly feasible set,
(p(a), () > 0 for all iterations is required. This is guaranteed when (o) > 0
holds. The following corollary states the condition for p(e) > 0 to hold.

Corollary 13.1
If L > 0, then for any fixed 6 € (0,1), there is an & > 0 depending on 0, such that
Sor any sin(a) <sin(@), u(or) > 0. In particular, if 6 = 0.19, sin(&) > 0.6158.

Proof 13.3  From Lemmas 13.8 and 13.2, it is easy to see that X' HX" = X" (7 —
A) =pT@ and ((1 — cos(a))? < sin*(a). Therefore, from Lemmas 13.11 and 13.9,
it must have

(o) >p (1 —sin(or) — ﬁpTc’o(sin“(a) —i—sinz(a)))

(1+0)

m (sin4(a) + sinz(a))> = ur(a).

zu@—mmm—
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Since u > 0, and () is a monotonic decreasing function in [0, 7] with (0) > 0

and r(%) < 0, there is a unique real solution sin(&) € (0,1) of r(c) = 0 such that
for all sin(a) < sin(@), r(a) >0, or u(or) > 0. It is easy to check that if 6 =0.19,

sin(@) = 0.6158 is the solution of r(¢t) = 0. |

Remark 13.1  Corollary 13.1 indicates that for any 6 € (0, 1), there is a positive &
such that for o < @, p(cr) > 0. Intuitively, to search in a wider region will generate
a longer step. Therefore, the larger the 0 is, the better. But to derive the convergence
result, O < 0.22 is imposed in Lemma 13.15 and 6 < 0.19 is imposed in Lemma
13.19.

To reduce the duality measure in an iteration, it must have (o) < u. For
linear programming, it is known [308] that u (o) < u for a € [0, &] with & = 7,
and the larger the ¢ in the interval is, the smaller the p(¢t) will be. This claim is
not true for the convex quadratic programming with box constraints and it needs
to be modified as follows.

Lemma 13.12

Let (x,p,0) = (X,y,2,A,7) € N2(0), (X,¥,z,A,7) and (X,¥,%, A, ¥) meet equations
(13.27) and (13.28). Let x(@), y(&), z(at), A(), and y(ct) be defined by (13.33),
(13.34), (13.35), (13.36), and (13.37). Then, there exists

zopiH oy
o= (13.55)

sin~!(g), i XZI:X >1

where

3 3
3| nu ny 2 1 3| np ny \2 1
8= XTHX+\/(XTHX) +<3) T\ XTHR \/(XTHx) +<3) ’

such that for every o € [0,0], u(a) < Q.

The proof of this lemma is given in the last section.

According to Theorem 13.1, Lemmas 13.7, 13.9, 13.10, and 13.12, if o is
small enough, then (p(o), ®(cr)) >0, and p(er) < U, i.e., the search along the
ellipse defined by Theorem 13.1 will generate a strictly feasible point with a
smaller duality measure. Since (p,®) > 0 holds in all iterations, reducing the
duality measure to zero means approaching the solution of the convex quadratic
programming. This can be achieved by applying a similar idea used in [174], i.e.,
starting with an iterate in N>(0), searching along the approximated central path
to reduce the duality measure and to keep the iterate in N, (26), and then making
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a correction to move the iterate back to A>(6). The following notations will be
used.
ap=—0u <0,

a;=0u>0,

.Ta) - T _l .TH.
azzzepz—n :29% :29% >0,

I
as = |ped+wop- o pTo+a"e| >0,

and

T ST pro

— N — 20—
pod—dop 2n(p D— 0 p)eHJr 6 >
T

(142’

Denote a quartic polynomial in terms of sin(¢) as follows:

Hx
2n

X

1
po(:)—d)op—z—(pT(:)—d)Tp)eH—i-ZG > 0.
n

g(a) = agsin*(a) +azsin® (&) + ay sin® (@) +a; sin(a) +ap =0.  (13.56)

Since g(o) is a monotonic increasing function of « € [0, %], ¢(0) = —6u <0
and q(§) = ax +az + a4 > 0 if X # 0, the polynomial has exactly one positive
root in [0, 7]. Moreover, since (13.56) is a quartic equation, all the solutions
are analytical and the computational cost is independent of the size of H and
negligible [203].

Lemma 13.13
Let (x,p,0) = (X,¥,2,A,0) € N>(0), (X,¥,2,A,®) and (X,¥,%,A,®) be calculated
Sfrom (13.27) and (13.28). Denote sin(@) the only positive real solution of (13.56) in
[0,1]. Assume sin(or) < min{sin(&),sin(&)}, ler (x(a),y(@),z(a),A (), y(a)) and
u(a) be updated as follows:
(x(ax),y(a),z(a), A (), ¥(ex))
= (x,5,z,1,7) — (X,¥,2,A,})sin(a) + (%,¥,% A, 7)(1 — cos(ct)),(13.57)

pla) = p(l—sin(a))
(66— 0)(1 — cos(@))” ~ ("6 + ") sin(a)(1 —cos(ar)) ).
(13.58)

+1
2n

Then (x(a), y(a), 2(e), (), 7(a0)) € N> (26).

The proof of this lemma is given in the last section.
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The lower bound of sin(&) is estimated in Corollary 13.1. To estimate the
lower bound of sin(&), the following lemma is needed.

Lemma 13.14
Let (x,p,0) € N2(0), (X,p,®) and (X,p,®) meet equations (13.27) and (13.28).

Then
(1+0)

oo < =0 1359
oo < 2 (1360

The proof of this lemma is given in the last section.

Lemma 13.15
Let 6 < 0.22. Then sin(é) > %

The proof of this lemma is given in the last section.

Corollary 13.1, Lemmas 13.13, and 13.15 prove the feasibility of searching
optimizer along the ellipse. To move the iterate back to N>(6), one can use the
direction (Ax, Ay, Az, AL, Ay) defined by

H 0 0 I —I Ax 0
I I 0 0 0 Ay 0
I 0 -1 0 0 Az | = 0
0 Ale) 0 Y(a) O AL L(a)e—A(a)oy()
0 0 T(a) 0 Za) Ay u(o)e—y(ar)oz()
(13.63)
and update (x**!, p¥*1, @**1) and pu**! by
(1L 0 = (x(a),p(@), 0(@)) + (AX, Ap, Aw), (13.64)
k1T k41
1 P w
== 13.
U 5 (13.65)

where Ap = (Ay,Az) and Aw = (AA,Ay). Denote P(a) = [ Y(OO‘) Z(OOC) }
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A 0
.Q(OC):|: (005) I'(a)

(13.63) can be rewritten as

], and D = P%(Oc)Q_%(oc). Then, the last 2 rows of

PA® + QAp = pi(at)e — P(a)Q(at)e. (13.66)

Now, it is ready to show that the correction step brings the iterate from N, (26)
back to N(6).

Lemma 13.16

Let (x(a),p(a),0(a)) € N2(260) and (Ax,Ap,A®) be defined as in (13.63). Let
(xk+1 p*tl @ft ) be updated by using (13.64). Then, for 8 < 0.29 and sin(a) <
sin(@), (x¥1, pF 1 0* 1) € N5 (6).

The proof of this lemma is given in the last section.

The next step is to show that the combined step (searching along the arc
in NV>(26) and moving back to N>(0)) will reduce the duality measure of the
iterate, i.e., u**! < uk, if some appropriate 8 and « are selected. The following
two Lemmas are introduced for this purpose.

Lemma 13.17
Let (x(a),p(@),o(a)) € N2(20) and (Ax,Ap,Aw) be defined as in (13.63). Then

8

ApTA® _ 6%(1+20)
< < =— .
2n ~ n(1 —26)2“(06) n w(a)

0<

(13.67)

The proof of this lemma is given in the last section.

Lemma 13.18
Let (x(a),p(a),0(a)) € N2(260) and (Ax,Ap,A®) be defined as in (13.63). Let
(xk+1 p*+ 1l @f+ 1) be defined as in (13.64). Then

k1T k1 2

Proof 13.4  Using the fact that p(t)TA® + (&) TAp = 0 established in (13.114)
in the proof of Lemma 13.16, and Lemma 13.17, it is straightforward to obtain

1
+—ApTAw
2n
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(p(c) +4p)T (0(at) + Aw) k!

2n
6%(1+20)
< _— . .
< wpla)+ n(1—29)2u(a) (13.68)
This proves the lemma. |

For linear programming, it is known [174, 308] that u**! = (). This claim
is not always true for the convex quadratic programming as is pointed out in
Lemma 13.18. Therefore, some extra work is needed to make sure that the u*
will be reduced in every iteration.

Lemma 13.19
For 6 <0.19, if
sin(ot) = %, (13.69)
then u**1 < u*. Moreover, for sin(a) = % = 0'—\/1;?,
0.0185
k< pk (1— 7 ) (13.70)

The proof of this lemma is given in the last section.

Remark 13.2  As one has seen in this section that starting with (x°,p°, @), the
interior-point algorithm proceeds with finding (x(a),p(a),0(a)) € M>(26) and
(xKH1 pkl @f 1y € N5 (0) such that p**! < pk. In view of the proofs of Lem-
mas 13.13, 13.16, and 13.19, the positivity conditions of (x(a),p(a),®(c)) >0
and (x¥*1 pF1 @f+1) > 0 relies on (o) > 0 which, according to Corollary 13.1,
is achievable for any 6 and is given by a bound in terms of &. The proximity con-
dition for (x(a@),p(a),®(c)) relies on the real positive root of g(sin(ct)) = 0, de-
noted by sin(&), which is conservatively estimated in Lemma 13.15 under the con-
dition that @ < 0.22; the proximity condition for (x¥*!, p**1 @**1) is established in
Lemma 13.16 under the condition that 6 < 0.29. Finally, duality measure reduction
w1 < uk is established in Lemma 13.19 under the condition that & < 0.19. For all
these results to hold, it just needs to take the smallest bound 6 = 0.19.

Summarizing all the results in this section leads to the following theorem.

Theorem 13.2
Let 6 = 0.19 and (x*,p*,0%) € N3(0). Then, (x
.01

(a),p(a),0(a)) € N2(20);
(X1 L F ) € N5 (6); and k! < pk (1 ~0.0185

o).




250 hl Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proac.

Proof 13.5 From Corollary 13.1 and Lemma 13.15, one can select sin(a) <
min{sin(&),sin(&)}. Therefore, Lemma 13.13 holds, i.e., (x(a),p(a),0(a)) €
N,(20). Since sin(o) < sin(&) and (x(a),p(o), ®(e)) € N>(26), Lemma 13.16

states (x*T1 p*t1 @kt1) € N5 (0). For = 0.19 and sin(a) = %, Lemma 13.19

states <+ < pk (1 - &\/155) . This finishes the proof. |

Remark 13.3 It is worthwhile to point out that 6 = 0.19 for the box constrained
quadratic optimization problem is larger than the 6 = 0.148 for linearly constrained
quadratic optimization problem. This makes the searching neighborhood larger and
the following algorithm more efficient than the algorithm in [308]. |

The proposed method can be presented as the following algorithm.

Algorithm 13.1

(Arc-search path-following)

Data: H>0,¢,n, 6 =0.19, € > 0.

Initial point (x°,p°, @°) € N>(8), and u° =
for iterationk =1,2,. ..

T
p() 0)0

2n

Step 1: Solve the linear systems of equations (13.27) and (13.28) to get

Step 2: Let sin(a) = %. Update (x(o),p(a),o(a)) and w(e) by (13.57)
and (13.58).

Step 3: Solve (13.63) to get (AX,Ap,A®), update (x**! p**1 @**1) and
wk by using (13.64) and (13.65).

Step 4: Set k+ 1 — k. Go back to Step 1.
end (for)

13.5 Convergence analysis

The first result in this section extends a result of linear programming (c.f. [294])
to convex quadratic programming subject to box constraints.

Lemma 13.20
Suppose F° # (). Then for each K > 0, the set

{(x,p,0)| (x,p,0) €EF, p'o<K}
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is bounded.

Proof 13.6  The proof is similar to the proof in [294]. It is given here for complete-
ness. First, x is bounded because —e < x <e. Since x+y=-eand —e <x <e, itis
easytosee 0 <y=e—x<2e. Sincex—z= —e,itiseasytosee 0 <z=x+e < 2e.
Therefore, y and z are also bounded. Let (X,¥,Z, A, ¥) be any fixed point in F°, and
(x,¥,2,A,7) be any point in F with y'A +zTy < K. Using the definition of 7 and
F yields

Hx-x)+(A—A1)—(y—7y) =0.

Therefore
®—x)"HE-x)+ (x-x)"(A-1) - (®-x)"(7-7) =0,

or equivalently

This gives
(x+e)—(x+e)) (7=~ (k—e)— (x—e)) (A1) >0.
Substituting x —e = —y and x 4 e = z yields
Z-2)"(7-7)+F-y) (A-1)>0.
This leads to
2y+2y -2 Y-y +y Ay Ay A-§A 20,

or in a compact form
po+po—po—piow>0.
Sine (p, ®) > 0 is fixed, let
E= I}ﬁn min{ p;, ®;},
i=1,--.n

then, using pTa) <K,

P'o+K>Eel(p+w) > max max{Ep;Ear},
i=1,---.,n
ie.,forie{l,---,n},
0<pi<

This proves the lemma. |
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The following theorem is a direct result of Lemmas 13.20, 13.7, Theorem
13.2, KKT conditions, Theorem A.2 in [294].

Theorem 13.3

Suppose that Assumption 1 holds, then the sequence generated by Algorithm 13.1
converges to a set of accumulation points, and all these accumulation points are
global optimal solutions of the convex quadratic programming subject to box con-
straints.

Let (x*,p*,0*) be any solution of (13.17), following the notation of [23],
denote index sets B, S, and 7 as

B={je{l,....2n} | p’ #0}. (13.71)
S={je{l,....2n} | @] #0}. (13.72)
T={je{l,....2n} | pi = 0] = 0}. (13.73)

According to Goldman-Tucker theorem [76], for the linear programming, BN
S=0=7T and BUS = {l1,...,2n}. A solution with this property is called
strictly complementary (see Appendix A). This property has been used in many
papers to prove the locally super-linear convergence of interior-point algorithms
in linear programming. However, it is pointed out in [82] that this partition does
not hold for general quadratic programming problems. But a convex quadratic
programming subject to box constraints has strictly complementary solution(s),
an interior-point algorithm will generate a sequence to approach strict comple-
mentary solution(s). As a matter of fact, from Lemma 13.20, the result of [294,
Lemma 5.13] can be extended to the case of convex quadratic programming sub-
ject to box constraints, and the following lemma, which is independent of any
algorithm, holds.

Lemma 13.21

Let u° >0, and p € (0,1). Assume that the convex QP (13.16) has strictly comple-
mentary solution(s). Then for all points (x,p, ®) with (X,p,®) € F°, p;w; > pU, and
u< [.LO, there are constants M, Cy, and Cy such that

[(p, )| <M, (13.74)
0<pi<u/C (ie8S), 0<w<u/C (i€B). (13.75)
w>Cp (i€S), pi>Cp (i€B). (13.76)

Proof 13.7  The proof mimics the one in [294, Lemma 5.13]. It is presented here
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for completeness. The first result (13.74) follows immediately from Lemma 13.20
by setting K = 2nu”. Let (x*,p*, ®*) be any strictly complementary solution. Since
(x*,p*,0*) and (x,p, ®) are both feasible, it must have

y—y)=—(x—x)=—(z-2"), HExE-x)+A-17")—(y—7")=0.
Therefore,
(y—y*)T(l - A"+ (z—z*)T(y— ) = (x—x*)TH(x—x*) > 0. (13.77)

Since (x*,y*,z*,1",y*) = (x*,p*, 0*) is strictly complementary solution, it must
have T =0, p; =0 fori €S, and ®; = 0 fori € B. Since pT 0 = 2np, (p*)Tw* =0,
from (13.77), it must have
pro=yA+z"y+((y)'A" +(z")Ty)
>y +2yr + ()2 +(2°)y) =pT o + 0'p*
— 2nu>plo*+o'p* =Y cspi0 + Y cppi o (13.78)

Since each term in the summations is positive and bounded above by 2np, it must
have w > 0 for any i € S; therefore,

2nu

0<pi <

Denote Qp = {(p*, 0*)|w > 0} and Qp = {(p*, ®*)|p} > 0}, it must have

2n
O<p<—H
sup(p*’wﬂegl) wl-
This leads to
2nu
max p; < —; =
€S MiNeS SUP (p+ p*)eQy ;
Similarly,
2nu
max @; < —; =
i€B Min;e 3 SUP(p+ o) cqp Pi
Combining these two inequalities gives
max{max p;, max w;
{ieS PioTER i}
- 2nu
~  min{min;cs SUP(p+ w*)cqp @ s MinieB SUP(p* ) eQp pit
u
- = 13.79
c ( )

This proves (13.75). Finally, since p;®w; > pu, we have, forany i € S,

>p—u>p—'u:C2p.

w; = =
pi — u/Ci
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Similarly, for any i € B,

Lemma 13.21 leads to the following

Theorem 13.4

Let (x* p*, %) € N>(0) be generated by Algorithms 13.1. Assume that the convex
QP with box constraints has strictly complementary solution(s). Then every limit
point of the sequence is a strictly complementary solution of the convex quadratic
programming with box constraints, i.e.,

o >Cp (i€S8), pi>Cp (ieBb). (13.80)

Proof 13.8 From Lemma 13.21, (pk7 ok ) is bounded; therefore there is at least one
limit point (p*,®*). Since (p¥, ) is in the neighborhood of the central path, i.e.,
piof > put = (1-36)u*,

wf >Cop (i€8), pi=GCp (i€B),
every limit point will meet (13.80) due to the fact that C,p is a constant. |

It is now ready to show that the complexity bound of Algorithm 13.1 is
O(y/nlog(1/€)). The following theorem from [294] is needed for this purpose.

Theorem 13.5
Let € € (0,1) be given. Suppose that an algorithm for solving (13.17) generates a
sequence of iterations that satisfies

pk < <1—n%) uk k=0,1,2,..., (13.81)

for some positive constants § and x. Suppose that the starting point (x°,p°, @°)
satisfies u° < 1/e. Then there exists an index K with
K = 0O(n*log(1/¢€))

such that
,ukgs for Vk > K.

Combining Lemma 13.19 and Theorems 13.5 gives
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Theorem 13.6
The complexity of Algorithm 13.1 is bounded by O(/nlog(1/¢)).

13.6 Implementation issues

Algorithm 13.1 is presented in a form that is convenient for the convergence
analysis. Some implementation details that make the algorithm more efficient
are discussed in this section.

13.6.1 Termination criterion

Algorithm 13.1 needs a termination criterion in real implementation. One can
use

pt<e, (13.82a)

ey || = [Hx* + 2" — ¥ +¢f| <&, (13.82b)
rey|| = X+  —e| <&, (13.82¢)

ez = [Ix* — 2" +e| <e, (13.82d)

x| = |P*Q e — el < e, (13.82¢)

(p*, @) > 0. (13.82)

An alternate criterion is similar to the one used in 1inprog [333]

k
OO 0 e A 1 % ce (1383)

2n max{l,|lc|[|} = max{l,|x"Hxk+cTxk||} —

13.6.2 Initial (x°,y°,2°,1°, /") € N>(6)

For feasible interior-point algorithms, an important prerequisite is to start with a
feasible interior point. While finding an initial feasible point may not be a simple
and trivial task for even linear programming with equality constraints [294], for
quadratic programming subject to box constraints, finding the initial point is not
an issue. As a matter of fact, the following initial point (x°,y°,2°,A%,%") is an

interior point, moreover (x,y°,2°,1°, ) € N5(6).

xX'=0, y'=2"=e>0, (13.84a)
/ll-0:4(1—|—||c||2)—% >0, (13.84b)

7 =4(1+]je|?)+5 > 0. (13.84c)
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It is easy to see that this selected point meets (13.20). Since

. S (R ) L (8(1+lel?) 4

2n 2n
for 6 = 0.19, it must have

(1+le)l?), (13.85)

N N o P N e
i=1 i=1

2
_ ||(12|| S 1692(1 + ||C||2)2 _ 02(“0)2'

This shows that (x°,y%,2°,1°,1°) € N5(6).

13.6.3 Step size

Directly using sin(a) = \% in Algorithm 13.1 provides an effective formula to

prove the polynomiality. However, this choice of sin(¢) is too conservative in
practice because this search step in N>(26) is too small and the speed of duality
measure reduction is slow. A better choice of sin(¢t) should have a larger step
in every iteration so that the polynomiality is reserved and fast convergence is
achieved. In view of Remark 13.2, conditions that restrict step size are positivity
conditions, proximity conditions, and duality reduction condition. This section
examines how to enlarge the step size under these restrictions.

First, from (13.108) and (13.117), u(eor) > 0 is required for positivity condi-
tions (p(a), w(a)) > 0 and (p*™, @**!) > 0 to hold. Since sin(&) estimated in
Corollary 13.1 is conservative, a better selection of & is directly from (13.54),
Lemmas 13.2 and 13.8:

pa) > u(l—sin(oc))—z—lnxTHX((l—cos(oc))2+sin2(oc))

> u(l—sin(a)) — 2—1’1(me) (sin4(a) + sinz(a))
= f(sin(ar)) = o, (13.86)

where ¢ > 0 is a small number, and f(sin()) is a monotonic decreasing function

of sin(a) with f(sin(0)) = u and f(sin(F)) < 0. Therefore, equation (13.86) has

a unique positive real solution for o € [0, 7]. Since (13.86) is a quartic function

of sin(a), the cost of finding the smallest positive solution is negligible [203].
Second, in view of (13.116), the proximity condition for

(Xk+1,yk+1,zk+1,lk+l,)/‘H) ENZ(B)

holds for 8 < 0.19 without further restriction. The proximity condition (13.107)
is met for sin(cr) € [0,sin(¢)], where sin(&) is the smallest positive solution



Attitude MPC Control W 257

of (13.56) and it is estimated very conservatively in Lemma 13.15. An efficient
implementation should use sin(@), the smallest positive solution of (13.56). Ac-
tually, there exist a & which is normally larger than & such that the proximity
condition (13.107) is met for sin(@) € [0,sin(¢&)]. Let

by=—-0u <0,
by = 01> 0,
I 0
bs = |Jpo o+ wop—5-(BTo+ o Ble|+ = (BTo+pTw).,

b4:’poa)—wop—ﬂ(pTa)—a)Tp)eH—;(pTa)—pTco),

and
p(0) :=by(1 —cos(a))? +bysin(a) (1 —cos(ax)) + by sin(a) +by.  (13.87)

Applying the second inequality of (13.45) to 2 (pT@+pTd)sin(a)(1 —
cos()), one can easily show that

p(a) <q(a),

where g(o) is defined in (13.56). Therefore, the smallest positive solution ¢ of
p(a) is larger than the smallest positive solution & of g(c). Hence, the goal is to
show that for sin(a) € [0,sin(¢)], the proximity condition (13.107) holds. Since
for sin(a) € [0,sin(¢&)], p(a) <0, it must have

|

1
pod—dop— (5"~ 6"ple| (1 - cos(@)?
n

1
pod+dop—o-(pTo+ c'oTp)e‘ sin(a)(1 — cos(at))
n

< (20 (% ([’iTc’i)—pT(b) (1 —cos((x))z—% (pTa)+pTw) sin(a)(1 —cos(a)))
ou(l —sin(a)). (13.88)

Substituting this inequality into (13.106) gives
[p(@)ow(@) - u(@e|
< 26| u(1 —sin(a)) + 5 (xT(y—x)—xT(y—A)) (1 - cos(a))?

% (X7 (7= A) +57(7— 1)) sin(x) (1 — cos(@)) | = 20 (@)
(13.89)
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This is the proximity condition for (x(a),y(@),z(a),A(a), y(a)). Denote by =
bo, by = by,

5. [ by ifb3>0, g { bs ifby>0,
37 0 ifby <O, 7Y 0 ifbs<O,

and
pa) := by(1—cos(a))? + bysin(a)(1 —cos(ax)) + by sin(a) +by.  (13.90)

Since p(a) > p(a), the smallest positive solution & of p(c) is smaller than
smallest positive solution & of p(a). To estimate the smallest solution of ¢, by
noticing that p( @) is a monotonic increasing function of & and p(0) = —6u <0,
one can simply use the bisection method. The computational cost is independent
of the problem size n and is negligible. Since both estimated step sizes & and
& guarantee the proximity condition for (x(@),y(o),z(a),A(a),y(e)) to hold,
one can select & = max{¢, &} > & which guarantees the polynomiality claim to
hold.
Third, from (C.76a) and Lemmas 13.11, 13.8, and 13.2, it must have

o 6%(1+26) 0%(1+26)\ .
<t e - (1 e

2 LT
+ (1 + :(51—229?2)> gnz) (sin*(a) +sin4(a))] . (13.91)

For uf*! < p* to hold, one needs

6%(1+26) <1+ 92(1+29)> sin(a)

n(1-26)> n(l1—26)2
2 T
+ <1 + 2(51_—229?2)> gnz) (sin*(a) +sin*(a)) <0.

For the sake of convenience in convergence analysis, a conservative estimate

is used in Lemma 13.19. For efficient implementation, the following solution
2 Y

should be adopted. Denote u = g(flje‘jg >0,v="52>0,z=sin(a) € [0,1],

2np
and

F(z) = (1+upvz* + (1 +u)pvz® — (14+u)z+u.

Forze[0,1]andv <1, F/(z) = (1+u)(4vz>+2vz— 1) < 0; therefore, the upper
bound of the duality measure is a monotonic decreasing function of sin(ct) for
a € [0,7]. The larger « is, the smaller the upper bound of the duality measure
will be. For v > %, to minimize the upper bound of the duality measure, one can
find the solution of F’(z) = 0. It is easy to check from discriminator [203] that the
cubic polynomial F’(z) has only one real solution which is given by (see Lemma
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13.5)

2 3 2 3
. e 3| nu nu 1 s|ong nu l
sin(&) = 4pTa‘>+\/(4pT(b> +<6> + 56 \/(415%) —|—(6> .

Since F”(sin(&)) = (1 +u)(12vsin*(&) +2v) > 0 at sin(¢&) € [0, 1), the upper
bound of the duality measure is minimized. Therefore, one can define

[SIE

=

’ 2nu

(o8
|

sin”! (J o+ Gata) + (0 + () - (4;#@)2+(é)3> L rER >4
(13.92)
It is worthwhile to note that for a < &, F'(sin(et)) < 0, i.e., F(sin(ax)) is a
monotonic decreasing function of & € [0, ¢&].
The step size selection process is therefore a simple algorithm as follows.

Algorithm 13.2

(Step Size Selection)

Data: ¢ > 0.

Step 1: Find the positive real solution of (13.86) to get sin(@).

Step 2: Find the smallest positive real solution of (13.90) to get sin(&), the smallest
positive real solution of (13.56) to get sin(&), and set sin(¢t) = max{sin(&),sin(¢&)}.
Step 3: Calculate & given by (13.92).

Step 4: The step size is obtained as sin(a) = min{sin(&), sin(¢),sin(¢)}.

13.6.4 The practical implementation

Therefore, Algorithm 13.1 can be implemented as follows:

Algorithm 13.3

(Arc-search path-following)

Data: H>0,¢,n, 6 =0.19, € >0 > 0.

Step 0: Find initial point (x°,p°, @°) € N>(0) using (13.84), x using (13.83), and
10 using (13.85).

while k¥ > €

Step 1: Compute (X,p,®) and (X,p, @) using (13.27) and (13.28).

Step 2: Select sin(a) using Algorithm 13.2. Update (x(a),p(a), o(o)) and
(o) using (13.57) and (13.58).
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Step 3: Compute (AX,Ap,A®) using (13.63), update (xX**1, p*1, 1) and
uk using (13.64) and (13.65).

Step 4: Computer K using (13.83).
Step 5: Set k+ 1 — k. Go back to Step 1.

end (while)

Remark 13.4 The condition 4 > o guarantees that the equation (13.86) has a
positive solution before termination criterion is met.

13.7 A design example

In this section, OrbView-2 spacecraft orbit-raising design example discussed
in Chapter 12 is used to demonstrate the effectiveness and efficiency of the
proposed algorithm. Let w = (w,,w,,w;) be the spacecraft body rate with re-
spect to the reference frame expressed in the body frame, q = (q0,91,92,93)
be the quaternion of the spacecraft attitude with respect to the reference frame
represented in the body frame and q = (q1,¢2,¢3) be the reduced quaternion,
J = diag(J,,Jy,J;) be the spacecraft inertia matrix, and h,, be the angular mo-
mentum produced by a momentum wheel. Orbit-raising is performed by 4 fixed
thrusters (1 Newton) with on/off switches which are mounted on the anti-nadir
face of the spacecraft in each corner of a square with a side length of 24 meter.
The thrusters point to +z direction and canted 5 degree from z-axis. (more details
were provided in Chapter 12). The matrices of the thruster force direction F and
moment arms R in the body frame are given as

—a —a a a

F= [f],fz,f3,f4} = a —a —a a

1 1 I 1

—-d —d d d
R,=[r,rp,r3,14)=| =d d d —d
- -t -t

Let X = (wy, Wy, W;,q1,¢2,43) the states of the attitude and u = (7;,7,73,T4)
be the control variable with 77,75, T5,T; the thrust level of the four thrusters.
The linear time-invariant system under consideration is represented in a reduced
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quaternion model (see Chapter 12).

=

0 0 7 0 0 O
0 0 0O 0 0 O
b0 0 000
X = z X
05 0 0O 0 0 O
0O 05 0 0 0 O
L 0 05 0 0 0 |
- 1 -
ZO 0 ;
0 % 0 r; xf T
n 0 0 ji r xf T
0 0 0 r; X f3 T3
0 0O O ry X f4 T4
L 0 0 0 |
= Ax+Bu, (13.93)
with the control constraints
—e<u= (N1, 5T <e. (13.94)

The problem is converted to discrete model using Matlab function c2d with sam-
pling time 1 second. The design is to minimize

N—1
1 1
J= min —xiPxy+ 3 > [} Qxi+u{Ruy, | (13.95)

uuy ey 2
k=0

where the horizon number N = 30, the matrices P, Q, and R are given by

1

AL 0
— 0= 235
P=Q { 0 100001

} , R=1I.

Other spacecraft parameters (d = 0.248m, ¢ = 0.815m, I, = 189kg.m2, I, =
159kg.m?, and I. = 114kg.m?, and h,, = —2.8N.m.s) are the same as the ones of
Chapter 12 and are taken from [245]. The algorithm is implemented in Matlab.
In our implementation of Algorithm 13.3, £ = 107° and o = 1077 are selected.
Since Matlab is an interpreted language (meaning that in the execution, every
line has to be translated into machine language before the computer executes this
line), Matlab code is normally magnitudes slower than compiled languages such
as C, C++, and Fortran. But it turns out that even this Matlab code is very fast. In
0.88 second, after 20 iterations, the algorithm converges (any intermediate result
can be used in real time because they are all feasible). Using the optimal control
inputs, we can calculate the state space response from (13.93). The control inputs
and state space response are displayed in Figures 13.1, 13.2, and 13.3.
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Optimal thrust control
T T

thruster—1
— — — thruster—2|q
thruster—3
thruster—4|-

-0.8F I 4

Figure 13.1: Optimal control with saturation constraint.

13.8 Proofs of technical lemmas

Proof of Lemma 13.8:
From (13.30), we have

K(y-A)=i'y+y'A=p'o,
£(y-A)=2"y+y' A =p'a,
(y-1)=p'o,
and )
K (y-2) =p' 0.

Pre-multiplying X* and X" to (13.29) gives
x"(y— 1) = x"Hx,
£"(y— 1) =x"HX,
K'(7—-A)=x"Hx =x"Hx = x"(y— 1).

Equations (13.41) and (13.42) follow from the first two equations and the fact that
H is positive definite. The last equation is equivalent to (13.43). Using (13.41),
(13.42), and (13.43) gives

(%(1 —cos(a)) + %sin(a)) "H(x(1 — cos(a)) + xsin(t))
(x"Hx)(1 — cos(a))* +2(xTHx) sin( o) (1 — cos(x)) 4+ (XTHX) sin* ()
(x"Hx)(1 — cos(a))? + (X"HX) sin’ ()
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s x 1072 spacecraft body rate response
T T
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- = - w2
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rad per second
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time in second

Figure 13.2: spacecraft body rate response.

+ &(7=A)+x"(y—2))sin(o)(1 —cos(a)) >0,
which is the first inequality of (13.44). Using (13.41), (13.42), and (13.43) also
gives
(x(1 —cos(a)) —xsin(or)) TH(x(1 — cos(a)) — xsin(a))
= (Xx"Hx)(1 —cos(a))* — 2(x"Hx) sin( o) (1 — cos(x)) 4 (X THX) sin ()
= (x"Hx)(1 —cos(a))? + (¥"Hx) sin? ()

—&T(7—A)+x"(y— 1)) sin(a) (1 —cos(a)) > 0,

which is the second inequality of (13.44). Replacing x(1 — cos()) and Xsin(o)

by xsin() and X(1 —cos(a)), and using the same method, one can obtain equa-
tion (13.45). |

(04
o

Proof of Lemma 13.9:
From the last two rows of (13.27) or equivalently (13.31), it must have

Ay +YA = AYe,
Iz+Zy=TZe.

Pre-multiplying YA "7 on both sides of the first equality gives
Y™ 2A2 +YIATIA =YIA%e.
Pre-multiplying Z~:T" 7 on both sides of the second equality gives

Z T2+ 2T 2y=27ZT7e. (13.96)
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spacecraft quaternion response
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Figure 13.3: spacecraft quaternion response.

Y ATy YiAT2A A’
27Tz Z:T 2y r
and Lemma 13.8 yields u"v = y*A + 2"y = x"(¥ — 1) > 0. Using Lemma 13.3
and (13.23) yields

i+ = 3 (2 Z’%>+Z<l y V;z>

i1 Vi Zi

, using (13.30)

l= ol

1
3
Letu= ,and w = .
3

k)

N =<

€
€

< > iktam) Zplw,—znu (13.97)
i=1

Since p; > 0 and ; > 0, dividing both sides of the inequality by min; p;®; and
using (13.25) gives

n 2 .2 n ; 32 ;
2+ %2 . H . H H H o -
> () x (%2 W) P iy = 1-0

i=1
(13.98)

This proves (13.47). Combining (13.47) and Lemma 13.1 yields
BIIEE < (23)
pll loll =\ (1-0)

HEHH%H < (1fg)' (13.99)

This leads to,
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Therefore, using (13.25) and Cauchy-Schwarz inequality yields

1-0

o _ [pllel 4 Bl <<1+9)(3>T(g|>
ueo meo max; pi@; p @
< a+of2|le) = e

which is the second inequality of (13.49). From Lemma 13.8, p"& = x"(7— 1)
XTHx > 0, the first inequality of (13.49) follows.

Proof of Lemma 13.10:
Similar to the proof of Lemma 13.9, from (13.32), it must have

AV EYL =2 (yo/i)

= YA YIATH = oY AT (o k),

and
Ti+2Zy=—2(z07)
e Z T+ ZT =22 T % (z07)
11 1,1 —2Y’1A7%<' l)
Letu=| * MY YA A andw = S
Z o 212y —2Z73T % (z07)

using (13.30) and Lemma 13.8 yields u"v = T4 + 277 = T (¥ — 1) > 0. Using

Lemma 13.3 yields
2 %) n N 2 o
Vidi | v ADyi | Yz
—+— ]+ —+

P+ v = Z( ¥

i=1

IN

H—zY—%A—% (yoi)

Dividing both sides of the inequality by u and using (13.25) gives

n ) %) n "2 %)

Vi %4 AL ¥

1-9 Y S
( )<Z<y”z?>+;<%”%2>>

i=1 !

- a-o ([ +[2r)

2 1 ! 2
|+ |2zt o)
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n .2 12 Z
< 4(1+6) (Z <_P+7§>>
i=1 4t

in view of Lemma 13.9, this leads to

. s
IR e I e I e e e e
~'1-6 1—-6
(13 101)
This proves (13.50). Combining (13.50) and Lemma 13.1 yields

Hi ety

Using (13.25) and Cauchy-Schwarz inequality yields

P

u u max; p;; ®
S <1+9>HEHH9HS%,

which is the second 1nequahty of (13 52). Using (13.30) and Lemma 13.8, one
must have pT@ = §yTA + 2Ty = x"(y— 1) = £"THx > 0. This proves the first
inequality of (13.52). Finally, using (13.25), Cauchy-Schwarz inequality, (13.47),
and (13.50) yields

pTo| _ [p["|®]

. T . .
101y g BBy g (B (19)
u u max; p; @; P ®

R 0\ 3 2\? (2 3
crof2|2) <o () (o) < Crirot

This proves the first inequality of (13.53). Replacing p by p and @& by @, then
using the same reasoning, one can prove the second inequality of (13.53). |

Proof of Lemma 13.11:
Using (13.34), (13.36), (13.31), and (13.32), one must have

y (o)A (at)
= (yT —y"sin(a) +y7(1— cos(a))) (/'L — Asin(a)+A(1— cos(a)))
=y"A —y"Asin(a) +y"A(1 —cos(a))

— ¥ Asin(a) +y A sin? () — ¥ A sin(o) (1 — cos(a))

+§TA(1 —cos(a)) — § A sin(a)(1 — cos(a)) +§ A (1 — cos(x))?
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=y"A — (y"A +ATy)sin(0) + (YT X +AT§) (1 — cos(a))

—(yTA+ /'ITy) sin(o) (1 —cos(a)) +y Asin®(a) +§TA(1 — cos(a))?
=y A (1 —sin(ct)) — 2574 (1 — cos(x))

— (A + A"y sin(a) (1 — cos(a))

+¥"A(1 —cos?(a)) +§TA (1 —cos(a))?
=yTA(1 —sin(a)) 4+ (FTA —yTA) (1 — cos(a))?

— (A + ATy sin(e) (1 - cos(a)). (13.102)

Using (13.35), (13.37), (13.31), (13.32), and a similar derivation of (13.102), one
gets

z' ()y(e) = z'y(1—sin(a))+(Z'7—2"7)(1 - cos(@))?
— (2" + ¥"%) sin(a) (1 — cos(ax)). (13.103)
Combining (13.102) and (13.103), then using (13.30) and (13.44) yield

2np(a) = p'(a)o(a)
=y' ()A(a) +2" (o) (@)
=(y"A+2"y)(1 —sin(a)) + (FTA + 27— y"A —2"§) (1 — cos(ax))?
— (" A+2"7+§ A +2"7)sin(o )(1 —cos(a))
("R +2")(1 — sin(@)) + (KT(7— 1) — X (7— 1)) (1 — cos(a1))?
— (X"(y =) +xT(7—1))sin(o)(1 — cos(a)) (13.104)
<(y"A+2"y) (1 —sin(a)) + (x"Hx — x"Hx) (1 — cos(c))?
+x"Hx(1 — cos(a))? + X THxsin’ ()
=(y"A +2"y) (1 —sin(a)) + X "Hx(1 — cos(a))* + X "Hxsin*(ct).

Dividing the both side by 2n proves the second inequality of the lemma. Com-
bining (13.104) and (13.45) proves the first inequality of the lemma. |

Proof of Lemma 13.12:
From the second inequality of (13.54), it must have

xTHx THx . ,
< s B . . .
ulo) —p _usm(a)( 1+ il sin(a) + ol sin (oc)>

Clearly, if X HX < % for any a € [0, %] the function
..T . .XTH

fla) = (—1 + XZ”IJ sin
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and p(a) < u. If X 2n# 3 ! using Lemma 13.5, the function f has one real
solution sin(ax) € (0,1). The solution is given as

3 3
) n N\ (1 3| np N\ (1
sin(&) = THR + \/(XTHX) + <3> + <THx \/(XTHX) + (3) .

This proves the Lemma. |

Proof of Lemma 13.13:
Since sin(&) is the only positive real solution of (13.56) in [0,
(

] an d q(0) <0,
substituting ag, aj,az,as and a4 into (13.56) yields, for all sin sin(&

1
) < sin(@),

1
(Hpoco— Gop— (BT c'oTp)eH> sin ()
n

(]

.T . .T .
- (26"2—"’> sin () — (26%) sin®(a) + O (1 —sin(a)).  (13.105)

1
pod+mop— Z_(pTc’o+a>Tp)eH> sin’ (@)
n

n
Using (13.38), (13.39), (13.31), (13.32), (13.58), Lemma 13.2, (13.105), and
the first inequality of (13.54) yields
[p(e) 0 ()~ p(@e

—H( —psin(a +p(1—c0s(oc)))o (a)—(i)sin(oc)—i-d)(l—cos(oc))) —[.L(oc)eH
ZH(POCO—.Ue)(l —sin(a)) + (poc'i)—pod)— 2—1n(pTd)—pch)e> (1 —cos(a))*

- (po W+ dop— %(pTc'i)—i—pTa))e) sin(a)(1 —cos(oc))H

1
poa)—ueH n H pod—pod— —(pTc'i)—pTd)))eH(l ~ cos(a))?

§(1—sin(oc))’ -

+ H(po B+ dop— 2—1’1(pTa'>+pTco)eH sin(a) (1 — cos(at)) (13.106)

1
<Ou(l—sin(a)) + H(po O—pod— Z—(pT(I) —pTd)))eH sin* () + a3 sin’ (o)
n

<20u(1 —sin(a)) — (29";—”“) (sin () + sin* ()

<26 (/.L(l —sin(a)) — (XTZI:X) ((1 —cos(a))2+sin2(oc))>

<20u(a). (13.107)
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Hence, the point (x(o),p(o),®(cr)) satisfies the proximity condition for
N>(20). To check the positivity condition (p(a),®(e)) > 0, in view of the ini-
tial condition (p, ®) > 0, it follows from (13.107) and Corollary 13.1 that, for
sin(or) < sin(&) and 6 < 0.5,

pi(a)w;(a) > (1-20)u(a) > 0. (13.108)

Therefore, it cannot have p;(¢t) = 0 or w;(et) = 0 for any index i when o €
[0,sin~"(&)]. This proves (p(a), ®(a)) > 0. |

Remark 13.5 It is worthwhile to note, by examining the proof of Lemma 13.13,
that sin(&) is selected for the proximity condition (13.107) to hold, and sin(&) is
selected for (o) > 0, thereby assuring the positivity condition (13.108) to hold.
i

Proof of Lemma 13.14:

Since , ,
. n N 2 . n N 2
oS (5 e -5 (2)
Hp ; Di ’ (O] ; ; ’

from Lemma 13.9 and (13.25), it must have

(%)

P2 @2 25\ 2 i\ 2
= BlIsr=(2(2) ) (2(3)

ol ol = (206 ) (2o
L e (pa ‘p wH2

= — 0 —

a -1 Di 0; p @

2
>

n e 2
1((1221)11) (1+6)2 ‘uZHP w),

I

1.€.,

This proves (13.59). Using

p 2 2n p[ 2 ) 2 2n CO, 2
H :Z(;> Bl :Z(5> 7
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and Lemma 13.10, then following the same procedure, it is easy to verify (13.60).
From (13.47) and (13.50), one obtains

(2 ) (0my |2 (22
[I2r B2
EE)EE) ) )

2n pa) 2 2n pCO
Z( i l) +Z< i l>
Pi0; Pi®;

>
i=1 i=1
2n p(l) 2 2n p(O 2
Z [t ] + [’
,Z‘((HG)AL) ;(<1+9)u>
1 N |
= oy (ool o] )
(13.109)
1.e.,
P . P 2r)(146)°
o] +[Jo=o] < Zr=gi
This proves the lemma. |

Proof of Lemma 13.15:

First notice that g(sin()) is a monotonic increasing function of sin(o) for @ €
[0, 7] and ¢(sin(0)) < 0, therefore, one needs only to show that q(%) < 0 for
0 <0.22. Using Lemma 13.6 yields

AR (P S e

pod+dop———(p O+ ple| < |pod|+ |dob|,
n

L ._i ST LT e . .

pod—dop—- (P d—a'pe|| <|[Ppod| + |@op|.
n

In view of Lemmas 13.14, 13.9, and 13.10, from (13.56), it must have, for o €
0,31,

atsn(0) <

il

p'o
+265~ sin®(a) + O sin(a) — O

.T .
pod||+ |wop| +29p2—w> sin (o)
n

peo]+ oes] '



Attitude MPC Control B 271

2(1+6)? n(1+6) 6(1+06)\ .

<u((Fgr+ e+ iy ) @)
—1—4\6%1& sin® ()

0((1%4-09)) sin®(a) + @'sin(ar) — 9).

Since n > 1 and 6 > 0, substituting sin(a) = % gives

() = (e e ey )

3 n3 2
+4\/§(1+6)2n26 6(1+6)6° 0 _9)

- 0—
=0 1 ym

)

s (293(1+9)2 03(1+6) 6*1+0)

(1-0)3 n(l—0) (1—0)n?
4V202(14+6)2  6%(14+6) 6

(1—-6)2 +n(l—e)Jr%_l)

<0 (293(1+9)2 03(1+6) 6*1+0)

- (1-0)3 (1-0) (1-0)
4V202(14+6)2  62(1+6)

(—op " (1-9)
Since p(0) is monotonic increasing function of 6 € [0,1), p(0) < 0, and it is
easy to verify that p(0.22) < 0, this proves the lemma. |

+o— 1) = 0up(0). (13.110)

Proof of Lemma 13.16:
Using Lemma 13.6 yields

1 2
0< HApoAa)—z—(ApTAa))eH < [|ApoAw|?. (13.111)
n

1
2

Pre-multiplying (P(oc)Q(oc)) on the both sides of (13.66) yields

1
: (u(a)e—P(oc)Q(oc)e).
Letu =DAw, v= D_lAp, from (13.63), it must have

u'v=ApTAw = AyTAL + Az"Ay = AXT(Ay— A1) = AX"HAX > 0. (13.112)

DAw +D~'Ap = (P(oc)Q(oc))

Using Lemma 13.4 and the assumption of (x(a),p(a), ®(t)) € N>(20) yields

HApoAcoH - ‘ (P(a)Q(oc))_% (u(a)e—P(a)Q(a)e) H2

3
B

uov
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2n
o —% ([,L(OC) p,(OC)CO,( ))
S LT e
- 53 lln(@)e—p(a)oo(a)|?

min; p;(o) @; (o)
_3 (20)°u(a)* 1 6%u(a)
< 2 (1—20)u(a) =2 (=20 (13.113)
Define (p“™'(¢),0*"'(t)) = (p(a),w()) + t(Ap,Aw). From (13.66) and
(13.40), one gets

2n
p(a) Ao+ o(a)"Ap = 2nu =~ pi(a@)wi(a) =0. (13.114)

i=1

Therefore,

(p(oc) +tAp)T(a)(oc) +tAa))
p(a)Tw(a) +§2nApTAa)

ApTAw
2
= = t-—. (13.115
o pla)+17———. ( )

Since ApTAw = Ax"HAx > 0, it must have u**'(¢) > u(e). Using (13.115),
(13.66), (13.111), and (13.113) yields

u ()

Hpk+1 Yo o (1) _I’LkH(t)eH

H a) +tAp)o (oo )+tAa))—[,L(oc)e—%(ApTAa))e‘

= Hp(a) oo(a) +1{o(a) o Ap+p(a) o Aw] + 1> Ap o Aw — u(a)e — % (ApTAw) e”

Hp((x) ow(a) +1[u(cr)e — p(ar) o o(a)] +2Ap o Aw — pi(c)e — % (ApTAa)> eH

(1- 1) [p(a) o (cr) — t(c)e] +*  Apo e — — (ApTAw) e
2n

192
< (1-0)@0)(e) +F T an(e)
< ((1—:)(29)+t2%> it = f(r, @) uk . (13.116)

Therefore, taking t = 1 gives Hpk+l o — ke H < 2229)‘”k+1_ It is easy to
see that, for 6 < 0.29,
2262

T —0.2832<6.
(1-20)
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For 6 < 0.29 and 7 € [0, 1], noticing
0< £(1,0) < f(,0.29) < 0.58(1 —1) +0.2832% < 1,

and using Corollary 13.1, one gets, for an additional condition sin(o) <
1=
sin™ (@),

A0k 1) > (1- £(1,0) 11 (1)
= (1-70.0) ((@) + £ap"s0)

> (1—£(,0)) u(a)
>0, (13.117)

Therefore, (p**!(r), 0" (z)) > 0 for t € [0, 1], i.e., (p**', @**!) > 0. This fin-
ishes the proof. |

Proof of Lemma 13.17:
The first inequality of (13.67) follows from (13.112). Pre-multiplying both sides

of (13.66) by P~2 (01)Q ™ * () gives

P~} (@)@ (@)Ap+ P} ()@ (o) A0 =P H ()@ (@) (p(@)e—P(@)Q(w)e)
Let

u=P"H(2)Q (2)Ap.

v=P(a)Q ’(a)Aw,
and

w=P ()@ (o) (1(@e—P(@)Q(a)e).
in view of (13.112), it must have
u'v=ApTAw > 0.
Using Lemma 13.3 and the assumption of (x(),p(a), ®()) € N>(20) yields
2

N2 . N2 p.
||ll||2+ ||V||2 _ Z ((Apl) CO,(OC) + (ACO,) pl(“))

py ]),’(a) w[(“)

2n o ) 2
SHWHZZZ(N(Q) p,(OC)CO,(OC))

p— pi(@)oi(a)

< S (@) — pi(a)oi(@))?

min; p,-(oc)a),-(oc)
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_(2020%(@) _ (20)u(a)
S 20)u(e)  (1-20)

(13.118)

Dividing both sides by (o) and using p;(@)m;() > p(er)(1 —20) yields

2n

(Api)* . (Awy;)?
2_(1-20) <p%<a> " co,-2<a>>

i=1

=a-20 ([ ol

2
@0
—(1-206)
(13.119)
1.e.,
2
el el < (%) - 13.120
Invoking Lemma 13.1, one gets
Ap 12 || Ao |12 1/ 20 \*
— =] £ —) . 13.121
el Nl <3 (%) 13121
This gives
Ap Aw 202
Joe || | < T=zap 13.122)
Using Cauchy-Schwarz inequality leads to
(4p)" (A®)
p(e)
2n
|APiHA0)i|
< i |
_Z )
[Api| |Awi]
<(1+420)
Z pi(a) oi(a)
A A
:(1+2e)‘—p ’ ‘—w |

<a+20) 755 e
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202(1+20)
<— 13.123
ST (1—207 ( )
Therefore,
(Ap)T(Aw) _ 6%(1+20)
< . 13.124
= (=20 M%) (13.124)
This proves the lemma. |

Proof of Lemma 13.19:
Using Lemmas 13.18, 13.11, 13.2, 13.8, 13.9, and 13.10, and noticing pra> >0
and pT® > 0 yields

< () (1+%> ~ o) (1+2) (13.1259)
a1 (% - %) (1 —cos(a))’

_ (%+ M) 1—c0s(06))} (1+%>
<t (1 _sin(a) + 2n[.t B0 v+ ( ‘2’;—“;’ L|@p sm3<a>> (H%)

u
n 2 n)? ;
<ut (1 —sin(or) + % sin*(a) + 22n)3(1+6)8 sin3(o¢)> (1 + §> .
(13.125b)

Substituting sin(@) = \% into (13.125b) gives

ket <k

0 n(1+6)*6* 202n)i(1+6)% 6° 8
-t mer e (1=op ns>(” )

6  64(1+6)> 2:6%1+6): &
-y P a-ey )(”ﬂ

a(1-0)7  a(1—07 i

)

&  63(1+6)% 210%(1+46)2
Ve a(1-6)  /n(1-6)?

64(1+6)? N 220%(1+6)2
n(l—0)3 n(l—0)>2

o
6 & 6*(1+6)2 2:03(1+6) 66
:uk<1——+—+
N
%




276 hl Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proac.

Since

0°(1+0)> 210%(1+6)
2

CVn(1-6)F  /n(1-6)
_03(1+6) 2%92(1+9)% B

where f(0) is a monotonic decreasing function of 6, and for 6 <0.37, f(6) > 0.
Therefore, for 8 < 0.37, the following relation holds.

P <y <l_ill_ & 0°(1+62 2102(146)} )
Vi |l T Vme T Va(i—ep  Ja(l—e)
:“k<l_ill_ 0(1+20)  03(1+6) 2%92(1+9)%D
vn Va(1-20>  /n(1-6)  n(1-6)> | )’
(13.126)
Since

0(1+20)  63(1+6)> 210%(1+6)3

Va(1=20)>  Va(1-6)  /n(1-6)
| 6(1+26) 6°(1+6) 220%(146)?

= (1-20)2  (1—0) (1—6)>

1—

= g(9), (13.127)

where g(0) is a monotonic decreasing function of 6, one can conclude, for 6 <
0.19, g(6) > 0.0976 > 0. For 6 = 0.19, it must have 6g(6) > 0.0185 and

0.0185
S _
H _IJ( ﬁ)

This proves (13.70). |
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Control Moment Gyros (CMGs) are an important type of actuators used in
spacecraft control because of their well-known torque amplification property
[125]. The conventional use of CMG keeps the flywheel spinning in a constant
speed, while torques of the CMG are produced by changing the gimbal’s ro-
tational speed [105]. A more complicated operational concept is the so-called
variable-speed control moment gyros (VSCMG) in which the flywheel’s speed
of the CMG is allowed to be changed too. This idea was first proposed by
Ford in his Ph.D dissertation [68] where he derived a mathematical model for
VSCMGs which is now widely used in literatures. Because of the extra freedom
of VSCMG, it can generate torques on a plane perpendicular to the gimbal axis
while the conventional CMG can only generate a torque in a single direction at
any instant of time [328].

The existing designs of spacecraft control system using CMG or VSCMG
rely on the calculation of the desired torques and then determines the VSCMG’s

277
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gimbal speed and flywheel speed. These designs have a fundamental problem
because there are singular points where the gimbals speed and flywheel speed
cannot be found given the desired torques. Extensive literatures focus on this dif-
ficulty of implementation in the last few decades, for example, Oh and Vadali
[186] proposed singularity-robust steering law which avoids failure but produces
an errant torque; Junkins and Kim [106] enhanced the pseudo-inverse technical
using singular value decomposition (SVD); Ford and Hall [70] extended SVD
analysis to singular direction avoidance; Zhang et. al. [335] formulated the sin-
gularity avoidance problem as a nonlinear optimization problem. Gui et. al. [81]
adopted a modified direct-inverse steering law. There are good survey papers
[126, 284] that include extensive references.

Another difficulty associated with the control system design using CMG or
VSCMG is that the nonlinear dynamical models for these type of actuators are
much more complicated than other types of actuators used for spacecraft attitude
control systems. Most proposed designs, for example [69, 70, 81, 101, 105, 155,
224, 326, 328], use Lyapunov stability theory for nonlinear systems. There are
two shortcomings of this design method: first, there is no systematic way to find
the desired Lyapunov function, and second, the design does not consider the
system performance but only stability.

In this chapter, we propose a different operational concept for VSCMG: the
flywheels of the cluster of the VSCMG do not always spin at high speed, they
spin at high speed only when they need to. The same is true for the gimbals.
This operational strategy makes the origin (the state variables at zero) an equi-
librium point of the nonlinear system which can be regarded as an equivalent
linear time-varying (LTV) system. Therefore, some mature linear system design
methods can be used and system performance can be part of the design by using
these linear system design methods. Additional advantages of the proposed op-
erational concept are: (a) energy saving due to normally reduced spin speed of
flywheels and gimbals, (b) singularity-free because the control of the spacecraft
is always achievable by accelerating or decelerating the flywheels and gimbals,
therefore, there is no inverse from desired torques to the speeds of the gimbals
and flywheels.

It is worthwhile to point out that the nonlinear model can be viewed as a linear
time-varying (LTV) system. The design methods for linear time-invariant (LTT)
systems may be repeatedly applied to LTV systems. A popular design method
for LTV system is the so-called gain scheduling design method, which has been
discussed in several decades, for example, [131, 216, 218, 228]. The basic idea
is to fix the time-varying model in a number of “frozen” models and using linear
system design method for each of these “frozen” linear time-invariant systems.
When the parameters of the LTV system are not in these “frozen” points, inter-
polation is used to calculate the feedback gain matrix.

Although, gain scheduling design has been proved to be effective for many
applications of LTV systems, it has an intrinsic limitation for some time-varying
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systems that have many independent time-varying variables, which is the case
for spacecraft control using VSCMGs. As we will see that if a control system
model has many independent time-varying parameters, then, the computation
for the gain scheduling design will be too expensive to be feasible. Therefore,
we will consider another popular control system design method, the so-called
model predictive control (MPC) [8]. To meet some required stability conditions
imposed on the LTV system [217], we propose using the robust pole assignment
design [260, 323] for the MPC design and establish the condition of uniformly
exponential stability. The content of this chapter is based on [316].

14.1 Spacecraft model using variable-speed CMG

Assuming that there are N variable-speed CMGs installed in a spacecraft, fol-

lowing the notations of [68], we define a matrix A; = [s,S;,...,Sy] such that
the columns of Ay, s; (j =1,...,N), specify the unit spin axes of the flywheels
in the spacecraft body frame. Similarly, we define A, = [g;,8,...,gy] the ma-

trix whose columns are the unit gimbal axes and A, = [t;,t5,...,ty] the ma-
trix whose columns are the unit axes of the transverse (torque) directions, both
are represented in the spacecraft body frame. Whereas A, is a constant matrix,
the matrices A, and A, depend on the gimbal angles. Let ¥ = [y,..., W] €
[0,27] x --- x [0,27] := IT be the vector of N gimbal angles, and

s T = Fi= g = [0, ..., 0, ]" (14.1)
be the vector of N gimbal speed, then the following relations hold [327] (see
Figure 14.1).

§i =Tt = 0y ti, ti=—%si=—0,s;, g =0. (14.2)

Denote
I'“ =diag(cos(y)), I'® =diag(sin(y)). (14.3)

A different but related expression is given in [68] !. Let A, and A, be initial
spin axes and gimbal axes matrices at ¥, = 0, then

A(7) = AT +A, I, (14.4a)
Ai(y) = AT — A, T (14.4b)
This gives
A, = A,diag(7) = A, diag(®,), (14.5a)
A, = —Adiag(y) = —Adiag(w,), (14.5b)

IThere are some typos in the signs in [68] which are corrected in (14.4) and (14.5).
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8i

K Gimbal Frame
}

Body Frame
O

Figure 14.1: Spacecraft body with a single VSCMG.

which are identical to the formulas of (14.2). Let J;,, Jg,, and J;, be the wheel
spin axis inertia, the gimbal axis inertia, and the transverse axis inertia of the j-th
CMGQ, let three N x N matrices be defined as

J; =diag(Jy,), J,=diag(J,,), J; =diag(J,,). (14.6)

Let @ = [, @y, 3]T be the spacecraft body angular rate with respect to the
inertial frame, B = [Bi,...,By]T be the vector of N flywheel angles, and

Bi,....BN" =B =0, =[w,,...,0]" (14.7)
be the vector of N flywheel speeds. Denote
hy =[5, Brs - o Byl = Jso0s, (14.8)

he = [ i Joy )T = T 00, (14.9)
and h, be the N-dimensional vectors representing the components of absolute an-

gular momentum of the VSCMGs about their spin axes, gimbal axes, and trans-
verse axes respectively. Note that the angular momentum generated by the ith
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flywheel represented in the body frame is given by s;J,, Bi and the angular mo-
mentum generated by the ith gimbal represented in the body frame is given by
8/, the total angular momentum of the spacecraft with a cluster of VSCMGs
represented in the body frame is given as

N N
Joo+ s B+ gy =Jo0+ A+ Agh,
i=1 i=1

= S0 +AJ;0;+AJ,0,. (14.10)

=
|

Taking derivative of (14.10) and using (14.2) and J = 0, noticing that gimbal
axes are fixed, we have

N N
h = J,o+ Z (Silyﬁi + SiJviBi) + Z (8o Vi + 8id o Ti)
i—1 i—1

N N
= deH-Z (%tifsiB1+SiJs,Bi) +Zgifg,-77i

i—1 i-1
= —wxh+t,, (14.11)

where t, is the external torque. Denote Q = diag(®,) and Q, = diag(w, ). This
equation can be written as a compact form as follows.

wa+A[JSstg +Astws+Angwg
= —oxJ,o+AJo,+AJ,0,)+t,, (14.12)

Note that the torques generated by wheel acceleration or deceleration in the di-
rections defined by A; are given by

ty=—Jo@, = [t5,,....15,]" (14.13)

(note that vectors t; in A, are axes and scalars ;, in t are torques) and the torques
generated by gimbals’ acceleration or deceleration in the directions defined by
A, are given by
t, = _Jgd)g: [tgla'-'vth]Ta (14.14)
the dynamical equation can be expressed as
Jy®+AJ Q0.+ 0 % (Jp0 +AJ;0,+ A 0,) = Agty + At, +t,. (14.15)
Let T
o o
I" = [g0.q"]" = [cos(5). " sin(5) | (14.16)

be the quaternion representing the rotation of the body frame relative to the in-
ertial frame, where € is the unit length rotational axis and ¢ is the rotation angle

aQ=1[90,91,92,93
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about €. Therefore, in view of (4.9), the reduced kinematics equation becomes

a1 S e @ o
92 = 5| @ o —a (0
43 ¢ qi f (03

1
= 2(91,42,43,0) = 5 ( 1—q} — 43— 4313 +qx) o,

where f = +/1—¢% — g5 — g3, or simply

q=g(q,m). (14.17)

The nonlinear time-varying spacecraft control system model can be written as
follows:

0, :
;s B
o | | =T AT+ 0 x (Jp0 + AT 0, + A 0,)]
q g(q,0)
_Jg—ltg
n —J 1t
I (At + At +t,)
0
= F(w7a)g7ws7q7t)+G(tx7tg7te7t)7 (1418)
or simply
x=F(x,y(1)) + G(u,t,,¥(1)), (14.19)

where the state variable vector is X = [@,, @] ,@",q"]", the control variable vec-

tor is u = [t1, tT]T, disturbance torque vector is t,, and F and G are functions of

g )
time ¢ because the parameters of ®, ;, ®,, q, A; and A, are functions of time .
The system dimension is n = 2N + 6. The control input dimension is 2N. Clearly,

an equilibrium of (14.18) is x, = 0 = [0, ®!, 0}, q"]". Notice that

8
AT Q0 = % (A Q0 +AJ,Q,0,), (14.20)
and
O X (Jp0+AJ;0,+AJ,0,)
= (@xJy)o+ % (0% AJs) s+ (0 X Ag,) 0,
(AL, + A0 0. (1421)
Let

1
Fs = _EJ;I (AT Qs+ @ x A, (14.22)
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1
Fi, = —EJ}:I AJQ, + o x AJ], (14.23)

1
F3; = Jh_l {(JW))X + E(ASJS(DS +Anga)g)X} , (14.24)

1
F43:§(\/l—q%—q%—qgh—FqX). (14.25)

Then, Eq. (14.18) can be written as the following linear time-varying model

and

&, 0 0 0 0] o,
o | o 0o 0o o] a
10) a F31 Fn Fi3 0 ()
q L 0 0 F43 0 q

[ -3, 0 0

0 37|t 0

K " te
Tl aA 3A [tsh ;!
0 0 0
= A(t)x+B(t)u+Ct,, (14.26)

where C is a time-invariant matrix. The linear system is time-varying because ®,
Wy, Wy, g, Ay and A, in A and B are all functions of ¢.

Given A, A;, and @,, then, A and A, can be calculated by the integration
of (14.5). But using (14.3) and (14.4) is a better method because it ensures that
the columns of A and A, are unit vectors as required. Notice that the ith column
of A; and the ith column of A,, i = 1,...,n, must be perpendicular to each other,
an even better method to update A, is to use the cross product

ti=g xs;, i=1,...,n, (14.27)

to prevent t; and s; from losing perpendicularity due to the numerical error ac-
cumulation. In simulation, integration of (14.1) can be used to obtain y which
is needed in the computation of (14.3), but in engineering practice, the encoder
measurement should be used to get .

14.2 Spacecraft attitude control using VSCMG

Assuming that the closed-loop linear time-varying system is given by
x=A(1)x(t), x(fo) = xXo. (14.28)

It is well-known that even if all the eigenvalues of A(z), denoted by R, [A(¢)], are
in the left half complex plane for all ¢, the system may not be stable [217, pages
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113-114]. But the following theorem (cf. [217, pages 117-119]) provides a nice
stability criterion for the closed-loop system (14.28).

Theorem 14.1

Suppose for the linear time-varying system (14.28) with A(t) continuously differen-
tiable there exist finite positive constants o, [ such that, for all t, |A(t)|| < o and
every point-wise eigenvalue of A(t) satisfies R.[A(t)] < —u. Then there exists a pos-
itive constant B such that if the time derivative of A(t) satisfies ||1_&(t) || < B forallt,
the state equation is uniformly exponentially stable.

This theorem is the theoretical base for the linear time-varying control system
design. We need at least that R, [A(7)] < —pu holds for r > 0, which is the design
criterion in this section.

14.2.1 Gain scheduling control

Gain scheduling control design is fully discussed in [216] and it seems to be
applicable to this LTV system. The main idea of gain scheduling is: (a) select a
set of fixed parameters’ values, which represent the range of the plant dynam-
ics, each member in the fixed parameter set is called a “frozen model”, for each
frozen model, the gain is designed by a linear time-invariant design method, and
all gains are installed in the computer on-board; (b) when spacecraft flies on or-
bit, in between operating points, the gain is interpolated using the designs for
the fixed parameters’ values that cover the operating points. As an example, for
i=1,...,N,lety, € {2n/py,4m/py,--- , 27} be a set of p, fixed points equally
spread in [0,27]. Then, for N VSCMGs, there are pl}\,’ possible fixed parameters’
combinations. For example, if N = 4 and p, = 8, we can represent the grid com-
posed of these fixed points in a matrix form as follows:

n/4 m/2 3m/4 m Sm/4 3m/2 Tm/4 2m
n/4 m/2 3m/4 m Sm/4 3m/2 Tn/4 2m (14.29)
n/4 m/2 3m/4 m Sm/4 3m/2 Tn/4 2m |’ )

T

n/4 m/2 3m/4 5r/4 3m/2 Tn/4 2m
and each fixed ¥ is a vector composed of ¥; (i = 1,2,3,4) which can be any
element of ith row. If 7 is not one of those fixed points, we have ¥; € [k (i), k(i) +

1] foralli € [1,---,N]. Assume that ¥; is in the interior of (k (i), k(i) + 1) for all
i €[l,---,N]. Then, y meets the following conditions:

v € (k(1),x(1)+1)

Y= : : (14.30)
w e (k(N),k(N)+1)
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Using the example of (14.29), if y = [%”, %”, 71_2’ %’T]T, then

c T 37 (nn) (nn) 77r27r '
y 2 Y 4 Y 47 2 ) 4 Y 2 Y 4 )
To use gain scheduling control, we need also to consider fixed points for ®,
@y, g, and q in their possible operational ranges. Let p,,, p,., P and p, be

the number of the fixed points for ®, w,, @,, and ¢. The total vertices for the

entire polytope (including a grid of all possible time-varying parameters) will be

N, 3 N N .3
Dy PwPw,Pw, Py
N, 3 N N 3

For each of these (py p;.py, Py, Py) fixed models, we need conduct a control
design to calculate the feedback gain matrix for each “frozen” model. If the sys-
tem (14.26) at time ¢ happens to have all parameters equal to some fixed point,
we can use a “frozen” feedback gain to control the system (14.26). Otherwise, we
need to construct a gain matrix based on these “frozen” gain matrices. Assuming
that each parameter has some moderate number of fixed points, say 8, and the
control system has N = 4 gimbals, the total number of the fixed models will be
8!8, each needs to compute a feedback matrix, an impossibly computational task.

14.2.2 Model predictive control

Unlike the gain scheduling control design in which most computation is done
off-line, model predictive control computes the feedback gain matrix on-line for
the LTV system (14.26) in which A and B matrices are updated in every sampling
period. It is straightforward to verify that for any given 7, if x # x,, the frozen
linear system (14.26) is controllable. In theory, one can use either robust pole
assignment [323, 260], or LQR design [135], or H., design [338] for the on-line
design, but H., design costs significant more computational time and should not
be considered for this on-line design problem. Since LTV system design should
meet the condition of R,.[A(f)] < —u required in Theorem 14.1, robust pole as-
signment design is clearly a better choice than LQR design for this purpose.
Another attractive feature of the robust pole assignment design is that the per-
turbation of the closed loop eigenvalues between sampling period are expected
to be small. It is worthwhile to note that a robust pole assignment design [260]
minimizes an upper bound of H., norm which means that the design is robust to
the modeling error and reduces the impact of disturbance torques on the system
output [302, 311]. Additional merits about this method, such as computational
speed which is important for the on-line design, is discussed in [195]. Therefore,
we use the method of [260] in the proposed design.
The proposed design algorithm is given as follows:

Algorithm 14.1
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Data: Jp, Js, Jg, and Ay
Initial condition: X = Xo, Y =Y, Asy, and Ay,.

Step 1: Update A and B based on the latest 'y and x.

Step 2: Calculate the gain K using robust pole assignment algorithm
robpole (cf. [260]).

Step 3: Apply feedback uw = Kx to (14.18) or (14.26).

Step 4: Update y and x = (0", o], a)g,qT]T. Go back to Step 1.

14.2.3 Robust pole assignment

Although robpole developed in [260] is the most efficient robust pole assign-
ment algorithm [195], the efficiency of robpole in on-line application should be
further improved by exploring the system structure of A and the fact that J,, J5,
and A, are constant matrices in (14.26). Let A = diag(4;) and X = [x;,...,X,]
with ||x;]| = 1 such that

(A+BK)X = XA. (14.31)

The algorithm of robpole can be summarized as follows (for details, see Ap-
pendix C):

Algorithm 14.2

robpole

Data: A, B, and diagonal matrix A = diag(A;) with A; being the desired closed-loop
poles.

Step 1: QR decomposition for B yields orthogonal Q = [Qo Q1] and trian-
gular R such that

B=[Q Qi [ o ] (1432)

Step 2: QR decomposition for (AT — L1)Qy yields orthogonal V.= [Vo; V1;]
and triangular Y such that

(AT—A1)Q; =[Voi Vi { :)( ] i=1,...,n. (14.33)

Step 3: Cyclically select one real or a pair of (real or complex conjugate)
unit length eigenvectors such that x; € S; = span(Vy;) and the robustness
measure det(X) is maximized.

Step 4: The feedback matrix is given by
K=R!'Q{(XAX~! —A). (14.34)
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Step 3 in Algorithm 14.2 looks very complex but it turns out, by some careful
investigation, that this step mainly involves two rank-one QR decomposition up-
dates and a rank-two singular value decomposition (SVD). The rank-two SVD
admits an analytical solution [260]. Since A in (14.26) has a lot of zeros, the
calculation in parentheses in Steps 2 and 4 can save substantial flops, especially
in Step 2 which is done for i = 1,...,n. Another major saving can be achieved
in Step 1 by using the fact that the first three columns of B are constant (not
time-varying). Assume that

_Jg_l 0
_ 0 _J;I _ R
0 0
or equivalently
T Q!
Q'B= [ Qf ]B: R; Ry (14.36)

As time evolves and A changes, R, = QT [ 0 —J T A;FJ;T 0 ]T changes
but R; is constant and triangular. Therefore, the QR decomposition needs only to
zero a few non-zeros in R, to make R triangular. This reduces significant amount
of flops in every sampling time.

14.3 Simulation test

The proposed design method is simulated using the model and data in [105, 327,
326]. We assume that the four VSCMGs are mounted in pyramid configuration®
as shown in Figures 14.2 and 14.3. The angle of each pyramid side to its base is
0 = 54.75 degree; the inertia matrix of the spacecraft is given by [326] as

15053 3000 —1000
Jy=1 3000 6510 2000 kg-m’. (14.37)
—1000 2000 11122

The spin axis inertial matrix is given by J, = diag(0.7,0.7,0.7,0.7) kg - m?> and
the gimbal axis inertia matrix is given by J, = diag(0.1,0.1,0.1,0.1) kg m?. The
initial wheel speeds are 27 radians per second for all wheels. The initial gimbal
speeds are all zeros. The initial spacecraft body rate vector is randomly generated
by Matlab using rand(3,1) * 10~ and the initial spacecraft attitude vector is a

2Pyramid configuration was extensively studied because four CMGs are the minimum having one de-
gree of redundancy [125]. But detailed study [125] showed that CMG control using Pyramid configuration
and inverse from torque to flywheel speed cannot avoid singularity.
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Figure 14.2: VSCMG system with pyramid configuration concept.

reduced quaternion randomly generated by Matlab using rand(3,1) * 10~!. The
gimbal axis matrix is fixed and given by [327] (cf. Figures 14.2 and 14.3.)

sin( ) 0 —sin(0) 0
A, = 0 sin(9) 0 —sin(0) (14.38)
cos(6@) cos(0) cos(B)  cos(0)
The initial flywheel axis matrix can be obtained using Figures 14.2 and 14.3 and
is given by

0 -1 0 1
A,=|11 0 -1 0 (14.39)
0 0 0 0

The initial transverse matrix A, can be obtained by the formula of (14.27). The
desired or designed closed-loop poles are selected as

{-3.0,-3.1,—-29,-3.2,-2.1,-2.2,-2.0,—1.9,—-3.4,-3.5,-3.3,-2.7,—-2.6,—2.8}.

The simulation test results for (14.26) using control Algorithm 3.1 are given in
Figures 14.4-14.7.
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Figure 14.3: VSCMG system with pyramid configuration.

Remark 14.1  The simulation shows that the computational time for robust pole
assignment design is very efficient. But if this algorithm does not meet the on-line
computational requirement, a faster but not a robust pole assignment algorithm pro-
posed by Misrikhanov and Ryabchenko is available [172], which is discussed in Ap-
pendix C. |
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15.1 Introduction

Spacecraft rendezvous is an important operation in many space missions. There
are extensive research in this field and hundreds successful rendezvous missions,
see, for example, the survey paper [149] and references therein. The entire ren-
dezvous process can be divided into several phases, including phasing, close-
range rendezvous, final approaching, and docking. In the early phase, the chaser
flies to the target with the aid from the ground station and orbital translation con-
trol is the main concern. For this purpose, the well-known Hill [92] or Clohessy
and Wiltshire [45] equations are adequate for the control system design if the

293
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orbit is circular. But in the final approaching and docking phase, coupled orbital
and attitude control may be required. Moreover, it is desired to consider the case
that the orbit of the target spacecraft is not circular. To achieve this requirement,
more complex models introduced in [121, 193, 276] should be considered. Al-
though these models are developed for more general purpose, they can be easily
tailored for the use of spacecraft rendezvous and docking control.

The research of spacecraft rendezvous has attracted renewed interest in re-
cent years as a result of new development in control theory and increased space
missions involving rendezvous and soft docking. Various design methods have
been considered for this control system design problem. For example, reach-
ability was considered in [329]; an adaptive output feedback control was pro-
posed for this purpose in [242]; a multi-objective robust H,, control method
was investigated in [73]; a Lyapunov differential equation approach was stud-
ied for elliptical orbital rendezvous with constrained controls [336]; a gain
scheduled control of linear systems was applied to spacecraft rendezvous prob-
lem subject to actuator saturation [337]; and various control design methods
were considered for 6 degree of freedom (DOF) spacecraft proximity operations
[122, 138, 156, 166, 250, 252, 254, 255, 296, 334]. NASA is working on some
concept validation flight test [215]. All these methods have their merits in solving
the challenging problem under various conditions, but none of them addressed a
fundamental issue, i.e., to achieve the soft docking.

In this chapter, a recently proposed model in [121] is carefully examined. The
measurable variables and controllable inputs in the mission of the final approach-
ing and docking phase are then determined. Some reasonable assumptions that
normally hold via engineering design are made clear. Because of the merits dis-
cussed in [304, 311], a reduced quaternion concept proposed in [304] is adopted,
which slightly simplifies the model of [121]. To make the general model useful
for the control system design, a thruster configuration is considered and modeled
in the control system model. This control system model can be viewed either
as a nonlinear model or a linear time-varying (LTV) model. Using the linear
time-varying model is preferred because a linear system is easier to handle than
a nonlinear system and the corresponding design methods are capable to con-
sider the system performance which is very important as soft docking does not
allow oscillation crossing the horizontal line for the relative position and rela-
tive attitude (between the target and the chaser) in the spacecraft rendezvous and
docking phase.

There are two popular methods that deal with time-varying control system de-
sign with the consideration of system performance. The first one is gain schedul-
ing [218] and the second one is model predictive control (MPC) [8]. A simple
analysis in the previous chapter shows that the former is the most efficient when
all time-varying parameters explicitly depends on time; and the later is more ap-
propriate when many parameters depend implicitly on time. The rendezvous and
docking control falls into the second category. Therefore, we propose a MPC-
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based method to design the rendezvous and docking control. Although several
LTI design methods, such as LQR, H,, and robust pole assignment, take the
performance into the design consideration and can be used in the MPC-based
design, only robust pole assignment method can directly take system oscillation
into the design consideration because oscillation is directly related to the closed-
loop pole positions [56]. In addition, robust pole assignment guarantees that the
closed-loop poles are not sensitive to the parameter changes in the system [195]
that is important given the system is time-varying. Moreover, robust pole assign-
ment design minimizes an upper bound of H, norm which means that the design
is robust to the modeling error and reduces the impact of disturbance forces on
the system output (see Chapter 9 and [311]). Among many robust pole assign-
ment algorithms, we suggest a globally convergent algorithm [260] because of
its fast on-line computation and other merits [195]. We use two design examples
and simulation to show the efficiency and effectiveness of the proposed method.
This Chapter is mainly based on [318]. Section 2 summarizes the complete
rendezvous model and its implication for rendezvous and docking control. Sec-
tion 3 discusses the MPC-based method for spacecraft control using robust pole
assignment. Section 4 provides some design examples and simulation results.

15.2 Spacecraft model for rendezvous

In this section, we first present the model developed by Kristiansen et. al. in
[121]. We then discuss the assumptions derived from the application of final ap-
proaching and docking phase in the rendezvous process and present a simplified
version to be used in this chapter. For the sake of simplicity, we use the scalar no-
tation a for the magnitude of ||a||. We make the following assumption throughout
the chapter.

Assumption 1 Chaser and target can exchange position, attitude and rotational
rate information in real time.

This assumption can be achieved by engineering design. But this assumption
is not essential because extensive research for relative pose determination tech-
niques has been performed and many of these techniques are expected to be used
in the future missions (see a survey paper [188]).

15.2.1 The model for translation dynamics

As shown in Fig. 15.1, the inertial frame is defined by standard earth-centered
inertial (ECI) frame F; with iy, i,, and i, being the coordinate axes. Let r; be the
vector from the Earth center to the center of the mass of the target. Let the angular
momentum vector of the target orbit be denoted by h = r, x i,. The target orbital
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Figure 15.1: Spacecraft coordinate frame.

frame F;, is the spacecraft RSW frame discussed in Chapter 3 with the origin at
center of the mass of the target. The coordinate vectors of the RSW frame are

e, =1/ (15.1a)
e, =h/h, (15.1b)
e, —e, Xe,. (15.1¢)

Several other vectors are defined in RSW frame F;,: e, is the vector in the space-
craft velocity direction. e, is defined to be orthogonal to e, and e,, as e, = e, X e,,.
If the spacecraft orbit is circular, then e, = e, and e, = e,. The transformation
from ECI frame to the RSW frame (the target orbit frame) is given in (3.16).
The body frames of the target and chaser, F;;, and F;, have their origins at their
centers of mass and their coordinate vectors are their principal axes of the inertia.

The relative position vector between target and chaser is defined by

p=r.—r;, =xe,+ye,+ze,. (15.2)

p is available in real time if GPS is installed in both spacecraft and Assumption
1 holds. Spacecraft acceleration can be written as

a=a,e. +ase,+a,e, =a,e,+a.e,+a,e,. (15.3)

The spacecraft velocity vector can be derived according to Figure 15.2 as
follows. Let v, and v, be the velocity components in e, and e;. Than, v, = 7}, and
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Figure 15.2: Spacecraft coordinate in orbital plan.

vy = 1,0, where 0 is the true anomaly. We will use equations (2.51), (2.14), and
(2.29) which are listed below for easy reference:

B p a(l—é€?)
~ 1+4ecos(8) 1+ecos(8)’

(15.4)

Iy

where e is the eccentricity of the spacecraft orbit, a is the semi-major axis of the
orbit, and p is semi-latus rectum,

dae
h=r22= 15.
e (15.5)
and Y
h*/p
= 15.6
"t 1+ecos(6)’ (15.6)

where Ul is the geocentric gravitational constant of the Earth. From aforemen-
tioned equations, the following relations follow:

a(1—e*)esin(6)6
(1+ecos(0))?
a(1—e?)ehsin(0)
r2(1+ecos(0))?
ehsin(0)
ri(14+ecos(0))
ehsin(0)
h*/u

Vr - it:
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- %esin(@). (15.7)

Using (2.30) p = I yields

. h?
ve=n0=rh/r*=h/r= hr,‘l[.it :Z—Z. (15.8)
Combining (15.7) and (15.8) gives
v=i =& (e sin(0)e, + Bq) . (15.9)
h Ty
Since e, is pointing to the velocity vector,
v h ) p
e,=—=—|esin(f)e,+ —e . (15.10)
% pv Iy
Since e, is perpendicular to e, and e,, (unit length in the direction of h),
h (p .
e, =e,xe,=— | —e,—esin(O)e; | . (15.11)
PV \T

The coordinate transformation between the orbit plane acceleration vector com-
ponents can be found from above equations as

ar | _ I 2 esin(0) a,
[ as ] T { —esin(0) L } { a, ] (15.12)
so that
h ,—': esin(f) 0
Ci=-"| —esin(6) 2 0 (15.13)
pv 0 0 »

Note that C!, is not in general a proper rotation matrix since det(C,) = 1 + >+
2ecos(0). When e = 0, C!, is a rotational matrix.

For the two-body problem, using equation (2.2) f = % (m is the mass
of the Earth and m; is the mass of the spacecraft) and a = Z—fzz, the fundamental
differential equation can be found as

~ +Lr=o, (15.14)
r

where @t = G(m; +my) ~ Gmy, G = 6.669 % 10~'m? /kg — s? is the universal
constant of gravitation. This equation can be generalized to include force terms
due to aerodynamic disturbances, gravitational forces from other bodies, solar
radiation, magnetic fields and so on. In addition, it can be augmented to include
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control input vectors from on-board actuators. Accordingly, (15.14) should be
expressed for the target and chaser spacecraft as

drtz n fdt fat

a_ Ryl la 15.15
dr? rfr[+m, +mt’ ( )
dr? u foo . foc

c_ K, e Tee 15.1
dt? rg’r +mc+mc (15.16)

where f;, and f,. are the disturbance actions due to external effects; f,, and f,. are
the actuator forces of the target and chaser spacecraft, respectively. In addition,
spacecraft masses are assumed to be small relative to the mass of the Earth. The
second order derivative of the relative position vector is given by

f,0 fi. f f,
b =F—F = —br ey By Ca o (15.17)
r me me I my ny
Simple manipulating on the formula gives
mp:—mu<ﬂ—ﬂ>+f e — 2 (£ + £ (15.18)
c c (rt +P>3 7[3 ac dc m, at dt) - .

In view of (15.2), the dynamics of the chaser spacecraft relative to the target
spacecraft, referenced in the target orbit frame F;,, can be expressed as

r.=r,+p=(r+x)e +ye +ze,. (15.19)
Taking derivative on this equation twice with respect to time yields
fc = (rt+X)er+2(rt+x)er+(rt+x)er +).7.es
+2yé, + €, + Ze,, + 2z¢é,, 4 z€,,. (15.20)

By using the true anomaly 6 of the target spacecraft, the following relationships
hold.

¢, = Oe,, &, = —Oe,, é = Oe,— O%,, é, = —0e, — O’e,. (15.21)

Substituting of (15.21) into (15.20), while recognizing that no out-of-plane mo-
tion exists in the ideal case, and hence &,, = &,, = 0, yields

fo = [R+i-2y0— 0%(r, +x) —y6]e,
+ [+20(7 + %)+ 6(r; +x) —y6*] e, + Ze,. (15.22)
Moreover, the position of the target spacecraft can be expressed as r, = re,,

and taking derivative for this expression twice with respect to time and inserting
(15.21), result in

i = ie. +27e,+r,é, = (i, — r,0%)e, + (2,0 +1,6)e,. (15.23)
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Subtracting (15.23) and (15.22) into (15.17) results in the formulation of the
position vector acceleration represented in the F;, frame:

Pp=r.—i = (i—290 — 6%x — Oy)e, + (+ 205+ 6x — 6%y)e, + Ze,,.(15.24)
Substituting (15.24), (15.19), and (15.1) into (15.18) gives
mp = m(¥—2y0 — 6°x — Oy)e, + (7 +20x + Ox — 07y)e, + Ze,,)

r. T
= —mL.LL(ﬁ—r—;)—i-fu—i-fd

c t
1

= —mu ((r, *;x)e,+ e+ —e,— —2e,> HE+f, (1529
I, ry r. r,

c [& c t

where f, = f,. and f; = f,. and forces on target spacecraft is omitted. Denoting

as in [299], we can rewrite the nonlinear model (15.25) of spacecraft translation
dynamics as follows:

med+C,(0)d+D, (0,6, r.)d+n,(r.,r,) =£,+1£4, (15.26)
where
. o -1 0
C(6)=2mb6|1 0 0 (15.27)
0O 0 O
£-6*> -6 0
D,(6,0.r)=m.| 6 5-6> 0 (15.28)
0 0o &
r/re—1/r?
0, (re,r) = mepd 0 ) (15.29)
0

f, is the control force vector, and f; is the disturbance force vector, both are
applied in chaser’s body frame. It is worthwhile to note that

n(re,r;)| _ =0. (15.30)

The calculation of @ is given by (15.5)

h

= 7
?

6

where 4 is a constant depending on the specific orbit, and r; is provided by GPS.
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Case 1: If the orbit is circular, 6 is a constant because both 4 and r, are
constants. Hence, 8 = 0. Noticing that, during the docking phase, r. ~ r;
and the latter is a constant, therefore, C,(60) and D, (6, 0, ) are constants.

Case 2: If the orbit is elliptic, using (15.4) gives

5 2
o ko h(1+ecos(6))”  h(1+ecos(6)) 7 (15.31)
r? p? a*(l1—e?)?

where e, a, and p are all constants. Taking derivative for both sides of
260 = h and noticing that / is a constant yields

27}7}9—5—7}29 :0-

Substituting (15.4) and (15.7) into this equation gives

b _2h6 _ 2uesin(6)0 _ 2ueb s1n(6)(1+ec0s(9))' (15.32)
r hr, ha(l —e?)

According to (15.31) and (15.32), to calculate #(t), 0 and 6, one needs
to know 6. Let t = 0 be the time that the spacecraft passing from the
perigee. A function of 0(¢) can be found as follows: from (2.61)

27t

M = T = Y —esin(y),

where T is the spacecraft orbital period, ¢ is the time elapsed since the
spacecraft passes the perigee, M is the mean anomaly, y is the eccentric
anomaly. Therefore, given ¢, one can calculate M. Given M and e, one
can calculate y by using Newton’s method. Given v, one can calculate
0 by using (2.50) which is given as follows:

0\ [l+e v
tan(§>— l_etan(g). (15.33)

Therefore, according to Assumption 1, C,(8), D,(8,0,r.) and n,(r.,r,) are
known but in general are time-varying since r., r;, 6, 6, and 0 are all time-
varying.

15.2.2 The model for attitude dynamics

. N T . .
Let the unit quaternion q = [qo,qT} be the relative attitude of the target and
chaser, where

q" = [q1,92,93)- (15.34)

The inverse of the quaternion is defined in (3.50) as q~! = [qo,—qT]T. Let
Qich = [4c0,9¢1,92,9c3) be the relative quaternion from chaser’s body frame to
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the inertial frame, and @, = [¢10,¢11, 912, qs3] be the the relative quaternion from
target’s body frame to the inertial frame. Notice that q; ., is measurable from the
chaser and q; ; is measurable from the target. Using the Assumption 1, equations
(3.50) and (3.64), we have

40 —4qr1 —Yqr2 —q13 qc0o
— —~—1- g q:0 q:3 —qn —{c1
=q. Qi = , 15.35
4= Qi Qise 4o —q3  qo 4G —4e2 ( )
qr3 qn —qr q:0 —{c3

which, according to Assumption 1, is measurable. The relative angular velocity
between frames F., and F;;, expressed in frame F; is given by

o= o, — Ry o), =[o,0, 0", (15.36)

where a)j’;b is the angular velocity of the chaser spacecraft body frame relative to
the inertial frame, expressed in the chaser spacecraft body frame, a)l?fz_b is measur-
able from chaser; wﬁf;b is the angular velocity of the target spacecraft body frame
relative to the inertial frame, expressed in the target spacecraft body frame, ©/,

is measurable from target; Rf}] is the rotational matrix from JF;;, to F., which is
an equivalent rotation of q and is given by (3.56)

R = (¢ — q"q)T1+2qq" —240S(q), (15.37)

where S(q) = q* is the cross product operator. Using Assumption 1 again, we

conclude that @ is available from measurements. Let J. and J; be the inertia
matrices of the chaser and target, respectively.

Assume that a quaternion q rotates frame a to frame b, then the correspond-
ing direction cosine matrix is given by (3.61) which is provided below for easy
reference.

25— 14247 2q192+249095 29193 — 29092
Rl = | 2192 —2q0q3 243 —1+243 2¢2q5+2q0q1 | - (15.38)
29193 +2909> 29293 —2q0q1  2q5— 1 +243

Let @:%, be the angular velocity of the spacecraft relative to the inertial frame,

expressed in the spacecraft body frame, where s € {c,t}. In view of (4.2), the
spacecraft dynamical model can be written as

Jo@00, = —S(075) 1501, + tas + tas (15.39)

where t,; is the disturbance torque applied to the spacecraft body and expressed
in the body frame, and t,, is the control torque applied to the spacecraft body and
expressed in the body frame. In view of (3.13), the derivative of the rotational
matrixR{ that rotates from b frame to a frame is given by

R{ = ~S(0, )R] = (o, )R}, (15.40)
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Using definition of @ in (15.36), (15.40), and a x b= —b X a, the relative attitude
dynamics can be expressed as

JL'CO = JL( i,cb R Rlbwtlb)
ch tb cb th
chi,cb Jc (o cbtb)R —J.R, &7,
- ch chb th
Je; s, — S Lbzb) nb Jthbwztb
Jeo tcb+JL ( nb) cbtb Jthbwztb
= J.o? —JS(0b) 0P, — JRLoP
cWich — i,th th,cb b HMith
b . \th
= chub (wftb)w J.RY @, (15.41)
where coccl’,’ w=—0F '» and wf;cb = o are used in the last two equalities. Using

o, = ®+ R} o/, and applying (15.39) to J.@f, yield

Jeo, = —S(@+R70f,)I(0+RTO,) +tac+ta
= —S(0)J(0+R70%) —S (RY0),) Je (0+RT0%,) + tae + tac
= S(J(0+R70,)) ©—SRY0,)I. (©+RE0%) + tae + tac
= [SJ(0+R7o%))-S(RYwb,) I
~S (R 0l}y) Je (R 0}7,) + tac + tac. (15.42)

It is straightforward to see that
J:S (off,) © = J.S (Rijaf},) o. (15.43)
Using (15.39) again gives
JCR;lfwzﬁt)b
= JLR}Y 10,
= —JRYI'S (%) o, + I RYY "t + JRET b (15.44)

Substituting (15.42), (15.43), and (15.44) into (15.41), we get the model of rel-
ative attitude dynamics which is given in chaser’s frame as follows (see also
[121, 334]):

Jo+C.(o,qo+n(w,q) =t +t,, (15.45)

where t. =t . — JCRfIfJ,_ "t and t; =ty — Jth"{jJ . 't are control torque and
disturbance torque respectively, C,(®) and n,(®) are given as follows:

C.(0,q) =JSRF o))+ SRy w,)I —SU(0+RGwl,)),  (15.46)

nr(“)aq):S<R;Iijwi};b)JthLl§)wi};b J.RY, J IS( 1tb)th1tb (15.47)

In the rest discussion, we consider the rendezvous and soft docking by control-
ling the chaser spacecraft. Therefore, t. = t,. and t; = t;.. At the end of the
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docking phase, the rotation matrix satisfies R = L. If target spacecraft is aligned
with the inertial frame, then ©/;, = 0, C,(®,q) = —S(J.®), and n,(®,q) = 0.

In the final approaching and docking phase, using reduced quaternion dy-
namics equation as proposed in [304] can easily be justified because of the small
attitude error. The attitude dynamics is given as follows:

q
q = 492
q3
] l-gi—a—4 —q3 @ o
= 3 a3 l—qi—a5—q3 —q1 g
- Q l—gi—g—q3 ]
1
= -To. (15.48)
2
15.2.3 A complete model for rendezvous and docking
Let
v=d, (15.49)

which can be obtained by d ~ Ad/At. Now, we can summarize the result by com-
bining equations (15.49), (15.26), (15.45), and (15.48), which yields the com-
plete model for rendezvous and docking:

d 0 I 0 0 d
< — v | | 1D —LC 0 0 v
Solaf | oo 0 0 Ir q
[a) 0 0 0 -J''C ®
0 0
1 1
oy m—ch
- 0 + 0 (15.50)
J:'n, It

Since Dy, C;, T, C,, n;, and n, depend on q, ®, r., r;, & which are all time-
varying, equation (15.50) can be treated as a linear time-varying system.

It is well-known that the control force vector and control torque vector depend
on the thruster configurations and many configurations are reported in different
systems, for example, [49, 297, 310]. Let F, and T, be the thruster configuration
related matrices that define the control force vector and control torque vector,
ie.,

f.=F[f, t.=T./f, (15.51)

where f, is the vector of forces generated by thrusters. Substituting (15.51) into
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(15.50), we have

d I 0 0 d
< — vl —m%Dt —-Lc, 0 0 v
J I O 0 o0 T q
I0) 0 0 0 -J 'C, )
0
1
Enf mFa
0 fu
J-'n, J7IT,
= A()x—ny(r)+Bf,. (15.52)

Assuming that the chaser’s mass change due to fuel consumption is negligi-
ble, the matrix B is then time-invariant. For illustrative purpose, in the rest of
the discussion, it is assumed that the thrusters have the configuration considered
in [334] which is described in Figure 15.3. But the same idea can be used in
other thruster configurations. Therefore, the following relations are easily ob-
tained from Figure 15.3.

0 0 1 -1 0 O
F,={0 0 0 O 1 -1], (15.53)
1 -1 0 0 0 O
and
— 4 4 L3 L3
T, = 02 02 5 3 LOI 2 (15.54)
T2 T2 2 72
It is easy to check that the following matrix
F,
G:= [ T, ] (15.55)

is full row rank matrix. As a matter of fact, in engineer practice, thruster config-
uration should always be designed to be able to fully control the translation and
attitude operations. Therefore, we may make the following assumption in the rest
of the chapter:

Assumption 2 The configuration matrix G is always a full row rank matrix.

15.3 Model predictive control system design

Although it is difficult to analyze the close-loop stability for MPC control system
designs, Theorem 14.1 (see also [217, pages 117-119]) provides a nice sufficient
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Figure 15.3: Coordinate Frame.

stability criterion for the linear time-varying system. This theorem is the theoret-
ical base for us to use the MPC design for the linear time-varying system. One
of the main conditions of the theorem requires that the closed-loop system at ev-
ery fixed time satisfies R,.[A(7)] < —pu. Clearly, robust pole assignment design
guarantees that this condition holds at all sampling time. For any time between
the fixed sampling time, robust pole assignment design minimizes the sensitivity
of the closed-loop poles to the parameter changes. This is another reason that
we select robust pole assignment design over LQR design. The last and the most
important reason we select robust pole assignment design is that prescribed pole
places are directly related to the closed-loop system performance. In rendezvous
and soft docking control, we do not want the relative position and relative atti-
tude response to have any oscillation crossing the horizontal line to avoid colli-
sion. Among various pole assignment algorithms, we choose the one proposed
in [260, 323] because it converges faster than other popular algorithms [195], a
critical requirement in MPC design.

We will divide the control force into two parts. The first part is used to cancel
n,(t) in (15.52). This can be achieved simply by solving the following linear
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system of equations.

F, B | n(r)
[ T, ]ul =Gu, = { n,(t) } , (15.56)
which gives
_at| ™) |t
uy =G [ n, (1) ] :=G'n, (15.57)

where G is pseudo-inverse of G. In our example, equations (15.53) and (15.54)
implies Gt = G~

The design of second part of the thruster force u, is based on the following
linear time-varying system:

X = A(t)x+Buy, (15.58)

where x, A(t), and B are defined as in (15.52). At every sampling time 7, A(7) is
evaluated based on the measurable variables. The robust pole assignment algo-
rithm of [260] is called to get the feedback matrix

up = K(I)X.

The feedback force f, = u; +u, is applied to the linear time-varying system
(15.52). The new variables are measured and the next A(¢) is evaluated in the
next sampling time, and the process is repeated. To avoid the oscillation crossing
the horizontal line for relative position and relative attitude in the rendezvous
and docking process, i.e., to achieve soft docking, the closed-loop poles should
be assigned on the negative real axis, i.e., all the poles should be negative and
real.

The MPC algorithm using robust pole assignment is summarized as follows:

Algorithm 15.1

Data: u, me, Ly, Lo, L, J¢, Ji, ¥y, Ty, and B.
.. o ; _ S b
Initial condition: At time to, take the measurements 0 = @, Yc, Y1, Qi 1> Qichs wf,cb’

a)igb, calculate d, T, q, Rflf, ®, which gives X = X,.

Step 1: Update n(rc,r;), n(®,q) which gives ny(t); update A(t) using
Dt(ea evrb)’ C[(G), Cr(a)aq)’ and T(q)

Step 2: Calculate the gain K for the linear time-varying system (15.58) using
robust pole assignment algorithm implemented as robpole (cf. Appendix C
or [260]).

Step 3: Apply the controlled thruster force f, = u; +uwy = G'n+ Kx 10
(15.52).
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Step 4: Take the measurements 0, Y, Yy, Qi 1p, Qi.chr (Ofizb, a)ﬁ.’;b, calculate d,
r, q, Rfll,’, o, which gives x. Go back to Step 1.

Remark 15.1 It is worthwhile to emphasize that B in (15.58) is a constant matrix.
This information can be used in robpole to reduce the computational burden for the
MPC control scheme.

15.4 Simulation test

Position response
10 T T T

distance in meters

-10

(0] 50 100 150 200 250 300
time in second

Figure 15.4: Position response for the circular orbit.

In this section, two simulation test examples are presented to support the
design idea. The simulation examples of [334, 336] and their parameters are
used. The simulation results are compared to other designs to demonstrate the
superiority of the proposed design.

The first simulation test example is borrowed from [334]. The physics
constants, such as, gravitational constant y = 3.986004418  10'4m? / (kg - s%),
Earth radius 6371000 m, are taken from [280]. The rest parameters are taken
from [334]: the target spacecraft orbit is circular and the altitude is 250 km,
Ly = L, = Ly = 2 m, the mass of the chaser is 10 kg and its inertia matrix is
J. = diag[10, 10, 10]kg - m?, the mass of the target is 10 kg and its inertia matrix
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Figure 15.5: Attitude response for the circular orbit.
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Figure 15.6: Required forces for the circular orbit.

is given as
10 25 3.5
J,=1|25 10 45 |kg-m?,
35 45 10

F, is given in (15.53), T, is given in (15.54). The initial condition is set as
p(0) =[10, —10, 10]"m,
d(0) = [0, 0, 0]"m/s,
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Figure 15.7: Position response for the elliptical orbit.
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Figure 15.8: Attitude response for the elliptical orbit.

q(0) =[0.3772, —0.4329, 0.6645, 0.4783]",
®(0) =10, 0, 0]rad/s.

To avoid the oscillation of relative distance and relative attitude to guarantee
the soft docking, all closed-loop eigenvalues are assigned in negative real axis.
Therefore, the proposed closed loop poles are set to

—0.0410,—0.0411,—0.0412, —0.0413, —0.0414, —0.0415,

—0.0416,-0.0417, —0.0418, —0.0419, —0.0420, —0.0421. (15.59)
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Figure 15.9: Required forces for the elliptical orbit.

Applying the on-line Algorithm 15.1 to this problem, the simulation is per-
formed and the closed-loop responses are shown in Figures 15.4 -15.6. Figure
15.4 is the response of relative position between the chaser and the target and
Figure 15.5 is the response of relative attitude between the chaser and the target.
These figures show that the design successfully avoid the oscillation crossing the
horizontal line during the docking process and achieved the soft docking. Figure
15.6 depicts the forces in 6 thrusters used in this docking process, the maximum
forces is about 0.17 Newton, which is much smaller than the maximum forces'
used in the design of [334], which is in the range of 30 Newton.

Comparing to the simulation tests in [7,8,9,10,11,12,13,14,15], the simula-
tion using the proposed method is the only one that does not have oscillation
crossing the horizontal line in relative position and attitude responses, which is a
clear indication that the design achieves soft docking. The on-line computational
time for each call of robpole is about 0.1 second on a Dell PC with Intel Core
15-4440 CPU @ 3.10GHz and installed memory of 12GB. Since robpole is a
Matlab code which is an interpreted code. Computational experience shows that
a compiled code can be magnitude faster than interpreted code. Therefore, the
algorithm will be fast enough in real-time application.

The second simulation test example uses the same spacecraft parameters
described in the first example but uses an elliptical orbit described in Table 1
of [336], where the semi-major axis a = 2.4616 x 107 meters, the eccentricity
e = 0.73074, the specific angular momentum 4 = 6.762 x 10'%? /s, and the pe-
riod of the orbit is 38436 seconds. To show that the proposed method can achieve

but much longer time is used than the design of [334].
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the performance of no oscillation crossing the horizontal line for the relative po-
sition and relative attitude between the target and chaser spacecraft with mea-
surement error, control error, and external effect, the simulation is performed
as follows: the x(¢) applied in feedback is up to 5% deviation from calculated
true x(¢). This deviation can be the result of either measurement error or con-
trol error or disturbance force. The performance of the position responses and
attitude responses in this simulation are provided in Figures 15.7 and 15.8, the
required force is given in Figure 15.9. Clearly, the performance of relative posi-
tion and relative attitude responses meets the design requirement, i.e., there is no
oscillation crossing the horizontal line. Also it has been seen that the design is
insensitive to measurement error, control error, and external disturbance effect.
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Some most advanced space missions, such as James Webb Space Telescope are
multi-body system. This chapter discusses a symbolic rigid multi-body nonlin-
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ear model for such space system using Stoneking’s implementation of Kane’s
method. This symbolic nonlinear model is linearized using Matlab symbolic
functions diff and inv because the analytic linearization is intractable via man-
ual derivation. The linearized analytic rigid model is convenient to design the
controllers using both linear quadratic regulator (LQR) and robust pole assign-
ment methods. A systematic methodology for modeling and attitude control is
proposed. The idea is to use the LOR approach as an effective first design step
that can inform the selection of real eigenvalues for the final robust pole assign-
ment. We use a concept design for LUVOIR (which will be described shortly) as
an example, but the systematic method can easily be applied to any rigid multi-
body systems, connected via rotary joints having arbitrary degrees of freedom,
arranged in tree topologies. The materials of this chapter are from [247, 321].

16.1 Introduction

The Large UV Optical Infrared Surveyor (LUVOIR) (see Figure 16.1), to be
placed to Sun-Earth L2 point, is a concept proposed for the key science goal of
characterizing a wide range of exoplanets some of which are potentially habit-
able. Although the telescope is still in the concept phase, NASA has engaged
multiple engineering disciplines to conduct preliminary design studies [65]. The
telescope is a typical multi-body dynamical system.

Multi-body dynamical systems can be found in many applications including
machine design, spacecraft dynamics, and robotics. Modern modeling techniques
for multi-body dynamics are based on d’Alembert’s principle in which dynami-
cal systems were essentially converted into static ones through the introduction
of inertial forces. In 1788, Lagrange formalized this approach by combining the
fundamental ideas of d’ Alembert’s principle with explicit descriptions of virtual
work and generalized coordinates [60]. An extension of d’Alembert’s principle
valid for holonomic systems was presented in 1909 by Jourdain [102]. As many
engineering systems are nonholonomic, Kane extended d’Alembert’s principle
to this general case in 1961 [111]. Kane’s method has many applications par-
ticularly in robotics for systems of rigid bodies linked by rotational joints that
have an arbitrary number of degrees of freedom (see [34, 38, 112]). Therefore,
it is now included in a few engineering handbooks, such as [34, 225]. Although
Kane’s method has become popular, controversy exists surrounding its original-
ity and efficiency when compared with the Gibbs-Appell equations [53, 134].
Recently, Piedboeuf indicated that Kane’s equations are consistent to the Jour-
dain principle [201]. In [248], Stoneking demonstrated that Kane’s method can
be particularly useful in modeling the case of multiple rigid bodies connected via
rotary joints, e.g., space telescopes. As this was a conference paper, it was lim-
ited in both scope as well as exposure. The implementation, however, is available
as open source software [247].



Modeling and Attitude Control of Multi-Body Space Systems B 315

Using Kane’s method as described by Stoneking [248], Bentz and Lewis de-
rived a two-body rigid dynamics model for the LUVOIR telescope and simulated
the initial condition response of a LQR design [21]. This work was followed by
similar testing of a higher fidelity three-body rigid dynamics model in [22]. As
linked multi-body systems are widely seen in robotics and space applications,
the preliminary research of [21, 22] was extended in [321]. Though the deriva-
tion is for a three-body model, the aim is to generate further exposure within the
aerospace community of Stoneking’s implementation of Kane’s dynamics and
analysis technique that can efficiently model rigid multiple bodies, connected
via rotary joints having arbitrary degrees of freedom, arranged in tree topologies.

Although plenty of flexible system modeling methods exist (for example
[39, 144, 88]), we are particularly interested in rigid model because the rigid
model size is much smaller and its states are normally measurable. Therefore, the
rigid model is more suitable for the control system design than flexible models,
and using a rigid model for the controller design is widely used in practice. Our
ultimate goal is to design a controller for the LUVOIR telescope in compliance
with some arbitrary pointing requirement. As Kane’s multi-body dynamics are
nonlinear, and many powerful control techniques such as LQR and robust pole
assignment are based upon linear models, we have chosen to linearize the sym-
bolic model for the purpose of controller design. Two controllers are designed
based on the linearized model and their performances are compared for both
rigid and flexible models to give us some confidence that the designed controller
will work for the real system.

There are other multibody modeling methods in the literature. For example,
Li et al [137] discussed a flexible multibody spacecraft modeling which has a
center service module, supporting trusses, and a mirror module. It is assumed
that the center service module and the mirror module are rigid but the trusses
are flexible. In addition, the rigid center service module’s translational motion is
not considered, and connection of the rigid center service module and the trusses
are fixed. Therefore, their model is more specific than the one discussed in this
chapter because we do consider translational motion for all bodies and all con-
nections are not fixed. Hu et al [94] derived a more general flexible multi-body
system modeling method, which has much more states. Therefore, the model is
more suitable for validating the controller design but is not practical for controller
design.

16.2 Preliminary

This section provides important concepts and formulas in dynamics theory to be
used in this chapter and a brief discussion of Kane’s method.
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Figure 16.1: The concept of LUVOIR telescope.

16.2.1 Basic concepts and important formulas

Before we proceed, we present some basic concepts and important formulas
which can be found in [112] and will be used repeatedly in the remainder of
the chapter. Let Bz = [by, by, b3] be a set of bases of the frame F, then a general
vector V resolved in frame F can be written as:

V =vib; +vby +v3bs = [by, by, b3][vi,v2,v3]" = Brv, (16.1)

where v = [v1,v2,v3]T. Let @p /4 be the angular rate of frame B relative to frame
A resolved in B. Invoking [112, (2.3.1)], for any moving vector X resolved in B,
its derivative in frame A and frame B can be related as:

dx dx

AX| XY B XX 16.2
dl"A dt’B+COB/AXX’ (162)

where x denotes the cross multiplication of two vectors. If X is fixed in frame B,

then % = 0. Therefore, we obtain (see [112, (2.1.2)]),
B

dx ~,

—| = p/ xX. 16.3

dt ‘A B/4 % X ( )
The angular velocity of a rigid body B relative to a reference frame A can be
expressed in the following form involving n auxiliary references Ay, ...,A, [112,
24.1)]:

G)B/A: E)B/Al +6)A1/A2+"'+E)A,,/A- (164)



Modeling and Attitude Control of Multi-Body Space Systems MW 317

The angular acceleration of a rigid body B relative to a reference frame A is

defined as the first time-derivative in A of the angular velocity of @p/, as [112,

2.5.D)]:

dE)B/A
dt

If P and Q are two points fixed on a rigid body B having an angular velocity @ /A
relative to a reference frame A, then the velocity of P in A, denoted as Vp /4, and
the velocity of Q in A, denoted as Vg4, are related to each other as [112, (2.7.1)]:

—

Op/a =

(16.5)

VP/A :VQ/A+6)B/A Xi:7 (166)

where T is the position vector from Q to P. The relationship between the acceler-
ation of P in A, denoted as Eip/A, and the acceleration of Q in A, denoted as ?IQ /A>
is given as [112, (2.7.2)]:

5P/A:§Q/A+6:)B/AX (E)B/Axf)+6tg/A X T. (167)

16.2.2 Kane’s method

We will derive the three-body rigid nonlinear model for LUVOIR telescope by us-
ing Kane’s method [248]. The notations in this section are defined in [112, 248]
and will become clear for the readers who follow the derivation to the end of
the next section. At that time, readers will see the beauty of Stoneking’s form of
Kane’s method [248]. Let {7} be the general torque vector of the system, [J] be
the general inertia matrix of the system, {a} be the general angular accelera-
tion vector of the system, { @} be the general angular rate vector of the system,
{h} be general angular momentum vector of the system, {f} be the general force
vector of the system, [M] be the general mass matrix of the system, {a} be the
general linear acceleration vector of the system, Q be the partial angular veloc-
ity dyad, and V be the partial velocity dyad (€ and V will be defined in (16.23)
and (16.33)). The Kane’s equation in matrix form can be expressed as

Q" ({7} — Il{a} — {@xh}) + VI ({f} - M]{a}) =0, (16.8)

where the expression in the first parentheses is Euler’s equation, and the ex-
pression in the second parentheses is Newton’s second low of motion. Therefore,
formula (16.8) appears at first glance to be trivial; however, there are some sig-
nificant merits to using Kane’s equation for multi-body models as discussed in
[248]. We will see that the following relations hold in the rest development.

{a} = Qx,+ {0y}, (16.92)
{a} =Vx,+{a,}, (16.9b)
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where X, is the generalized speeds of the multi-body system, {c¢,.} and {a,}
are items that do not include X,. Substituting equations (16.9a) and (16.9b) into
(16.8), and then grouping on X, yields Stoneking’s form of Kane’s equation

(QTIQ+VIMV) x,

= Q"({r}-I{e} —{oxh})
+VI({f} - Ml{a}), (16.10)

which is the rigid multi-body system model. A similar idea was proposed and a
similar formula to (16.10) is obtained by Hu et al [94] in 2012 for flexible multi-
body system modeling. The advantages of using Kane’s method for multibody
system modeling with tree structure was discussed in [240]. In the next section,
we will provide details of using (16.10) for rigid multi-body system modeling.

16.3 Three-body rigid model for LUVOIR telescope

The LUVOIR-A telescope model is assumed to be composed of three rigid bod-
ies connected in serial by two rotary joints as illustrated in Figure 16.2.

The three bodies are the spacecraft bus, the boom (tower, or payload articu-
lation system), and the payload. Spacecraft bus includes many subsystems such
as electrical power system, propulsion, attitude control system, avionics, com-
mand and data handling, thermal management system, mechanical and struc-
ture. The boom can repoint the payload to any position on sky. The payload in-
cludes optical telescope assembly, the high definition imager, the extreme coro-
nagraph for living planetary system, and ultraviolet multi-object spectrograph
[65]. Several frames of the LUVOIR telescope will be considered. Let the space-
craft body frame be denoted as F; = [Xy, ¥, Z], the inertial frame be denoted as
F1 = [X1,¥1,21], the boom body frame be denoted as Fj, = [Xp, ¥5, Zp], the payload
body frame be denoted as F, = [X,,y,Z,]. The spacecraft frame may be defined
relative to the inertial frame by

Fr=0,,F7". (16.11)

where Oy, is the orientation matrix whose subscript s/I represents that the ori-
entation of F; is relative to ;. Using standard 3 — 2 — 1 sequence of the intrinsic
Euler angle rotations by yaw angle v, pitch angle 6, and roll angle ¢, the orien-
tation matrix O, /; can be expressed as

1 0 0 cos(f) 0 —sin(B) cos(y) sin(y) O

Oyp=1] 0 cos(9) sin(¢) 0 1 0 —sin(y) cos(y) 0 |.
0 —sin(¢) cos(9) sin(6) 0  cos(0) 0 0 1
(16.12)

Since orientation matrix Oy, is an orthogonal matrix, we have

Ol/s - O"r/]
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Let the boom gimbal angle be y and the payload gimbal angle be A. The
boom body frame to spacecraft body frame orientation matrix can be expressed
as

cos(y) 0 —sin(y)
Ops=| 0 1 0 : (16.13)

sin(y) 0 cos(y)

The payload body frame to boom body frame orientation matrix can be expressed
as
cos(A) 0 —sin(A)
Opp = 0 1 0 . (16.14)
sin(A) 0 cos(d)

The payload body frame to spacecraft body frame orientation matrix can be ex-
pressed as

cos(y+A) 0 —sin(y+A)
= 0 1 0 . (16.15)
sin(y+A) 0 cos(y+A)

(@)

p/s

Figure 16.2: The description of the three bodies of LUVOIR telescope.

Let the angular velocity of the boom relative to the inertial frame be denoted
as oy, /1- We will use similar notations in the remainder of this chapter, for ex-
ample, @5, @, and @;/;. Let Ty = [0,1,0]" and T, = [0,1,0]", 61 = 7 and
0, = A be the generalized speeds of the rotary joints of G1 and G2. Then the
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angular rate of the rotary joint G1 represented in the boom frame and the angular
rate of the rotary joint G2 resolved in the payload frame can be written as !

CT)b/s = flﬁh a)p/b =T10,. (16.16)
Using these notations and (16.4) (as consistent with [112, (2.4.1)]), we have
By = Bp/s + By =110 + By1. (16.17)

Let B, be the bases of inertial frame, B; be the bases of the spacecraft frame, B,
be the bases of the boom frame, B, be the bases of the payload frame. Then, we
may write (16.17) as

Bbwb/l ZBbF161+Bsa)S/1. (16.18)

By premultiplying B}, we may clear the base dyads and obtain

@y); =101+ Oy 5001 (16.19)
Similarly,
@y = By + @)+ Byjr = 1200 +T101 + @y 1. (16.20)
We may write (16.20) as
B,w,; = B,0,,+B,0,,+Bs0,,
= Bylh0 +B,I' 01 +Bswy, (16.21)

and we may clear the base dyads by pre-multiplying BIT, and obtain
Wy =F262+0p/bF161 +(9,,/Sa)x/,. (16.22)

Combining (16.19) and (16.22) yields the general angular rate vector

a)s
Oy I; 05 03 033 G{ !
@y | = | Ops I 03, 033 Y , (16.23)
Wy /1 Op/s Op/brl I 03 N
Q

where I is the three-dimensional identity matrix, 03 is the 3 x 1 all zero matrix,
033 is the 3 x 3 all zero matrix, vy, is the velocity vector of the center of mass of
the spacecraft relative to the inertial frame, and Q is the partial angular velocity
dyad.

Now, we consider the linear velocity of the center of the mass for the boom

'For LUVOIR-B where the connection between payload and boom has two degrees of freedom, the
following equations may be replaced by (24) in [248], but the rest derivation remains essentially the same.
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and the linear velocity of the center of the mass for the payload. First, we in-
troduce a notation. For any vector a = [ay,as, a3]T, let a skew symmetric matrix
related to a be defined as

0 —dajs ar
a* = as 0 —a |. (16.24)
—d) ay 0

The cross product of two vectors a x b can be written as a multiplication of the
matrix a* and the vector b, i.e., a*b. Let V,/,; be the velocity of the center of
mass of the spacecraft in the inertial frame, v, /; be the velocity of the center of
mass of the boom in the inertial frame, V¢, /; be the velocity of G1 in the inertial
frame (see Figure 16.2), ¥ /s be the position vector from the center of mass of
the spacecraft to the joint G1, ¥g;/;, be the position vector from the center of
mass of the boom to the joint G1, V,/; be the velocity of the center of mass for
the payload in the inertial frame, V;; be the velocity of G2 in the inertial frame,
T2/, be the position vector from the center of mass of the payload to the joint
G2, Yyp be the position vector from the center of mass of the boom to the joint
G2. Note that all these V and ¥ vectors are in the inertial frame (see Figure 16.2).
Since G1 is a point on both the spacecraft and the boom, from (16.6) (see [112,
(2.7.1)]), we have

Vo1 = V1 + @sﬂ X ¥g1/s, (16.25a)
VGI/[ = i”b/l + CT’b/[ X i"01/1;- (16.25b)

Substituting (16.25a) into (16.25b) and invoking (16.17) yield

Yoy = Vo @ XTgy 5 — @y X T
= Vo + @ X Y15 — (D) + Dyjr) X Fr
(16.26)

We may represent each vector in an appropriate basis and write (16.26) as
Bvyr = By +Bsos X Birgy
—(ByI'101 +Bswy/;) x Birgi (16.27)

Using the notations that rg; /s\ 1 = Byrg /s (Where rg; /S\ ; means that the vector
rgi/s is expressed in the inertial frame) and rg; /b\ 1 = Birgy/p, we may clear the
base dyads by pre-multiplying BT and obtain

Vo = V=Ygl X Ops0s1 41610 X Oppl'107
+161/51 X O1/505 )1

= Vyuli+ [rGl/b|1>< —l'Gl/x|1X] Oy/s 051

V21 eR3 X3
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+ 161 OrpT1 0. (16.28)
—_————

Applying the same idea to the joint G2 and invoking (16.6) (see [112, (2.7.1)]),
we have

Va1 = Vo1 + @pjr X T/, (16.29a)
Voo 1 = Vpii+ @ X Ego)p. (16.29b)

Substituting (16.29a) into (16.29b) and invoking (16.20) yield

Vp/l = Vb/1+5)b/1Xfcz/b—a)p/lecz/p
= Vi + (D + Byyr) X Foapp
—(C_ép/b + E’b/s + 5)3/1) X ?GZ/p
= Vs — @ppp X Tioyp+ DBy X (Fiap —Ti2/p)
+@y1 % (G270 —F2/p)- (16.30)

We may represent each vector in an appropriate basis and write (16.30) as

B[Vp/l = BIVb/I —BPF262 X Bﬂ'cz/p
+ByI'101 X (Birgayp — Birgayp)
+B, @7 X (Birgas — Birgyp) (16.31)

Using the notations that rg, ;|1 = Birgy/, and rgy/,|1 = Birgy),,, and invoking
(16.28), we may clear the base dyads by pre-multiplying BY in (16.31) and obtain

Vo = Vel X O plaos + (Yool — Taonli) X Orpl'107
+(r6a/plt = T626l1) X Op55)1
= Vo + V20, + V0o + 16l X Ol 0,
+(r6a/plt = T62611) X O1pT'161 4+ (Y6l — T plr) X Opys g

= Vy+ [I'Gl/b\Ix _rGl/s|1><+rG2/p‘Ix —I'Gz/b\IX]OI/s(COs/I)

+ [x61/6l] + 162017 —Y62/6l] ] OrpT1 O1 416217 Opyp T2 G2

v ER3X1 vy ER3X1
(16.32)
Combining (16.28) and (16.32) yields
o)
V1 03 05 05 I3 6'/ !
Vo | = | Vi vz 031 I3 0'; , (16.33)
Vo1 Vi vaa viz I3 Vi

\4
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where V is the partial velocity dyad. In the sequel, we show that Q, defined in
(16.23), and V, defined in (16.33), are the same ones defined in the differen-
tial equations (16.9) which will be used to obtain the multi-body system model
(16.10). Let &S/I be the angular acceleration of the center of the mass of the
spacecraft relative to the inertial frame, ¢/, be the angular acceleration of the
center of the mass of the boom relative to the inertial frame, and 56,, /1 be the
angular acceleration of the center of the mass of the payload relative to the iner-
tial frame, respectively. Taking the derivative for (16.17) and invoking (16.2), we
have

da:)b/l _ d<6)b/s + @s/l)

Gy = dt
day,, day,
T dt
= T161+ @, x 101+ 8. (16.34)

Representing each vector in an appropriate base yields
BbOCb/[ =B,I'y0; +Bbwb/1 x By 07 +BSOCS/1. (16.35)

Pre-multiplying B} on both sides of (16.35) clears the base dyads and yields

Cp/1 = I'o) + /1 X I'o; +(9b/sas/,
= L1614 Opys0/r+ 0y (16.36)
where
0‘;:/1 =y X101, @) = Oy (16.37)

Taking the derivative for (16.20) and invoking (16.2) yields

ddy,;;  d(@,,+ @y + Op)

Gpj1 = dt dt
da)p/b da)b/s da:)s/l
dt + dt + dt

= fzdz + CT),,/[ X szz +f161

+ @y X Tioi+ Gy

(16.38)
Representing each vector in an appropriate base yields
Bya,; = Bplh6+B,0,, xTh0,+ BN 6
+B;,a)b/, x I'1op +BSOCS/1. (16.39)

Pre-multiplying BIT, on both sides of (16.39) clears the base dyads and yields

o, = oo+, xTho+0,,I'161
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+Op/bwb/l xI'oy+ Op/sas/l

= e +0,,061+ 0,0+ 0y, (16.40)
where
a;;/l = @, xIo+ (’)p/bcob/, x T oy
= 0y X120+ Oﬁ/bal:/l’ @1 =001
(16.41)
Denote o = 61, & = 65, and
Xy = [@y/1, 61, G2, V1] (16.42)

Combining (16.36) and (16.40) yields the general angular acceleration vector

as/l
{o} == | ay
Op/1
Qy

I; 03, 03 033 6/ ! 03

= Ops T 05, 033 6; + | %y

Ouis Oppplt o 033 V" o,

@ T {a,}

— ok, +{a,), (16.43)

which is equivalent to (16.9a). We also showed that Q defined in (16.23) is the
same as the one defined in (16.43) or in (16.9a). Next, we derive equation (16.9b).
Let &, /1 be the acceleration of the center of the mass of the spacecraft relative to
the inertial frame, a, /1 be the acceleration of the center of the mass of the boom
relative to the inertial frame, a o/l be the acceleration of the center of the mass of
the payload relative to the inertial frame, @, /; be the acceleration of the joint G1
relative to the inertial frame, and a;, /1 be the acceleration of the joint G2 relative
to the inertial frame, respectively. Since G1 is a point on both the spacecraft and
the boom, applying (16.7) to the joint G1, we have

agi/ = Ay + Oy X (Dyyp X Tgy /) + O 1 X Ty, (16.44a)
g1 = A+ Opyp X (Dpyr X 1) + G X Ty e (16.44b)

Substituting (16.44a) into (16.44b) yields

d,; = dy+dy x (D X Tei/s) + O X Ta
—C_[)b/I X (Ebb/l X ?Gl/b) - 5‘};/1 X ?Gl/b- (16.45)

Representing each vector in an appropriate base and invoking (16.35) yields

Bja,);
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= Bjay; +Byo,; x (Byoy; < Birg )
+Bsar X Birgy s
—Byy,; < (Bywy; X Birgy )
=By, X Birgy
= Bay +B,o,) x (Bswg X Birg /)
+Bsay ) < Birgy s
=By, x (Bywy/r X Birgy )
—(ByI'1 61 + By x T'101 + Byt /) X Birg .
(16.46)

Pre-multiplying B} on both sides of (16.46) clears the base dyads and yields

a1
= ay;+ OO0, X (CUs/I X rGl/s|1)
+0O1 /501 X XG1/sl1
—Oyp 01 X (wb/l X l'Gl/b\I)
—(O1pI'161 + 011,01 X T'161 4 Oy 0 11) X Y11

= ay+ (Yeiplr —rei/sl) X Oy 0

Vo €R3x3
+r1li x Ol 61 +ay ), (16.47)
—_———

V22 eR3x1
where

r

a,; = O x (@51 X TG1/5l)
—Or/p @1 % (wb/l X I'Gl/b|1)
+161/5|1 X (O1/p @y X T107)

= (91/s0)17s(w§11'c;1/s\1) - Ol/bwbx/I(wa/erl/b‘l)
+1'01/b\1x(91/b051:/1~ (16.48)

Applying (16.7) to the joint G2, we have

Ago/r = apyp+ Oy X (D)1 X Fgayp) + Opyr X Ty, (16.492)
§G2/1 = 5,,/14- CT),,/[ X (CT),,/] X izGZ/p) + 56,,/1 X FGZ/[)‘ (1649b)

Substituting (16.49a) into (16.49b) yields

a,; = A+ Oy X (Opyr X Feapp) + 0 X Fayp
—_)p/1>< (@p/lecz/p)—&,,/le'm/,,. (16.50)
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Representing each vector in an appropriate base yields

Ba,; = B, +Byw,; x (Byw, x Birgy)
+Byay, /1 X Birgap
=B,/ x (B, x Birgyp)
—B,a,; x Birgy),. (16.51)

Pre-multiplying B} on both sides of (16.51) to clear the base dyads, and substi-
tuting (16.36), (16.40), and (16.47) into the formula yields

Ap/1

where

a1+ Opp @y X (wb/l X rGZ/b|1) +Opp041 X l'Gz/b\I

—O11p@p1 X (@p/1 X ¥62/pl1) = Otyp Oty 1 X Tiaypli

ag/1+ (Y61 /bl — YG1/5lr) X Orys Oy +T6170]1 < O1pl'161 +ay
+Opp@p 1 % (@1 X T2/5/1) + O1yp(T161 + Op s Qsy1 + 0ty 1) X XG0
—=O17p @1 X (01 X ¥G2/pl1)

—=01p(T262+ 0, 1161+ O 01+ 04 1) X X621

ay/+ (61l — Y6175l FX62)pl1 —Ya2n11) X Opys 01

+(xe1lr +r62/plt —Taolt) X Oppl'1 61

V326R3X]
+FG2/p‘1><(91/pF262+a;/1, (16.52)
—
Vi ERIXI
a,; = ay—reyl X Oy,

+r02/p‘1 X O[/p(x;)/l
+O11p0p1 % (@)1 X ¥62/5]1)
—O1/p@p /1 X (@p/1 X XG2/p1)- (16.53)

Combining (16.47) and (16.52) yields the general linear acceleration vector

as/l
{a} = | ay;
Ap/1
;
033 03 03 I3 6{ ! 03
= Voo v 031 I3 : + | a,,
\% v v | o a’
31 V3 vz Iz Vo "
v — {a,}
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= Vi, +{a}, (16.54)

which is (16.9b). We also showed that V defined in (16.54) is the same as the one
defined in (16.33) or in (16.9b).

Model (16.10) is a very general multi-body rigid system model. For a three-
body rigid system like LUVOIR, assume that the 3 x 3 inertia matrices for the
spacecraft, the boom, and the payload are given as J, Jp, and J,, then the general
inertia matrix is

Js 033 033
Jj=103 J, 03 |. (16.55)
053 03 J,

Assume that the masses of the spacecraft, the boom, and the payload are given
as my, my, and m,, then the general mass matrix is

mds 033 033
M]=| 03 mply 033 |. (16.56)
03 0;3 myls

Assume there are no external forces acting on the rigid bodies, then we have
{f} = 0. Assume that the control torques u on the spacecraft, the boom, and the
payload are T, 73, and 1), i.e.,

u=[7, 7, 7", (16.57)
then, the general torque vector is
Ts— Ty
{t}=| wn—1, |. (16.58)
Tp

Finally, we can express {® x h} in terms of the angular rates @, /1> Wp /5 and @,
of the spacecraft, the boom, and the payload as follows:

W/ X szs/l
{oxh}=| o xJpwp; |. (16.59)
Wp/p X Jp @y /i

Let
L= (Q"JQ+VIM]V), (16.60)
r; =Q" ({7} —[J}{e} — {@xh}), (16.61)

and
r =V ({f} - M]{a}). (16.62)

Substituting (16.55), (16.56), (16.58), (16.59), (16.60), (16.62), and the general
force vector {f} = 0 into (16.10), we have the three-body rigid system model:

Lx, =r;+1, (16.63)
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or
X, =L (r; +12). (16.64)

Equation (16.64) looks very simple, but it is a nonlinear system because L,
r; and r; have nonlinear components of the state and control variables. We need
a linear system model so that we can apply LQR or robust pole assignment de-
signs. First, we must rescope the model for the purpose of pure attitude control.
We take our generalized speeds xg, discard the v,;; component which decouples
from the attitude states, and add the spacecraft’s Euler angles ¢, 8, and y in
order to define our state vector x = [¢, 0, y, 7, A, @y /1,015 Gz]T. The kinematical
differential equations associated with these Euler angles in the reference inertial
frame are given as [113, Page 429, Space-three 1-2-3]:

) (@y1,[1, sin(¢)tan(6), cos(¢)tan(6)]")
6 | = < ‘/1,[0 cos(¢), —sin( T> ,
v {@y1,[0, sin(¢)sech, cos(q))sec@ T

where (a,b) denotes the inner product of two vectors of a and b. Therefore, the
revised state space nonlinear system is given as:

[ ¢ 1 [ (@1, sin(¢)tan(6), cos(¢)tan(9)}T> ]
6 ‘/1,[0 cos(¢), —sin(¢)]")
yr {@y1,[0, sin(@)secH, cos(g)secO])
o Y _ Oi
X:= i = . . (16.65)
Oy/1 M3, 0ss](L7'(ri+12))
61 0,0,0,1,0,0,0, 0] (L™ (r; +12))
& | | [0,0,0,0,1,0,0, 0/ (L (r;+12))

Remark 16.1 The procedure of the 3-body modeling can easily be applied to
any multibody system with tree structure, and the modeled system has the structure
described in [248]. It is also worthwhile to note that the final state space model dis-
carded some states in X, and added some states into x, therefore, the dimensions
of X, and x are different. Finally, (16.65) involves an analytic inverse matrix L'
(its computation will be discussed in the next section), and is slightly different from
Stoneking’s implementation (16.10).

16.4 Linearization and controller design

To use popular controller design methods, we need to have a linearized rigid
dynamics model.



Modeling and Attitude Control of Multi-Body Space Systems B 329

16.4.1 Linearization

Now, we linearize the nonlinear system (16.65) about a desired new equilib-
rium state (when this equilibrium state is attained, u = 0) so that we will
have a symbolic linear system. Assume that this equilibrium state is at x; =
(04, 64, Wa, Ya, Aa, 0, 0, 0, 0, 0]T and the control torques are zeros, i.e., u = 0.
Therefore,

of(x,u) B daf(x,u)
x| x—x, (x—x4)+ “u | x—x, u. (16.66)

u=0 u=0

X:

where (])d = 717/2, and 6; = YVi=%Y1= ld =0.

Remark 16.2 In this case, the target equilibrium state is a 90° rotation of the
spacecraft in roll axis from the current state. Our simulation in the next section will
show that the designed controller works in such a large rotational maneuver. In the
next section, we will discuss a method to obtain the analytic formula for (16.66).

16.4.2 Symbolic inverse for linearization

Clearly, it will be very tedious, if it is not impossible, to find the analytic par-
tial derivatives for (16.66), which involves the calculation of the analytic partial
derivatives of L~!. Bentz and Lewis suggested in [21] using Matlab symbolic
function ‘diff” and the symbolic inverse function ‘inv’ for matrix L. For this
8 x 8 matrix L, even using Matlab symbolic inverse, the computation is still too
complex to handle. Fortunately, we are only interested in the first five states in
(16.64), (see (16.42)), which are the last five states in (16.65), We can use the
method proposed in [22]. Let

L, L, P1 . Xg1
L= , p=ri+r= , X = 5,
i ] penens 0] s3]

then, we have
L, L, Xg 1 P:
S| = . 16.67
IR 15
Solving the second equation of (16.67) for X, » gives
Xp2 =Ly (p2—L1%,). (16.68)
Substituting (16.68) into the first equation of (16.67) gives

%1 = (Li —LoLy'LY) ' (p1 — LoLy 'pa), (16.69)
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which involves symbolic inverses of a 3 x 3 matrix L3 "and a 5 x 5 matrix
(L —L,L; 'L .

16.4.3 Representation of vectors in inertial frame

All constants in the multi-body model are provided by mechanical engineers ac-
cording to the spacecraft designs. Some constants in the multi-body model are
independent to the frames, such as mass of spacecraft, mass of payload, etc., but
some constants are dependent to the frames. Most likely, the distance vectors in
a rigid body are given in that rigid body frame, but we need to represent these
distance vectors in the inertial frame in the model (16.69) as discussed in the
previous section.

Letrg; /S\S = aXy+ axy, + asz, be the position vector from the center of mass
of the spacecraft pointing to the joint G| represented in the spacecraft frame,
Il /b|b = b1Xp + byyp, + b3z, be the position vector from the center of mass of the
boom pointing to the joint G| represented in the boom frame, rg, ;| = ¢1X), +
c2¥p + 32, be the position vector from the center of mass of the boom pointing
to the joint G, represented in the boom frame, and rg;, p\ p =di1x, +doy, +dsz,
be the position vector from the center of mass of the payload pointing to the joint
G, represented in the payload frame. Denote rg /,|; be the the position vector
from the center of mass of the spacecraft pointing to the joint G| represented in
the inertial frame, rg; /b\ ; be the the position vector from the center of mass of
the boom pointing to the joint Gy represented in the inertial frame, rg;/5|; be the
the position vector from the center of mass of the boom pointing to the joint G,
represented in the inertial frame, and rg,/,|; be the the position vector from the
center of mass of the payload pointing to the joint G, represented in the inertial
frame, then using (16.12), (16.13), (16.13), (16.14), and (16.15), we have

v /sl = O1starssls = Orslar, az, a3)"
= O} lar,a2,a3]", (16.70a)
vl = OI/b[bl,bz,b3]T = O;T/][bl,bz,bﬂT
T
= (OnsO51) " b1, b2, b3, (16.70b)
Yo sl = Ouplersea,es] = Opyylerea,e3]"
T
= (Ob/sOs/I) [01,C27C3]T, (16.70c)
TG /plr = Oypldi,da, i)' = O [d1,d>, 5]
T
- (OpsOsi1) " ldh,da,d3]", (16.70d)
ra1/plr = rG2/pli = TGa/bl1 + X6l (16.70e)
oyl = 61/l = X615, (16.70f)

rs/p|1 - rGl/p‘I_rGl/s‘P (1670g)
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Using the definition of (16.24), we can write

0 _rs/b3 rs/bz
l’s/b|1X = Ts/b, 0 —Tyb, | (16.71)
L _r“'/bz rs/bl
0 —rs/p,  Ts/p,
vl =1 Ty, 0 =Ty | (16.72)
L _rs/l’z rS/Pl 0

and similarly, we can define rg; |}, r61/,|; and rgo [/
Using the parameters of the LUVOIR telescope, we use a Matlab code (which
is provided in [22]) to generate the rigid linearized time invariant model

x = Ax+Bu (16.73)
with A and B given as follows:
[0 000010 00 0]
000 O0O0O0OO0O-100
000 0OO0O0°1 0 0O
000 O0O0OO0OO0O OT1O0
A— 0 00O0O0O0OO0O OO0°1
10 00O0O0O0O0O O0O0O0]|"
0 00O0O0OO0OO0O OO0O0
0 00O0O0O0OO0O OO0O0
00 0O0OO0OO0OO0O OO0O0
10000000 00 0]
r 0 0 0 0 0 7
