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Preface

My interest in spacecraft modeling, attitude determination and control started at

Orbital Science Corporation. At the end of the summer of 2005, I was looking

for a job that would best use my background in controls and optimization. There

was an open house for job applicants at Dulles campus of the company. That was

the first time I visited Orbital Science Corporation. I was very fortunate to have

a chance to talk to Dr. Brian Keller, the deputy director of GNC (guidance, nav-

igation, and controls) at the time. I showed him my publications in controls and

explained my work at previous companies, he listened and immediately promised

to set up an interview for me. A few weeks later, my future manager at Orbital

Science Corporation, Mr. James Bobbett, called me and an interview was sched-

uled. Both Brian and James knew that I did not have a background in spacecraft

and launch vehicles, however they trusted my background in controls and be-

lieved that my prior experience to be beneficial in this work. They offered me the

job! I joined Orbital Science Corporation in November 2005.

My time at Orbital Science Corporation was delightful. I was deeply involved

in the control system designs for two spacecrafts and one launch vehicle. My first

assignment was to review and learn the design of ROCSAT III in preparation for

designing the next spacecraft. In a few weeks, I realized that the design could be

improved and I proposed an alternative method. I was surprised that my manager,

Mr. Bobbett, quickly replied to my email with his strong support for my proposal.

The proposed changes were implemented and six satellites were launched in

April, 2006, all achieving their design requirements.

During my time at Orbital Science Corporation, several textbooks on space-

craft controls, such as M.J. Sidi’s book “Spacecraft Dynamics and Control: A

Practical Engineering Approach”, B. Wie’s book “Space Vehicle Dynamics and

Control”, and J.R. Wertz’s book “Spacecraft Attitude Determination and Con-

trol”, were great source to me in understanding this topic. Although all these

books are excellent, I believed that some materials could be improved, espe-

xv



xvi � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

cially, the control system design methods. However, my work assignments at

Orbital Science Corporation were very challenging and I did not have time to

think about the specific of these improvements.

I left Orbital Science Corporation to join the US NRC in 2008. At NRC, I

have had more free time, after eight hours in office, to think about these prob-

lems. I started to publish papers in 2010 on new methods for spacecraft control

and algorithms to design spacecraft control systems, trying to address control

related problems in different stages of different missions using different sensors

and actuators to cover as many design problems as possible. After a few years,

my publications covered a few important areas in spacecraft modeling, attitude

determination and control.

On May 1, 2015, I received an email from Vijay Primlani from CRC Press,

asking if I was interested in publishing a book with this established publisher. My

immediate thought was: that is a cool idea. I said “yes, but it might take some

time because I want to consider a few more design problems that I have not done

yet, besides I had been working and would continue to work only in my spare

time for this project.” I did not know that the delay would be a few years but the

promise has been the motivation for me to work continuously on this interesting

project.

When this project approaches the finish line, I would like to thank a few

people, who helped me along the way. First, I would like to thank Dr. Keller and

Mr. Bobbett at Orbital Science Corporation for giving me the chance to work in

this amazing area. Second, I would like to thank Mr. Primlani at CRC Press for

his invitation to write a book with my choice of topic and for his patience with

my slow progress. I am also indebted to my former colleague, Dr. Z. Zhou at

NASA, who co-authored two papers which are included in this book. Last but

not the least, I am grateful to my manager, Mr. Ronaldo Jenkins at the US NRC

for his support and approval of writing this book in my spare time.



List of Figures

2.1 Radial and transverse components of motion in a plane. . . . . . 11

2.2 The orbits defined by the conic section. . . . . . . . . . . . . . 14

2.3 The ellipse orbit defined on a plane. . . . . . . . . . . . . . . . 15

2.4 Geometry for deriving the law of area. . . . . . . . . . . . . . . 18

2.5 The two dimensional Hohmann transfer. . . . . . . . . . . . . . 20

2.6 Vernal equinox description. . . . . . . . . . . . . . . . . . . . . 26

2.7 Parameters in orbit. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 A fixed point in a rotational frame. . . . . . . . . . . . . . . . . 34

3.2 A rotational point in a fixed frame. . . . . . . . . . . . . . . . . 36

3.3 An axis rotation in three dimensional space. . . . . . . . . . . . 37

3.4 All possible rotations for one axis. . . . . . . . . . . . . . . . . 38

3.5 Rotation from one frame to another frame. . . . . . . . . . . . . 39

3.6 Transformation between orbit parameters and ECI frame. . . . . 43

7.1 Sun vector represented in ECI frame. . . . . . . . . . . . . . . . 103

9.1 Monte Carlo simulation for the nonlinear spacecraft model with

perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2 Designed controller applied to the linear spacecraft model. . . . 150

9.3 Designed controller applied to the nonlinear spacecraft model. . 151

9.4 Designed controller applied to the linear spacecraft model. . . . 152

10.1 Orthonormal vectors of a CMG unit. . . . . . . . . . . . . . . . 157

11.1 Attitude response q1. . . . . . . . . . . . . . . . . . . . . . . . 184

11.2 Attitude response q2. . . . . . . . . . . . . . . . . . . . . . . . 184

11.3 Attitude response q3. . . . . . . . . . . . . . . . . . . . . . . . 185

11.4 Body rate response ω1. . . . . . . . . . . . . . . . . . . . . . . 185

xvii



xviii � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

11.5 Body rate response ω2. . . . . . . . . . . . . . . . . . . . . . . 186

11.6 Body rate response ω3. . . . . . . . . . . . . . . . . . . . . . . 186

11.7 Body rate response ω1, ω2, and ω3. . . . . . . . . . . . . . . . . 199

11.8 Reaction wheel response Ω1, Ω2, and Ω3. . . . . . . . . . . . . 200

11.9 Attitude response q1, q2, and q3. . . . . . . . . . . . . . . . . . 200

11.10Body rate response ω1, ω2, and ω3. . . . . . . . . . . . . . . . . 201

11.11Reaction wheel response Ω1, Ω2, and Ω3. . . . . . . . . . . . . 201

11.12Attitude response q1, q2, and q3. . . . . . . . . . . . . . . . . . 202

12.1 Coordinate definition. . . . . . . . . . . . . . . . . . . . . . . . 218

12.2 Coordinate definition. . . . . . . . . . . . . . . . . . . . . . . . 219

12.3 Thrusters coordinate definition. . . . . . . . . . . . . . . . . . . 220

12.4 Design comparison for quaternion rate ωx. . . . . . . . . . . . . 226

12.5 Design comparison for quaternion rate ωy. . . . . . . . . . . . . 227

12.6 Design comparison for quaternion rate ωz. . . . . . . . . . . . . 227

12.7 Design comparison for quaternion q1. . . . . . . . . . . . . . . 228

12.8 Design comparison for quaternion q2. . . . . . . . . . . . . . . 228

12.9 Design comparison for quaternion q3. . . . . . . . . . . . . . . 229

13.1 Optimal control with saturation constraint. . . . . . . . . . . . . 262

13.2 spacecraft body rate response. . . . . . . . . . . . . . . . . . . 263

13.3 spacecraft quaternion response. . . . . . . . . . . . . . . . . . . 264

14.1 Spacecraft body with a single VSCMG. . . . . . . . . . . . . . 280

14.2 VSCMG system with pyramid configuration concept. . . . . . . 288

14.3 VSCMG system with pyramid configuration. . . . . . . . . . . 289

14.4 Gimbal wheel ωg response. . . . . . . . . . . . . . . . . . . . . 290

14.5 Spin wheel ω s response. . . . . . . . . . . . . . . . . . . . . . 290

14.6 Spacecraft body rate ω response. . . . . . . . . . . . . . . . . . 291

14.7 Attitude q0, q1, q2, and q3 response. . . . . . . . . . . . . . . . 291

15.1 Spacecraft coordinate frame. . . . . . . . . . . . . . . . . . . . 296

15.2 Spacecraft coordinate in orbital plan. . . . . . . . . . . . . . . . 297

15.3 Coordinate Frame. . . . . . . . . . . . . . . . . . . . . . . . . 306

15.4 Position response for the circular orbit. . . . . . . . . . . . . . . 308

15.5 Attitude response for the circular orbit. . . . . . . . . . . . . . . 309

15.6 Required forces for the circular orbit. . . . . . . . . . . . . . . . 309

15.7 Position response for the elliptical orbit. . . . . . . . . . . . . . 310

15.8 Attitude response for the elliptical orbit. . . . . . . . . . . . . . 310

15.9 Required forces for the elliptical orbit. . . . . . . . . . . . . . . 311

16.1 The concept of LUVOIR telescope. . . . . . . . . . . . . . . . 316

16.2 The description of the three bodies of LUVOIR telescope. . . . 319



List of Figures � xix

16.3 LQR and robust pole assignment design comparison for rigid

model: (a) x1 initial state response (b) x2 initial state response. . 333

16.4 LQR and robust pole assignment design comparison for rigid

model: (a) x3 initial state response (b) x4 initial state response. . 333

16.5 LQR and robust pole assignment design comparison for rigid

model: (a) x5 initial state response (b) x6 initial state response. . 334

16.6 LQR and robust pole assignment design comparison for rigid

model: (a) x7 initial state response (b) x8 initial state response. . 336

16.7 LQR and robust pole assignment design comparison for rigid

model: (a) x9 initial state response (b) x10 initial state response. . 336

16.8 LQR and robust pole assignment design comparison for rigid

model: (a) x9 initial state response (b) x10 initial state response. . 336

16.9 LQR and robust pole assignment design comparison for flexible

model: (a) Roll angle initial state response (b) Pitch angle initial

state response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

16.10LQR and robust pole assignment design comparison for flexible

model: (a) Yaw angle initial state response (b) Roll angular rate

initial state response. . . . . . . . . . . . . . . . . . . . . . . . 337

16.11LQR and robust pole assignment design comparison for flexible

model: (a) Pitch angular rate initial state response (b) Yaw angu-

lar rate initial state response. . . . . . . . . . . . . . . . . . . . 337

16.12LQR and robust pole assignment design comparison for flexible

model: (a) Pitch augular rate initial state response (b) Yaw angu-

lar rate initial state response. . . . . . . . . . . . . . . . . . . . 338

16.13LQR and robust pole assignment design comparison for flexible

model: (a) Gimbal 1 torque initial state response (b) Gimbal 2

torque initial state response. . . . . . . . . . . . . . . . . . . . 338





List of Tables

6.1 Comparison of analytic method and QUEST method . . . . . . 90

9.1 Required closed-loop poles . . . . . . . . . . . . . . . . . . . . 140

9.2 Performance of the nominal linearized system . . . . . . . . . . 151

9.3 Performance of the perturbed nonlinear system . . . . . . . . . 152

10.1 Summary of Propulsion Technologies . . . . . . . . . . . . . . 160

11.1 CPU time comparison for problem in [315] . . . . . . . . . . . 215

11.2 CPU time comparison for problem in [313] . . . . . . . . . . . 215

13.1 Comparison of reduced QP sizes of the proposed method and

other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

xxi





Chapter 1

Introduction

CONTENTS

1.1 Organization of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Some basic notations and identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Spacecraft attitude determination and control is an important part of a spacecraft

to achieve its designed mission. As of today, many spacecrafts have been suc-

cessfully launched, and most of them have performed well as they were designed.

Many research papers have been published to address the attitude determination

and control design problems. Several text books are available for students to learn

the technology and for engineers to use as references.

The most popular spacecraft models for attitude determination algorithms

and control design methods are the Euler angle models and the quaternion mod-

els. The Euler angle models have been proved very efficient as the linearized

models are controllable, and all standard linear control system design methods

are directly applicable. The drawbacks related to the Euler angle methods are

(a) the designs based on linearized models may not globally stabilize the origi-

nal nonlinear spacecraft, i.e., the design may not work when the attitude of the

spacecraft is far away from the point where the linearization is performed; (b)

the models depend on the rotational sequences, this can be error prone if several

teams work on the same project and they use different rotational sequences; (c)

for any rotational sequence, there is a singular point where the model is not appli-

cable; and (d) since most attitude determination methods use quaternion to rep-

resent the spacecraft attitude, there is a need to transform quaternion into Euler

angles. On the other hand, for quaternion models, people have found controllers

1
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that can globally stabilize nonlinear spacecraft systems; the models do not de-

pend on rotational sequences and they have no singular point; and the quaternion

is provided by attitude determination system and ready to use. The main prob-

lem with the quaternion model based control system design is that the linearized

quaternion model is not controllable. Therefore, most published design meth-

ods heavily rely on Lyapunov functions for the nonlinear spacecraft system. But

there is no systematic way to obtain a desired Lyapunov functions. Moreover, the

Lyapunov function based designs focus on the closed-loop system stability but

pay little attention to the closed-loop system performance.

In a series of papers, the author proposed some reduced quaternion mod-

els which lead to some controllable linearized spacecraft models. Therefore, all

standard linear system theory can be directly applied to analyze and design the

spacecraft control systems. We showed that, in some cases, the designed control

system is not only optimal for the linearized system, but also globally stabilize

the original nonlinear system. Clearly, the reduced quaternion models do not

depend on rotational sequences. Due to the special structure of the linearized

spacecraft model, some most important design methods, such as LQR design

and robust pole assignment design are very simple, enjoy the analytical solutions

for some problems, have direct connection to the performance measures, such

as settling time, rising time, and percentage of overshoot. All these features are

attractive for high quality control system designs.

The idea mentioned above is then extended to more spacecraft control prob-

lems using specific actuators such as magnetic torque bars and control mo-

mentum gyroscopes. These types of actuators may not provide exactly desired

torques. Most existing methods use different conversions to get approximate so-

lutions, meaning that these actuators may generate a torque close to but not equal

to the desired one. Using the reduced quaternion models that incorporate the ac-

tuators into the system model, the control inputs are not torques but the oper-

ational parameters. The main benefit of this idea is that the control actions are

not approximate but accurate. As all actuators have their operational limit, de-

sign with input constraints are also considered in this book by using recently

developed interior-point optimization techniques.

This book grows up from my research on the spacecraft attitude determi-

nation and control design methods in more than a decade which is focused on

using reduced quaternion models because of their merits stated above. The book

provides all necessary background materials on orbital dynamics, rotations and

quaternion, frequently used reference frames, transformations between reference

frames, space environment and disturbance torques, ephemeris astronomical vec-

tor calculations and measurement instruments, spacecraft control actuators and

their models, so that the readers will get a global picture and can apply all

these information into the spacecraft system modeling, attitude determination,

and spacecraft control system designs, which is the main purpose of this book.

This book is different from existing books in that we focus on quaternion
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based spacecraft control system designs and we consider only attitude control

system design related problems, from spacecraft modeling, to attitude determi-

nation and estimation, to control system design method selection, to control al-

gorithm development, and to the simulation of the control system designs. More-

over, this book addresses different attitude control tasks in the spacecraft life

cycle, including spacecraft maneuver, orbit raising, attitude control, and ren-

dezvous. Finally, this book emphasizes the state space design methods rather

than the classical frequency design methods.

1.1 Organization of the book

This book is organized as follows: Chapter 2 is a brief description of orbit dy-

namics and properties. The treatment is focused on two body systems, which

provides necessary background to be used in other chapters, for example, chap-

ters 3, 11, and 15.

Chapter 3 discusses the frequently used coordinate system, the rotational se-

quences, and the quaternion mathematics. Similar to Chapter 2, this chapter pro-

vides readers the tools and background that will be repeatedly used in the rest

chapters.

Chapter 4 introduces two spacecraft dynamical systems based on the space-

craft missions, and their representations using the reduced quaternion models.

The merit of using reduced quaternion models is that their linearized spacecraft

models are controllable while the spacecraft models using full quaternion are

not. It is well-known that all modern linear control system design methods re-

quire that the systems are controllable. This makes the reduced quaternion space-

craft model very attractive. The ultimate goal of this chapter is to establish some

linearized controllable spacecraft models for some mostly desired attitudes for

spacecraft, i.e., the inertial pointing attitude and the nadir pointing attitude.

Chapter 5 explains the space environment and the major disturbance torques

introduced in the space environment. Most of these torques are difficult to be in-

cluded in the spacecraft models which are used in spacecraft attitude control sys-

tem designs. This means that the designed controllers do not consider the effects

of these disturbance torques. As a result, the designed controllers may not work

in the real space environment because the control torques may not compensate

these unmodeled torques. Because of this reason, there is a need to have some

simulation test for the designed spacecraft feedback control system to make sure

that the designed controller works in the space environment that includes these

disturbance torques. Chapter 5 will provide the necessary information so that

control engineers can build the simulated space environment to test the designed

controller.

Chapter 6 discusses the quaternion based attitude determination methods us-

ing vector measurements, including some recently proposed methods. In princi-
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ple, spacecraft attitude can be determined by a set of observed (measured) astro-

nomical vectors and corresponding ephemeris astronomical vectors at the given

time. An important problem is to find some fast, accurate, and robust algorithms

to calculate the spacecraft attitude. Although there are other attitude determina-

tion methods based on rotational matrix or Euler angle representation, it should

be pointed out that quaternion based attitude determination methods are the most

efficient ones.

Chapter 7 explains how to measure the astronomical vectors and how to cal-

culate the corresponding ephemeris astronomical vectors at any given time. most

widely used astronomical vectors are considered. Given the ephemeris informa-

tion of the astronomical objects represented in reference frame and measured

astronomical vectors represented in body frame, the spacecraft attitude can be

obtained using the methods described in Chapter 6.

Since there always exist some random measurement noises, there is a need to

have some filtering techniques to reduce the measurement noise effect. Kalman

filter was developed in 1960’s just for this purpose and this technique was widely

used in spacecraft attitude determination. Chapter 8 discusses the attitude esti-

mation problem using extended and traditional Kalman filters.

Chapter 9 is about attitude control system designs with the desired torques

as control variables. We focus on state-space Linear Quadratic Regulator (LQR)

design method. For nadir pointing spacecraft, the solution described in Appendix

B can be applied directly. But for inertial pointing spacecraft, which has an ex-

tremely simple linearized model, an analytic solution exists. For this case, the

relation between the LQR design and the closed-loop pole positions is estab-

lished. The analytical solution provides insight for engineers to trade off many

conflict requirements. It is shown that the design globally stabilizes the nonlin-

ear spacecraft system even the design is based on the linearized system. As a

matter of fact, the LQR design discussed in this chapter is actually a robust pole

assignment design. Therefore, the design is insensitive to the modeling error and

is good for disturbance rejection.

All designs in chapter 9 calculate the desired torques that are used to control

the spacecraft attitude. These desired torques are supplied by using several differ-

ent actuators or their combinations. Chapter 10 reviews some widely used space-

craft actuators, including reaction wheel and momentum wheel, control moment

gyros, magnetic torque rods, and thrusters. This chapter reveals a fact that sev-

eral types of actuators are not able to provide desired torques in all directions.

Therefore, the methods discussed in Chapter 9 (when these actuators are used)

have a torque realization problem. A better design practice should include the

actuators’ models in the control system design. This consideration will be topics

of the rest chapters.

Chapter 11 discusses system designs for spacecraft using magnetic torque

rods. Although magnetic torque bars can provide torques only in a plane instead

of three dimensional space at any time, it is shown that the controllability of
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spacecraft using only magnetic torques is achievable under some mild conditions.

Using the fact that the magnetic field is approximately a periodic function of

the spacecraft orbit, periodic LQR design is considered in the controller design.

Some efficient solutions for the algebraic periodic Riccati equation are proposed.

Chapter 12 discusses spacecraft control system design using thrusters. A typ-

ical operation using thrusters, orbit-raising, is considered in this chapter. The

control system models and controller designs depend on the thruster configu-

rations. This chapter describes how to design the controller using the standard

linear system theory. Although a particular thruster configuration is considered

in this chapter, the idea can easily be used for any other thruster configurations.

Chapter 13 addresses Model Predictive Control (MPC) and its application to

the spacecraft attitude control problems. Since MPC needs extensive on-board

computation, it was not widely used in spacecraft control. As more powerful

computers are installed on spacecraft. MPC is expected to find more applica-

tions in aerospace in the future. This chapter establishes the relation between

constrained MPC and convex quadratic programming (QP) with box constraints.

This formulation is directly applicable to the controller design problem when ac-

tuator saturation exists. An efficient interior-point algorithm specifically for this

problem is proposed and its convergence is proved. The thruster control prob-

lem discussed in Chapter 12 is revisited and it is shown that the problem can be

solved by the MPC control method proposed in this chapter.

Chapter 14 is dedicated to the spacecraft attitude control system design using

control moment gyros. As we already knew in Chapter 10 that for given desired

torques obtained in Chapter 9, there are singular points where one cannot find

gimbal speeds of the CMGs to achieve the desired torques. This chapter presents

a new operational concept for control moment gyros and propose a MPC design

method for this problem. Simulation test is used to demonstrate the feasibility of

the proposed method.

Chapter 15 considers coupled orbit and attitude control that is the key tech-

nology for spacecraft rendezvous and soft docking. Coupled orbit and attitude

control is an extensively studied problem with renewed interest because of in-

stallations of powerful on-board computers, availability of advanced theoretical

results, and requirements for better performance in future missions. The method

considered in this chapter addresses a fundamental requirements for soft dock-

ing, i.e., there is no oscillation crossing the horizontal line for relative position

and relative attitude between chaser and target spacecraft to avoid collision dur-

ing the docking process.

Chapter 16 deals with the multi-body spacecraft. Some most advanced tele-

scopes, such as James Webb Space Telescope and LUVOIR telescope, are multi-

body systems. We present a systematic methodology for modeling and attitude

control of multi-body space systems. The modeling technique is based on Kane’s

method using Stoneking’s implementation. The nonlinear model has a nice ana-

lytic structure that can easily be extended to some general rigid multi-body sys-
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tems, connected via rotary joints having arbitrary degrees of freedom, arranged

in tree topologies. Then, we explain how to linearize this nonlinear symbolic

model into a linear symbolic model. The controller design is based on two pop-

ular linear controller design approach: the LQR and the robust pole assignment,

with the former as an effective first design step that inform the latter to select real

eigenvalue places. LUVOIR telescope is used as an example to show step by step

how this method works.

Three appendices are included for quick reference for the background used

in the control system design methods discussed in this book. Appendix A is

about the first order optimality conditions, which is used in several chapters and

in Appendix B. Appendix B provides LQR problem formulation and numerical

solutions. Appendix C summarizes background and solutions for robust pole as-

signment design which has been used in several chapters. For readers who need

to know more background information on optimization and control theory, they

are referred to some standard text books [9, 56, 117, 135, 185, 216, 294] listed

in the References.

1.2 Some basic notations and identities

In this book, vectors are denoted by small case letters with bold font, for example,

a is a vector. Vector magnitude is denoted by normal font, for example, a is the

magnitude of a. A n-dimensional linear space is denoted by Rn. A collection of

all real points is denoted by R. Matrices are denoted by capital letters with bold

font, for example, A is a matrix, its magnitude is denoted by 2-norm ‖A‖ unless

it is explicitly indicated that other matrix norm is used. A n×m matrix space, or

the collection of all n×m linear transformation, is denoted by Rn×m.

Throughout this book, we will use some common notations. For a column

vector x = [x1,x2, . . . ,xn]
T, we sometimes write it as x = (x1,x2, . . . ,xn) to save

space. For any two vectors x and y, we will denote by x ·y = xTy the dot product

of x and y, by x× y the cross product of x and y, by x ◦ y the element-wise or

Hadamard product of x and y, by x
y

the element-wise division of x and y if all

elements of y are not zero, by ‖x‖ the 2-norm of the vector of x. For a vector

x, we use X to denote a matrix whose diagonal elements are the vector x. Let a,

b, and c be any three dimensional vectors, we will repeatedly use the following

identities.

a×b =−b×a, (1.1)

(a×b)× c = (a · c)b− (b · c)a, (1.2)

and

a× (b× c) = (a · c)b− (a ·b)c, (1.3)

and

(a×b) ·a = (a×b) ·b = 0. (1.4)
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We denote

i = (1,0,0), j = (0,1,0), k = (0,0,1) (1.5)

for the standard basis for R3, and S(x) a skew-symmetric matrix function of

x = [x1,x2,x3]
T defined by

S(x) =





0 −x3 x2

x3 0 −x1

−x2 x1 0



= x×. (1.6)

The cross product of x× y can then be represented by a matrix multiplication

S(x)y, i.e., x× y = S(x)y = x×y. We will use p̄, q̄, and r̄ to denote quaternions

which will be defined later on.





Chapter 2

Orbit Dynamics and
Properties

CONTENTS

2.1 Orbit dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Conic section and different orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Elliptic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Hyperbolic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Property of Keplerian orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Hohmann transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Keplerian orbits in three dimensional space . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Celestial inertial coordinate system . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Orbital parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

This chapter introduces necessary background about orbit dynamics and prop-

erties, which will be used in the remaining chapters. The presentation of this

chapter follows closely the style of [50, 232, 265].

2.1 Orbit dynamics

Let f denote the force applied to a particle in space, m be the mass of the particle,

v be the velocity of the particle in space, p = mv be the linear momentum, and

9
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a = dv
dt

be linear acceleration. The most important Newton’s law is

f =
dp

dt
=

dmv

dt
= ma. (2.1)

For any two particles in space with masses m1 and m2 respectively, their dis-

tance in space is expressed by a vector r, and they attract to each other with a

force given by the expression

f =
Gm1m2r

r3
, (2.2)

where G = 6.669∗10−11m3/kg− s2 is the universal constant of gravitation. The

magnitude of the force is f = Gm1m2

r2 . Note that for any force f12 exerted by particle

1 on particle 2, there must exist a force f21 exerted by particle 2 on particle 1 with

the same magnitude but in opposite direction, i.e.,

f21 =−f12. (2.3)

For a selected coordinate, let O be the coordinate origin. For a particle with

mass m, its position can be defined by a vector r from origin O pointing to its

location. Then, the moment of the force f about the origin (also known as the

torque) is given by

t = r× f. (2.4)

The angular momentum about O is defined as

h = m(r×v). (2.5)

Taking derivative on both side of the equation gives:

dh

dt
=

d

dt
(r×mv) = v× (mv)+ r× d

dt
(mv) = 0+ r× f = t. (2.6)

Equation (2.6) is very important, which will be used throughout the book. For

two body system, if the mass of one particle is much larger than the other particle,

since the attracting force f is collinear with r, therefore, r× f = 0 = t = dh
dt

, i.e.,

h is a constant, the orbit of the smaller particle is a plane.

Now, let’s consider the motion of a small particle with mass of unit around a

much large particle with mass M in the coordinate system as described in Figure

2.1.

In view of (2.5), h = r×v, one has

h = rv sin(α) = rvcos(β ) = r

(

r
dθ

dt

)

= r2 dθ

dt
. (2.7)

In Figure 2.1, i and j are unit length vectors. Therefore, r = ri, and we have

di

dt
=

di

dθ

dθ

dt
= j

dθ

dt
,

dj

dt
=

dj

dθ

dθ

dt
=−i

dθ

dt
. (2.8)
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Figure 2.1: Radial and transverse components of motion in a plane.

Hence
dr

dt
= r

di

dt
+ i

dr

dt
= jr

dθ

dt
+ i

dr

dt
. (2.9)

Since the particle has the mass of unit, from (2.1), it follows

f = a =
d2r

dt2
=

d

dt

(

jr
dθ

dt
+ i

dr

dt

)

=
dj

dt
r

dθ

dt
+ j

dr

dt

dθ

dt
+ jr

d2θ

dt2
+

di

dt

dr

dt
+ i

d2r

dt2

= −i
dθ

dt
r

dθ

dt
+ j

dr

dt

dθ

dt
+ jr

d2θ

dt2
+ j

dθ

dt

dr

dt
+ i

d2r

dt2

= i

(

d2r

dt2
− r

(
dθ

dt

)2
)

+ j

(

r
d2θ

dt2
+2

dθ

dt

dr

dt

)

(2.10)

Using (2.2) with m1 = 1 unit and m2 = M, we find

f = a =−GM

r3
ir. (2.11)

Combining these two equations gives:

d2r

dt2
− r

(
dθ

dt

)2

=−GM

r2
, r

d2θ

dt2
+2

dθ

dt

dr

dt
= 0. (2.12)
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The second equation implies

1

r

d

dt

(

r2 dθ

dt

)

= 0, (2.13)

in view of (2.7), this implies

h = r2 dθ

dt
= constant. (2.14)

The first equation of (2.12) is a nonlinear differential equation and cannot be

solved directly. Let r = 1
u
. Taking derivative on both sides yields

dr

dt
=− 1

u2

du

dt
=− 1

u2

du

dθ

dθ

dt
. (2.15)

Substituting r = 1
u

into (2.14) yields

dθ

dt
= hu2. (2.16)

Substituting this equation into (2.15) gives

dr

dt
=− 1

u2

du

dθ
hu2 =−h

du

dθ
. (2.17)

Note that dh
dt

= 0, taking the second derivative on both sides yields

d2r

dt2
=−h

d

dt

du

dθ
=−h

d

dθ

du

dθ

dθ

dt
=−h

d2u

dθ 2

dθ

dt
=−h2u2 d2u

dθ 2
. (2.18)

Denote the standard gravitational parameter GM = µ (µ is also known as

the geocentric gravitational constant). Combining the first equations of (2.12),

(2.14), and (2.18) yields

d2r

dt2
= r

(
dθ

dt

)2

− µ

r2

⇐⇒ d2r

dt2
=

1

u

(
dθ

dt

)2

−µu2

⇐⇒ −h2u2 d2u

dθ 2
=

1

u
h2u4 −µu2

⇐⇒ d2u

dθ 2
=−u+µ/h2 (2.19)

The last equation is a second order linear differential equation of u which has the

solution of the following form:

u =
µ

h2
+ ccos(θ −θ0), (2.20)



Orbit Dynamics and Properties � 13

where c is a constant to be determined. Taking derivative of (2.20) yields

du

dθ
=−c sin(θ −θ0). (2.21)

Let

E = v2/2−µ/r (2.22)

be the total energy per unit mass. The term of v2/2 is the kinetic energy and µ/r

is potential energy of the unit mass. Invoking (2.17), (2.9), and (2.16), one can

write

v2 =

(
dr

dt

)2

+

(

r
dθ

dt

)2

=

(

−h
du

dθ

)2

+

(
1

u
hu2

)2

= h2

[(
du

dθ

)2

+u2

]

.

(2.23)

Substituting (2.21) and (2.20) into this equation gives

v2 = h2

[

c2 +
2cµ

h2
cos(θ −θ0)+

( µ

h2

)2
]

= c2h2 +2cµ cos(θ −θ0)+(µ/h)2.

(2.24)

Using the principle of conservation of energy implies that E = v2/2− µ/r is a

constant for any θ . Taking θ −θ0 =
π
2

and using (2.20) yield

E = v2/2−µ/r

= (ch)2/2+(µ/h)2/2−uµ

= (ch)2/2+(µ/h)2/2− µ

h2
µ

=
(ch)2

2
− µ2

2h2
. (2.25)

This gives

c =
µ

h2

√

1+2E
h2

µ2
. (2.26)

Denote

e =

√

1+2E
h2

µ2
, (2.27)

it can be seen later that e is the eccentricity of the orbit. Therefore, an important

relationship between the eccentricity and the total energy of the orbit is given by

E = (e2 −1)
µ2

2h2
. (2.28)

Since h is a constant, E is a constant. Substituting c = µ
h2 e and r = 1/u into (2.20)

yields one of the most important result so for.

r =
h2/µ

1+ ecos(θ −θ0)
=

p

1+ ecos(θ −θ0)
(2.29)
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where

p = h2/µ (2.30)

is called the semi-latus rectum.

2.2 Conic section and different orbits

Spacecraft orbits are closely related to conic sections. A conic section is the

intersection of a plane and a right circular cone. Different intersections result in

different orbital shapes: circle, ellipse, parabola, and hyperbola (see Figure 2.2).

Since parabolic orbit is of no importance in the context of spacecraft, we discuss

only the circle, ellipse, and hyperbola orbits.

Figure 2.2: The orbits defined by the conic section.

2.2.1 Circular orbits

For circular orbits, the eccentricity meets the condition of e = 0 and r, the mag-

nitude of the radius vector r of the orbit from the only focus, is a constant that

meets the condition:

r = p = h2/µ = [rvcos(β )]2/µ. (2.31)
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In view of Figure 2.1, for circular orbit, it has β = 0 (the velocity of the body is

perpendicular to the radius vector r), therefore, it follows that

v2 = µ/r. (2.32)

This shows that the velocity v is a constant. Moreover, the energy is given by

E =−µ2/(2h2). (2.33)

2.2.2 Elliptic orbits

For elliptic orbit, the eccentricity meets the condition of 0 < e < 1, and from

(2.28), its energy is given by E < 0. Representing the ellipse in a two dimensional

space, it is shown in Figure 2.3.

Figure 2.3: The ellipse orbit defined on a plane.

The point on the ellipse at θ = 0o is called perigee, which corresponds to

point A. The point on the ellipse at θ = 180o is called apogee, which corresponds

to point B. The foci are the points F = (c,0) and F ′ = (−c,0). The prime focus

of the ellipse is F. For r at point A (the perigee, θ − θ0 = 0o), it follows from

(2.29) that

rp =
p

1+ e
. (2.34)
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For r at point B (the apogee, θ −θ0 = 180o), it follows from (2.29) that

ra =
p

1− e
. (2.35)

Combining (2.34) and (2.35) gives

ra

rp

=
1+ e

1− e
, (2.36)

from which it follows that

e =
ra − rp

ra + rp

. (2.37)

In view of the Figure 2.3, the major axis of the ellipse is

2a = ra + rp =
2p

1− e2
, (2.38)

this yields

p = a(1− e2) = h2/µ, (2.39)

where a is called the semi-major axis. From (2.26) and (2.28), it follows that the

total energy of a body with unit mass in the orbit is

E =
v2

2
− µ

r
=

(e2 −1)µ2

2h2
=

(e2 −1)µ

2p
=

(e2 −1)µ

2a(1− e2)
=− µ

2a
. (2.40)

This yields

v2

2
=

µ

r
− µ

2a
. (2.41)

Clearly, the velocity of orbiting body is a maximum at perigee and a minimum

at apogee. Therefore, for an orbit to be elliptic, it must have

v2

2
<

µ

r
. (2.42)

For an ellipse, it is known that c = ae. In view of (2.39), it follows that

b =
√

a2 − c2 = a
√

1− e2 =
p
√

1− e2

1− e2

p√
1− e2

, (2.43)

where b is called semi-minor axis of the elliptic orbit. Combining (2.39) and

c = ae yields

c =
pe

1− e2
. (2.44)
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2.2.3 Hyperbolic orbits

In this orbit, e > 0, in view of (2.28), it follows that E > 0. This means that the

kinetic energy of the spacecraft is larger than its potential energy. Therefore, the

spacecraft is about to leave the gravitational attraction field of the central body.

2.3 Property of Keplerian orbits

This section discusses elliptic orbit. The location of the spacecraft in an orbit

can be presented either by its angular deviation from the major axis or by the

time elapsed from its passage at the perigee. In Figure 2.3, the true anomaly θ is

defined as an angle between the major axis pointing to the perigee and the radius

vector from the prime focus F to the spacecraft. To define the eccentric anomaly,

an auxiliary circle with radius a centered at the middle of the major axis. The

eccentric anomaly ψ is the angle between OA and OC defined in Figure 2.3.

The relation between true anomaly and eccentric anomaly is derived as fol-

lows. Note

x+ y = ae = c, (2.45a)

x = acos(ψ), (2.45b)

y = r cos(180−θ) =−r cos(θ), (2.45c)

it follows

x+ y = acos(ψ)− r cos(θ) = ae. (2.46)

From equations (2.29) and (2.39), it follows

x = acos(ψ) = ae+ r cos(θ) = ae+
pcos(θ)

1+ ecos(θ)

= ae+
a(1− e2)cos(θ)

1+ ecos(θ)
=

ae+acos(θ)

1+ ecos(θ)
. (2.47)

Therefore,

cos(ψ) =
e+ cos(θ)

1+ ecos(θ)
, sin(ψ) =

√

1− cos2(ψ) =
sin(θ)

√
1− e2

1+ ecos(θ)
. (2.48)

This gives

cos(θ) =
cos(ψ)− e

1− ecos(ψ)
, sin(θ) =

sin(ψ)
√

1− e2

1− ecos(ψ)
. (2.49)

Applying standard trigonometry yields

tan

(
θ

2

)

=
sin(θ)

1+ cos(θ)
=

√

1+ e

1− e
tan
(ψ

2

)

. (2.50)
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Substituting (2.39) and (2.49) into (2.29) yields

r =
p

1+ ecos(θ)
=

a(1− e2)

1+ ecos(θ)
=

a(1− e2)

1+ e
cos(ψ)−e

1−e cos(ψ)

= a(1− ecos(ψ)). (2.51)

Figure 2.4: Geometry for deriving the law of area.

Now, it is ready to derive Kepler’s second and third law. In Figure 2.4, the

spacecraft position vector r is swept in a differential period of time, the differen-

tial area ∆A = (∆θr2)/2. Therefore, it follows from (2.7) and (2.14) that

dA

dt
=

1

2

(

r2 dθ

dt

)

=
1

2
h = constant. (2.52)

This proves Kepler’s second law: the time rate of change in area is a constant.

Integration of the above equation, the area swept in time t is given by

A =
1

2
ht. (2.53)

Because the area of a ellipse is A = πab, if the time period of the orbit is t = T ,

from (2.53), (2.39), and (2.43) it follows that the orbit period of the spacecraft

is given by

T =
2A

h
=

2πab√
pµ

=
2πab

√

a(1− e2)µ
=

2πa2
√

1− e2

√

a(1− e2)µ
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= 2π

√

a3

µ
=

2π

ω0

, (2.54)

where

ω0 =

√
µ

a3
=

2π

T
(2.55)

is named the mean motion, and

M = ω0(t − tp) =
2π

T
(t − tp) (2.56)

is named the mean anomaly, where tp is the passing time from perigee. Equation

(2.54) is the so-called Kepler’s third law.

The last formula to be derived in this section is the so-called Kepler’s time

equation. Let the area (AFC’) be denoted by S(AFC’) and the area (AFC) be

denoted by S(AFC) in Figure 2.3. Let tm = t − tp. Then, it follows from the law

of the area that
tm

S(AFC′)
=

T

πab
. (2.57)

Since

S(AFC′) =
b

a
S(AFC), (2.58)

and

S(AFC) =
ψ

2π
(πa2)−S(OCF)

=
ψa2

2
− 1

2
ac sin(ψ)

=
ψa2

2
− 1

2
a2e sin(ψ), (2.59)

it follows from (2.57) and (2.58) that

tm =
b

a

T

πab

(
ψa2

2
− 1

2
a2e sin(ψ)

)

=
T

2π
[ψ − e sin(ψ)]. (2.60)

In view of (2.56), this is equivalent to

tm
2π

T
= (t − tp)ω0 = M = ψ − e sin(ψ). (2.61)

The last equation is named as Kepler’s equation and its solution is fundamental

to the problem of finding the orbital position at a given time. It is also important

for optimal trajectory design problem.
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Figure 2.5: The two dimensional Hohmann transfer.

2.4 Hohmann transfer

Hohmann transfers is an orbital maneuver which uses the least fuel to transfer a

spacecraft between two orbits of different altitudes around a central body. This

subsection considers the simplest two dimensional Hohmann transfer [179, 192].

We denote by x · y the inner product of a pair of vectors x and y. In view of

Figure 2.5, the smallest circle is the initial orbit of the spacecraft. At point A,

a thrust is applied in the tangent direction showed in the figure. The transfer

orbit is an ellipse. The middle circle is an ancillary inscribing circle that is used

to determine r2, the coordinate of the spacecraft in the x− y coordinate system

given the angle of θ or ψ . At point B, another thrust is applied in the tangent

direction showed in the figure, and the final orbit of the spacecraft is the out-most

circle. Let x−
1 = (r1,v

−
1 ) be the state of the spacecraft at A before the impulse
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∆v1 is applied, x−
1 is composed of the position vector of r1 and the velocity

vector v−
1 of the spacecraft. We assume that the orbit is planar. Therefore, r1 =

(r11(x
−
1 ),r12(x

−
1 )) and v−

1 = (v11(x
−
1 ),v12(x

−
1 )). We denote the magnitude of r1

by r1 =
√

r11(x
−
1 )

2 + r12(x
−
1 )

2. Let ∆v1 = (∆v11,∆v12) and ∆v2 = (∆v21,∆v22) be

the impulses at point A and B (see Figure 2.5), ∆v1 =
√

∆v2
11 +∆v2

12 and ∆v2 =√

∆v2
21 +∆v2

22 be the magnitude of ∆v1 and ∆v2, respectively. Given x−
1 , we can

calculate the semi-major axis of the initial orbit from (2.41), which gives

a(x−
1 ) =

µ

2
(
µ/r1 − v2

1/2
) .=

r1µ

2µ − r1v−
1 ·v−

1

. (2.62)

The eccentricity vector e is defined as:

e =
v×h

µ
− r

r
=

v× (r×v)

µ
− r

r
=

(
v ·v
µ

− 1

r

)

r−
(

r ·v
µ

)

v. (2.63)

The last equation immediately follows from the vector identity (1.3). Therefore

the eccentricity of the initial circular orbit is given by

e(x−
1 ) =

∥
∥
∥
∥

(
v−

1 ·v−
1

µ
− 1

r1

)

r1 −
(

r1 ·v−
1

µ

)

v−
1

∥
∥
∥
∥
. (2.64)

Let x+
1 = (r1,v

−
1 )+(03,∆v1) be the state of the spacecraft at A immediately after

the impulse ∆v1 is applied, which is composed of the position vector of r1 and

the velocity vector v+
1 = v−

1 +∆v1 of the spacecraft. Given x+
1 , we can calculate

the semi-major axis and eccentricity of the ellipse

a(x+
1 ) =

r1µ

2µ − r1v+
1 ·v+

1

, (2.65)

e(x+
1 ) =

∥
∥
∥
∥

(
v+

1 ·v+
1

µ
− 1

r1

)

r1 −
(

r1 ·v+
1

µ

)

v+
1

∥
∥
∥
∥
. (2.66)

Solving Kepler’s equation (2.61), we can calculate the spacecraft state x−
2 at

any position of the elliptic orbit, which is composed of the position vector of r2

and the velocity vector v−
2 , before the impluse ∆v2 is applied. Let ∆t be the time

for the spacecraft to travel from A to a point where the second impulse is applied.

From (2.56), we have:

M = ω0∆t, (2.67)

where ω0 is the mean motion. The solution of Kepler’s equation can be given in

terms of the mean anomaly M defined as:

ψ − e(x+
1 ) sin(ψ) = M =

√
µ

a(x+
1 )

3
∆t. (2.68)

Given M, we can solve (2.68) to obtain ψ . Let r2 = (r21(x
−
2 ),r22(x

−
2 )) be the
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position vector of the spacecraft on the ellipse orbit corresponding to the given

ψ . Then, r2 = (r21(x
−
2 ),r22(x

−
2 )) can be calculated as follows. Let x̄ and ȳ be the

coordinate system with origin at the center of the ellipse (in red line) of Figure

2.5, the axis of x̄ be parallel to the axis of x and the axis of ȳ be parallel to the

axis of y. Then the trajectory of the ellipse is given by

(
x̄

a

)2

+

(
ȳ

b

)2

= 1, (2.69)

where b = a
√

1− e2 is the semi-minor axis of the ellipse. From Figure 2.5, we

have x̄ = acos(ψ), therefore

ȳ2 = b2 sin2(ψ) = a2(1− e2) sin2(ψ).

Expressing r2 in (x,y) coordinate and noticing a = a(x+
1 ) and e = e(x+

1 ) in this

case, we have

r2 =

[
r21(x

−
2 )

r22(x
−
2 )

]

= a(x+
1 )

[
cos(ψ)− e(x+

1 )√

1− e(x+
1 )

2 sin(ψ)

]

. (2.70)

Differentiating (2.51) we have

ṙ =
dr

dt
=

d

dt

(
a(1− e2)

1+ ecos(θ)

)

=
ae sin(θ)(1− e2)

(1+ ecos(θ))2

dθ

dt
=

reθ̇ sin(θ)

(1+ ecos(θ))
. (2.71)

In view of (2.14), (2.39), and (2.55), we have

r2θ̇ = h =
√

aµ(1− e2) = ω0a2
√

1− e2. (2.72)

Substituting (2.72) into (2.71) and using (2.51) yield

ṙ =
ω0ae sin(θ)√

1− e2
, (2.73)

and

rθ̇ =
ω0a(1+ ecos(θ))√

1− e2
. (2.74)

From Figure 2.5, we have

r21(x
−
2 ) = r2 cos(θ), r22(x

−
2 ) = r2 sin(θ). (2.75)

Taking time derivative for r21(x
−
2 ) and using (2.73), (2.74), (2.49), and (2.51),

we have

ṙ21(x
−
2 ) = ṙ2 cos(θ)− r2θ̇ sin(θ)

=
ω0a(x+

1 )e(x
+
1 ) sin(θ)cos(θ)

√

1− e(x+
1 )

2
− ω0a(x+

1 )(1+ e(x+
1 )cos(θ)) sin(θ)

√

1− e(x+
1 )

2
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= −ω0a(x+
1 ) sin(θ)

√

1− e(x+
1 )

2

= − ω0a(x+
1 ) sin(ψ)

√

1− e(x+
1 )

2

√

1− e(x+
1 )

2(1− e(x+
1 )cos(ψ))

= − ω0a(x+
1 ) sin(ψ)

(1− e(x+
1 )cos(ψ))

= −ω0a(x+
1 )

2 sin(ψ)

r2

. (2.76)

Taking time derivative for r22(x
−
2 ) and using (2.73), (2.74), (2.49), and (2.51),

we have

ṙ22(x
−
2 ) = ṙ2 sin(θ)+ r2θ̇ cos(θ)

=
ω0a(x+

1 )e(x
+
1 ) sin2(θ)

√

1− e(x+
1 )

2
+

ω0a(x+
1 )(1+ e(x+

1 )cos(θ))cos(θ)
√

1− e(x+
1 )

2

=
ω0a(x+

1 )(e(x
+
1 )+ cos(θ))

√

1− e(x+
1 )

2

=
ω0a(x+

1 )
(

e(x+
1 )+

cos(ψ)−e(x+1 )

1−e(x+
1
) cos(ψ)

)

√

1− e(x+
1 )

2

=
ω0a(x+

1 )
2(e(x+

1 )− e(x+
1 )

2 cos(ψ)+ cos(ψ)− e(x+
1 ))

a(x+
1 )(1− e(x+

1 )cos(ψ))
√

1− e(x+
1 )

2

=
ω0a(x+

1 )
2
√

1− e(x+
1 )

2 cos(ψ)

r2

. (2.77)

Combining the above two equations, we obtain the velocity vector v−
2 which is

given by

v−
2 =

ω0a(x+
1 )

2

r2

[ − sin(ψ)
√

1− e(x+
1 )

2 cos(ψ)

]

. (2.78)

This yields x−
2 = (r2,v

−
2 ). Given x−

2 , we can calculate x+
2 = x−

2 +(03,∆v2),
which is the spacecraft state after the impulse ∆v2 is applied. Given x+

2 , we can

calculate

a(x+
2 ) =

r2µ

2µ − r2v+
2 ·v+

2

, (2.79)

and

e(x+
2 ) =

∥
∥
∥
∥

(
v+

2 ·v+
2

µ
− 1

r2

)

r2 −
(

r2 ·v+
2

µ

)

v+
2

∥
∥
∥
∥
. (2.80)

Let a1 and a2 be the semi-major axis of the initial circular trajectory that passes

A and the desired major semi-major axis of the circular trajectory that passes B.

Let T1 and T2 be the orbit periods corresponding to the known initial circular
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orbit and the desired final circular orbit, respectively, then in view of (2.55), they

should satisfy the following conditions.

T1 = 2π

√

a3
1

µ
, (2.81)

T2 = 2π

√

a3
2

µ
. (2.82)

For the decision vector y = (v+
1 ,a(x

+
1 ),e(x

+
1 ),ω0,M,ψ,∆t,x−

2 ,v
+
2 ,∆v1,∆v2) ∈

R16, a Hohmann transfer can be formulated as an optimization problem as fol-

lows:

min ‖∆v1‖+‖∆v2‖ (2.83a)

s.t. v+
1 −v−

1 −∆v1 = 0 (2.83b)

a(x+
1 )−

r1µ

2µ − r1v+
1 ·v+

1

= 0 (2.83c)

e(x+
1 )−

∥
∥
∥
∥

(
v+

1 ·v+
1

µ
− 1

r1

)

r1 −
(

r1 ·v+
1

µ

)

v+
1

∥
∥
∥
∥
= 0 (2.83d)

ω0 −
√

µ

a(x+
1 )

3
= 0 (2.83e)

M−ω0∆t = 0 (2.83f)

ψ − e(x+
1 ) sin(ψ)−M = 0 (2.83g)

r2 −a(x+
1 )

[
cos(ψ)− e(x+

1 )√

1− e(x+
1 )

2 sin(ψ)

]

= 0 (2.83h)

v−
2 − ω0a(x+

1 )
2

r2

[ − sin(ψ)
√

1− e(x+
1 )

2 cos(ψ)

]

= 0 (2.83i)

x+
2 −x−

2 − (0,∆v2) = 0 (2.83j)

r2µ

2µ − r2v+
2 ·v+

2

−a2 = 0 (2.83k)

∥
∥
∥
∥

(
v+

2 ·v+
2

µ
− 1

r2

)

r2 −
(

r2 ·v+
2

µ

)

v+
2

∥
∥
∥
∥
= 0 (2.83l)

‖∆v1‖2 ≤ 1 (2.83m)

‖∆v2‖2 ≤ 1 (2.83n)

a(x+
1 )≥ a1 (2.83o)

e(x+
1 )≥ 0 (2.83p)

T1 +T2

2
−∆t ≥ 0. (2.83q)
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Remark 2.1 Inequality constraints (2.83m) and (2.83n) are introduced because

we would like to restrict the magnitude of the thrust in a reasonable range. Inequal-

ity constraints (2.83m) and (2.83n) are introduced based on the range of a(x+1 ) and

e(x+1 ).

2.5 Keplerian orbits in three dimensional space

In Section 2.3, we discussed Keplerian orbits in the orbital plane, which is easy to

deal with. In real world, a convenient spacecraft coordinate system is most likely

in three dimensional space and the orbital plane is more likely a plane embedded

in three dimensional space.

2.5.1 Celestial inertial coordinate system

For Earth-orbiting spacecraft, it is convenient to define the center of mass of the

Earth as its origin (a geocentric system). To make it easy to use the formulas

developed in the previous sections of this chapter, the coordinate system should

be an inertial coordinate system without acceleration or deceleration. Since the

Earth moves in an almost circular orbit around the Sun with a long period, there-

fore, it is practically acceptable as an inertial system. Let Z be the axis of the

Earth rotational axis, and this axis is selected as the Z axis of the inertial coordi-

nate system. The Z direction is perpendicular to the Earth’s equator which is in

the X−Y plane of this coordinate system.

Next, we define the X axis of the geocentric inertial system. It is known that

the Earth’s equator plane is not on the same plane of the ecliptic plane, which

is the plane of the earth orbiting around the sun. The Earth’s equator plane is

inclined to the ecliptic plane by an angle of about 23.5o. The two planes intersect

along a line that is called the vernal equinox vector (see Figure 2.6). While the

Earth rotates around the Sun, it crosses this line twice a year. The point when

Earth cross this line in March is called vernal equinox. The direction from the

center of mass of the Sun to the vernal points is defined as the X direction of

the geocentric inertial system. The third axis Y completes an orthogonal right-

hand system. Both equator plane and ecliptic plane move slowly because of the

force of attraction of astronomical bodies. The coordinate axes may need some

corrections over the time.

2.5.2 Orbital parameters

Given the geocentric inertial coordinate system, the spacecraft orbit in this sys-

tem can be described in Figure 2.7. As explained, the X-Y plane is the equator

plane. Z-axis is the rotational axis of the Earth. The vector rp is the vector from
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Figure 2.6: Vernal equinox description.

Figure 2.7: Parameters in orbit.

the center of the mass of the Earth pointing to the perigee. The vector r is a

moving vector from the center of the Earth to the position of the spacecraft,

which moves along the direction v. The angle between rp and r, θ , is called
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true anomaly which was defined in Figure 2.3 in two dimensional orbit plane.

A coordinate system in the orbit plane is given by three vectors P, Q, and W,

where P is the unit length vector from the primary focus (the center of the mass

of the Earth) pointing to the perigee of the orbit. The unit length vector Q is on

the orbit plane and 90o from P in the direction of the moving spacecraft. W is

defined by P×Q, which is the unit length vector along the momentum axis of

the orbit. The angle between the orbit plane and the equator plane, i, is named as

the inclination of the orbit. The orbit crosses the X-Y plane in two points, one is

ascending node, the other one is descending node. The line passes through the

ascending node and descending node is called the node line. The angle between

X axis and the node line pointing to the ascending node is called the right ascen-

sion, Ω. The angle between the node line pointing to the ascending node and P

is ω which is called the argument of perigee. The three angles, i, Ω, and ω , plus

three parameters discussed before, a, e, and M = n(t− t0), are known as classical

orbit parameters. It is convenient to define a vector α = [a,e, i,Ω,ω,M] for the

orbit parameters, which are summarized below:

a, the semi-major axis;

e, the eccentricity;

i, the inclination;

Ω, the right ascension of the ascending node;

ω , the argument of the perigee; and

M = ω0(t − t0), the mean anomaly.

Clearly, there is another way to present the spacecraft moving around the orbit

by given (v,r) at any time. Chapter 3, provides in details, the transformations

between these two different presentations.
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Based on the missions of a spacecraft, the attitude of the spacecraft represented

by the body frame should be aligned with some desired frame. Spacecraft atti-

tude determination is to provide the information of the difference between the

spacecraft body frame and the desired frame. The desired spacecraft frame also

depends on the spacecraft position and the current time, GPS signals may be used

to determine the spacecraft current position and the time. The mostly used time

in aerospace engineering is the universal time (UT) [265]. The time and position

can be used to calculate the ephemeris astronomical direction information, such

as star directions, the Sun direction, the Earth direction, the Earth magnet field

direction, observed from the spacecraft position at the current time and repre-

sented in the desired frame. The body frame information can be obtained by the

measurements about these directions from the spacecraft on-board instruments.

When the body frame is perfectly aligned with the desired frame, the calculated

ephemeris star directions, the Sun direction, the Earth direction, and the Earth

magnet field direction at the given time should be identical or very close to the

measurements from spacecraft instruments. When the body frame is significantly

different from the desired frame, the measured astronomical directions are sig-

nificantly different from the ephemeris astronomical directions at the given time.

This difference can be represented by a single rotation if quaternion is used or

a series of rotations if Euler angles are used. In the latter case, the sequence of

the rotations is very important. These rotations rotate some angle around cer-

tain rotational axis, thereby estimate the distance between the spacecraft body

frame and the desired frame. Therefore, mathematical definition on rotation and

rotational sequences are the most important concepts in spacecraft attitude de-

termination and control. There are many ways to characterize the rotation and

rotational sequences. We believe that the quaternion representation is one of the

best characterizations, and we will focus our attention on this representation. Our

presentation in this chapter follows the style of [124, 265, 280].

3.1 Some frequently used frames

Many coordinate frames are used in spacecraft related application. This section

discusses some most important frames. For more detailed discussion, readers are

referred to [265].
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3.1.1 Body-fixed frame

The body coordinate system is vehicle-carried and is directly defined on the body

of the spacecraft. Its origin is located at the center of the mass of the spacecraft.

There may be different ways to define its axes. In this book, the axes are defined

by using the so-called principal axes of rotation of the rigid body. Let J be the

moment of inertia matrix of the spacecraft, which is a three-dimensional and real

symmetric matrix. Because J is real symmetric, it has three mutually orthogo-

nal eigenvectors which are associated with three real eigenvalues, i.e., there are

λi, i = 1,2,3, and xi, i = 1,2,3 such that

Jxi = λixi, (3.1)

where, assuming that the spacecraft is in the normal operation, x1 defines the

axis Xb which points forward the direction of the spacecraft velocity (but may

not be identical unless the orbit is circular), x2 defines the axis Zb which points

downward and is on the orbit plane, and x3 defines the axis Yb which complies

with the right-hand rule.

3.1.2 The Earth centered inertial (ECI) frame

The Earth centered inertial (ECI) frame is important because of two reasons.

First, the Newton’s laws of motion and gravity applied to the spacecraft are

defined in inertial frame. Second, many types of satellites are inertial pointing

spacecraft. This frame is defined relative to the rotation axis of the Earth and the

plane of the Earth’s orbit (the ecliptic plane) about the Sun. The Earth’s equator

is perpendicular to the rotation axis of the Earth. As the Earth moving along the

ecliptic orbit, the equator plane and the ecliptic have two cross points. These two

cross points are special as the tilt of the Earth’s rotational axis is inclined neither

away nor towards the Sun (the center of the Sun being in the same plane as the

Earth’s equator). The ECI frame is defined at one of these equinoxes, the ver-

nal equinox (or March equinox). Because of many less significant (but may not

be negligible) factors, such as the precession of the equinoxes, vernal equinox

used by aerospace engineers is defined by 2000 coordinates and the true of date

(TOD)1. The XI of inertial frame is the direction from the Earth center to the

vernal equinox. The ZI axis is the Earth rotational axis. The YI follows the right-

hand rule.

3.1.3 Local vertical local horizontal frame

The local vertical local horizontal frame (LVLH) is one of the most desired

frames for many satellites because its Zlvlh direction is always pointing to the

center of the Earth (nadir pointing), which is a desired feature of many satellites.

1For the rigorous and precise definition, please read [265].
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The origin of the local vertical local horizontal frame is the center of mass of an

orbital spacecraft. The Xlvlh direction is along the spacecraft velocity direction

and perpendicular to Zlvlh, and Ylvlh is perpendicular to the orbit plan and follows

the right-hand rule.

3.1.4 South east zenith (SEZ) frame

The south east zenith frame is useful for ground stations to track a spacecraft. The

location of the tracking instrument is the origin. XSEZ is the direction pointing

to the south, YSEZ is the direction pointing to the east, and ZSEZ is the direction

pointing to the zenith. In this system, the azimuth is the angle measured from

north, clockwise to the location beneath the object of interest. The elevation is

measured from local horizon, positive up to the object of interest.

3.1.5 North east nadir (NED) frame

The north east nadir frame is opposite to the SEZ frame which is defined by the

local horizontal plane. The center of the horizontal plane is the origin. XNED is

the direction pointing to the north, YNED is the direction pointing to the east, and

ZNED is the nadir direction.

3.1.6 The Earth-centered Earth-fixed (ECEF) frame

Like the Earth Centered Inertial (ECI) frame, the Earth-centered Earth-fixed

(ECEF) frame is the Earth-based frame. The ECI frame is independent from the

motion and the rotation of the Earth. However, it may not be convenient in some

case as observatories on the ground rotate with the Earth. The center of ECEF

frame is the center of the Earth. Using the convention adopted at the Interna-

tional Meridian Conference in Washington D.C. 1884, the primary meridian for

the Earth is the meridian that the Royal Observatory at Greenwich lies on. The

XECEF is the direction from the center of the Earth pointing to the cross point of

the primary meridian and equator. The ZECEF is the direction from the center of

the Earth pointing to the north pole. The YECEF is the direction that follows the

right-hand rule. The ECEF frame is sometimes called International Terrestrial

Reference Frame (ITRF). Because of the plate tectonic motion, the frame may

need some adjustment every year for certain applications.

3.1.7 The Orbit (Perifocal PQW) frame

In Perifocal PQW frame, the fundamental plane is the spacecraft orbit, and the

origin is at the center of the Earth (see Figure 2.7). The Px axis points towards

perigee, and the Qy is 900 from Px axis in the direction of spacecraft motion. The

Wz is normal to the orbit represented by Wz = Px ×Qy.
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3.1.8 The spacecraft coordinate (RSW) frame

The spacecraft coordinate (RSW) frame is closely related to LVLH frame (see

Figure 2.7). The Rx axis always points from the Earth’s center towards the space-

craft as it moves through the orbit. The Sy axis points in the direction of (but not

necessarily parallel to) the velocity vector and is perpendicular to the Rx axis,

an important additional requirement. The Wz axis is normal to the orbital plane

represented by Wz = Rx ×Sy.

3.2 Rotation sequences and mathematical representa-

tions

“nobreak

3.2.1 Representing a fixed point in a rotational frame

As we discussed at the beginning of this chapter, we determine the spacecraft

attitude by locating the astronomical objects in the sky from the spacecraft in-

struments which gives the directions in the body frame; from the ephemeris in-

formation, we know these directions represented in the desired frame. Therefore,

we have the information on some fixed (astronomical object) point in a rotational

frame when the spacecraft body frame is different from the desired frame. This

is equivalent to represent a fixed point in a rotational frame.

Let (X,Y,Z) be the axes of a frame (see Figure 3.1 where Z-axis points out

of the paper), and (x,y,z) be the axes of another frame which rotates an angle of

θ about Z axis. Let P be a fixed point in (X,Y) plane. Assume that the distance

of P from the origin is r, then we can express P in the first frame coordinate as

(x1,y1,z1)
x1 = r cos(α), y1 = r sin(α), z1 = 0; (3.2)

and in the second frame coordinate as (x2,y2,z2)

x2 = r cos(α −θ), y2 = r sin(α −θ), z2 = 0.

Thus, in view of (3.2), we have

x2 = r cos(α)cos(θ)+ r sin(α) sin(θ)

= x1 cos(θ)+ y1 sin(θ),

y2 = r sin(α)cos(θ)− r cos(α) sin(θ)

= y1 cos(θ)− x1 sin(θ),

z2 = 0. (3.3)
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Figure 3.1: A fixed point in a rotational frame.

We can write this transformation in a matrix form




x2

y2

z2



=





cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1









x1

y1

z1



 := Rot3(θ). (3.4)

Similarly, for a fixed point, if the frame rotates about Y axis for an angle θ , then

the transformation can be expressed as




x2

y2

z2



=





cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)









x1

y1

z1



 := Rot2(θ). (3.5)

For a fixed point, if the frame rotates about X axis for an angle θ , then the trans-

formation can be expressed as




x2

y2

z2



=





1 0 0

0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)









x1

y1

z1



 := Rot1(θ). (3.6)
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Rotational matrices of (3.4), (3.5), and (3.6) are all unitary matrices. By def-

inition, the length of each column of a unitary matrix is one, each column is

orthogonal to other columns. Unitary matrices have many useful properties. Let

C1 and C2 be two unitary matrices and v be a vector. Some most important prop-

erties of the unitary matrix are (see [77]):

� ‖C1v‖= ‖C2v‖ = ‖v‖, i.e., transformation by a unitary matrix does not

change the vector length.

� C2C1 is a unitary matrix. For rotational matrices, it means that the con-

secutive rotations can be expressed by the product of the rotational ma-

trices, where C1 is the first rotation and C2 is the second rotation.

� C−1
1 = CT

1 , i.e., the inverse of a rotational matrix is simply a transpose of

the rotational matrix.

3.2.2 Representing a rotational point in a fixed frame

When analyzing relationship between frames, we sometimes need to represent a

rotational point in a fixed frame. Let P1 be a point obtained by rotating P an angle

of θ around Z axis (see Figure 3.2 where Z-axis points out of the paper). Then

P1 can be expressed as

x2 = r cos(α +θ), y2 = r sin(α +θ), z2 = 0.

Thus, in view of (3.2), we have

x2 = x1 cos(θ)− y1 sin(θ), y2 = y1 cos(θ)+ x1 sin(θ), z2 = 0.

We can write this transformation in a matrix form




x2

y2

z2



=





cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1









x1

y1

z1



 := Rot3(−θ). (3.7)

Similarly, for a rotational point, if it rotates about Y axis for an angle θ , then the

transformation can be expressed




x2

y2

z2



=





cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)









x1

y1

z1



 := Rot2(−θ). (3.8)

For a rotational point, if it rotates about X axis for an angle θ , then the transfor-

mation can be expressed




x2

y2

z2



=





1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)









x1

y1

z1



 := Rot1(−θ). (3.9)
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Figure 3.2: A rotational point in a fixed frame.

3.2.3 Rotations in three dimensional space

The rotations discussed above are simple rotations in two dimensional space.

They are special cases in that the rotational axis is one of the coordinates which

is perpendicular to the plane spanned by vectors before and after the rotation.

Spacecraft attitude determination and control involve general rotations in three

dimensional space. Considering the rotation described in Figure 3.3 where we

rotate the axis X to the axis x. A popular method to represent this rotation is to

use a series of rotations about coordinate described in the previous subsections,

i.e., first we rotate the frame an α angle around −Y axis, then we rotate the

intermediate x′ a β angle around the new Z axis (z′ axis). The α and β angles

are the so-called Euler angles. Therefore, the rotational matrix is given by

C =





cos(β ) sin(β ) 0

− sin(β ) cos(β ) 0

0 0 1









cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)




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Figure 3.3: An axis rotation in three dimensional space.

=





cos(β )cos(α) sin(β ) cos(β ) sin(α)
− sin(β )cos(α) cos(β ) − sin(β ) sin(α)

− sin(α) 0 cos(α)





=





C11 C12 C13

C21 C22 C23

C31 C32 C33



 (3.10)

which provides a different explanation of the rotation from X axis to x axis,

i.e., the series of rotations can also be represented by a general rotational matrix

(3.10). Let

cos(θ) =
1

2
(C11+C22 +C33 −1), (3.11)

ê =
1

2sin(θ)





C23 −C32

C31 −C13

C12 −C21



=





e1

e2

e3



 , (3.12)
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E =
1

2sin(θ)
(CT −C) =





0 −e3 e2

e3 0 −e1

−e2 e1 0



 , θ 6=±kπ, k = 0,1,2, ..

(3.13)

the general rotational matrix (3.10) can be expressed as

C = cos(θ)I+(1− cos(θ))êêT − sin(θ)E. (3.14)

It can be verified that C is a rotational matrix, ê is the rotational axis, and θ is

the rotational angle [95]. C is called the direction cosine matrix.

Figure 3.4: All possible rotations for one axis.

Actually, there may be infinitely many combinations of rotational axes and

rotational angles that can rotate X to x. Moreover, Figure 3.4 and the following

analysis show that in general case, the rotational axis of the direction cosine

matrix may not be one of the coordinates. Let P be the middle point between X

and x and ψ be the angle between Ox and OP. Let OQ be the unit vector that is
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perpendicular to the plane spanned by X and x vectors. Obviously, the rotation

can be achieved by rotating 2ψ around OQ. Alternatively, another rotation with

rotational axis OP and rotational angle π can also rotates X to x. In fact, we can

use any vector on the plane spanned by OP and OQ as the rotational axis and

find an appropriate rotational angle which will rotate X to x. The first rotation we

described above is sometimes called the minimum-angle rotation, and the second

rotation we described above is called the maximum-angle rotation.

3.2.4 Rotation from one frame to another frame

Figure 3.5: Rotation from one frame to another frame.

In spacecraft attitude determination, we are oftentimes required to find a ro-

tation that brings one frame to another one. This means that we need to find a

rotational axis and an appropriate rotational angle that rotates one given frame

(X,Y,Z) to another given frame (x,y,z). Let S be the middle point of Y and
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y, OR be the unit length vector that is perpendicular to the plane spanned by

Y and y. The rotation that brings the frame (X,Y,Z) to (x,y,z) is described in

Figure 3.5, where the plane OPQ spanned by OP and OQ defines all the rota-

tional axes that can rotate X to x; the plane OSR spanned by OR and OS defines

all the rotational axes that can rotate Y to y. Therefore, the intersection of these

two planes defines the unique rotational axis that can rotate X to x and Y to y

simultaneously. We will provide a rigorous derivation in Section 3.4.

3.2.5 Rate of change of the direction cosine matrix

In spacecraft dynamics modeling and controls, we need to know not only the

attitude of the spacecraft, which is represented by the rotation from one frame to

another frame, but also the rate of this rotation. The time dependence of the di-

rection cosine matrix A at time t can be expressed by A(t). The time dependence

of the direction cosine matrix A at time t +∆t can be expressed by

A(t +∆t) = CA(t),

where C is a rotation around ê with rotational angle θ = Ω∆t, and Ω is the rate

of the rotation around the rotational axis. From (3.14),

C = cos(Ω∆t)I+(1− cos(Ω∆t))êêT − sin(Ω∆t)E. (3.15)

As ∆t → 0, using the notation of (1.6),

C → I−EΩ∆t = I−S(ω)∆t = I−





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



∆t,

where ω = (ω1,ω2,ω3) is the rate vector along the rotational axis ê, and

EΩ =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



= S(ω).

This gives

A(t +∆t) = (I−S(ω)∆t)A(t),

or

A(t +∆t)−A(t) =−S(ω)A(t)∆t,

therefore, we get
dA

dt
=−S(ω)A(t). (3.16)
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3.2.6 Rate of change of vectors in rotational frame

In spacecraft dynamics modeling and controls, vectors and their rates of changes

are oftentimes represented in different frames. For the modeling and control pur-

pose, we need to convert the vectors and their rates of changes represented in

different frames into a single frame. Therefore, the relationship between the time

derivatives of an arbitrary vector resolved along a coordinate axes of one system

and the derivatives in a different system is needed. Let a′ be the vector repre-

sented in a reference system and a be the same vector represented in body frame.

Then there is a rotational matrix C expressed in (3.14) such that

a = Ca′.

The product rule for differentiation gives
(

da

dt

)∣
∣
∣
∣
b

=
dC

dt
a′+C

(
da′

dt

)∣
∣
∣
∣
r

,

where the derivative
(

da
dt

)
∣
∣
∣
∣
b

is represented in the body frame, and the deriva-

tive
(

da′

dt

)∣∣
∣
∣
r

is represented in the reference frame. Since C is the rotation from

reference frame to body frame, C
(

da′

dt

)∣∣
∣
∣
r

=
(

da′

dt

)∣∣
∣
∣
b

. From (3.16),

(
da

dt

)∣
∣
∣
∣
b

= −S(ω)Ca′+C
da′

dt

∣
∣
∣
∣
r

= −S(ω)a+

(
da′

dt

)∣
∣
∣
∣
b

= −ω ×a+

(
da′

dt

)∣
∣
∣
∣
b

, (3.17)

where ω is the rate of the rotation between the reference frame and the body

frame.

3.3 Transformation between coordinate systems

This section discusses some rotational matrix applications. We will focus on the

transformation between different coordinate systems.

3.3.1 Transformation from ECI (XYZ) to PQW coordinate

In view of Figure 2.7, one can see that the transformation of XYZ coordinate

to PQW coordinate can be done by (a) rotate around Z axis by an angle Ω; (b)
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then rotate around X axis by an angle i, and (c) then rotate around Z axis by an

angle ω . Let c be a short notation for cos and s be a short notation for sin. In

mathematics formula, this transformation can be expressed as:




P

Q

W





= [Rot3(ω)][Rot1(i)][Rot3(Ω)]





X

Y

Z





=





cω sω 0

−sω cω 0

0 0 1









1 0 0

0 ci si

0 −si ci









cΩ sΩ 0

−sΩ cΩ 0

0 0 1









X

Y

Z



 .

(3.18)

3.3.2 Transformation from ECI (XYZ) to RSW coordinate

In view of Figure 2.7, one can see that the transformation of XYZ coordinate to

RSW coordinate can be done by (a) rotate around Z axis by an angle Ω; (b) then

rotate around X axis by an angle i, and (c) then rotate around Z axis by an angle

(ω + θ). Let c be a short notation for cos and s be a short notation for sin. In

mathematics formula, this transformation can be expressed as:




R

S

W





= [Rot3(ω +θ)][Rot1(i)][Rot3(Ω)]





X

Y

Z





=

[
c(ω + θ ) s(ω + θ ) 0

−s(ω + θ ) c(ω + θ ) 0

0 0 1

][
1 0 0

0 ci si

0 −si ci

][
cΩ sΩ 0

−sΩ cΩ 0

0 0 1

][
X

Y

Z

]

,

(3.19)

where Ω is the right ascension of the ascending node of the orbit, i is the incli-

nation of the orbit, ω is the argument of perigee, and θ is the true anomaly. The

sum of ω and θ represents the location of the spacecraft relative to the ascending

node.

3.3.3 Transformation from six classical parameters to (v,r)

In this section, we will find the spacecraft position and speed in the ECI co-

ordinate system given six classical orbit parameters [a,e, i,Ω,ω,M]. Since all
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Figure 3.6: Transformation between orbit parameters and ECI frame.

Keplerian orbits are in a plane, we can define a coordinate system x, y in a plane

with z = 0. It follows from Figure 3.6 and (2.49) that

x = acos(ψ)− c = a(cos(ψ)− e), (3.20)

and

y = x tan(θ) = a(cos(ψ)− e)
sin(θ)

cos(θ)

= a(cos(ψ)− e)
sin(ψ)

√
1− e2

cos(ψ)− e
= [a sin(ψ)]

√

1− e2. (3.21)

Given M and e, to find ψ , one can use Newton’s method for the equation (2.61)

which is provided again below

M = ψ − e sin(ψ). (3.22)

Given ψ , x and y are obtained from (3.20) and (3.21). In view of Figure 2.7,

(x,y,z) determines the spacecraft location in the PQW coordinate frame with
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z = 0. Therefore, to find r and v, it follows that

r = xP+ yQ = a(cos(ψ)− e)P+a
√

1− e2 sin(ψ)Q. (3.23)

From this equation, the location of the spacecraft in ECI frame is given by the

inverse transformation of Equation (3.18) which is given by





X

Y

Z



= [Rot3(Ω)]−1[Rot1(i)]
−1[Rot3(ω)]−1





x

y

0,



 (3.24)

where (X ,Y,Z) is the ECI coordinate of the spacecraft.

To calculate the velocity vector, one simply needs to use v = dr
dt

which gives

v =
dr

dt
=

dr

dψ

dψ

dt
. (3.25)

It follows from (3.22) and (2.56) that

dM

dt
= ω0 =

dψ

dt
− ecos(ψ)

dψ

dt
, (3.26)

which gives
dψ

dt
=

ω0

1− ecos(ψ)
=

aω0

r
. (3.27)

The last equation follows from (2.51). Differentiating (3.23) and using (3.27)

yield

v =
dr

dt
=

a2ω0

r

[

− sin(ψ)P+
√

1− e2 cos(ψ)Q
]

= vpP+ vqQ, (3.28)

where (vp,vq,0) is the spacecraft velocity in PQW coordinate frame. Using the

inverse transformation of Equation (3.18) gives





vx

vy

vz



= [Rot3(Ω)]−1[Rot1(i)]
−1[Rot3(ω)]−1





vp

vq

0



 (3.29)

where (vx,vy,vz) is the spacecraft velocity in the ECI coordinate frame.

3.3.4 Transformation from (v,r) to six classical parameters

Now, we consider the inverse transformation, i.e., given (v,r) in Cartesian coor-

dinates, X, Y, Z, vx, vy, and vz, the task is to find the classical orbit parameters

α = [a,e, i,Ω,ω,M]. From (2.41), it follows immediately that

a =
µ

2
[

µ
r
− v2

2

] . (3.30)
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Let h = [hx,hy,hz]
T be the orbit momentum represented in ECI frame and h = |h|.

Since h = r×v = |h|W is a given, in view of Figure 2.7, it follows that

cos(i) = hz/h. (3.31)

From Figure 2.7 again, it follows that

sin(Ω) =
hx

√

h2
x +h2

y

, cos(Ω) =− hy
√

h2
x +h2

y

. (3.32)

In view of (2.39), it follows that

e =

√

1− h2

aµ
. (3.33)

From (3.22), to obtain M = ψ − e sin(ψ), one needs to know ψ . Given a, e, and

r, from (2.51), it follows that

ψ = cos−1

(
1−|r|

ae

)

. (3.34)

From (3.23), (3.28), and (2.51), it follows that

r ·v =
a3ω0

r
sin(ψ)

[
−(cos(ψ)− e)+(1− e2)cos(ψ)

]

=
a3ω0

r
sin(ψ)e(1− e)cos(ψ)

=
a2ω0

r
sin(ψ)er = a2ω0e sin(ψ). (3.35)

This yields, in view of (2.55), that

sin(ψ) =
r ·v

a2ω0e
=

r ·v
e
√

aµ
. (3.36)

Equations (3.34) and (3.36) gives ψ with correct sign. Therefore, M is obtained

by using (2.61) which is given again below

M = ψ − e sin(ψ). (3.37)

The last parameter is the argument of perigee ω . In view of Figure 3.6, in

orbit plane, we have

x = r cos(θ), y = r sin(θ). (3.38)

Since r = [X ,Y,Z]T is known in ECI frame, substituting x, y, X , Y , and Z into

(3.19) gives

sin(ω +θ) =
Z

r sin(i)
, cos(ω +θ) =

X cos(Ω)+Y sin(Ω)

r
. (3.39)

Since θ is given in (2.49), ω can be obtained from (3.39).
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3.4 Quaternion and its properties

Unlike the Euler angles which represent a rotation by a series of rotations ro-

tating around X, or Y or Z axes, quaternion represents a rotation by a rota-

tional angle around a rotational axis, which is not necessarily around X, or Y,

or Z axes. Quaternion was first introduced by the Irish mathematician William

Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space.

A striking feature of quaternion is that the product of two quaternion is non-

commutative, meaning that the product of two quaternions depends on which

factor is to the left of the multiplication sign and which factor is to the right. Let

the standard basis i, j, and k for the R3 satisfy the following condition

i2 = j2 = k2 = ijk =−1. (3.40)

Let a 4-tuple of real numbers

q̄ = (q0,q1,q2,q3), (3.41)

we define a quaternion as the sum of a scalar and a vector

q̄ = q0 + iq1 + jq2 +kq3 = q0 +q, (3.42)

where q0 is called the scalar part of the quaternion and

q = iq1 + jq2 +kq3

is called the vector part of the quaternion. People use (3.41) and (3.42) inter-

changeably if no confusion is introduced. Though in aerospace engineering, we

always use a special normalized quaternion q0 = cos(α
2
), and q= êsin(α

2
), where

ê is rotational axis, and α is the rotational angle. We will derive some useful

properties for the general form of quaternion.

3.4.1 Equality and addition

Let

p̄ = p0 + ip1 + jp2 +kp3

and

q̄ = q0 + iq1 + jq2 +kq3

be two quaternions, then the two quaternions are equal if and only if

p0 = q0, p1 = q1, p2 = q2, p3 = q3.

For the special normalized quaternion used in the aerospace engineering, if two

quaternions are equal, they have the same rotational angle and the same rotational

axis. The sum of the two quaternions is defined as

p̄+ q̄ = (p0 +q0)+ i(p1 +q1)+ j(p2 +q2)+k(p3 +q3).

The zero quaternion has scalar part 0 and vector part (0,0,0). The negative or an

additive inverse of q̄ is −q̄.
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3.4.2 Multiplication and the identity

From (3.40), we have

ij = k =−ji, jk = i =−kj, ki = j ==−ik. (3.43)

Let p̄ and q̄ be defined as before, use (3.40) and (3.43), we define the multiplica-

tion of two quaternions p̄ and q̄ by

p̄⊗ q̄ = p0q0 −p ·q+ p0q+q0p+p×q, (3.44)

with the scalar part p0q0−p ·q and vector part p0q+q0p+p×q. The quaternion

multiplicative identity has scalar part 1 and vector part (0,0,0).
The quaternion multiplication can be used to represent two consecutive ro-

tations. Let p̄ and q̄ be the two consecutive rotations (p̄ represent the first ro-

tation and q̄ represent the second rotation). The composed rotation is given by

r̄ = p̄⊗ q̄. The derivation is given in Section 3.4.4 (see also [281, pages 319-

320]).

3.4.3 Complex conjugate, norm, and inverse

The complex conjugate of quaternion q̄ is denoted by

q̄∗ = q0 −q = q0 − iq1 − jq2 −kq3. (3.45)

It is easy to see

q̄+ q̄∗ = (q0 +q)+(q0 −q) = 2q0. (3.46)

Given two quaternions p̄ and q̄, we have

(p̄⊗ q̄)∗ = q̄∗⊗ p̄∗. (3.47)

The norm of a quaternion is defined as ‖q̄‖ =√
q̄∗⊗ q̄. It is also easy to verify

that the norm satisfies

‖q̄‖=
√

q2
0 +q2

1 +q2
2 +q2

3. (3.48)

We define the inverse of a quaternion by

q̄−1 ⊗ q̄ = q̄⊗ q̄−1 = 1.

Pre- and post-multiplying by q̄∗ gives

q̄−1 ⊗ q̄⊗ q̄∗ = q̄∗⊗ q̄⊗ q̄−1 = q̄∗.

Since q̄∗⊗ q̄ = q̄⊗ q̄∗ = ‖q̄‖2, we have

q̄−1 =
q̄∗

‖q̄‖2
. (3.49)
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For normalized quaternion which satisfies ‖q̄‖=
√

q2
0 +q2

1 +q2
2 +q2

3 = 1,

q̄−1 = q̄∗. (3.50)

Finally, the norm of the product of two quaternions p̄ and q̄ is the product of the

individual norms because

‖p̄⊗ q̄‖2 = (p̄⊗ q̄)⊗ (p̄⊗ q̄)∗

= p̄⊗ q̄⊗ q̄∗⊗ p̄∗

= p̄⊗‖q‖2 ⊗ p̄∗

= p̄⊗ p̄∗‖q‖2 = ‖p‖2‖q‖2. (3.51)

3.4.4 Rotation by quaternion operator

Now we are ready to show how to rotate a vector using quaternion operator.

For this purpose, we will consider only the normalized quaternion q̄ = q0 +q =
cos(α

2
) + ê sin(α

2
), where ê is the unit length rotational axis and α is the ro-

tational angle. Clearly, quaternion does have the information about the rota-

tional angle and the rotational axis. Similar to rotational matrices, we need

the product of quaternions to be able to represent consecutive rotations. Let

p̄ = cos(α
2
)+ ê sin(α

2
) and q̄ = cos( β

2
)+ êsin( β

2
), from (3.44), we have

r̄ = p̄⊗ q̄ =
(

cos
(α

2

)

+ êsin
(α

2

))

⊗
(

cos

(
β

2

)

+ ê sin

(
β

2

))

= cos
(α

2

)

cos

(
β

2

)

− êsin
(α

2

)

· ê sin

(
β

2

)

+cos
(α

2

)

êsin

(
β

2

)

+ êsin
(α

2

)

cos

(
β

2

)

+ê sin
(α

2

)

× ê sin

(
β

2

)

= cos
(α

2

)

cos

(
β

2

)

− sin
(α

2

)

sin

(
β

2

)

+ê

(

sin
(α

2

)

cos

(
β

2

)

+ cos
(α

2

)

sin

(
β

2

))

= cos

(
α +β

2

)

+ êsin

(
α +β

2

)

= cos(γ)+ êsin (γ) (3.52)

This means that the product of two quaternions indeed represents two consecu-

tive rotations. Parallel to the vector rotation using rotational matrix, we expect

that a quaternion rotation operator involves multiplication of a quaternion and a
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vector. Therefore, the multiplication of a quaternion and a vector should be de-

fined. To this end, we consider a vector v as a pure quaternion in which the scalar

part is zero and the vector part is v, i.e., v̄ = 0+ v. For the sake of notational

simplicity, we use v̄ and v interchangeably for both vector and pure quaternion.

From (3.44), the multiplication of a vector and a quaternion is defined as

q̄⊗v = (q0 +q)⊗ (0+v) =−q ·v+q0v+q×v. (3.53)

We also expect that the quaternion operator will rotate a vector into another vec-

tor, or a pure quaternion. Simple evaluation shows that neither w = q̄⊗ v nor

w = v⊗ q̄ is necessarily a pure vector. However, using (3.53) and (1.2), we have

w = q̄⊗v⊗ q̄∗ = (q0 +q)⊗ (0+v)⊗ (q0−q)

= (−q ·v+q0v+q×v)⊗ (q0 −q)

= −q0(q ·v)+q0(v ·q)+(q×v) ·q
+(q ·v)q+q2

0v+q0(q×v)−q0(v×q)− (q×v)×q

= (q ·v)q+q2
0v+2q0(q×v)− (q ·q)v+(v ·q)q

= (2q2
0 −1)v+2(q ·v)q+2q0(q×v)

=
(

cos2
(α

2

)

− sin2
(α

2

))

v+2(q ·v)q+2q0(q×v), (3.54)

which is a vector. In fact, the quaternion operator can be expressed by direction

cosine matrix which may be more convenient in some cases. From (3.54), since

2(q2
0 −1)v =





(2q2
0−1) 0 0

0 (2q2
0 −1) 0

0 0 (2q2
0 −1)









v1

v2

v3



 ,

2(v ·q)q =





2q2
1 2q1q2 2q1q3

2q1q2 2q2
2 2q2q3

2q1q3 2q2q3 2q2
3









v1

v2

v3



 ,

2q0(q×v) =





0 −2q0q3 2q0q2

2q0q3 0 −2q0q1

−2q0q2 2q0q1 0









v1

v2

v3



 ,

we have




w1

w2

w3



=





2q2
0 −1+2q2

1 2q1q2 −2q0q3 2q1q3 +2q0q2

2q1q2 +2q0q3 2q2
2 +2q2

0 −1 2q2q3 −2q0q1

2q1q3 −2q0q2 2q2q3 +2q0q1 2q2
3 +2q2

0−1









v1

v2

v3



 .

(3.55)

This means that we can use either (3.54) or (3.55) for quaternion rotation. We

will use them in different applications in the rest of the book. It is worthwhile to

note, in view of (3.54), that (3.55) defines a general rotational matrix as

C = (q2
0 −qTq)I+2qqT +2q0S(q). (3.56)
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We now show that q̄⊗ v⊗ q̄∗ is indeed the quaternion operator that rotates

v an α angle around ê. First, it is easy to verify that q̄⊗v⊗ q̄∗ is linear operator,

i.e., for two vectors a, b, and a scalar k, the following relation holds.

q̄⊗ (ka+b)⊗ q̄∗ = kq̄⊗a⊗ q̄∗+ q̄⊗b⊗ q̄∗. (3.57)

Then, we decompose vector v into two components, v = vq + vn, where vq is

parallel to q and vn is perpendicular to q. We show (a) under quaternion operator

q̄⊗ v⊗ q̄∗, the first component vq is invariant and (b) the second component vn

rotates an angle of α . Since vq = kq, where k ≤ 1 is a constant, from (3.57),

(3.53), and (3.44), using the fact that q̄ is a normalized quaternion, we have

q̄⊗vq⊗ q̄∗ = q̄⊗ (kq)⊗ q̄∗ = kq̄⊗ (q)⊗ q̄∗ = k(−q ·q+q0q)⊗ (q0−q) = kq.

This proves (a). Using the facts that

q ·vn = 0,

cos(α) = cos2
(α

2

)

− sin2
(α

2

)

,

sin(α) = 2cos
(α

2

)

sin
(α

2

)

,

q0 = cos
(α

2

)

,

‖q‖= sin
(α

2

)

,

q×vn = ‖q‖‖vn‖ sin
(π

2

)

v⊥ = ‖q‖‖vn‖v⊥,

where v⊥ is a unit length vector perpendicular to both q and vn, and from (3.54),

we have

q̄⊗ (vn)⊗ q̄∗ =
(

cos2
(α

2

)

− sin2
(α

2

))

vn +2(q ·vn)q+2q0(q×vn)

= cos(α)vn +2q0(q×vn)

= cos(α)vn +2cos
(α

2

)

(q×vn)

= cos(α)vn +2cos
(α

2

)

sin
(α

2

)

‖vn‖v⊥

= cos(α)vn + sin(α)‖vn‖v⊥. (3.58)

Since vn and ‖vn‖v⊥ have the same length, and they both perpendicular to vq,

equation (3.58) indicates that q̄⊗ (vn)⊗ q̄∗ rotates vn an angle of α around axis

q. This proves (b).

A fact parallel to the rotational matrix is that q̄⊗(v)⊗ q̄∗ does not change the
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length of v, which is a direct result of (3.51) and the fact that q̄ is a normalized

quaternion.

‖q̄⊗v⊗ q̄∗‖= ‖q̄‖‖v‖‖q̄‖∗ = ‖v‖. (3.59)

Similar to the rotational matrix, the inverse of the quaternion operator w = q̄⊗
(v)⊗ q̄∗ on v is simple and it is given by

q̄∗⊗ (w)⊗ q̄ = q̄∗⊗ (q̄⊗ (v)⊗ q̄∗)⊗ q̄ = (q̄∗⊗ q̄)⊗v⊗ (q̄∗⊗ q̄) = v

which rotates w an angle of α around −q and brings w back to v. It is easy to

verify that

v = q̄∗⊗w⊗ q̄ = (2q2
0−1)w+2(q ·w)q−2q0(q×w). (3.60)

This gives




v1

v2

v3



=





2q2
0 −1+2q2

1 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 2q2
0 −1+2q2

2 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 2q2
0 −1+2q2

3









w1

w2

w3



 .

(3.61)

It is worthwhile to note, in view of (3.60), that (3.61) defines a general rotational

matrix as

A = (q2
0 −qTq)I+2qqT −2q0S(q). (3.62)

Formula (3.62) is another form of the rotational matrix (3.14).

3.4.5 Matrix form of quaternion production

We also find that in some applications, a matrix form of quaternion production is

more convenient than the form of (3.44). Let r̄ = (r0,r1,r2,r3) be the composed

quaternion of two consecutive quaternions of p̄ and q̄, i.e., r̄ = p̄⊗ q̄. Expanding

(3.44) gives

r0 = p0q0 − p1q1 − p2q2 − p3q3 (3.63a)

r1 = p0q1 + p1q0 + p2q3 − p3q2 (3.63b)

r2 = p0q2 − p1q3 + p2q0 + p3q1 (3.63c)

r3 = p0q3 + p1q2 − p2q1 + p3q0. (3.63d)

(3.63) can be written in matrix form






r0

r1

r2

r3






=







p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0













q0

q1

q2

q3







(3.64a)

=







q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0













p0

p1

p2

p3






. (3.64b)
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3.4.6 Derivative of the quaternion

The derivative of quaternion is obtained as follows. Let q̄(t) be the quaternion

to a reference frame at time t, q̄(t +∆t) be the quaternion to the reference frame

at t +∆t, and p̄(t) = cos(∆α
2
)+ ê(t) sin(∆α

2
) be the quaternion that brings q̄(t)

to q̄(t +∆t), i.e., p̄(t) is an incremental quaternion with rotational axis ê(t) and

rotational angle ∆α . For ∆t → 0, cos(∆α
2
) → 1 and sin(∆α

2
) → ∆α

2
, therefore,

p̄(t)≈ 1+ ê(t)∆α
2

. This gives

q̄(t +∆t) = q̄(t)⊗
(

1+ ê(t)
∆α

2

)

,

or

q̄(t +∆t)− q̄(t) = q̄(t)⊗
(

0+ ê(t)
∆α

2

)

.

Divide ∆t at both sides and let ∆t → 0, we obtain

dq̄

dt
= q̄(t)⊗

(

0+
1

2
ê(t)Ω(t)

)

= q̄(t)⊗
(

0+
1

2
ω(t)

)

,

where Ω(t) = lim∆t→0
∆α
∆t

is a scalar, and ω(t) = ê(t)Ω(t) is a vector, and (0+
1
2
ω(t)) = 1

2
(0,ω1,ω2,ω3) is a quaternion. Using matrix expression (3.64) for the

quaternion product, we obtain







q̇0

q̇1

q̇2

q̇3







=
1

2







0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0













q0

q1

q2

q3







=
1

2







q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0













0

ω1

ω2

ω3






. (3.65)
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The quaternion based model has several advantages over Euler angle based

model. For example, the quaternion based model is uniquely defined because

it does not depend on rotational sequence, while a Euler angle based model can

be different for different rotational sequences. Therefore, Euler angle based mod-

els may be error-prone if different groups of people work on the same project but

use different rotational sequences. In engineering design practice, an agreement

is supposed to reach among different design groups working on the same project.

Another attractive feature of quaternion based model is that a full quaternion

model does not have any singular point in any rotational sequence. Therefore,

quaternion model-based control design methods using Lyapunov function have

been discussed in many research papers, for example, [32, 275, 279]. Though

53
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Lyapunov function is a powerful tool in global stability analysis, obtaining a

control law and the associated Lyapunov function for the nonlinear systems is

postulated by intuition, as noted in [191]. Moreover, most of these designs fo-

cus on the global stability and do not pay much attention on the performance

of the control system. In [191, 281], quaternion based linear error dynamics are

adapted to get desired performance for the attitude control system using classical

frequency domain methods. However, state space time domain design methods,

such as optimal control and pole assignment, are more attractive than the classical

frequency domain design methods. In [339], a linearized state space quaternion

model is derived. Unfortunately, the analysis shows that the linearized state space

representation of the full quaternion model using all four components of the

quaternion is uncontrollable. Therefore, pole assignment can only be achieved in

some controllable subspace in the linearized state space quaternion model using

all four components of the quaternion. In addition, the stability of the linearized

closed loop system is unknown because an uncontrollable eigenvalue is at the

origin of the complex plane.

In this chapter, firstly a controllable quaternion model for inertial pointing

spacecraft has been described, the simplest one in many applications. To obtain a

controllable quaternion model, only vector component of the quaternion is used

in the model. The cost of using only three components of the quaternion in the

model is that, similar to the Euler angle representation, the reduced model has

a singular point at α = ±π , where α is the rotation angle around the rotation

axis. However, this singular point is the farthest point to the point where the

linearization is carried out. Therefore, the model and designed controller will

work well in practice.

Secondly, a controllable quaternion model for nadir pointing spacecraft with

momentum wheel(s) has been presented. This is a different model from the in-

ertial pointing spacecraft without a momentum wheel discussed in many litera-

tures. This model includes five important features of many low orbit nadir point-

ing spacecraft: (a) an additional term for the momentum wheels is incorporated

to the nonlinear dynamic equations, (b) the local vertical local horizontal frame is

used as the reference frame and the rotation between local vertical local horizon-

tal frame and inertial frame is considered in the model similar to the treatment in

[232] for the Euler angle based models, (c) gravity gradient torque, a dominant

and predictable disturbance for low orbit spacecraft, is included to improve the

model accuracy, (d) unlike the Euler angle models, the reduced quaternion model

does not depend on the rotational sequence, and (e) the singularity of the reduced

quaternion model is at the farthest angle of π comparing to the singularity of Eu-

ler angle model at angle of π/2.

This chapter will show by using only vector component of the quaternion, that

these linearized spacecraft models are fully controllable. Therefore, it is easier

to use these reduced models than the full quaternion models in controller design

because all modern state space control system design methods can be applied di-
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rectly. The stability of the designed closed-loop spacecraft system is guaranteed

because the linearized control system is fully controllable. The justification of us-

ing reduced quaternion models and their benefits were fully discussed [304]. The

similar strategy was used in [206, 211, 330] but the merits were not discussed.

4.1 The general spacecraft system equations

“nobreak

4.1.1 The dynamics equation

Let J be the inertia matrix of a spacecraft defined by

J =





J11 J12 J13

J21 J22 J23

J31 J32 J33



 , (4.1)

ω I = [ωI1,ωI2,ωI3]
T be the angular velocity vector of the spacecraft body with

respect to the inertial frame, represented in the spacecraft body frame, hI be the

angular momentum vector of the spacecraft about its center of mass represented

in the inertial frame, h = Jω I be the same vector of hI but represented in the

body frame, m be the external torque acting on the body about its center of mass.

Then, from [227], we have

m =

(
dhI

dt

)∣
∣
∣
∣
b

.

In view of (3.17), we have

m =

(
dhI

dt

)∣
∣
∣
∣
b

=

(
dh

dt

)

+ω I ×h. (4.2)

This gives
(

dh

dt

)

= Jω̇ I =−ω I ×Jω I +m.

The external torques m are normally composed of (a) disturbance torques td due

to gravitational, aerodynamic, solar radiation, and other environmental torques

in body frame, and is expressed by

td = [td1, td2, td3]
T, (4.3)

and (b) the control torque u expressed by

u = [u1,u2,u3]
T. (4.4)

Therefore,

Jω̇ I =−ω I × (Jω I)+ td +u =−S(ω I)(Jω I)+ td +u, (4.5)
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4.1.2 The kinematics equation

Denote the rotational axis of a body frame relative to a reference frame by a

unit length vector ê, the rotational angle around the rotational axis by α , the

scalar component of the quaternion by q0 = cos(α
2
), the vector component of the

quaternion by q = [q1,q2,q3]
T = êsin(α

2
), then, the quaternion that represents the

rotation of the body frame relative to the reference frame is given by

q̄ = [q0,q
T]T =

[

cos
(α

2

)

, êT sin
(α

2

)]T

. (4.6)

Let ω be the spacecraft body rate with respect to reference frame represented in

the body frame. From (3.65), , which is repeated below,







q̇0

q̇1

q̇2

q̇3







=
1

2







0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0













q0

q1

q2

q3







=
1

2







q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0













0

ω1

ω2

ω3






, (4.7)

the nonlinear spacecraft kinematics equations of motion can be represented by

the quaternion as follows:







q̇ =− 1
2
ω ×q+ 1

2
q0ω

q̇0 =− 1
2
ωTq.

(4.8)

In view of (4.7), using the fact that q0 =
√

1−q2
1−q2

2 −q2
3, we have,





q̇1

q̇2

q̇3



 =
1

2








√

1− q2
1
− q2

2
− q2

3
−q3 q2

q3

√

1− q2
1 − q2

2 − q2
3 −q1

−q2 q1

√

1− q2
1
− q2

2
− q2

3












ω1

ω2

ω3





=
1

2
Q(q1,q2,q3)ω = g(q1,q2,q3,ω). (4.9)

It is easy to verify

det





√

1−q2
1 −q2

2 −q2
3 −q3 q2

q3

√

1−q2
1 −q2

2 −q2
3 −q1

−q2 q1

√

1−q2
1 −q2

2 −q2
3





= det(Q(q1,q2,q3)) =
1

√

1−q2
1 −q2

2 −q2
3

, (4.10)
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hence Q(q1,q2,q3) is always a full rank matrix except for α =±π . This means

that unless α =±π , the kinematics equation of motion using reduced quaternion

representation can be simplified from (4.7) to (4.9).

The main advantages of using (4.9) instead of (4.7) is as follows: (a) the sys-

tem dimension is reduced from 7 to 6, yielding a simpler model, (b) the linearized

system is controllable, (c) the stability analysis can be directly conducted based

on the linearized system (there is no uncontrollable unstable pole, see [339]),

and (d) all closed loop eigenvalues can be assigned to any position by appro-

priate feedback control law because the linearized system is controllable. The

results presented in this chapter are based on [304, 306].

4.2 The inertial pointing spacecraft model

“nobreak

4.2.1 The nonlinear inertial pointing spacecraft model

The inertial pointing spacecraft is desired in many applications. The inertial

pointing spacecraft model is one of the simplest spacecraft models. In this sec-

tion, we assume that the spacecraft does not have a momentum wheel (hw = 0);

therefore, the control torques are either thrusters or magnet torque rods or their

combinations. (More details about spacecraft control actuators will be discussed

in Chapter 10). To simplify the model further, we assume that the disturbance

torque is negligible. In this case, (4.5) is reduced to

Jω̇ I =−ω I × (Jω I)+u =−S(ω I)(Jω I)+u. (4.11)

Let q̄ be the quaternion that represents the rotation of the spacecraft body frame

relative to the inertial frame, the reduced kinematics equation is then the same as

equation (4.9).

4.2.2 The linearized inertial pointing spacecraft models

We can derive the linearized spacecraft system from (4.11) and (4.9) by using

the first order Taylor expansion around the stationary point q1 = q2 = q3 = 0 and

ω I = 0 as follows:

ω̇ I ≈ J−1u,

∂ g

∂ ω I

∣
∣
∣
∣ ω I≈0
q1=q2=q3≈0

≈ 1

2
I3,

∂ g

∂ q

∣
∣
∣
∣ ω I≈0
q1=q2=q3≈0

≈ 1

2
03.
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Therefore,
[

ω̇ I

q̇

]

=

[
03 03
1
2
I3 03

][
ω I

q

]

+

[
J−1

03

]

u = Ax+Bu, (4.12)

where

A =

[
03 03
1
2
I3 03

]

, x =

[
ω I

q

]

, and B =

[
J−1

03

]

(4.13)

It is easy to verify that this linearized spacecraft system equation is controllable.

4.3 Nadir pointing momentum biased spacecraft model

“nobreak

4.3.1 The nonlinear nadir pointing spacecraft model

Momentum biased spacecraft is widely in practice, and is discussed extensively

in [232, chapter 8]. For momentum biased spacecraft, a momentum wheel is

installed in Yb axis which is perpendicular to the orbit plane. Normally, the mo-

mentum wheel spins in a constant speed, but it may also be used to generate

control torque by changing the speed. Let

h = [h1,h2,h3]
T = [0,h2,0]

T (4.14)

be the angular momentum of the momentum wheel in the body frame. The space-

craft model (4.5) is therefore becomes

Jω̇ I =−ω I × (Jω I +h)+ td +u =−S(ω I)(Jω I +h)+ td +u, (4.15)

For a nadir pointing spacecraft, the attitude of the spacecraft is represented

by the rotation of the spacecraft body frame relative to the local vertical and

local horizontal (LVLH) frame. Therefore, we will represent the quaternion and

spacecraft body rate in terms of the rotations of the spacecraft body frame relative

to the LVLH frame. Let ω = [ω1,ω2,ω3]
T be the body rate with respect to the

LVLH frame represented in the body frame, ω lvlh = [0,−ω0,0]
T be the orbit rate

(or LVLH frame rate) with respect to the inertial frame, represented in the LVLH

frame. Let v be the speed of the spacecraft, r be the distance from the spacecraft

to the center of the Earth, p be the orbit period, then for circular orbit spacecraft,

we have (see also the definition of mean motion of (2.55))

ω0 =
v

r
=

2π

p
. (4.16)

Let Ab
l represent the transformation matrix from the LVLH frame to the space-

craft body frame. Then, ω I can be expressed by

ω I = ω +Ab
l ω lvlh = ω +ωb

lvlh (4.17)
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where ωb
lvlh = Ab

l ω lvlh is the rate of the LVLH frame with respect to the inertial

frame, represented in the body frame. From (3.16), Ȧb
l =−ω ×Ab

l , therefore, ω̇ I

is given by

ω̇ I = ω̇ + Ȧb
l ω lvlh +Ab

l ω̇ lvlh = ω̇ −ω ×Ab
l ω lvlh = ω̇ −ω ×ωb

lvlh (4.18)

where we assumed that ω̇ lvlh is small and can be neglected1. Using Equations

(4.17) and (4.18), we can rewrite Equation (4.15) as

Jω̇ = J(ω ×ωb
lvlh)−ω × (Jω)−ω × (Jωb

lvlh)−ωb
lvlh × (Jω)

−ωb
lvlh × (Jωb

lvlh)−ω ×h−ωb
lvlh ×h+ td +u

= f(ω,ωb
lvlh,h)+ td +u, (4.19)

where

f(ω,ωb
lvlh,h)

= J(ω ×ωb
lvlh)−ω × (Jω)−ω × (Jωb

lvlh)−ωb
lvlh × (Jω)

−ωb
lvlh × (Jωb

lvlh)−ω ×h−ωb
lvlh ×h (4.20)

Let q̄ = [q0,q1,q2,q3]
T = [q0,q

T]T = [cos(α
2
), êT sin(α

2
)]T be the quaternion rep-

resenting the rotation of the body frame relative to the LVLH frame, where ê is

the unit length rotational axis and α is the rotation angle about ê. Therefore, the

reduced kinematics equation is given by (4.9). From (3.61), Ab
l can be written as

Ab
l =





2q2
0 −1+2q2

1 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 2q2
0 −1+2q2

2 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 2q2
0−1+2q2

3



 .

4.3.2 The linearized nadir pointing spacecraft model

It is difficult to design a controller with specified performance (such as settling

time, rising time, and percentage of overshoot) using the nonlinear spacecraft

system model described by (4.19) and (4.9). The common practice is to design

the controller using a linearized system and then check if the designed controller

works for the original nonlinear system using simulation. For a nadir pointing

spacecraft system, we need the closed loop spacecraft system to have the fol-

lowing features: (a) the spacecraft body rate with respect to the LVLH frame

is as small as possible, ideally, ω = 0; and (b) the spacecraft body frame is

aligned with the LVLH frame, i.e., the error is as small as possible, ideally,

q1 = q2 = q3 = 0. Since the rotation axis length is always 1, this implies that

the rotation angle α = 0. Therefore the linearized model is the first order model

1This assumption is true for most satellites as long as the orbit eccentricity is small, i.e., the orbit is

close to a circle.
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of Taylor expansion of the nonlinear system (4.19) and (4.9) about ω = 0 and

q1 = q2 = q3 = 0. By using quaternion representation of Ab
l , assuming J is almost

diagonal (which is almost always true in real spacecraft designs), and neglecting

high order terms of q1, q2, and q3, we have the following relations.

ωb
lvlh = Ab

l ω lvlh =





2q1q2 +2q0q3

2q2
0 −1+2q2

2

2q2q3 −2q0q1



(−ω0)

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

≈





−2q3

−1

2q1



ω0,

(4.21)

Using (1.6) and

Jωb
lvlh ≈





−2J11q3ω0

−J22ω0

2J33q1ω0



 ,

we have

ωb
lvlh × (Jωb

lvlh)

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

=





0 2q1ω0 ω0

−2q1ω0 0 −2q3ω0

−ω0 2q3ω0 0









2J11q3ω0

J22ω0

−2J33q1ω0





∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

≈ ω2
0





2(J22 − J33)q1

0

2(J22 − J11)q3



 , (4.22)

and

ωb
lvlh ×h

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

= −





0 2q1ω0 ω0

−2q1ω0 0 −2q3ω0

−ω0 2q3ω0 0









0

h2

0





∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

≈ −ω0





2h2q1

0

2h2q3



 . (4.23)

Using (4.21), (4.22), and (4.23), we have

∂ f

∂ ω

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

≈−JS(ωb
lvlh)+S(Jωb

lvlh)−S(ωb
lvlh)J+S(h), (4.24)

∂ f

∂ q

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

=
∂ (−ωb

lvlh × (Jωb
lvlh)−ωb

lvlh ×h)

∂ q

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

≈





2ω2
0 (J33 − J22)+2h0ω0 0 0

0 0 0

0 0 2ω2
0 (J11− J22)+2h0ω0



 ,
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(4.25)

∂ g

∂ ω

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

≈ 1

2
I3, (4.26)

∂ g

∂ q

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

≈ 1

2
03, (4.27)

where I3 is a 3× 3 dimensional identity matrix, 03 is a 3× 3 dimensional zero

matrix. Equation (4.24) can be simplified further as follows.

JS(ωb
lvlh) =−





−J13ω0 0 J11ω0

−J23ω0 0 J21ω0

−J33ω0 0 J31ω0



=





0 0 −J11ω0

0 0 0

J33ω0 0 J0



 . (4.28)

S(Jωb
lvlh) = −





0 −J32ω0 J22ω0

J32ω0 0 −J12ω0

−J22ω0 J12ω0 0





=





0 0 −J22ω0

0 0 0

J22ω0 0 0



 . (4.29)

S(ωb
lvlh)J = −





J31ω0 J32ω0 J33ω0

0 0 0

−J11ω0 −J12ω0 −J13ω0





=





0 0 −J33ω0

0 0 0

J11ω0 0 0



 . (4.30)

S(h) =





0 0 h2

0 0 0

−h2 0 0



 . (4.31)

Therefore

∂ f

∂ ω

∣
∣
∣
∣ ω≈0
q1=q2=q3≈0

=





0 0 (J11 − J22 + J33)ω0 +h2

0 0 0

−(J11− J22 + J33)ω0 −h2 0 0



 .

(4.32)

For many nadir pointing satellites, we need to model disturbance torque in the
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linearized model. For low Earth orbit spacecraft, aerodynamic torque and grav-

ity gradient torque are the dominant disturbance torques. It is difficult to model

the aerodynamic torque because it is related to solar activity, geomagnetic in-

dex, spacecraft geometry, spacecraft attitude, spacecraft altitude, and many other

factors, but it is known that the gravity gradient torque can be modeled by (see

derivation in Chapter 5 or [232, 85])

tgg =





3ω2
0 (J33 − J22)φ

3ω2
0 (J33 − J11)θ

0



 , (4.33)

where φ and θ are the Euler angles for the roll and the pitch. For small Euler

angles (see [280]), φ = 2q1 and θ = 2q2, this gives

tgg =





6ω2
0 (J33 − J22)q1

6ω2
0 (J33 − J11)q2

0





=





6ω2
0 (J33 − J22) 0 0

0 6ω2
0 (J33 − J11) 0

0 0 0









q1

q2

q3



 . (4.34)

From (4.19),

Jω̇ ≈ ∂ f

∂ ω
ω +

∂ f

∂ q
q+ td +u. (4.35)

Assuming td = tgg, and combining equations (4.35), (4.25), (4.26), (4.27), (4.32),

and (4.34), we have the quaternion based linearized spacecraft system described

by











1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 J11 J12 J13

0 0 0 J21 J22 J23

0 0 0 J31 J32 J33





















q̇1

q̇2

q̇3

ω̇1

ω̇2

ω̇3











=











0 0 0 .5 0 0

0 0 0 0 .5 0

0 0 0 0 0 .5
f41 0 0 0 0 f46

0 f52 0 0 0 0

0 0 f63 f64 0 0





















q1

q2

q3

ω1

ω2

ω3











+











0

0

0

ux

uy

uz











(4.36)

where f41 = 8(J33−J22)ω
2
0 +2h2ω0, f46 = (J11−J22+J33)ω0 +h2, f64 =− f46,
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f52 = 6(J33 − J11)ω
2
0 , and f63 = 2(J11 − J22)ω

2
0 + 2h2ω0. It is straightforward to

check that the linearized spacecraft model is fully controllable. Therefore, all

modern control design methods in linear system theory can be applied directly,

and the designed linear system is guaranteed to be stable. Clearly, it is easy to

modify the model to include three reaction wheels.
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Space Environment and
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The previous chapter briefly mentioned that disturbance torques affect space-

craft attitude. The gravitational torque was considered in the modeling process

because this torque is predictable and is easy to calculate. There are several other

disturbance torques induced by the space environment. These torques can signif-

icantly affect the attitude of spacecraft if the attitude control system is not well

designed because these torques are difficult to predict and they are likely not

incorporated into the spacecraft dynamics models used for the control system

design. These unmodeled torques introduce uncertainties. Although these distur-

bance torques are normally not considered in the analytical models that are used

to design the controllers, in engineering design practice, the designed controller

should be able to compensate these unmodeled disturbance torques to make sure

a spacecraft’s attitude is aligned with its desired frame.

On the other hand, given the information such as the geometry, the electri-

cal and the mechanical properties of the spacecraft, the attitude, the altitude,

the coordinate, the speed of the spacecraft, the current time, etc., we are still

65
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able to model the space environment and to approximately calculate these distur-

bance torques. Therefore, in engineering practice, the designed controllers’ per-

formances should be verified or tested in a simulation system that includes both

the space environment models and the disturbance torques omitted in the design

stage. In this chapter, we will discuss the models of the most significant space

environment phenomena and the associated unmodeled disturbance torques.

5.1 Gravitational torques

The study of a rigid body in a gravitational field is based on Newton’s laws. The

problem has been studied for hundreds of years. A good historical review in this

field can be found in [85]. The importance of gravitational torques on space-

craft were quickly realized in the early stage of the spacecraft development. For

example, a detailed analysis of various disturbance torques acted on Sputnik 3

has shown that the gravitational torque was the major disturbance torque and

was larger, by a factor of six, than the next largest disturbance torque, the mag-

netic torque acted on the spacecraft [17]. This large disturbance torque caused

some operational problems for some spacecraft when the designs did not con-

sider this disturbance torque. For example, the first Canadian spacecraft, Alouette

1, was spin stabilized and employed four long antennas. The long booms causes a

large inertia difference which introduced a comparatively rapid precession [190].

The adversary effect of the gravitational torques was carefully studied and the

formula of gravitational torque was derived. An experiment was conducted in

the spacecraft Explorer 11 where angular momentum vector was determined by

radio signals and spacecraft’s motion was checked against calculated gravita-

tional torque acting on the spacecraft. A good match between calculated torque

and measured torque is obtained [183]. The knowledge about the gravitational

torques are sometimes used in the spacecraft design to stabilize some spacecraft

[232]. Now, it becomes a widely accepted engineering practice to include the

gravitational torque in spacecraft models whenever it is appropriate. But still, in

some applications, gravitational torques are treated as unmodeled disturbance.

Our description about gravitational torques in this section follows the style of

[85, 232]. Let r be a vector of length r along the line connecting the centers of

mass of two objects whose masses are m1 and m2. Let G= 6.669∗10−11m3/kg−
s2 be the universal constant of gravitation. The force attracting the two objects

each other is given by (2.2) (see also [227])

f =
Gm1m2r

|r|3 .

If the first object is the Earth, and the second object is the spacecraft, since the
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mass of the Earth m1 is a constant, we can simplify the formula as

f =
µmr

|r|3 ,

where µ = Gm1 is the geocentric gravitational constant of the Earth and m = m2

is the mass of the spacecraft. Let dm be an small element of the spacecraft, the

vector from the center of the mass of the spacecraft to dm be p, the vector from

the center of Earth to the center of the mass of the spacecraft be R. Since r =
R+p and df = − µdm

|r|3 r, the gravitational torque or the moment induced by dm

about the center of the mass of the spacecraft is given by

dtg = p×df =−p× µdm

|r|3 r =−µdm

|r|3 p× r ≈−µdm

|r|3 p×R. (5.1)

Since |p| << |R| and for small x, (1+ x)−k ≈ 1− kx,

|r|−3 =
(
(R+p)T(R+p)

)− 3
2 = (|R|2 +2R ·p+ |p|2)− 3

2

≈|R|−3

(

1+
2R ·p
|R|2

)− 3
2

≈ |R|−3

(

1− 3R ·p
|R|2

)

. (5.2)

Integrating of (5.1) over the entire spacecraft body mass and using (5.2) yield

tg =

∫

−µdm

|R|3
(

1− 3R ·p
|R|2

)

p×R. (5.3)

Because
∫

pdm = 0 by the definition of the center of mass, the gravitational

torque or gravity gradient torque is given by

tg =
3µ

|R|5
∫

(R ·p)(p×R)dm =− 3µ

|R|5 R×
∫

p(pdm ·R). (5.4)

Using the definition of inertia dyadic (see for example [281, page 335])

J =

∫

(ρ2I−pp)dm,

or ∫

ppdm =

∫

ρ2Idm−J,

we can reduce (5.4) as

tg =− 3µ

|R|5 R×
∫

(ρ2Idm−J) ·R =
3µ

|R|5 R×JR, (5.5)

where the last relation uses the fact that R× ρ2IR = ρ2R×R = 0. We need
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to represent the gravity gradient torque in the body frame. Notice that in local

vertical local horizontal frame,

R =





0

0

−|R|



 .

Let q̄ be the quaternion transformation between body frame and local vertical

local horizontal frame. Then, using (3.61), we can represent R in body frame as

R =





2q2
0 −1+2q2

1 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 2q2
0 −1+2q2

2 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 2q2
0 −1+2q2

3









0

0

−|R|



 .

When body frame is close to local vertical local horizontal frame, q0 ≈ 1, q1 ≈ 0,

q2 ≈ 0, and q3 ≈ 0, this means

R = |R|





2q2

−2q1

−1



 .

Assuming that J = diag(J11,J22,J33), we have

R×JR ≈ |R|2




2q1(J33 − J22)
2q2(J33 − J11)

0



 . (5.6)

Since the lateral velocity of a body in a circular orbit of radius |R| is given in

(2.32) (see also [281, page 221])

v =

√
µ

|R| , (5.7)

and angular orbital velocity of the body is given by (2.55)

ω0 =
v

|R| =
√

µ

|R|3 , (5.8)

substituting (5.6) and (5.8) into (5.5) yields

tg =





6ω2
0 (J33 − J22)q1

6ω2
0 (J33 − J11)q2

0



 (5.9)

which is identical to (4.34) used in the linearized model for the controller design.

To verify the controller design in a simulation system, the more accurate formula

(5.5) should be used.
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5.2 Atmosphere-induced torques

Atmospheric condition is the source that causes one of the major disturbance

torques for spacecraft. The atmospheric condition is determined by many factors.

The most significant one is the air density that directly affects the torques which

result from aerodynamic interaction between the spacecraft and the atmosphere.

A simple conservative estimate of the aerodynamic force that involves only the

density is given in [150].

f =−ρV 2[(2−σn−σt)(ev · en)
2en +σt(ev · en)ev]dA, (5.10)

where f is the aerodynamic force on an element area dA, dA is the projected area

of spacecraft element normal to the incident flow which is related to the space-

craft geometry and attitude, V is the spacecraft velocity which is related to the

altitude of the spacecraft, ρ is the atmospheric density, σn is the normal momen-

tum exchange coefficient, σt is the tangential momentum exchange coefficient,

ev is the unit spacecraft velocity vector, and en is the outward unit vector normal

to dA. The momentum exchange coefficients are generally considered to be func-

tions of the surface material of the spacecraft. An empirical value of 0.8 has been

used for σt and σn in applications. For some simple geometric figures, formulas

of aerodynamic force are given in [280, page 575, table 17-3].

Having the aerodynamic force, the aerodynamic torque can be evaluated by

ta = r× f, (5.11)

where r is the moment arm.

The density is varied due to a lot of the factors, but a very simple graph that

represents density as a function of altitude can be used for the purpose of a coarse

estimation [280, page 107].

More accurate modeling atmospheres have been developed based on both

physical relationships and observed phenomena [271, 272]. A detailed descrip-

tion of the theory and observations are beyond the scope of this book. In [145],

seven different effects other than altitude that result in variations of density, tem-

perature, and composition of the upper atmosphere are listed as follows:

variations with solar activity

diurnal variation

variations with geomagnetic activity

semiannual variation

seasonal-latitudinal variations of the lower thermo-sphere

seasonal-latitudinal variations of helium
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rapid density fluctuations probably associated with tidal and gravity

waves

These effects are discussed in details and many references are provided in [145].

To compute more accurate atmospheric density that take these effects into ac-

count, a set of formulas that use 10.7-cm solar flux and geomagnetic activity as

inputs are also provided in Appendix A of [145].

It is easy to see that the density model is not simple but involves many factors.

Therefore, the aerodynamic disturbance torque are most likely not incorporated

into spacecraft dynamic models that are used for the controller design purpose.

This requires that the spacecraft attitude controller designs have good disturbance

rejection performance. Furthermore, the designed controller should be verified

in a simulation model that includes atmospheric density and aerodynamic torque

estimations.

5.3 Magnetic field-induced torques

Similar to the gravitational torques, the magnetic field induced torques can ad-

versely affect on-board equipment and can change spacecraft’s drag, attitude,

and direction of motion. A description on the degradation of the performance of

the attitude control system due to magnetic field induced torques was reported in

[222]. On the other hand, people quickly realized that the magnetic field induced

torques can be used with the magnet torque rods to control the spacecraft attitude

[4]. Many control algorithms are specifically designed for control systems using

only magnet torque rods, for example, [205, 233, 213].

Magnetic disturbance torques are results of the interaction between the

spacecraft’s residual magnetic field and the geomagnetic field. The dominant

source of the magnetic disturbance torque is spacecraft’s magnetic moment be-

cause the material selection in spacecraft design makes other magnetic distur-

bance sources negligible [14, 58]. The magnetic moment induced torque is given

by

tm = m× rm, (5.12)

where m (in A ·m2) is the sum of the individual magnetic moments caused by

permanent and induced magnetism and the spacecraft-generated current loops,

and rm is the geocentric magnetic flux density (in Wb/m2). The description of

geocentric magnetic field is discussed in [84, 63, 184]. Given the spacecraft geo-

centric spherical polar coordinates (r,θ ,φ), where r is the spacecraft geocentric

distance pointing down in nadir direction, θ is the co-elevation pointing to the

north direction, and φ is the east longitude from Greenwich pointing to the east

(this information can be provided by GPS installed on spacecraft), the geomag-

netic flux density vector rm =−grad(V) :=▽×V is obtained by taking gradient

of V (r,θ ,φ). The scalar potential function V (r,θ ,φ) is given by the following
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formula [84, 223, 52, 184]:

V (r,θ ,φ) = a

∞∑

n=1

n∑

m=0

(a

r

)n+1

Pm
n cos(θ) (gm

n cos(mφ)+hm
n sin(mφ)) , (5.13)

where a = 6378km is the equatorial radius of the Earth, Pm
n (θ) are Schmidt semi-

normalized Legendre polynomials of degree n and order m (the input to these

polynomials are actually in cos(θ), rather than θ , but this has been dropped for

brevity), gm
n and hm

n are Gauss coefficients in unit nanotesla (nT). The set of Gaus-

sian coefficients used in the analytical models are called the International Geo-

magnetic Reference Field (IGRF). These coefficients are updated every five years

by a group of scientists from the International Association of Geomagnetism

and Aeronomy (IAGA). The recent one, which takes advantage of a comprehen-

sive set of observation data, including satellite measurements from the CHAMP,

Orsted and SAC-C missions, was published in 2015 [96, 258]. This version of

IGRF remains valid until 2020.

By using the conservative of the magnetic field (▽×B = 0), we have the

geomagnetic vector rm = −grad(V) by taking minus gradient of V for (r,θ ,φ)
[280].

Br =
−∂V

∂ r
=

∞∑

n=1

(a

r

)n+2

(n+1)

n∑

m=0

(gm
n cos(mφ)+hm

n sin(mφ))Pm
n (θ)

(5.14a)

Bθ =
−1

r

∂V

∂ θ
=

∞∑

n=1

(a

r

)n+2
n∑

m=0

(gm
n cos(mφ)+hm

n sin(mφ))
∂ Pm

n (θ)

∂ θ
(5.14b)

Bφ =
−1

r sin(θ)

∂V

∂ φ
=

−1

sin(θ)

∞∑

n=1

(a

r

)n+2
n∑

m=0

m(−gm
n sin(mφ)+hm

n cos(mφ))Pm
n (θ)

(5.14c)

In order to calculate the magnetic field, one must first calculate the associated

Legendre polynomials. Legendre polynomials are a set of orthogonal polynomi-

als that also satisfy the zero mean condition. The following equations for the Leg-

endre polynomials and associated Legendre polynomials are provided in [223].

The regular Legendre polynomials Pn(v) are calculated to satisfy the following

equation:

(1−2vx+ x2)−1/2 =

∞∑

n=0

Pn(v)x
n. (5.15)

Solving this equation gives

Pn(v) =
1

2nn!

(
d

dv

)n
(
v2 −1

)n
. (5.16)
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The above Legendre polynomials are related to the associated Legendre polyno-

mials through the following equation:

Pn,m(v) =
(
1− v2

)1/2m dm

dvm
(Pn(v)) . (5.17)

Note that for all m > n, the associated Legendre polynomial is equal to zero.

The formulas in Equation (5.17) represent traditional associated Legendre poly-

nomials that have not been normalized. There are two commonly used normal-

izations. The first is the Gaussian normalized associated Legendre polynomials,

Pn,m, which is related to the non-normalized set by the following equation

Pn,m(v) =
2n!(n−m)!

(2n)!
Pn,m(v). (5.18)

The second is the Schmidt semi-normalized form, Pm
n , which is related to the

non-normalized set by the following equation

Pm
n =

(
2(n−m)!

(n+m)!

)1/2

Pn,m. (5.19)

The two Gaussian normalized associated Legendre polynomials are related as

[280]:

Pm
n = Sn,mPn,m, (5.20)

where Sn,m is defined by

Sn,m =

(
(2−δ 0

m)(n−m)!

(n+m)!

)1/2
(2n−1)!!

(n−m)!
, (5.21)

where the Kronecker delta is defined as δ j
i = 1 if i = j and δ j

i = 0 if i 6= j, and

(2n−1)!! := 1 ·3 · ·(2n−1). Due to the fact that these normalization values can

be calculated irrespective of the value of θ at which the associated Legendre

polynomials are calculated, it is much simpler to instead normalize the model

coefficients, gm
n and hm

n , such that

gn,m = Sn,mgm
n , (5.22)

and

hn,m = Sn,mhm
n . (5.23)

In order to produce efficient computer code, the preceding formulas should be

decomposed into recursive formulas as seen in [52, 280]. The following recursive

relationships is used in Matlab code of [52]. First, the recursive formulas for the

Gaussian normalized associated Legendre polynomials are as follows:

P0,0 = 1, (5.24a)
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Pn,n = sin(θ)Pn−1,n−1, (5.24b)

Pn,m = cos(θ)Pn−1,m −Kn,mPn−2,m, (5.24c)

Kn,m = 0, n = 1, (5.24d)

Kn,m =
(n−1)2−m2

(2n−1)(2n−3)
, n > 1. (5.24e)

The recursive formulas for the Gaussian normalized derivatives of the associated

Legendre polynomials are

∂ P0,0

∂ θ
= 0, (5.25a)

∂ Pn,n

∂ θ
= sin(θ)

∂ Pn−1,n−1

∂ θ
+ cos(θ)Pn−1,n−1, (5.25b)

∂ Pn,m

∂ θ
= cos(θ)

∂ Pn−1,m

∂ θ
− sin(θ)Pn−1,m −Kn,m ∂ Pn−2,m

∂ θ
. (5.25c)

Using mathematical induction, one can get the recursive formulas for Sn,m as

follows:

S0,0 = 1, (5.26a)

Pn,0 = Pn−1,0

(
2n−1

n

)

, n ≥ 1, (5.26b)

Sn,m = Sn,m−1

√

(n−m+1)(δ 1
m +1)

n+m
m ≥ 1. (5.26c)

The procedure to calculate (Br,Bθ ,Bφ ) is summarized as follows:

Algorithm 5.1

1. Get the Gauss coefficients gm
n and hm

n from IGRF table.

2. Calculate Sn,m from (5.26).

3. Calculate Pn,m from (5.24).

4. Calculate Pm
n from (5.20).

5. Calculate ∂Pn,m

∂θ from (5.25).

6. Calculate
∂Pm

n

∂θ = Sn,m
∂Pn,m

∂θ .

7. (Br,Bθ ,Bφ ) is given by (5.14).
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Similar to ECEF frame, the geocentric spherical polar coordinates (r,θ ,φ)
rotates with the Earth (relatively with ECI frame as described in [280, Appendix

H]). In order for the results of Equation (5.14) to be effective in spacecraft appli-

cation, they must be converted to geocentric inertial frame (ECI frame). This is

done by the following transformation [280, (H-14), page782].

BI
x = (Br cos(δ )+Bθ sin(δ ))cos(α)−Bφ sin(α) (5.27a)

BI
y = (Br cos(δ )+Bθ sin(δ )) sin(α)+Bφ cos(α) (5.27b)

BI
z = (Br sin(δ )−Bθ cos(δ )), (5.27c)

where δ is the latitude measured positive North from the equator (declination),

and α is the local sidereal time of the location in question (celestial time in

Greenwich). The details on the computation of (5.27) is provided in [52] and a

Matlab code is attached there.

The next step is to transform the magnetic field to the orbit (PQW) frame

using the following equation [265, Fig. 2-16 and (3.28)].

Bo = Rot3(ω)Rot1(i)Rot3(Ω)BI, (5.28)

where ω is the argument of perigee, Ω is the right ascension of the ascending

node, and i the inclination. Let s· and c· denote for sin(·) and cos(·). Expanding

(5.28) gives:





Bo
x

Bo
y

Bo
z



=





cω sω 0

−sω cω 0

0 0 1









1 0 0

0 ci si

0 −si ci









cΩ sΩ 0

−sΩ cΩ 0

0 0 1









BI
x

BI
y

BI
z



 .

(5.29)

Then, a transformation from orbit frame to spacecraft coordinate (RSW) frame

is needed. This transformation is given by (3.18) (see also [265, Fig. 2-16 and

(3.29)]):

Bs = Rot3(θ)B
o, (5.30)

where θ is the true anomaly. Combining (5.29) and (5.30) gives (3.19) (see also
[232, (2.6.4), pages 25-26]):

Bs

= Rot3(ω + θ )Rot1(i)Rot3(Ω)BI

=





c(ω + θ )cΩ− cis(ω + θ )sΩ c(ω + θ )sΩ+ s(ω+ θ )cicΩ s(ω + θ )si

−s(ω + θ )cΩ− cisΩc(ω + θ ) −s(ω + θ )sΩ+ c(ω+ θ )cicΩ c(ω + θ )si

sisΩ −sicΩ ci









BI
x

BI
y

BI
z



 .

(5.31)

From spacecraft coordinate frame (see Figure 2.7), one can determine the mag-

netic field vector in LVLH coordinate

BL =





0 1 0

0 0 1

1 0 0



Rot2(π)B
s. (5.32)
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Finally, to calculate the magnetic field vector described in (5.14) in body frame,

(BL
x ,B

L
y ,B

L
z ) needs to be transformed to the spacecraft body frame as rm, one may

use 1-2-3 rotational sequence [280, Table E-1, page 764], the formula is given by

rmx
= cos(ψ)cos(θ)BL

x

+(cos(ψ) sin(θ) sin(φ)+ sin(ψ)cos(φ))BL
y

+(−cos(ψ)cos(φ) sin(θ)+ sin(ψ) sin(φ))BL
z (5.33a)

rmy
=− sin(ψ)cos(θ)BL

x

+(− sin(ψ) sin(θ) sin(φ)+ cos(ψ)cos(φ))BL
y

+(sin(ψ) sin(θ)cos(φ)+ cos(ψ) sin(φ))BL
z (5.33b)

rmz
= sin(θ)BL

x − cos(θ) sin(φ)BL
y + cos(θ)cos(φ)BL

z , (5.33c)

where φ , θ , and ψ are roll, pitch, and yaw angles respectively. When these

angles are small, equation (5.33) can be simplified as to

rmx
= BL

x +ψBL
y +θBL

z (5.34a)

rmy
=−ψBL

x +BL
y +φBL

z (5.34b)

rmz
= θBL

x −φBL
y +BL

z . (5.34c)

5.4 Solar radiation torques

Solar radiation acting on the spacecraft surface generates radiation force or pres-

sure on the surface of the spacecraft. The magnitude of this force or pressure

depends on several factors, such as the intensity and spectral distribution of the

incident radiation, the geometry of the surface and its optical properties, and the

orientation of the Sun vector relative to the spacecraft [280, Section 17.2.2]. The

mean momentum flux pressure acting on the surface normal to the Sun’s radi-

ation is P = 4.563× 10−6N/m2 1AU from the sun. Let A be the surface area,

n be a unit vector normal to the surface and opposite to the vector of incoming

photons q, t be the transverse unit vector perpendicular to the n and in the plane

spanned by q and n, α be the photon incident angle between q and −n, ρs be the

fraction of specularly reflected photons, ρd be the fraction of diffusely reflected

photons, and ρa be the fraction of absorbed photons (ρs +ρd +ρa = 1), then the

solar radiation pressure induced force is given by [283]

f = Fnn+Ft t, (5.35)

where

Fn = PA

[

(1+ρs)cos2(α)+
2

3
ρd cos(α)

]

,
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and

Ft = PA(1−ρs)cos(α) sin(α).

For other simple geometric figures other than flat plate, the solar radiation pres-

sure induced force is given in [280, Table 17.2]. Given f in (5.35), the solar

pressure induced torque is given by [278]

ts = r× f, (5.36)

where r is the vector from body center of mass to the optical center of pressure.

5.5 Internal torques

Internal torques can be generated by moving parts of the spacecraft, the astro-

nauts inside a manned space station, or the leak of gas or liquid in thrusters.

When these leaks, motions, or rotations happen, they generate torques. It is rel-

ative easier to model these torques than the torques mentioned in the previous

sections. Some of these motion-induced torques are relatively large, such as the

deployments of the solar panels or booms. These torques must be incorporated at

least in the simulation systems to check if the designed controller can compen-

sate these torques or not. If not, these torques may have to be incorporated into

spacecraft dynamical models for the controller design purpose. If it is impossible

to design a controller based on a high fidelity physics model that includes these

large disturbance torques. Spacecraft design may have to be modified. For exam-

ple, it may require to reduce the forces or the torques generated by the instrument

deployments or increase the capacity of the actuators. We do not address this is-

sue in this Chapter because it is based on specific spacecraft designs.
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Spacecraft attitude determination is very important for two reasons. First, con-

trol engineers need to know if the spacecraft attitude is in the desired orientation.

Second, if the spacecraft attitude is not in the perfect position, the attitude in-

formation will be compared automatically to the desired attitude, and the error

77
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information is then used to calculate how much action is needed for each actuator

to bring the spacecraft to the desired attitude.

From Section 3.2.4, we have seen that to determine the frame rotation, one

needs to know the coordinates of at least two vector pairs in body frame and the

desired reference frame. Given this coordinate information, one can determine

the rotational axis and the rotational angle, which represent the attitude devia-

tion of the body frame from the desired reference frame. This intuition has been

used by many researchers to develop their attitude determination methods, such

as [13, 31, 159, 197, 212, 230, 231, 274, 295]. In this chapter, we will first intro-

duce Wahba’s problem [274], then Davenport’s formula [51], followed by a well-

known method QUEST [231], an analytic solution for a special case of Wahba’s

problem developed in [159], and an analytic solution to the general Wahba’s

problem. QUEST and the analytic solution divide the computation of the space-

craft attitude into two steps: (a) compute the largest eigenvalue of Davenport’s

K-matrix and (b) compute the corresponding eigenvector, and the second step is

sensitive to the accuracy of the first step. Therefore, some numerical method that

combines the two steps into one, i.e., directly solve the largest eigenvalue and

its corresponding eigenvector of the K-matrix is considered. Some simple analy-

sis is performed and some simulation results are presented to show the potential

advantages of the direct method.

6.1 Wahba’s problem

Suppose that we have measurements of two directions represented by two unit

vectors b1 and b2 in the spacecraft body frame. These measurements can be

unit vectors of some observed objects, such as stars, or the Sun, or the Earth, or

some ambient vector field such as the Earth’s magnetic field or gravity vector.

Engineers consider only unit vectors because the length of the vectors has no in-

formation relevant to the attitude determination and unit length makes expression

simpler. As pointed out earlier, engineers also need to know the representations

of these two unit vectors in some reference frame r1 and r2. Depending on the

mission of the spacecraft, the reference frame is usually the inertial frame or the

local vertical local horizontal frame. The attitude to be determined is the rota-

tional matrix or the quaternion that rotates the reference frame to the spacecraft

body frame. Therefore one can find an attitude matrix A such that

Ar1 = b1, (6.1a)

Ar2 = b2. (6.1b)

Since a rotational matrix is also orthogonal, equation (6.1) implies

b1 ·b2 = (Ar1) · (Ar2) = rT
1 ATAr2 = r1 · r2. (6.2)
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In general, given two sets of m known reference vectors {r1, . . . ,rm} and m ob-

servation vectors {b1, . . . ,bm}, m ≥ 2, find the proper rotational matrix A which

brings the first set into the best least squares coincidence with the second, i.e.,

min
A

1

2

m∑

i=1

‖bi −Ari‖2. (6.3)

This problem was first defined by Wahba and is called Wahba’s problem [274]

which is the base of the most attitude determination methods.

A slightly more general assumption is that there is a set of weights ai, each

is associated with a corresponding observation bi, and
∑

i ai = 1. Then Wahba’s

problem takes the following form:

min
A

1

2

m∑

i=1

ai‖bi −Ari‖2. (6.4)

6.2 Davenport’s formula

Most popular methods, such as QUEST [231], ESOQ [177], and FOMA [158],

use Davenport’s q-method [51] (K-matrix derivation is accessible in [116]).

Rewriting (6.3) by using equations (6.1) and (6.2), then using the facts: (a) bi

and ri are unit vectors, and (b) A is orthogonal matrix, we have

1

2

m∑

i=1

‖bi −Ari‖2 =
1

2

m∑

i=1

(
bT

i bi −2bT
i Ari + rT

i ATAri

)

= m− 1

2

m∑

i=1

bT
i Ari = m− 1

2
Tr(WTAV), (6.5)

where W = [b1, . . . ,bm], V = [r1, . . . ,rm], and Tr(·) represents the trace of the

matrix in the argument. Using (3.62) and the fact that Tr(AB) = Tr(BA) for any

matrices A and B with appropriate dimensions, we have

Tr(WTAV)

= Tr(WT
(
(q2

0 −qTq)I+2qqT −2q0q×)V)

= (q2
0 −qTq)Tr(WTV)+2Tr(qqTVWT)−2q0Tr(WTq×V). (6.6)

Let B=WVT, σ = Tr(B), H=B+BT, and zT = [B23−B32,B31−B13,B12−B21].
The second term of (6.6) can be rewritten as

2Tr(qqTVWT) = 2qTVWTq = qT(VWT +WVT)q = qTHq. (6.7)
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Since z× = BT −B, q×T

=−q×, and Tr(q×z×) =−2qTz, the third term of (6.6)

can be rewritten as

2q0Tr(q×VWT)

= q0Tr(q×BT +Bq×T

)

= q0Tr(q×BT +q×T

B)

= q0Tr(q×(BT −B))

= q0Tr(q×z×) =−2q0qTz. (6.8)

Substituting (6.7) and (6.8) into (6.6) produces

Tr(WTAV)

= (q2
0 −qTq)σ +qTHq+2q0qTz

=
[

q0 qT
]
[

σ zT

z H−σI

][
q0

q

]

:= q̄TKq̄, (6.9)

where

K =

[
σ zT

z H−σI

]

. (6.10)

Therefore,

min
A

1

2

m∑

i=1

‖bi −Ari‖2 = m− 1

2
max

A
Tr(WTAV) = m− 1

2
max
q̄=1

q̄TKq̄. (6.11)

By introducing the Lagrange multiplier λ for the unit length constraint of ‖q̄‖=
1, we reduce Wahba’s problem to Davenport’s problem

max
λ ,q̄

q̄TKq̄−λ (q̄Tq̄−1). (6.12)

Taking the derivative of (6.12) gives the optimal solution which satisfies

Kq̄ = λ q̄. (6.13)

The optimization problem is reduced to finding the largest eigenvalue of K and

its corresponding eigenvector, which is Davenport’s formula.

6.3 Attitude determination using QUEST and FOMA

In the early of 1980s, the computation of the largest eigenvalue and its corre-

sponding eigenvector of the K-matrix in an on-board computer was a burden.
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Shuster [231] developed QUEST algorithm to approximately solve (6.13). By

using the Cayley-Hamilton theorem (cf. [217, pages 4-5]), Shuster [231] derived

the first analytic formula of the characteristic polynomial of the K-matrix which

is a polynomial of degree of 4, given as

f (λ ) = λ 4 − (a+b)λ 2− cλ +(ab+ cσ −d) = 0, (6.14)

where σ = 0.5Tr(H) = Tr(B), κ = Tr(ad j(H)), ∆ = det(H), a = σ 2 −κ , b =
σ 2 + zTz, c = ∆+ zTHz, and d = zTH2z.

For many applications, the largest eigenvalue may be approximated by λ ≈
1. Shuster [231] suggested using Newton-Raphson iteration to find the λ using

the initial guess λ 0 = 1. To calculate the eigenvector using λ , Shuster used the

Rodriguez parameters defined as follows:

p =
q

q0

= q tan
(α

2

)

.

Since Kq̄ = λ q̄, from the K-matrix, it is easy to see that

[(λ +σ)I−H]p = z.

p can be obtained by solving linear system equations. Once p is available, the

quaternion is given by

q̄ =
1

√

1+pTp

[
p

1

]

. (6.15)

To avoid the possible singularity in Rodriguez parameter, Shuster and Oh devel-

oped a method of sequential rotations which avoids the singularity. This method

is widely recognized and is refereed to as the QUEST method. The operation

count for QUEST method was analyzed in [312] and is listed as follows.

1. constructing the characteristic polynomial (6.14): 67 flops in total.

2. in each iteration of Newton method: 18 flops.

3. constructing the quaternion (6.15): 33 flops.

This flop count shows that QUEST needs very small number of flops in every

iteration. The construction of the characteristic polynomial and the quaternion

may be the main effort in QUEST.

Markley [158] derived an equivalent characteristic polynomial for the K-

matrix and also used Newton’s method for his expression of the polynomial to

find the largest eigenvalue λ iteratively. Using this largest eigenvalue, Markley’s

method finds the rotational matrix explicitly. This method is now referred to as

the FOMA algorithm. This method is more expensive than QUEST, and similar

to QUEST, is sensitive to the accuracy the solution of the largest eigenvalue.
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6.4 Analytic solution of two vector measurements

Though QUEST is very efficient, if the attitude determination is based on only

two vector measurements, there is a simpler method which is an analytic solution

[159].

6.4.1 The minimum-angle rotation quaternion

First, it is worthwhile to notice that for the quaternion which maps the reference

vector r1 to the body frame vector b1, the minimal rotational angle α is deter-

mined by cos(α) = b1 · r1. Using the minimum-angle rotation quaternion (see

Figure 3.4), the rotational axis must be perpendicular to r1 and b1 and satisfy

the right-hand rule, which means that the unit length rotational axis is given by

ê = b1×r1

sin(α) . Using the following identities of the trigonometry [203]

1− cos(α)

2
= sin2

(α

2

)

,

cot
(α

2

)

=
1+ cos(α)

sin(α)
,

we can verify that the minimum-angle rotation quaternion is given by

(1+b1 · r1,b1 × r1)
1

√

2(1+b1 · r1)

= (1+ cos(α),b1 × r1)

√

1

2(1+ cos(α))

= (1+ cos(α),b1 × r1)

√

1− cos(α)

2(1− cos2(α))

= (1+ cos(α),b1 × r1)
sin
(

α
2

)

sin(α)

=

(
1+ cos(α)

sin(α)
,

b1 × r1

sin(α)

)

sin
(α

2

)

=
(

cot
(α

2

)

, ê
)

sin
(α

2

)

=
(

cos
(α

2

)

, ê sin
(α

2

))

= q̄min. (6.16)

6.4.2 The general rotation quaternion

Denote q̄(ê,α) as the quaternion that has rotational axis ê and rotational angle

α . Then, the most general rotation that maps r1 to b1 is given by

q̄1 = q̄(r1,φr)⊗ q̄min ⊗ q̄(b1,φb), (6.17)
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where φb and φr are arbitrary angles of rotation about b1 and r1, respectively.

Using (1.2), (1.3), (1.4), (3.44), and the facts that

sin(α +β ) = sin(α)cos(β )+ cos(α) sin(β ), (6.18)

and

cos(α +β ) = cos(α)cos(β )− sin(α) sin(β ), (6.19)

equation (6.17) can be reduced by using (3.44) and (1.1), as follows:

(1+b1 · r1,b1 × r1)⊗
(

cos

(
φb

2

)

,b1 sin

(
φb

2

))

=

(

(1+b1 · r1)cos

(
φb

2

)

− (b1 × r1) ·b1 sin

(
φb

2

)

,

+ (1+b1 · r1)b1 sin

(
φb

2

)

+(b1 × r1)cos

(
φb

2

)

+(b1 × r1)×b1 sin

(
φb

2

))

=

(

(1+b1 · r1)cos

(
φb

2

)

,

+ (1+b1 · r1)b1 sin

(
φb

2

)

+(b1 × r1)cos

(
φb

2

)

+(r1 − (b1 · r1)b1) sin

(
φb

2

))

=

(

(1+b1 · r1)cos

(
φb

2

)

,(b1 + r1) sin

(
φb

2

)

+(b1 × r1)cos

(
φb

2

))

.

(6.20)

Thus, we have
(

cos

(
φr

2

)

,r1 sin

(
φr

2

))

⊗(1+b1 · r1,b1 × r1)⊗
(

cos

(
φb

2

)

,b1 sin

(
φb

2

))

=

(

cos

(
φr

2

)

,r1 sin

(
φr

2

))

⊗
(

(1+b1 · r1)cos

(
φb

2

)

,(b1 + r1) sin

(
φb

2

)

+(b1 × r1)cos

(
φb

2

))

.

(6.21)

Let q0 and q be the scalar part and vector part of the quaternion defined by (6.21).

Using (3.44), (1.4), and (6.19), and the fact that ‖r1‖= 1 = ‖b1‖, we have

q0 = (1+b1 · r1)cos

(
φr

2

)

cos

(
φb

2

)

−r1 · (b1 + r1) sin

(
φr

2

)

sin

(
φb

2

)

− r1 · (b1 × r1) sin

(
φr

2

)

cos

(
φb

2

)
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= (1+b1 · r1)cos

(
φr

2

)

cos

(
φb

2

)

− (1+b1 · r1) sin

(
φr

2

)

sin

(
φb

2

)

= (1+b1 · r1)

(

cos

(
φr

2

)

cos

(
φb

2

)

− sin

(
φr

2

)

sin

(
φb

2

))

= (1+b1 · r1)cos

(
φr +φb

2

)

. (6.22)

From (6.21), using (3.44), (1.3), (6.18), and (6.19), we have

q = (1+b1 · r1)r1 cos

(
φb

2

)

sin

(
φr

2

)

+(b1 + r1) sin

(
φb

2

)

cos

(
φr

2

)

+(b1 × r1)cos

(
φb

2

)

cos

(
φr

2

)

+r1 × (b1 + r1) sin

(
φr

2

)

sin

(
φb

2

)

+ r1 × (b1 × r1) sin

(
φr

2

)

cos

(
φb

2

)

= r1 cos

(
φb

2

)

sin

(
φr

2

)

+(b1 · r1)r1 cos

(
φb

2

)

sin

(
φr

2

)

+(b1 + r1) sin

(
φb

2

)

cos

(
φr

2

)

+(b1 × r1)cos

(
φr

2

)

cos

(
φb

2

)

−(b1 × r1) sin

(
φr

2

)

sin

(
φb

2

)

+b1 sin

(
φr

2

)

cos

(
φb

2

)

− (b1 · r1)r1 cos

(
φb

2

)

sin

(
φr

2

)

= (b1 + r1) sin

(
φb

2

)

cos

(
φr

2

)

+(b1 + r1) sin

(
φr

2

)

cos

(
φb

2

)

+(b1 × r1)

(

cos

(
φr

2

)

cos

(
φb

2

)

− sin

(
φr

2

)

sin

(
φb

2

))

= (b1 + r1) sin

(
φr +φb

2

)

+(b1 × r1)cos

(
φr +φb

2

)

= (b1 + r1) sin

(
φ

2

)

+(b1 × r1)cos

(
φ

2

)

, (6.23)

where φ = φr +φb. Combining (6.17), (6.16), (6.21), (6.22), and (6.23) yields

q̄1 =
1

√
2(1+b1 · r1)

(

(1+b1 · r1)cos

(
φ

2

)

,(b1 × r1)cos

(
φ

2

)

+(b1 + r1) sin

(
φ

2

))

. (6.24)

Similarly, the most general rotation that maps r2 to b2 is given by

q̄2 =
1

√
2(1+b2 · r2)

(

(1+b2 · r2)cos
(ψ

2

)

,(b2 × r2)cos
(ψ

2

)

+(b2 + r2) sin
(ψ

2

))

(6.25)

for some angle ψ .
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6.4.3 Attitude determination using two vector measurements

As every quaternion in the family of q̄1(φ) maps r1 to b1 and every quaternion

in the family of q̄2(ψ) maps r2 to b2, we need to find a quaternion q̄ which is in

both families so that it can maps r1 to b1 and r2 to b2 simultaneously. This means

that both the scalar part and the vector part of q̄1 and q̄2 are equal for some φ and

ψ . For the scalar part, we need

(1+ r1 ·b1)
√

2(1+ r1 ·b1)
cos

(
φ

2

)

=
(1+ r2 ·b2)
√

2(1+ r2 ·b2)
cos
(ψ

2

)

=⇒ cos
(ψ

2

)

=

√
1+ r1 ·b1

1+ r2 ·b2

cos

(
φ

2

)

(6.26a)

=⇒ sin
(ψ

2

)

=

√
√
√
√1+ r2 ·b2 − (1+ r1 ·b1)cos2

(
φ
2

)

1+ r2 ·b2

. (6.26b)

For vector part, we need

(b1 × r1)
√

(1+b1 · r1)
cos

(
φ

2

)

+
(b1 + r1)

√

(1+b1 · r1)
sin

(
φ

2

)

=
(b2 × r2)

√

(1+b2 · r2)
cos
(ψ

2

)

+
(b2 + r2)

√

(1+b2 · r2)
sin
(ψ

2

)

(6.27)

Substituting (6.26a) and (6.26b) into (6.27) yields

(b1 × r1)cos

(
φ

2

)

+(b1 + r1) sin

(
φ

2

)

=
1+b1 · r1

1+b2 · r2

cos

(
φ

2

)

(b2 × r2)+ (b2 + r2)

√
(1+b1 · r1)

(1+b2 · r2)

√

1+b2 · r2 − (1+b1 · r1)cos2

(
φ

2

)

Applying dot product of b2 − r2 on both side, the right-hand side vanishes be-

cause (b2+r2) ·(b2−r2) = 0, and from (1.4), (b2×r2) ·(b2−r2) = 0. Therefore,

we have

(b1 × r1) · (b2 − r2)cos

(
φ

2

)

+(b1 + r1) · (b2 − r2) sin

(
φ

2

)

= 0,

(6.28)

or

sin
(

φ
2

)

cos
(

φ
2

) =− (b1 × r1) · (b2 − r2)

(b1 + r1) · (b2 − r2)
. (6.29)

For any two vectors a and b, if a is proportional to b, we denote this relation as
a ∝ b. Clearly, if a ∝ b, and b ∝ c, then a ∝ c. from (6.24) and (6.29), we have

q̄ ∝



1+b1 · r1,b1 × r1 +
sin
(

φ
2

)

cos
(

φ
2

) (b1 + r1)




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∝

(

(1+b1 · r1),b1 × r1 −
(b1 × r1) · (b2 − r2)

(b1 + r1) · (b2 − r2)
(b1 + r1)

)

∝

(

(b1 + r1) · (b2 − r2),
(b1 × r1)((b1 + r1) · (b2 − r2))− ((b1 × r1) · (b2 − r2))(b1 + r1)

(1+b1 · r1)

)

(6.30)

In view of (6.2), the scalar part of (6.30) implies

(b1 + r1) · (b2 − r2) = b2 · r1 −b1 · r2. (6.31)

For the numerator of the vector part of (6.30), using (1.3), (1.2), and the fact that
b1 and r1 are unit vectors, we have

(b1 × r1)((b1 + r1) · (b2 − r2))− ((b1 × r1) · (b2 − r2))(b1 + r1)

= (b2 − r2)× ((b1 × r1)× (b1 + r1))

= (b2 − r2)× (r1 − (r1 ·b1)b1 +(b1 · r1)r1 −b1)

= (b2 − r2)× (r1 −b1 +(r1 −b1)(r1 ·b1))

= ((b2 − r2)× (r1 −b1))(1+ r1 ·b1)

= ((b1 − r1)× (b2 − r2))(1+ r1 ·b1) (6.32)

Combining (6.30), (6.31), and (6.32) yields

q̄ ∝ (b2 · r1 −b1 · r2,(b1 − r1)× (b2 − r2)).

Normalizing the right-hand side gives

q̄ =
(b2 · r1 −b1 · r2,(b1 − r1)× (b2 − r2))

√

(b2 · r1 −b1 · r2)2 +‖(b1 − r1)× (b2 − r2)‖2
(6.33)

Therefore, given known ephemeris r1 and r2, observations b1 and b2, the atti-

tude quaternion is uniquely defined. The attitude quaternion is extremely simple

though the derivation is tedious. It is worthwhile to note that this solution does

not need to compute the largest eigenvalue and its corresponding eigenvector.

The operation count is very low. In fact, the calculation of b2 · r1 −b1 · r2 needs

11 flops and the calculation of (b1 − r1)× (b2 − r2) needs 15 flops. Given these

two quantities, the calculation of the square root needs 7 flops. Therefore, the

total flops is 11+15+7+4 = 37 flops.

6.5 Analytic formula for general case

Although all flight experiences were successful for QUEST method, using a spe-

cific example, Markley and Mortari [163] showed that QUEST does not always

converge. In fact, it is well known that Newton’s method (used in QUEST to find

zeros of a polynomial) is inadequate for general use since it may fail to converge

to a solution. Cheng and Shuster [43] find a fix for the specific problem raised

by Markley and Mortari [163]. But even if Newton’s method converge, its be-

havior may be erratic in regions where the function is not convex [185]. On the

other hand, equation (6.14) is a polynomial of degree 4 which admits analytic

solutions.
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6.5.1 Analytic formula

Since the characteristic polynomial of (6.14) has order of four, it admits analytic

solution. Mortari noticed this and proposed a closed-form solution which is now

referred to as the ESOQ algorithm [177]. This solution, however, was known not

numerically stable by experts for a long time but this issue was not discussed

openly in literatures.

In this section, we provide a different but more robust analytic solution based

on the characteristic polynomial of the K-matrix presented in [177] which is

given as follows.

p(x) = x4 +ax3 +bx2 + cx+d = 0, (6.34)

where a = 0, b =−2(tr[B])2 + tr[ad j(H)]− zTz, H = B+BT, ad j(H) the adju-

gate matrix of H, c = −tr[ad j(K)], and d = det(K) are all known parameters.

Several different methods were proposed in the last several hundred years [91]

to solve (6.34). A latest effort was by Shmakov [229] who found a universal

method to find the roots of the general quartic polynomial. A special case of this

method is simpler than all previous methods and it can be directly adopted to

solve (6.34). We summarize the steps as follows (see [324]).

First, equation (6.34) can be factorized as the product of two quadratic poly-

nomials as

(x2 +g1x+h1)(x
2 +g2 +h2)

= x4 +(g1 +g2)x
3 +(g1g2 +h1 +h2)x

2

+(g1h2 +g2h1)x+h1h2 = 0. (6.35)

Moreover, g1, g2, h1, and h2 are solutions of two quadratic equations defined by

g2 −ag+
2

3
b− y = 0 (6.36a)

h2 −
(

y+
b

3

)

h+d = 0 (6.36b)

where y is the real root(s) of the following cubic polynomial

y3 + py+q = 0, (6.37a)

p = ac− b2

3
−4d, (6.37b)

q =
abc

3
−a2d − 2

27
b3 − c2 +

8

3
bd. (6.37c)

The roots of the cubic equation can be obtained by the famous Cardano’s for-

mula [203]

y1 =
3

√

−q

2
+

√
(q

2

)2

+
( p

3

)3

+
3

√

−q

2
−
√
(q

2

)2

+
( p

3

)3

(6.38a)
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y2 = ω1

3

√

−q

2
+

√
(q

2

)2

+
( p

3

)3

+ω2

3

√

−q

2
−
√
(q

2

)2

+
( p

3

)3

(6.38b)

y3 = ω2

3

√

−q

2
+

√
(q

2

)2

+
( p

3

)3

+ω1

3

√

−q

2
−
√
(q

2

)2

+
( p

3

)3

(6.38c)

where ω1 =
−1+i

√
3

2
and ω2 =

−1−i
√

3
2

. It is well-known that (6.37) has either one

real solution or three real solutions. If the discriminate

∆ =
(q

2

)2

+
( p

3

)3

> 0,

then (6.37) has a real solution given by (6.38a), and a pair of complex conju-

gate solutions given by (6.38b) and (6.38c). If ∆ = 0, the (6.37) has three zero

solutions. If ∆ < 0, then (6.37) has three distinct real solutions. In this case, to

avoid complex operations, the solutions can be given in a different form. Let

r =

√

−
(

p

3

)3
, θ = 1

3
arccos

(
− q

2r

)
, then the three real solutions are given by

y1 = 2r
1
3 cos(θ) , (6.39a)

y2 = 2r
1
3 cos

(

θ +
2π

3

)

, (6.39b)

y3 = 2r
1
3 cos

(

θ +
4π

3

)

. (6.39c)

Given a real y, from (6.36), we have

g1,2 =±
√

y− 2

3
b, (6.40a)

h1,2 =
y+ b

3
±
√

(y+b/3)2−4d

2
(6.40b)

In view of (6.35), it is worthwhile to notice that the following relations must be

held

(g1 +g2) = a, (6.41a)

g1g2 +h1 +h2 = b, (6.41b)

g1h2 +g2h1 = c, (6.41c)

h1h2 = d, (6.41d)

where (6.41a), (6.41b), and (6.41d) do not depend on the selections of g1, g2, h1,

and h2 (these relations always hold), but (6.41c) does depend on the choices of

g1, g2, h1, and h2. In practice, it can always take g1 as positive sign in (6.40a)

and g2 as minus sign in (6.40a); it can then be tried that h1 takes positive sign in
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(6.40b) and h2 takes minus sign in (6.40b); if (6.41c) holds, the correct selection

is obtained; otherwise, h1 takes minus sign in (6.40b) and h2 takes positive sign

in (6.40b) so that (6.41c) holds. Finally, the roots of the quartic (6.34) are given

by

x1,2 =
−g1 ±

√

g2
1 −4h1

2
, (6.42a)

x3,4 =
−g2 ±

√

g2
2 −4h2

2
. (6.42b)

A Matlab code of this method can be downloaded from Matlab file exchange

website https://www.mathworks.com/matlabcentral/fileexchange/54255-quartic-

roots-m.

6.5.2 Numerical test

The proposed analytic method and QUEST method have been implemented in

Matlab and tested against each other.

A simple problem: The first simple test is the following problem.

p(x) = x4 +ax3 +bx2 + cx+d = 0, (6.43)

where a = 0, b = −2, c = 0, and d = 1. The problem has two positive solution

of x = 1 and two negative solution of x = −1. The analytic method finds all

solutions without numerical error. Starting from x = 1.1, the QUEST method

finds the largest positive solution x = 1.00000001251746 after 23 iterations.

Randomly generated problems: The simple problem shows that the analytic

method may be promising, we conducted extensive numerical test for tens of

thousands randomly generated problems. These test problems are generated as

follows. First, Euler angles α ∈ [0,π], β ∈ [0,π], and γ ∈ [0,π] are randomly

generated. This gives the true rotational matrix A which is converted as the true

rotational quaternion q̄ti for each randomly generated problem. Then three unit

vectors representing the astronomic objectives ri, i = 1,2,3, are randomly gener-

ated. It is then assumed that the measurement vectors bi is the rotation of ri with

measurement noise given by

Ari = bi +ni,

where ni ∈ [0,N] are random noise whose maximum magnitude N varies in our

test. The relative weight associated with each measurement is taken as ai =
1
n
,

where n is the total number of measurements. For each prescribed N, 1000

randomly generated Wahba’s problems are solved by both analytic method and

QUEST method, the results are denoted as q̄ai
and q̄ni

respectively. The cumula-

tive errors between the true quaternions and estimated quaternions are calculated
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Table 6.1: Comparison of analytic method and QUEST method

Noise size analytic method Ea QUEST method En

N=0.01 4.50344692811497 4.50336882243908

N=0.001 0.46355508921313 0.46356102302689

N=0.0001 0.04633308474148 0.04636056974745

N=0.00001 0.00464952990550 0.00462173419676

N=0.000001 0.46855497718417E-3 0.45068048617712E-3

N=0.0000001 0.48374024654480E-4 0.46367084520959E-4

N=0.00000001 0.32071390174853E-4 0.04635740127652E-4

N=0.000000001 0.67150605970535E-5 0.04666503538671E-5

N=0.0000000001 0.93419725779054E-5 0.00465660360757E-5

as

Ea =

1000∑

i=1

‖q̄ti − q̄ai
‖2, En =

1000∑

i=1

‖q̄ti − q̄ni
‖2.

The results are given in Table 6.1.

This test result shows that if the upper bound of the noise is greater than

10−8, the estimation accuracies for both analytic method and QUEST method are

very similar. For very small noise (the maximum magnitude is less than 10−8),

QUEST method is slightly better. The Matlab code for calculating the roots of

the quartic equation can be downloaded from [97]

6.6 Riemann-Newton method

For problems with more than two measurements, both QUEST method and the

analytic method described in the previous section solve Davenport’s problem

in two steps. First, find the largest eigenvalue of the K matrix; then find the

quaternion using the analytic formula. It has been noticed that the second step is

sensitive to the accuracy of the the largest eigenvalue of the K-matrix but directly

solving Davenport’s method is much more robust, which was also observed in

[158]. Since q̄ is a unit length vector, maximizing (6.11) is equivalent to solving

Rayleigh quotient problem [93]:

λmax = max
‖q̄‖=1

1

2
q̄TKq̄, (6.44)

where q̄ is also the eigenvector associated with the largest eigenvalue λmax of the

K-matrix. Problem (6.44) is an optimization problem with a sphere constraint

‖q̄‖= 1 which is much simpler than Wahba’s problem.
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As the size of the problem (6.44) is small, Newton’s method should be con-

sidered. Noticing that both Euclidean space and smooth algebraic equation sys-

tems are Riemannian manifolds, Smith [239] extended unconstrained Newton’s

method in Euclidean space to include all Riemannian manifolds (smoothly con-

strained optimization problem). The method derived from the idea is not only

mathematically elegant, but also turns out, for some cases including the unit

sphere constraint in (6.44), to be extremely efficient [239, 302]. In the follow-

ing discussion, a slightly different but more efficient method is proposed to solve

the problem defined in (6.44).

Instead of searching along straight line, optimization on sphere (or in general

on manifolds) searches along geodesics on the sphere (or in general on mani-

folds). The first important result is therefore to find the geodesic defined by the

current point on sphere and a descent direction. Let BSn−1 := {q̄∈Rn : ‖q̄‖= 1}
be a sphere in n-dimensional space, let y be a descent direction and the tangent

space of BSn−1 at q̄ be denoted as Tq̄(BSn−1), then we have (see [303]) the

following

Theorem 6.1

Let q̄ ∈ BS3, y ∈ Tq̄(BS3) be any tangent vector at q̄, and ‖y‖= 1. Then, the unique

geodesic g(t) on BS3 emanating from q̄ along the direction of y is given by

g(t) = q̄cos(t)+ ysin(t). (6.45)

where t ∈ [0, π
2
].

The main steps of the original Riemann-Newton method in [239] are: (a)

from current iterate q̄, calculate the Newton direction (a vector) in Rn, (b) project

the vector onto the tangent space Tq̄(BSn−1), (c) normalize the vector in the

tangent space to get y, and (d) search the optimizer along the geodesic (6.45)

to a new iterate q̄. Repeat Steps (a) to (d) until an optimal solution is obtained.

Using the simple structure of spheres and fixed step size, steps (a) and (b) can be

simplified as follows. Let Pq̄k
= (I− q̄kq̄T

k ) be the orthogonal projection from R4

to Tq̄(BS3). Since the gradient of 1
2
q̄TKq̄ is Pq̄k

Kq̄, and the Hessian of 1
2
q̄TKq̄

on the sphere manifold can be expressed as Pq̄k
KPq̄k

− q̄T
k Kq̄kI. The Newton

equation for (6.44) is given by

(Pq̄k
KPq̄k

− q̄T
k Kq̄kI)yk =−Pq̄k

Kq̄k. (6.46)

Steps (c) and (d) can be approximated in a much more efficient way described

as follows. As yk must be on the tangent plane Tq̄(BSn−1), the Newton full size

update on the tangent plane is q̄k +yk. Because of the special structure of sphere,

searching along geodesic can be replaced by

q̄k+1 =
q̄k +yk

‖q̄k +yk‖
. (6.47)
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The algorithm is therefore given as follows.

Algorithm 6.1

Select q̄0 ∈ R4 such that ‖q̄0‖= 1.

for k = 0,1,2, . . .

Solve linear systems Pq̄k
KPq̄k

yk − ykq̄T
k Kq̄k =−Pq̄k

Kq̄k and q̄T
k yk = 0.

Set q̄k+1 =
q̄k+yk

‖q̄k+yk‖ and k = k+ 1.

end (for)

For general problem, Riemann-Newton method in [239] does not have a

useful rule to choose a good initial point. For attitude determination problem,

however, Shuster observed [231] that the largest eigenvalue of K-matrix is very

close to one. Therefore, the initial point q̄0 can be determined as follows. Let

K̄ = K− I. Since Kq̄ ≈ q̄, or equivalently K̄q̄ ≈ 0, using Matlab notation, this

gives

K̄(:,2 : 4)q =−K̄(:,1) (6.48)

and set q̄0 = [1,qT]T

‖[1,qT]‖ . Numerical experience shows that this selection of q̄0 is

very close to the solution of (6.44). In many cases, there is no need for any

iteration. Another possible way to select the initial point is to use (6.33) for two

vector observations, which is slightly cheaper than the method of solving linear

system equations (6.48). Numerical test in [312] demonstrated the efficiency and

robustness of this method. The Matlab code of the method can be downloaded in

[98].

6.7 SVD method

Although most popular methods are based on Davenport’s q-method, Markley’s

SVD method [157] solves the Wahba’s problem (6.3) directly by finding the ro-

tational matrix A. Strictly speaking, SVD method is not a quaternion based ap-

proach, but it has been demonstrated good numerical stability [162], therefore,

we included it in this chapter. The SVD method uses a similar strategy that was

used in [62] (which is the first solution to Wahba’s problem) by considering

Frobenius norm in (6.3). SVD method had been implicitly used for attitude de-

termination in [18, 54] before Markley’s SVD method is published, but the latter

is significantly different from the ones in [18, 54] and becomes popular due to its

numerical robustness.
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6.7.1 The SVD-based attitude determination algorithm

Let B = [b1,b2, . . . ,bm] and R = [r1,r2, . . . ,rm]. Then, problem (6.3) becomes

min
A

1

2

m∑

i=1

‖B−AR‖2
F . (6.49)

For the orthogonal matrix A, since ATA = I, we have

1

2

m∑

i=1

‖B−AR‖2
F

= Tr
[
(B−AR)T(B−AR)

]

= Tr(BTB)+Tr(RTR)−2Tr(BTAR)

= 2−2Tr(ARBT). (6.50)

The last equality holds because the columns of B and R are normalized. This

shows that

1

2

m∑

i=1

‖B−AR‖2
F = 1−Tr(ARBT). (6.51)

Let

CT = RBT. (6.52)

The singular value decomposition of C is given by

C = UDVT, (6.53)

where U and V are orthogonal matrices, and

D = diag(d1,d2,d3) (6.54)

with

d1 ≥ d2 ≥ d3 ≥ 0. (6.55)

Notice det(U) =±1 = det(V). Define three orthogonal matrices as follows:

U+ = U[diag(1,1,det(U))], (6.56)

V+ = V[diag(1,1,det(V))], (6.57)

W = UT
+AV+. (6.58)

Since W is an orthogonal matrix, it can be viewed as a rotational matrix with

an unit length rotational axis ê and rotational angle φ . In view of (3.15), we can

write W as follows:

W = cos(φ)I+(1− cos(φ))êêT − sin(φ)E, (6.59)



94 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

where

E =





0 −e3 e2

e3 0 −e1

−e2 e1 0



 . (6.60)

Let

d = det(U)det(V ) =±1, (6.61)

and define

D+ = diag(d1,d2,d3d) (6.62)

Then (6.53) can be written as

C = U+D+VT
+. (6.63)

Substituting this equation into equation (6.51), using the cyclic invariance of the

trace and equation (6.59), and noticing Tr[D+E] = 0 yield

1

2

m∑

i=1

‖B−AR‖2
F

= 1−Tr(ARBT) = 1−Tr(ACT)

= 1−Tr(AV+D+UT
+) = 1−Tr(D+UT

+AV+)

= 1−Tr(D+W)

= 1−Tr{D+[cos(φ)I+(1− cos(φ))êêT − sin(φ)E]}
= 1−Tr[cos(φ)D+]−Tr[(1− cos(φ))D+êêT]−Tr[sin(φ)D+E]

= 1−Tr[cos(φ)D+]−Tr[(1− cos(φ))D+êêT]

= 1−Tr[D+]+Tr[(1− cos(φ))D+]−Tr[(1− cos(φ))D+êêT]

= 1−Tr[D+]+Tr[(1− cos(φ))(D+−D+êêT]

= 1−Tr[D+]+ (1− cos(φ))[d1(1− e2
1)+d2(1− e2

2)+d3d(1− e2
3)].

(6.64)

Since e2
1 = 1− e2

2 − e2
3, noticing d2 +d3d ≥ 0, d1 −d2 ≥ 0, and d1 −d3d ≥ 0, we

have

d1(1− e2
1)+d2(1− e2

2)+d3d(1− e2
3)

= d1e2
2 +d1e2

3 +d2 −d2e2
2 +d3d −d3de2

3

= d2 +d3d +(d1 −d2)e
2
2 +(d1 −d3d)e2

3

≥ 0 (6.65)

Combining (6.64) and (6.65) yields

1

2

m∑

i=1

‖B−AR‖2
F
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= 1−Tr[D+]+ (1− cos(φ))[d2 +d3d +(d1 −d2)e
2
2 +(d1 −d3d)e2

3].

(6.66)

which makes it clear that to minimize 1
2

∑m

i=1 ‖B−AR‖2
F , we should take φ = 0.

In view of (6.59), it follows that Wopt = I. From (6.58), we obtain

Aopt = U+VT
+ = U[diag(1,1,d)]VT. (6.67)

From (6.66), the optimal objective value is given by

min
A

1

2

m∑

i=1

‖B−AR‖2
F = 1−d1 −d2 −d3d. (6.68)

The SVD-based attitude determination algorithm is summarized as follows:

Algorithm 6.2

1. Compute C from equation (6.52).

2. Find the SVD of C from equation (6.53).

3. Compute d from equation (6.61).

4. Compute Aopt from equation (6.67).

5. Compute the optimal objective value from equation (6.68)

6.7.2 Uniqueness of the SVD solution

First, If

d2 +d3d +(d1 −d2)e
2
2 +(d1 −d3d)e2

3 > 0, (6.69)

then we must take φ = 0, which is the unique optimal solution. However, if

d2 + d3d = 0, then there may exist an rotational axis ê = (e1,e2,e3) = (1,0,0)
such that the left hand side of (6.69) equals to zero. Substituting these numbers

into (6.59) yields

W =





1 0 0

0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)



 , (6.70)

i.e., there is a family of optimizers W(φ) with any φ that minimizes the objective

function.

The uniqueness of the solution is closely related to the rank of the C ma-

trix, which is equal to the number of non-zero singular values [77]. The rank of

the C matrix is related to the number of independent attitude sensors. We have

seen in Chapter 3 that it must have at least two independent attitude sensors to
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uniquely determine the spacecraft attitude. Therefore, we will consider only the

cases where the rank of C is two or three, therefore, d2 > 0.

If d2 > d3, it follows that d2 + d3d > 0, the previous analysis shows that the

optimal solution is unique. For a special case d3 = 0, it can be show that this is a

situation when the measurement errors are zero. Let εi be the measurement error

of the ith-instrument. Then, the measurement equation can be modelled as

bi = Atrueri + εi, (6.71)

where Atrue is the true attitude matrix. In the absence of errors, it follows from

(6.71) that B = AtrueR, hence, M ≡ BBT = AtrueRBT = AtrueCT. This gives

BBT = CAT
true or

MAtrue = C, (6.72)

and

det(C) = detM = m1m2m3. (6.73)

where m1 ≥ m2 ≥ m3 ≥ 0 are non-negative eigenvalues of M, and m2 > 0. Again,

using the previous analysis, the optimal solution is unique.

Remark 6.1 Many early solutions of Wahba’s problem were to find the rotational

matrix Aopt , including the famous TRIAD method [31], among others [18, 10, 11,

12]. A comparison of these methods were performed in [170].

6.8 Rotation rate determination using vector measure-

ments

The information of the rotation rate of the spacecraft may be needed in the feed-

back controller design. Many spacecrafts have equipped with on-board three axis

rate-gyros to measure the angular rate [71]. But some spacecraft do not install the

rate-gyros because of the economical consideration. In this case, angular rate can

be estimated using vector measurements, for example, the method published in

[241]. In this section, we present a very simple method. Let

E =





−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0



 . (6.74)

Pre-multiplying 2E on both sides of (3.65) gives,





ω1

ω2

ω3



= 2





−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0











dq0

dt
dq1

dt
dq2

dt
dq3

dt






= 2E

dq̄

dt
. (6.75)
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In theory, after getting the quaternion, then taking the differences ∆q̄ = q̄(ti)−
q̄(ti−1), ∆t = ti − ti−1, and the division of ∆q̄

∆t
, we can approximate dq̄

dt
and get the

angular rate. However, in practical application, due to the measurement noise,

this angular rate determination based on the differentiation may not be reliable

because of the high frequency noise. A low pass Butterworth digital filter [187],

whose input is the ω obtained from (6.75) and the output is the refined angular

rate, will significantly suppress the noise and thereby improving the angular rate

determination. Furthermore, this angular rate can be further refined by a Kalman

filter that will be discussed in Chapter 8.

The next problem for spacecraft attitude determination is about how to get

ephemeris and observation vectors. These vector pairs can be any astronomical

vectors, such as the Sun vector pairs, the Earth vector pairs, the Earth’s mag-

netic vector pairs, any star vector pair. There are a lot of literatures that discuss

these topics. For example, for the sun direction measurement, one can read [142].

For the ephemeris sun direction, the formula is given in [265]. For geomagnetic

vector measurement, a magnetometer can be used [99]. For the ephemeris geo-

magnetic vector, the formula is given in [280]. For star tracker and algorithms,

one can read [103]. We will discuss these topics in the next Chapter.
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As we have seen in the previous chapter that the attitude determination depends

primarily on the calculations of known reference vectors and the measurements

of the astronomical vectors. The most frequently used astronomical vector mea-

surements are Sun vector, the Earth vector, the Earth magnetic vector, and stars’

vectors. In this chapter, notations ri, i = o,m,s are used for reference vectors;

subscript o for the astronomical object, m for geomagnetic field, and s for the

Sun. Similarly we use bi, i = o,m,s, for measured vectors for the astronomical

object, the geomagnetic field, and the Sun. We will discuss how these vectors are

obtained in principle.
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7.1 Stars’ vectors and star trackers

Using stars in navigation and attitude determination has a long history. On the

celestial sphere (an imaginary sphere of arbitrarily large radius, concentric with

the Earth, with celestial equator the same plane as Earth’s equator and celestial

poles the same directions as Earth’s poles), all objects in the sky can be pro-

jected upon the celestial sphere and they all have essentially fixed positions on

the celestial sphere. Therefore, if a spacecraft attitude is perfectly aligned with

LVLH frame, the −Z direction will point to certain astronomical object, which is

a known direction vector ro in the reference frame. If a Charge Coupled Device

(CCD) camera mounted on the spacecraft with the field of view (FOV) in the −Z

direction of the body detects some astronomical object, then a measured vector

bo is obtained. To make this idea work, several things are needed. First, we need

a map that gives us the information on what star is located in what position in the

celestial sphere (the spacecraft position is determined by a GPS mounted on the

spacecraft). Several requirements are needed for this map: (a) stars in this map

should be bright enough for CCD camera to see them, (b) stars in this map should

be uniformly distributed everywhere so that CCD camera is always pointing to

certain stars. This kind of map is called star catalogs. People has created many

star catalogs for the purpose of attitude determination, see for example, [220].

Second, after CCD detected some stars, we need to know where these stars are

located in the star catalogs. There are numerous methods to use, see the survey

paper by [243]. Based on ideas described above, star trackers can be built (see

[221]). Therefore, the observation vector and measurement vector are obtained as

follows. Giving the spacecraft position, the ro is immediately available from the

star catalog; using CCD camera, stars are found, using star identification algo-

rithm, stars observed on CCD are identified in the star catalog, thereby measured

vector bo is obtained.

A typical autonomous star tracker operates in two modes: (a) the initial at-

titude acquisition, and (b) the tracking mode. The main difference between the

two modes is whether the spacecraft attitude knowledge is approximately avail-

able or not. In the initial attitude acquisition mode, the task is, as described in the

previous paragraph, to perform pattern recognition based on the observed star

pattern in the field of view. Many algorithms have be developed for this purpose

[139, 141, 165, 189, 208, 249, 263, 266]. In the tracking mode, the previous

spacecraft attitude is available and the present spacecraft attitude is close the last

attitude updated less than a second ago. The task is much easier because the star

tracker has only to track the identified stars at their known positions. This involes

the calculation of the positions of the star centroids on the focal plane. Different

algorithms have been used for this calculation [140, 219, 246].
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7.2 Earth’s magnetic field vectors and magnetometer

To use Earth’s magnetic field vectors in attitude determination, given the space-

craft position, we need to know ephemeris Earth’s magnetic field vector in the

reference frame, for example, in ECI frame or in LVLH frame; and the measured

Earth’s magnetic field vector in the body frame.

7.2.1 Ephemeris Earth’s magnetic field vector

The geomagnetic vector is based on the International Geomagnetic Reference

Field (IGRF) model which is propagated by the flight software. Given the space-

craft geocentric spherical polar coordinates (r,θ ,φ) ( spacecraft geocentric dis-

tance, co-elevation, and east longitude from Greenwich) provided by GPS, the

ephemeris Earth’s magnetic field vector rm is related to the scalar magnetic po-

tential function V

V (r,θ ,φ) = a

∞∑

n=1

n∑

m=0

(a

r

)n+1

Pm
n cos(θ) (gm

n cos(mφ)+hm
n sin(mφ)) (7.1)

and rm =−grad(V ) is given in (5.14), this geomagnetic flux density should then

be expressed in reference frame i.e., ECI frame or LVLH frame. The transforma-

tions are discussed in Chapter 5 (see also [280, 184]).

7.2.2 Measured Earth’s magnetic field vector

There are many different magnetic sensors for various applications [133]. Among

these sensors, flux-gate type magnetometer is the one used most for spacecraft to

measure the Earth’s magnetic field vector. The sensor is installed on the space-

craft with the known orientation. The geomagnetic vector in the body frame bm

can be then obtained from the magnetometer (TAM) measurement without any

signal processing. A digital filter may also be used to reduce the measurement

noise, but that may introduce some signal delay. Since the measurement noise of

TAM is relatively small, a digital filter is likely not used. For some recent devel-

opment in magnetometer design, readers are referred to [46] and the references

therein.

7.3 Sun vectors and sun sensor

To use sun vector in attitude determination, given the spacecraft position, we

need to know the sun vector in the reference frame, for example, in ECI frame or

in LVLH frame; and the sun vector in the body frame.
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7.3.1 Ephemeris sun vector

The Sun vector in ECI frame is the vector from the center of ECI frame to the

Sun, which is described in Figure 7.1. In this frame, we image that the Sun rotates

around the Earth in the ecliptic plane which is tilted at an angle of ε to the plane

of celestial equator. In this figure, (x,y,z) is the coordinators of the ECI frame.

(x′,y′,z′) is the coordinators of a different frame in which x′ coincides with x, and

z′ is perpendicular to the ecliptic plane, y′ is in the ecliptic plane and completes

the right-hand rule. The λ is the angle between the Sun vector and the x axis.

Clearly, the angle is time-dependent. The ε is nearly a constant (≈ 23.44) but

changes over time. The Sun vector is clearly determined by λ and ε and it can

be expressed in ECI frame as follows

rs =





cos(λ )
cos(ε) sin(λ )
sin(ε) sin(λ )



 . (7.2)

The λ and ε can be calculated based on the mathematic model described in [280,

page 141], [264], or [265]. We provide the formulas of [265] as follows. First,

given year, month, day (January first is the first day), hour, minute, and second,

the Julian date JD is given as [265, page 186]

JD = 367(year)− f loor

(
7(year+ f loor( month+9

12
))

4

)

+ f loor
(

275month
9

)

+day+1721013.5+ hour
24

+ minute
1440

+ second
86400

, (7.3)

where floor is the greatest integer smaller than its argument. From JD, we need

to convert the date to J2000 which is given by [265, page 188]

TUT 1 =
JD−2541545.0

36525
.

Then, the mean longitude L of the Sun is given by [265, pages 365-368]

L = 280.4606184+36000.77005361×TUT1. (7.4)

Assume that Barycentric dynamical time TT BD = TUT 1. The mean anomaly g of

the Sun is given by

g = 357.5277233+35999.05034×TTBD. (7.5)

The ecliptic longitude (λ ) of the sun is given by

λ = L+1.914666471× sin(g)+0.019994643× sin(2×g). (7.6)

The tilted angle is given by

ε = 23.439291o−0.0130042×TTBD. (7.7)

Substituting (7.6) and (7.7) into (7.2) gives the Sun vector in ECI frame. The

sun vector in LVLH frame can be calculated by applying rotational matrix that

transforms ECI frame to LVLH frame, which has been discussed in Chapter 5.
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Figure 7.1: Sun vector represented in ECI frame.

7.3.2 Sun vector measurement

Unlike geomagnetic vector, the sun vector cannot be directly measured from the

Coarse Sun Sensors (CSS) and some signal processing is necessary. Based on

the specification of the view angle of coarse sun sensor, a total of n CSS are

needed to guarantee that at least two sun sensors are available at any orientation

when the spacecraft is not in eclipse. Each coarse sun sensor measures the current

proportional to the projection of the Sun vector onto the sensor bore-sight. Let

the measured current of the ith sun sensor ni be

bi = Ii/I0 = (ni ·bs), (7.8)

where, i = 1,2, . . . ,m < n, m is the number of Sun sensors that receive the Sun

light at current spacecraft attitude, Ii is the measured current of the ith CSS, ni

is the known boresight unit vector of the ith CSS in body frame, bs is the sun

direction vector to be determined, and I0 is the known maximum CSS current.

There are two different cases that need two different methods to solve equa-

tion (7.8). In the first case, a valid current is measured from at least 3 of the n
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Sun Sensors. The CSS processing algorithm computes a measured sun vector

by solving the system of equations (7.8) for bs using a pseudo-inverse. The unit

sun vector b̂s is then obtained by normalizing bs. All vectors ni, bs, and b̂s are

expressed in body frame.

In the second case, a valid current is measured from only 2 of the n Sun

Sensors. the resulting two linear system equations and quadratic constraint over

the unit sphere has two possible solutions, and some extra information is needed

to decide which solution is the true sun vector (a solution that is closer to the

previous valid solution is a reasonable guess but it can be wrong).

Clearly, the solution obtained in the first case gives better estimation in gen-

eral than the solution obtained in the second case. To avoid the second case, one

needs more CSS.
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In the previous two chapters, we have discussed spacecraft attitude determina-

tion methods based on the knowledge of astronomical object vectors ri at current

time and the location of the spacecraft, and the vector measurements bi at current

time. However, due to various reasons, these measurements are normally noise

signals, which oftentimes result in an inaccurate attitude determination. In 1960,

Kalman published his famous Kalman filter [109] and this technique quickly

found its use in some high-profile missions in the aerospace industry, such as

the Apollo project [173]. The success of the Apollo project made Kalman filter a

widely known method that has been used in many applications where measure-

ment signals are noisy. Spacecraft attitude estimation has been a major research

area since the Kalman filter was invented [132]. Because both quaternion kine-

matics and spacecraft dynamics are nonlinear, for spacecraft attitude estimation,

extended Kalman filter was developed by Smith et. al. [237] and is now widely

used in spacecraft attitude estimation.

In 2000, Julier et. al. [104] proposed a different filtering and estimation

method, the unscented Kalman filter, for nonlinear system estimation problem.

This estimation method has attracted a lot of attentions. Many research papers,

for example [44, 47, 48] and references therein, were published. Many reports

claim that the unscented Kalman filter produces better estimation result than ex-

tended Kalman filter. But some simulation comparison between the two methods

leads to different opinions about the potential advantages of unscented Kalman

filter [130]. We will not discuss the unscented Kalman filter method in this chap-

ter. The readers interested in this method and its application to the spacecraft

attitude estimation are directed to [48] which includes a lot of references.

In this chapter, we first present some basic concepts related to the estimation

theory. Then, we discuss the linear Kalman filter. Since spacecraft is intrinsically

a nonlinear system, we introduce the extended Kalman filter. In the final part of

this chapter, we apply the extended Kalman filter to the spacecraft quaternion

model.

8.1 A brief background review

This section provides a brief background that will be needed in the remainder of

the Chapter.

8.1.1 Probability and conditional probability

Consider an experiment with a number of possible outcomes. A set of these out-

comes is a sample space Ω. An event A is a subset of the sample space. A prob-

ability measure p(·) is a mapping: A → R satisfying the axioms

(a) p(A)≥ 0.



Spacecraft Attitude Estimation � 107

(b) p(Ω) = 1.

(c) If Ai ∩A j = ∅, i.e., Ai and A j are disjoint, for any i and j, then p(∪Ai) =∑
p(Ai).

From these axioms, the following relations can be derived.

F ≤ 1, p(∅) = 0, p(Ā) = 1− p(A), p(∪Ai)≤
∑

p(Ai). (8.1)

where Ā is the event in Ω but not in A. The joint probability of two events A and

B is denoted by p(A∩B). Suppose an experiment event A is performed after the

experiment event B occurred, and the probability that event A has also occurred,

then the conditional probability of A given B is

p(A|B) = p(A∩B)

p(B)
. (8.2)

One of the most important concepts in probability theory is the mutually inde-

pendent events. The m events of A1,A2, . . . ,Am is mutually independent if

p(A|B) = p(A1 ∩A2 . . .∩Am) = p(A1)p(A2) . . . p(Am). (8.3)

For an experiment, if a variable’s outcome is one of possible real numbers but

it is not predictable which number will occur, then the variable X is a random

variable. A random variable is discrete if it has only countable outcome numbers.

A random variable is continuous if its outcome values is in some interval [a,b].

8.1.2 One dimensional random variable

For a random variable, although we cannot predict what number it will take, but

we assume that we know its cumulative distribution. Given a random variable X ,

the cumulative distribution function Fx is a mapping: R → [0,1] such that

F(x) = p(X ≤ x). (8.4)

The cumulative distribution function is monotonic increasing and satisfying

limx→−∞ = 0 and limx→∞ = 1. For continuous random variables, we assume

the corresponding cumulative distribution function F(x) is differentiable every-

where. Then we can define the density function of the random variable X as

f (x) =
dF(x)

dx
(8.5)

and f (x)dx to the first order is f (x < X ≤ x+dx).
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8.1.3 Higher dimensional random variables

We discuss only two dimensional random variables as the extension to the higher

dimensional random variables is straightforward but with more complex nota-

tions.

For a two dimensional random variable, its cumulative distribution function

F(x,y) is a mapping: R2 → [0,1] such that

F(x,y) = p(X ≤ x,Y ≤ y). (8.6)

The following properties hold for any two dimensional random variable:

F(x,∞) = F1(x), F(∞,y) = F2(y), F(∞,∞) = 1. (8.7)

Assume that the two dimensional cumulative distribution function is continu-

ously differentiable, then its density function is given by

f (x,y) =
∂ F(x,y)

∂ x∂ y
. (8.8)

Therefore,

F(x,y) =

∫ x

−∞

∫ y

−∞
f (x,y)dxdy. (8.9)

This yields

F1(x) = F1(x,∞) =

∫ x

−∞

∫ ∞

−∞
f (x,y)dxdy, (8.10)

and

F2(y) = F1(∞,y) =

∫ ∞

−∞

∫ y

−∞
f (x,y)dxdy. (8.11)

Furthermore, we have

f1(x) =
∂ F1(x,∞)

∂ x
=

∫ ∞

−∞
f (x,y)dy, (8.12)

and

f2(y) =
∂ F2(∞,y)

∂ y
=

∫ ∞

−∞
f (x,y)dx. (8.13)

8.1.4 Conditional distribution

From (8.2), we have

p(X ≤ x | y−∆y ≤ Y ≤ y+∆y) =

∫ x

−∞
∫ y+∆y

y−∆y
f (x,y)dxdy

∫ y+∆y

y−∆y
f2(y)dy

, (8.14)
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where f2(y) is given in (8.13). Applying the mean value theorem for integrals

∫ b

a

f (x)dx = f (c)(b−a), where c ∈ [a,b], (8.15)

to (8.14) and letting ∆y → 0 yield

p(X ≤ x | Y = y) =

∫ x

−∞ f (x,y)dx

f2(y)
. (8.16)

Similar to (8.4), we may define the conditional cumulative distribution as

F(x | y) = p(X ≤ x | Y = y). (8.17)

Then, similar to (8.5), The conditional density function of the random variable X

given Y = y is defined as

f (x | Y = y) =
dF(x | y)

dx
=

f (x,y)

f2(y)
. (8.18)

Similarly, we can obtain

f (y | X = x) =
dF(y | x)

dy
=

f (x,y)

f1(x)
. (8.19)

From the above two formulas, it follows the Bayes’ theorem:

f (x,y) = f (x | Y = y) f2(y) = f (y | X = x) f1(x). (8.20)

8.1.5 Independent random variables

Two random variables X and Y are independent if one variable’s conditional

density function does not depend on the given condition of the other random

variable, i.e.,

f (x | Y = y) = f1(x), f (y | X = x) = f2(y). (8.21)

In view of the Bayes’ theorem, the necessary and sufficient condition for the two

random variables to be independent is

f (x,y) = f1(x) f2(y). (8.22)

This is true if X and Y are two random vectors.
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8.1.6 mean, variance, and covariance

For a discrete random variable X , its mean is given by

E(X) =

n∑

1

xi pi, (8.23)

where xi is one of all possible values, pi is the probability of X = xi, and n is all

possible outcomes. Some times, we denote E(X) by X̄ . For continuous random

variable X , its mean is given by

E(X) =

∫ ∞

−∞
x f (x)dx, (8.24)

which is also known as expectation. For a continuous random vector X whose

elements are random variables, i.e., X = (X1, . . . ,Xn). Since X is random, it may

take value x = (x1, . . . ,xn) ∈ (−∞,∞). We denote its mean as

E(X) =

∫ ∞

−∞
x f (x1,x2, . . . ,xn)dx1 · · · ,dxn =

∫ ∞

−∞
x f (x)dx. (8.25)

Let X be a random vector whose elements are random variables, its covariant

matrix Var is given by

Var(X) = E[(X−E(X))(X−E(X))T]

=

∫ ∞

−∞

∫ ∞

−∞
(x−E(X))(x−E(X))T f (x1,x2, . . . ,xn)dx1 · · · ,dxn

=

∫ ∞

−∞

∫ ∞

−∞
(x−E(X))(x−E(X))T f (x)dx, (8.26)

The (i, j) element of Var(X) is expressed as follows.

∫ ∞

−∞

∫ ∞

−∞
(xi −E(Xi))(x j −E(X j))

T f (x1,x2, . . . ,xn)dx1 · · · ,dxn. (8.27)

If i = j, this item is named as the variance of Xi and denoted as Var(Xi). If i 6= j,

this item is named as the covariance of Xi and X j and denoted as Cov(Xi,X j).

8.1.7 Conditional expectation and variance matrix

Let X and Y be two random vectors. Given the condition of Y = y, the condi-

tional expectation of X for the given Y = y is defined as

E(X | y) =

∫ ∞

∞
x f (x | y)dx, (8.28)
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Then, we can define the conditional variance matrix as

Var(X | y) = E[(X−E(X | y))(X−E(X | y))T]

=

∫ ∞

−∞
(x−E(X | y))(x−E(X | y))T f (x | y)dx,

(8.29)

8.1.8 Discrete time stochastic processes

A discrete-time random process is a sequence of random variables (random vec-

tors) that is also a function of discrete-time. Let {X1,X2, . . . ,Xn} be a discrete-

time stochastic processes. Its probabilistic properties are described by the joint

cumulative distribution function

F(x1, . . . ,xn) = p(X1 ≤ x1, . . . ,Xn ≤ xn), (8.30)

or by the joint density distribution function

f (x1, . . . ,xn) =
∂ F(x1, . . . ,xn)

∂ x1, . . .∂ xn

. (8.31)

Similar to the previous sections, we can define the expectation of the random

process at time k by

E(Xk) =

∫ ∞

−∞
xk fk(xk)dxk, (8.32)

where fk is defined similar to the ones in (8.12) and (8.13).

Consider a discrete-time random process X = {X1,X2, . . . ,Xn} whose ele-

ments are random vectors, its covariant matrix Var is given by

Var(X) = E[(X−E(X))(X−E(X))T]

=

∫ ∞

−∞
. . .

∫ ∞

−∞
(x−E(X))(x−E(X))T f (x1,x2, . . . ,xn)dx1 · · · ,dxn

=

∫ ∞

−∞
. . .

∫ ∞

−∞
(x−E(X))(x−E(X))T f (x)dx. (8.33)

For two discrete-time random processes {X1,X2, . . . ,Xn} and {Y1,Y2, . . . ,Yn},

where x1, . . . ,xn are m dimensional vectors and y1, . . . ,yn are s dimensional vec-

tors, the joint cumulative distribution is given by

F(x1, . . . ,xn) = p(X1 ≤ x1, . . . ,Xn ≤ xn,Y1 ≤ y1, . . . ,Yn ≤ yn). (8.34)

Similarly, we can define the joint density distribution

f (x1, . . . ,xn,y1, . . . ,yn) =
∂ F(x1, . . . ,xn,y1, . . . ,yn)

∂ x1, . . .∂ xn,∂ y1, . . .∂ yn

. (8.35)
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Moreover, similar to the ones in in (8.12) and (8.13), we can define

fx(x1, . . . ,xn), fy(y1, . . . ,yn). (8.36)

We say the two discrete-time random processes {X1,X2, . . . ,Xn} and {Y1,Y2, . . . ,Yn}
are independent if

f (x1, . . . ,xn,y1, . . . ,yn) = fx(x1, . . . ,xn) fy(y1, . . . ,yn). (8.37)

For a discrete-time random processes {X1,X2, . . . ,Xn}, if {x1,x2, . . . ,xn} is

taken at times {t1, t2, . . . , tn}, we denote the cumulative distribution as

F(x1, t1,x2, t2 . . . ,xn, tn). (8.38)

For any time τ , if {x1,x2, . . . ,xn} is taken at times {t1 + τ, t2 + τ, . . . , tn + τ}, we

denote the cumulative distribution as

F(x1, t1 + τ,x2, t2 + τ, . . . ,xn, tn + τ). (8.39)

We say a discrete-time random processes {X1,X2, . . . ,Xn} is strictly stationary

if

F(x1, t1 + τ,x2, t2 + τ, . . . ,xn, tn + τ) = F(x1, t1,x2, t2 . . . ,xn, tn). (8.40)

8.1.9 Markov processes

A process is Markov if, given that the present is known, the past has no influence

on the future, i.e., for any discrete-times k1 < k2 . . . < kn and the corresponding n

vectors x1,x1, . . . ,xn of dimension m,

p(Xn ≤ xn | Xn−1 = xn−1, . . . ,X1 = X1) = p(Xn ≤ xn | Xn−1 = xn−1). (8.41)

From Bayes’ theorem, it is easy to derive the following formula.

f (xn, . . . ,x1) = f (xn | xn−1) f (xn−1 | xn−2) · · · f (x2 | x1) f (x1). (8.42)

Sometimes, we refer a discrete-time random process to as a random sequence.

We say a random sequency {Xk,k = 0,1,2, . . .} is a white noise sequence if

E(Xk) = 0, k = 0,1,2, . . . (8.43)

and

Cov(Xi,X j) = Riδi, j, (8.44)

where

δi, j =

{

1, if i = j

0, if i 6= j
(8.45)

is the Kronecker delta function.



Spacecraft Attitude Estimation � 113

8.1.10 Gaussian-Markov processes

Let X be a Gaussian or normal random variable, then its density function is of

the form

p(x) =
1√

2πσ
e
− (x−µ)2

2σ2 (8.46)

where µ = E(X) and σ 2 =Var(X) = E[(X −µ)2].
Let X be a m-dimensional gaussian or normal random vector, then its density

function is of the form

p(x) =
1

(2π)
m
2 |R|−1/2

e−
1
2
(x−µ)TR−1(x−µ), (8.47)

where µ = E(X) ∈ Rm, and R =Var(X) = E[(X−µ)(X−µ)T] ∈ Rm×m.

Let X = (Xk,k = 0,1,2, . . . ,n) be a discrete-time random process and Xk be

an m-dimensional gaussian vector, then its density function is of the form

p(x) =
1

(2π)
mn
2 |R|−1/2

e−
1
2
(x−µ)TR−1(x−µ), (8.48)

where µ = E(X) ∈ Rmn, R = Var(X) = E[(X − µ)(X − µ)T] ∈ Rmn×mn, x =
(x1, . . . ,xn) ∈ Rmn, and X = (X1, . . . ,Xn) ∈ Rmn is an mn-dimensional random

vector.

If a Markov random process has Gaussian density function of the form (8.48),

we say it is a Gaussian-Markov random process.

Remark 8.1 Gaussian-Markov processes are assumed for Kalman filter by many

books, such as [5, 235], which makes the treatment easier to follow. However,

Gaussian-Markov processes are not required and Kalman’s original proofs [109]

were based on the orthogonal properties, which makes the result applicable to more

general problems.

8.2 Discrete time linear Kalman filter

In Chapter 4, we discussed spacecraft model. Although, both inertial pointing

and nadir pointing spacecraft are intrinsically nonlinear, we may linearize the

model and the simplified model can be written as

ẋ = Ax+Bu, (8.49)

where x ∈ Rn is the state variable, A ∈ Rn×n, B ∈ Rn×m are the system matrices,

and u ∈ Rm is the control vector.

From Chapter 5, we know that the spacecraft always experiences disturbance
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torques, which can be modeled as a n-dimensional random process w. Therefore,

the simplified model (8.49) should be written as

ẋ = Ax+Bu+w. (8.50)

In Chapters 6 and 7, we discussed how to use sensors to measure the space-

craft attitude and this information can be used to control the spacecraft to achieve

the desired attitude. Since all measurements have noise, the measurement can be

modeled as

y = Cx+v (8.51)

where y ∈ Rp is the measurement vector, C ∈ Rp×n observation matrix, and v is

a p-dimensional measurement random noise vector.

Since computer is used in all spacecraft control system, instead of the con-

tinuous model (8.50) and (8.51), we will consider the discrete spacecraft model

given as follows.

xk+1 = Akxk +Bkuk +wk, (8.52a)

yk = Ckxk +vk. (8.52b)

There are many different methods to convert the continuous model (8.50) and

(8.51) into a discrete model (8.52). Readers who are interested in this material

are directed to reference [8, 72, 127, 238]. But we would like to point out that a

Matlab function c2d can be applied to the continuous model to get the discrete

model (8.52).

Finally, we assume in the remainder of this chapter that all random processes

have the first order and second order statistics (mean and covariance matrix).

8.2.1 Assumptions on the stochastic linear system

To derive the linear Kalman filter, the following assumptions are made [109]:

For any k and j, the dynamical noise and measurement noise are zero mean

white noise that satisfy the following relations.

E(wk) = 0, Cov(wk,w j) = E(wkwT
j ) = Qkδk j, (8.53a)

E(vk) = 0, Cov(vk,v j) = E(vkvT
j ) = Rkδk j, (8.53b)

Cov(wk,v j) = E(wkvT
j ) = 0, (8.53c)

where δk j is the Kronecker delta function defined in (8.45). Moreover, the initial

state satisfies the following conditions.

E(x0) = µ0, Cov(x0,x0) = E
[
(x0 −µ0)(x0 −µ0)

T
]
= P0, (8.54a)

Cov(x0,wk) = 0, (8.54b)

Cov(x0,vk) = 0, (8.54c)
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8.2.2 Orthogonal projection

Let x be the n-dimensional dynamic random vector, y be the m-dimensional mea-

surement random vector, and x∗ be a n-dimensional random vector that satisfies

the following three conditions:

1. There is a constant vector of a ∈ Rn, and a constant matrix D ∈ Rn×m

such that x∗ can be expressed as x∗ = a+Dy.

2. E(x) = E(x∗), i.e., the orthogonal projection is unbiased.

3. E[(x−x∗)yT] = 0.

Then, we say x∗ is the orthogonal projection of x on y, and denote x∗ ≡ Ê(x | y).

Remark 8.2 If x and x∗ meet the second condition, we say x∗ is a unbiased esti-

mation of x. If x, x∗, and y meet the third estimation, we say x̃ = x− x∗ and y are

orthogonal.

8.2.3 Minimal linear covariance estimation

For an n-dimensional dynamic random vector x, given an m-dimensional mea-

surement random vector y, we would like to estimate x based on the measurement

y. In this section, we restrict that the estimator is linear:

x̂ = a+Dy ≡ Ê(x | y), (8.55)

where a is a constant vector and D is a constant matrix, i.e., the estimator is

a linear function of the measurement random vector y. Therefore, the estima-

tor satisfies the first condition of orthogonal projection. Denote the error of the

estimation as

b = E(x̂)−E(x) = a+DE(y)−E(x). (8.56)

We want to minimize

E[(x− x̂(y))(x− x̂(y))T]

= E[(x−a−Dy)(x−a−Dy)T]

= E[(x−b+DE(y)−E(x)−Dy)(x−b+DE(x)−E(x)−Dy)T]

= E{[(x−E(x))−b−D(y−E(y)][(x−E(x))−b−D(y−E(y)]T}
= Var(x)+bbT +DVar(y)DT−Cov(x,y)DT−DCov(y,x)

= bbT +[D−Cov(x,y)(Var(y))−1](Var(y))[D−Cov(x,y)(Var(y))−1]T

+[Var(x)−Cov(x,y)(Var(y))−1Cov(y,x)]. (8.57)
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The first two items in (8.57) are positive semi-definite matrices and last item in

(8.57) is independent to b and D. Therefore, to minimize (8.57), we must take

b = 0, (8.58a)

D =Cov(x,y)(Var(y))−1. (8.58b)

Substituting (8.58) into (8.56) yields

a = E(x)−Cov(x,y)(Var(y))−1E(y). (8.59)

Substituting (8.58) and (8.59) into (8.55) yields the minimal linear covariance

estimation:

x̂ = E(x)−Cov(x,y)(Var(y))−1E(y)+Cov(x,y)(Var(y))−1y

= E(x)+Cov(x,y)(Var(y))−1(y−E(y)). (8.60)

In view of (8.57), we obtain the estimation covariance matrix as follows.

E[(x− x̂(y))(x− x̂(y))T]

= Var(x)−Cov(x,y)(Var(x))−1Cov(y,x). (8.61)

From (8.60), it follows

E(x̂) = E(x)+Cov(x,y)(Var(y))−1(E(y)−E(y)) = E(x). (8.62)

Therefore, the estimation is unbiased, which satisfies the second condition of or-

thogonal projection. Now we show that the estimate satisfies the third condition

of orthogonal projection. In view of (8.62), we have

E[(x− x̂)E(y)T] = E(x− x̂)E(y)T = 0. (8.63)

Using this formula and (8.60) yields

E[(x− x̂(y))yT] = E[(x− x̂(y))(y−E(y))T]

= E{[x−E(x)−Cov(x,y)(Var(y))−1(y−E(y))](y−E(y))T}
= Cov(x,y)−Cov(x,y)(Var(y))−1Var(y) = 0. (8.64)

Therefore, we have shown that the minimal linear covariance estimation is an

orthogonal projection of x on y.

8.2.4 Three lemmas

First, we show that the orthogonal projection is unique.
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Lemma 8.1

Let x and y be n-dimensional and m-dimensional random vectors, the orthogonal

projection of x on y is unique and is given by

Ê(x | y) = E(x)+Cov(x,y)(Var(y))−1(y−E(y)). (8.65)

Proof 8.1 From the orthogonal projection conditions 1 and 2, we have

E(x) = E(x̂) = E(a+Dy) = a+DE(y)

⇐⇒ a = E(x)−DE(y)

⇐⇒ Ê(x | y) = a+Dy = E(x)+D(y−E(y)). (8.66)

Then, from the orthogonal projection condition 3, (8.63), and (8.60), we have

0 = E(x− x̂)yT = E(x− x̂)(y−E(y))T

= E{[(x−E(x))−D(y−E(y))](y−E(y))T}
= Cov(x,y)−DVar(y). (8.67)

This shows that D= (Var(y))−1Cov(x,y). Substituting this formula into (8.66) gives

(8.65). This completes the proof.

Lemma 8.2

Let C ∈ Rm×n be constant matrix, and x ∈ Rn and y ∈ Rm be two random vectors.

Then,

Ê(Cx | y) = CÊ(x | y). (8.68)

Proof 8.2 In view of Lemma 8.1, it follows

Ê(Cx | y) = E(Cx)+Cov(Cx,y)(Var(y))−1(y−E(y))

= CE(x)+CCov(x,y)(Var(y))−1(y−E(y))

= CÊ(x | y). (8.69)

This completes the proof.

Lemma 8.3

Let x ∈ Rn, y ∈ Rm, and z ∈ Rp be three random vectors. Let s = (y,z) ∈ Rm+p.

Then,

Ê(x | s) = Ê(x | y)+ Ê(x̃ | z̃) = Ê(x | y)+E(x̃z̃T)(E(z̃z̃T))−1z̃, (8.70)
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where

x̃ = x− Ê(x | y), z̃ = z− Ê(z | y). (8.71)

Proof 8.3 From Lemma 8.1, and since orthogonal projection is unbiased, we have

E(x̃) = E[x− Ê(x | y)]

= E[x−E(x)−Cov(x,y)(Var(y))−1(y−E(y))] = 0, (8.72)

and

E(z̃) = E[z− Ê(z | y)]

= E[z−E(z)−Cov(z,y)(Var(y))−1(y−E(y))] = 0, (8.73)

Using (8.72), (8.73), and Lemma 8.1 again, we have

Ê(x̃ | z̃) = E(x̃)+Cov(x̃, z̃)(Var(z̃))−1(z̃−E(z̃))

= E(x̃)+ Ê(x̃z̃T)(Ê(z̃z̃T))−1z̃. (8.74)

This proves the second equality of (8.70). To prove the first equality of (8.70), using

the uniqueness of the orthogonal projection, we just need to verify that

x∗ ≡ Ê(x | y)+E(x̃z̃T)(E(z̃z̃T))−1z̃ (8.75)

is the orthogonal projection of x on s = (y,z), i.e., it satisfies the three conditions for

orthogonal projection. First, since Ê(x | y) and Ê(z | y) are linear function of y, and

z̃ = z− Ê(z | y) is a linear function of s = (y,z), we conclude that Ê(x | y)+ Ê(x̃ | z̃)
is a linear function of s = (y,z), so is x∗. Second, using (8.73) and (8.65), we have

E[Ê(x | y)+E(x̃z̃T)(E(z̃z̃T))−1z̃]

= E[Ê(x | y)]+E(x̃z̃T)(E(z̃z̃T))−1E[z̃]

= E[Ê(x | y)]

= E(x). (8.76)

This shows that x∗ is unbiased. Finally, since Ê(z | y) is a linear function of y and

is unbiased, from condition 3 of orthogonal projection, we know that x̃ and z̃ are

orthogonal to y, therefore, we have

E[x̃Ê(z | y)] = 0, (8.77a)

E[z̃Ê(z | y)] = 0. (8.77b)

In view of (8.71), this implies

E(x̃zT) = E(x̃z̃T)+E[x̃Ê(z | y)] = E(x̃z̃T), (8.78a)
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E(z̃zT) = E(z̃z̃T)+E[z̃Ê(z | y)] = E(z̃z̃T). (8.78b)

Using (8.75), (8.78), s = (y,z), and E(z̃yT) = 0, we have

E[(x− x∗)sT] = E{[(x− Ê(x | y)−E(x̃z̃T)(E(z̃z̃T))−1z̃]sT}
= E[(x̃sT]−E(x̃z̃T)(E(z̃z̃T))−1E(z̃sT)

= (E(x̃yT),E(x̃zT))−E(x̃z̃T)(E(z̃z̃T))−1(E(z̃yT),E(z̃zT))

= (0,E(x̃zT))− (0,E(x̃z̃T)(E(z̃z̃)T)−1E(z̃zT))

= (0,E(x̃z̃T))− (0,E(x̃z̃T)(E(z̃z̃T))−1E(z̃z̃T))

= (0,0) (8.79)

This proves that x− x∗ and s are orthogonal. Since the orthogonal project is unique,

x∗ is the projection of x on s. This proves (8.70).

8.2.5 Discrete-time linear Kalman filter

Let the first k measurement be sk = (y1,y2, . . . ,yk) and denote the estimation of

xk based on the measurement is x̂k|k = Ê(xk | sk). Then we have the one-step state

prediction:

Ê(xk+1 | sk) = x̂k+1|k

= Ê(Akxk +Bkuk +wk | sk)

= Akx̂k|k +Bkuk +E(wk | sk). (8.80)

Since sk = (y1,y2, . . . ,yk) is a linear combination of (v1,v2, ...,vk) and E(wk) =
0, according to (8.53), wk is orthogonal to (v1,v2, . . . ,vk). Therefore,

E(wk | sk) = E(wk | v1,v2, . . . ,vk) = 0, (8.81)

and

x̂k+1|k = Akx̂k|k +Bkuk. (8.82)

For one-step measurement prediction, we have

ŷk+1|k = Ê(Ck+1xk+1 +vk+1 | sk)

= Ck+1x̂k+1|k +E(vk+1 | sk) (8.83)

Since sk = (y1,y2, . . . ,yk) is a linear combination of (v1,v2, ...,vk) and E(vk+1) =
0, according to (8.53b), vk+1 is orthogonal to (v1,v2, . . . ,vk). Therefore,

E(vk+1 | sk) = E(vk+1 | v1,v2, . . . ,vk) = 0, (8.84)

and

ŷk+1|k = Ck+1x̂k+1|k. (8.85)



120 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

Note that ŷk+1|k is an orthogonal projection of yk+1 on sk, i.e.,

E[(yk+1 − ŷk+1|k)sk] = 0. (8.86)

Let ỹk+1|k = yk+1 − ŷk+1|k and be termed as the innovation (ỹk+1|k includes new

information yk+1). In view of Lemma 8.3, the updated state estimation is given

by

x̂k+1|k+1 = Ê[xk+1| sk]+ Ê[x̃k+1| ỹk+1|k]

= Ê[xk+1| sk]+E[x̃k+1|kỹT
k+1|k](E[ỹk+1|kỹT

k+1|k])
−1ỹT

k+1|k.(8.87)

Denote x̃k+1|k = xk+1 − x̂k+1|k and Pk+1|k = E(x̃k+1|kx̃k+1|k)
T. Since x̃k+1|k

is a linear combination of (v1,v2, . . . ,vk) and is unbiased, it follows that

E(x̃k+1|kvT
k+1) = 0. Therefore, using (8.85), we have

E[ỹk+1|kỹT
k+1|k]

= E[(yk+1 − ŷk+1|k)(yk+1 − ŷk+1|k)
T]

= E[(Ck+1xk+1 +vk+1 −Ck+1x̂k+1|k)(Ck+1xk+1 +vk+1 −Ck+1x̂k+1|k)
T]

= E[(Ck+1x̃k+1|k +vk+1)(Ck+1x̃k+1|k +vk+1)
T]

= Ck+1Pk+1|kCT
k+1 +Rk+1, (8.88)

and

E[x̃k+1|kỹT
k+1|k] = E[x̃k+1|k(yk+1 − ŷk+1|k)

T]

= E[x̃k+1|k(Ck+1x̃k+1|k +vk+1)
T] = Pk+1|kCT

k+1. (8.89)

Let Kk+1 = Pk+1|kCT
k+1(Ck+1Pk+1|kCT

k+1 +Rk+1)
−1. Substituting (8.80), (8.88),

and (8.89) into (8.87) yields

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1| k)

= x̂k+1|k +Kk+1[yk+1 −Ck+1x̂k+1|k]. (8.90)

Now, we derive the one-step update formula for covariance Pk+1|k. From (8.52)

and (8.82), we have

xk+1 − x̂k+1| k = Ak(xk − x̂k| k)+wk = Akx̃k|k +wk. (8.91)

In view of item 3 in Section 8.2.2, it follows E[(xk − x̂k| k)w
T
k ] = E[x̃k|kwT

k ] = 0.

Using (8.53), we have

Pk+1|k = E[(Akx̃k|k +wk)(Akx̃k|k +wk)
T] = AkPk|kAT

k +Qk. (8.92)

Finally, we can update covariance Pk+1| k+1. From (8.90), (8.85), and (8.52), we

have

xk+1 − x̂k+1| k+1 = xk+1 − x̂k+1| k −Kk+1[yk+1 −Ck+1x̂k+1|k]



Spacecraft Attitude Estimation � 121

= xk+1 − x̂k+1| k −Kk+1[Ck+1xk+1 +vk+1 −Ck+1x̂k+1|k]

= x̃k+1| k −Kk+1[Ck+1x̃k+1|k +vk+1]

= (I−Kk+1Ck+1)x̃k+1| k −Kk+1vk+1. (8.93)

Noticing that E[x̃k+1| kvT
k+1] = 0, this gives

Pk+1|k+1

= E[(xk+1 − x̂k+1| k+1)(xk+1 − x̂k+1| k+1)
T]

= E[(I−Kk+1Ck+1)x̃k+1| k −Kk+1vk+1)(I−Kk+1Ck+1)x̃k+1| k −Kk+1vk+1)
T]

= (I−Kk+1Ck+1)Pk+1| k(I−Kk+1Ck+1)
T +Kk+1Rk+1KT

k+1. (8.94)

Summarizing the results in this section gives the following theorem.

Theorem 8.1

For dynamical system with the measurement (8.52), assume the measurement noises

satisfy the condition (8.53), and initial conditions are given by

x̂0|0 = x0 = µ0, P0|0 = P0. (8.95)

Then, the optimal filtering x̂k+1 | k+1 of xk+1 can be calculated iteratively

x̂k+1 | k = Akx̂k|k +Bkuk. (8.96a)

Pk+1|k = AkPk|kAT
k +Qk. (8.96b)

Kk+1 = Pk+1|kCT
k+1(Ck+1Pk+1|kCT

k+1 +Rk+1)
−1. (8.96c)

Pk+1|k+1 = (I−Kk+1Ck+1)Pk+1| k(I−Kk+1Ck+1)
T +Kk+1Rk+1KT

k+1. (8.96d)

x̂k+1|k+1 = x̂k+1|k +Kk+1[yk+1 −Ck+1x̂k+1|k]. (8.96e)

8.3 Discrete-time extended Kalman filter

Since most real world systems are nonlinear, to use the linear Kalman filter, one

has to first linearize the nonlinear system before s/he applies the linear Kalman

filter. Modeling error is introduced during the linearization process. For this rea-

son, NASA engineers and researchers at MIT worked on the extended Kalman

filter right after Kalman filter was developed. According to Stanley F. Schmidt

[226], the authors in the following papers [15, 16, 152, 153, 236, 237] should be

credited for the development of the extended Kalman filter.

Consider the nonlinear system model:
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xk = fk−1(xk−1,uk−1,φk−1), (8.97a)

yk = hk(xk,ψk), (8.97b)

E[φk] = 0, E[φkφ T
j ] = δk jQk, (8.97c)

E[ψk] = 0, E[ψkψT
j ] = δk jRk, (8.97d)

E[x0|0] = E(x0), P0|0 = P0, E[φkψT
j ] = 0, (8.97e)

To save space, in this section, we use x̂−
k = x̂k|k−1 and x̂+

k = x̂k|k. Taking

Taylor expansion of the state equation at xk−1 = x̂+
k−1 and φk−1 = 0 yields

xk = fk−1(x̂
+
k−1,uk−1,0)+

∂ fk−1

∂ x

∣
∣
∣
∣
x̂+

k−1

(xk−1 − x̂+
k−1)+

∂ fk−1

∂ φ

∣
∣
∣
∣
x̂+

k−1

φk−1

= fk−1(x̂
+
k−1,uk−1,0)+Fk−1(xk−1 − x̂+

k−1)+Lk−1φk−1

= Fk−1xk−1 +[fk−1(x̂
+
k−1,uk−1,0)−Fk−1x̂+

k−1]+Lk−1φk−1

= Fk−1xk−1 − ũk−1 + φ̃k−1, (8.98)

where

Fk−1 =
∂ fk−1

∂ x

∣
∣
∣
∣
x̂+

k−1

, Lk−1 =
∂ fk−1

∂ φ

∣
∣
∣
∣
x̂+

k−1

(8.99a)

ũk−1 = fk−1(x̂
+
k−1,uk−1,0)−Fk−1x̂+

k−1, (8.99b)

φ̃k−1 = Lk−1φk−1, E(φ̃k−1) = 0, (8.99c)

E(φ̃k−1φ̃ T
k−1) = Lk−1Qk−1LT

k−1. (8.99d)

Taking Taylor expansion of the measurement equation at xk−1 = x̂−
k and ψk = 0

yields

yk = hk(x̂
−
k ,0)+

∂ hk

∂ x

∣
∣
∣
∣
x̂
−
k

(xk − x̂−
k )+

∂ hk

∂ ψ

∣
∣
∣
∣
x̂
−
k

ψk

= hk(x̂
−
k ,0)+Hk(xk − x̂−

k )+Mkψk

= Hkxk +[hk(x̂
−
k ,0)−Hkx̂−

k ]+Mkψk

= Hkxk + zk + ψ̃k, (8.100)

where

Hk =
∂ hk

∂ x

∣
∣
∣
∣
x̂
−
k

, Mk =
∂ hk

∂ ψ

∣
∣
∣
∣
x̂
−
k

(8.101a)

zk = hk(x̂
−
k ,0)−Hkx̂

−
k , (8.101b)

ψ̃k = Mkψk, E(ψ̃k) = 0, (8.101c)
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E(ψ̃kψ̃T
k ) = MkRkMT

k . (8.101d)

We have a linear state-space system of equation (8.98) and a linear measurement

equation (8.100). Therefore, we can use the linear Kalman filter equations to

estimate the state. This gives the discrete-time extended Kalman filter:

x̂−
k = x̂k+1 | k = fk−1(x̂

+
k−1,uk−1,0) = fk−1(x̂k−1|k−1,uk−1,0). (8.102a)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Lk−1Qk−1LT

k−1. (8.102b)

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +MkRkMT
k )

−1. (8.102c)

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T +KkRkKT

k . (8.102d)

x̂k|k = x̂k|k−1 +Kk[yk −Hkx̂k|k−1 − zk]. (8.102e)

8.4 Extended Kalman filter for spacecraft state estima-

tion

Although many different methods have been proposed, most models suggest us-

ing only quaternion kinematics equations of motion for the attitude estimation

without considering spacecraft dynamics, see for example, some widely cited

survey papers [48, 132] and references therein. This model reduces the problem

size but discards useful spacecraft attitude information available in the space-

craft dynamics equation. The drawbacks of this simplified model are (a) when

gyros measurements have significant noise, the spacecraft dynamics information

is not used to prevent the degradation of the attitude estimation, and (b) when

gyro measurements are not available (as a matter of fact, gyros are not used in

most small spacecraft for economical consideration), the simplified model cannot

be used to estimate the spacecraft attitude. There are some papers that consider

models including the spacecraft dynamics in Kalman filter designs, for example,

[118, 148], but comparison about which model is a better fit of the application

of spacecraft attitude estimation was not carried out for a long time. In a recent

research [325], the performance comparison for Kalman filters using the two

different models was performed. The result shows that the Kalman filter should

include spacecraft dynamics. This section is based on the [325].

The spacecraft model with Gaussian noise considered in this section can be

expressed as follows [304, 310]:

ω̇ =−J−1ω × (Jω)+J−1u+φ 1, (8.103a)

q̇ =
1

2
Ω(ω +φ 2), (8.103b)
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where q is the vector part of the quaternion (q is referred as the reduced quater-

nion in this book), ω is the spacecraft rotational rate with respect to the inertial

frame, φ = [φ 1,φ 2]
T is the process Gaussian noise, J is the inertia matrix of the

spacecraft, and Ω is a matrix given by

Ω =





g(q) −q3 q2

q3 g(q) −q1

−q2 q1 g(q)



 , (8.104)

with g(q) =
√

1−q2
1 −q2

2 −q2
3.

It is worthwhile to note that unlike φ 1, the noise φ 2 is added to ω so that the

kinematic equations are consistent with the form of (4.8). Depending on the de-

sign, we may have angular rate measurements ωy and quaternion measurement

qy; or we may have only quaternion measurement qy. Assuming that three gyros

and quaternion measurement sensors are installed on board, then the measure-

ment equation can be written as [47]

β̇ = φ 3, (8.105a)

ωy = ω +β +ψ1, (8.105b)

qy = q+ψ2, (8.105c)

where β is a drift in the angular rate measurement, φ 3 is the process noise, ωy is

the angular rate measurement, qy is the quaternion measurement, and ψ1 and ψ2

are measurement noise. The overall system equations are given as follows:

ω̇ =−J−1ω × (Jω)+J−1u+φ 1, (8.106a)

q̇ =
1

2
Ω(ω +φ 2), (8.106b)

β̇ = φ3, (8.106c)

ωy = ω +β +ψ1, (8.106d)

qy = q+ψ2, (8.106e)

which can be rewritten as a standard state space model as follows:

ẋ = f(x,u,φ), (8.107a)

y = Hx+ψ, (8.107b)

where x = [ωT,qT,β
T
]T, y = [ωT

y ,q
T
y ]

T, φ = [φ T
1 ,φ

T
2 ,φ

T
3 ]

T, ψ = [ψT
1 ,ψ

T
2 ]

T, and

H =

[
I3 03 I3

03 I3 03

]

.

Some noticeable differences between this model and other popular models
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are (a) it is a reduced quaternion model rather than a full quaternion model and

(b) it uses the additive noise rather than the multiplicative noise expression.

The reduced quaternion geometry of qy can be seen from the following argu-

ment. First, the noise ψ2 can be viewed as a reduced rotational quaternion whose

rotational axis is
ψ2

‖ψ2‖
and rotational angle δ meets the condition sin

(
δ
2

)
= ‖ψ2‖.

For small noise ψ2 and the quaternion q = êsin(α
2
) which is bounded away

from a singular point (‖q‖ < 1), we can see that qy = q+ψ2 =
qy

‖qy‖ sin(α+∆
2

)

is a reduced quaternion whose rotational axis is a perturbation of q satisfying

‖qy‖ ≤ ‖q‖+ ‖ψ2‖ and ‖qy‖ ≤ 1 (where ‖ψ2‖ is small), and the rotational an-

gle around qy is α +∆ and ∆ is small. Therefore, the mathematical treatment for

this model is much easier than the multiplicative perturbation model.

Let dt be the sampling time period . The discrete version of (8.106) is given

by





ωk+1

qk+1

β k+1



=









ωk

qk

β k



+





−J−1ωk × (Jωk)+J−1uk
1
2

Ωkωk

0



dt



+





φ 1k
1
2

Ωkφ 2k

φ 3k



dt

= F(xk,uk)+G(xk,uk)φ k, (8.108a)

[
ωyk

qyk

]

=

[
I3 03 I3

03 I3 03

]




ω k

qk

β k



+

[
ψ1k

ψ2k

]

= Hxk +ψk, (8.108b)

where

Ωk =








√

1−q2
1k
−q2

2k
−q2

3k
−q3k

q2k

q3k

√

1−q2
1k
−q2

2k
−q2

3k
−q1k

−q2k
q1k

√

1−q2
1k
−q2

2k
−q2

3k







.

(8.109)

Note that for two vectors w = [w1,w2,w3]
T and v = [v1,v2,v3]

T, the cross product

of w×v can be written as the product of matrix w× and vector v where

w× =





0 −w3 w2

w3 0 −w1

−w2 w1 0



 .

We also assume φ k and ψk are white noise signals satisfying the following equa-

tions

E(φ k) = 0, E(ψk) = 0, ∀k, (8.110a)

E(φ kφ T
k ) = Qk, E(ψ kψT

k ) = Rk, E(ψ jφ
T
i ) = 0, ∀i, j,k, (8.110b)

E(φ jφ
T
i ) = 0, E(ψ jψ

T
i ) = 0, ∀i 6= j. (8.110c)
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For

F1(x,u) =
(
−J−1ωk × (Jωk)+J−1uk

)
dt +ωk,

we have
∂ F1

∂ x
=
[

I−J−1(ω×
k J− (Jωk)

×)dt 03 03

]
.

For F2(x,u) =
1
2

Ωkωkdt +qk, we have

∂ F2

∂ x
=
[

∂ F2

∂ ω
∂ F2

∂ q
03

]

,

with

∂ F2

∂ ω
=





g

2
− q3

2

q2

2
q3

2
g

2
− q1

2

− q2

2

q1

2
g

2



dt =
1

2
Ωdt, (8.111)

and

∂ F2

∂ q
=






1
dt
− q1ω1

2g(q)
ω3

2
− q2ω1

2g(q) −ω2

2
− q3ω1

2g(q)

−ω3

2
− q1ω2

2g(q)
1
dt
− q2ω2

2g(q)
ω1

2
− q3ω2

2g(q)
ω2

2
− q1ω3

2g(q) −ω1

2
− q2ω3

2g(q)
1
dt
− q3ω3

2g(q)




dt. (8.112)

For F3(x,u) = β k, we have

∂ F3

∂ x
=
[

03 03 I3

]
.

Therefore,

Fk−1 :=
∂ F

∂ x

∣
∣
∣
x̂k−1|k−1,uk−1

=





I−J−1(ω×J− (Jω)×)dt 03 03
∂ F2

∂ ω
∂ F2

∂ q
03

03 03 I3





x̂k−1|k−1

. (8.113)

Similarly

Lk−1 =
∂ G

∂ φ k

∣
∣
∣
x̂k−1|k−1,uk−1

=





I3 03 03

03
1
2

Ωk−1 03

03 03 I3



dt. (8.114)

The extended Kalman filter iteration (8.102) can be applied to solve the problem.

The beauty of the Kalman filter using spacecraft dynamics can be seen from

(8.102e). The best estimation is composed of two parts. The first part is a pre-

diction x̂k|k−1 which includes the spacecraft dynamics and the inertia matrix in-

formation for the specific spacecraft. The second part is a correction ỹk which is

based on observations. The filter gain Kk is constantly adjusted such that (a) if
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the noise is higher, the gain is reduced so that the estimation depends more on

the information of the system dynamics, and (b) if the noise is lower, the gain is

increased so that the estimation depends more on the measurement. That is the

reason why spacecraft dynamics should be included in the attitude estimation

problem even if angular rate measurements are available.

The simulation test in [325] shows that the extended Kalman filter is robust

to the modeling errors, in particular, when the spacecraft inertia matrix is not

accurate, the estimation is still accurate enough for the practical application.

As mentioned before, the Kalman filter with spacecraft dynamics works with-

out the (gyro) measurement of spacecraft angular velocity vector with respect to

the inertial frame. In this case, gyro measurement drift β does not exist. There-

fore, the continuous system (8.106) is reduced to

ω̇ =−J−1ω × (Jω)+J−1u+φ 1, (8.115a)

q̇ =
1

2
Ω(ω +φ 2), (8.115b)

qy = q+ψ . (8.115c)

We still use (8.107) for this system but x = [ωT,qT]T, y = qy, φ = [φ T
1 ,φ

T
2 ]

T, and

C =
[

03 I3

]
. The discrete version of (8.115) is given by

[
ωk+1

qk+1

]

=

([
ωk

qk

]

+

[
−J−1ωk × (Jωk)+J−1uk

1
2

Ωkωk

]

dt

)

+

[
φ 1k

1
2

Ωkφ 2k

]

dt

= F(xk,uk)+G(xk,uk)φk, (8.116a)

qyk
=
[

03 I3

]
[

ωk

qk

]

+ψk = Hxk +ψk, (8.116b)

where Ωk is the same as in (8.109). We also assume that φk and ψk are white

noise signals satisfying equations (8.110). For

F1(x,u) =
(
−J−1ωk × (Jωk)+J−1uk

)
dt +ωk,

we have
∂ F1

∂ x
=
[

I−J−1(ω×J− (Jω)×)dt 03

]
.

For F2(x,u) =
1
2

Ωkωkdt +qk, we have

∂ F2

∂ x
=
[

∂ F2

∂ ω
∂ F2

∂ q

]

,

with ∂ F2

∂ ω and ∂ F2

∂ q
the same as (8.111) and (8.112). Therefore,

Fk−1 :=
∂ F

∂ x

∣
∣
∣
x̂k−1|k−1,uk−1

=

[
I−J−1(ω×J− (Jω)×)dt 03

∂ F2

∂ ω
∂ F2

∂ q

]

x̂k−1|k−1

.(8.117)
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Let

Lk−1 =
∂ G

∂ φ k

∣
∣
∣
x̂k−1|k−1,uk−1

=

[
I3 03

03
1
2

Ωk−1

]

dt. (8.118)

The extended Kalman filter will be a special form of (8.102).

8.5 Linear Kalman filter for spacecraft state estimation

The idea of the extended Kalman filter is to use as much (nonlinear) information

as possible and hopefully to improve the estimation performance. Therefore, part

of the iteration uses the nonlinear equation (8.102a). But linearization has to be

done in (8.113) and (8.114) and the linear approximation is used in (8.102b). The

drawbacks of this method are (a) in general, the extended Kalman filter is not an

optimal estimator [5], (b) if the initial estimate of the state is wrong, the filter

may diverge [87, 198], and (c) the estimated covariance matrix tends to under-

estimate the true covariance matrix and therefore risks becoming inconsistent in

the statistical sense [198].

On the other hand, if the nonlinear spacecraft system equations are linearized

and Kalman filter for the linear system is used, the accuracy in state prediction

may be lost. In exchange, some benefits will be gained: (a) the estimate is optimal

for the linearized system, (b) the initial guess is not as crucial as the extended

Kalman filter, (c) the numerically stable algorithms have been fully investigated,

and (d) Kalman filter design and linear quadratic optimal control system design

can be separated [291].

Therefore, In this section, we will briefly discuss a Kalman filter implemen-

tation for the spacecraft estimation problem using a reduced quaternion model

proposed in [304]. Unlike most models [48] used in the spacecraft attitude esti-

mation problem, we will include the spacecraft dynamics discussed in the previ-

ous section to make full use of the available information. We also adopt a sim-

ple additive noise model as suggested in the previous section rather than a more

complex multiplicative noise model used in [47, 48, 132, 160, 161, 199]. Another

benefit of using the reduced model is that the unit norm constraint for quaternion

is not required as in [44, 67, 331], which greatly simplifies the problem and re-

duces the cost of computation. Other merits of using reduced quaternion model

can be found in [306, 311].

As discussed in the previous sections, we can first linearize the nonlinear

system equation and then use (linear) Kalman filter for the attitude estimation

problem. Using exactly the same method in previous section, to simplify the dis-

cussion, assuming that there is no measurement drafting, we have the linearized

system given as follows.

[
ω̇
q̇

]

=

[
03 03
1
2
I3 03

][
ω
q

]

+

[
J−1

03

]

u (8.119a)
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[
ωy

qy

]

=

[
I3 03

03 I3

][
ω
q

]

, (8.119b)

The corresponding discrete system with added noise is therefore as follows.

xk+1 =

[
ωk+1

qk+1

]

=

[
I3 03

1
2
I3dt I3

][
ωk

qk

]

+

[
J−1dt

03

]

uk +

[
φ 1k

φ 2k

]

= Axk +Buk +φ k, (8.120a)

yk+1 =

[
ωyk

qyk

]

=

[
I3 03

03 I3

][
ωk

qk

]

+

[
ψ1k

ψ2k

]

= Cxk +ψk, (8.120b)

Assume x̂0|0 = E(x0) and P0 = E([x0−E(x0)]
T[x0−E(x0)]), the update pro-

cess described in Theorem 8.1 can be used to solve the problem.

There are alternative schemes to update Pk|k. What we described in this chap-

ter is Joseph-form stabilized Kalman filter, which is computationally slightly

more expensive than others but numerically more stable because Pk|k is guaran-

teed to be positive semidefinite [74]. Other schemes exist, such as root square

filter proposed by Potter, Stern, and Carlson in [36, 204], and Chandrasekhar

square root filter introduced by Morf and Kailath in [164]. Some detailed nu-

merical analysis and test were conducted by Verhaegen and Van Dooren [270] in

which a root square fitler algorithm described in [5] was recommended because

of its overall performance and robustness. When Rk matrix is diagonal, Bier-

man [27] suggested U-D factorization method which sequentially calculates the

Kalman gain matrix Kk and covariance matrix Pk|k (one observation at a time).

8.6 A short comment

In this Chapter, we presented two Kalman filters to estimate the spacecraft atti-

tude and body rate. In aerospace industry, the extended Kalman filter is widely

used. But we have seen pros and cons from theoretical point of view for both

methods. However, to the best knowledge of this author, it is not clear which

one is a best fit of a specific application and no one has done an extensive test

comparison.
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Control design methods based on quaternion spacecraft model have been in-

vestigated for decades. Most quaternion based design methods use Lyapunov

functions and focus on the global stability; these methods pay little attention to

the control system performance which is important in practical system design.

Not many researchers considered the performance of the quaternion based con-

trol systems. Using classical frequency domain method, Paielli and Bach [191]

adopted quaternion based linear error dynamics to get desired performance for

the attitude control system; Wie, Weiss, and Arapostathis [285] showed that there

exists some state feedback that globally stabilizes the nonlinear spacecraft system

131
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and the feedback matrix assigns the closed loop poles for the dynamics described

by the rotational angle about the rotational axis. These methods are in classical

domain and they are not easy to extend to modern designs. Zhou, and Colgren

[339] obtained a linearized state space model with all components of the quater-

nion in the state variables. However, this linearized state space model is not fully

controllable. This explains why many powerful design methods in linear control

system theory such as pole assignment, linear quadratic regulator (LQR) con-

trol, and H∞ control were not directly applied to the spacecraft control system

design if full quaternion based linearized model is used.

On the other hand, although the Euler angle representation has a singular

point and the representation depends on the rotational sequential, the linearized

Euler angle based spacecraft model has been proved to be fully controllable.

Therefore, all linear system design methods can be directly applied to spacecraft

control system design for the Euler angle model and these methods are described

in many standard text books, for example, [232, 280, 281]. More importantly,

there are many successful applications of using these powerful control design

methods, for example, [245, 290].

It is shown in Chapter 4 that the reduced quaternion model that uses only

vector components of the quaternion is fully controllable. Also the linearized

reduced quaternion models have some simple and special structure, we will con-

sider the design methods based on the reduced quaternion models in the rest

of the book. For nadir pointing spacecraft, one can directly use standard linear

control system design methods, such as LQR design [9], robust pole assignment

design [115, 260, 302], H∞ design [57], for the linearized system. The designed

controller can then be checked by simulation with the original nonlinear space-

craft system in the space environment discussed in Chapter 5. For inertial point-

ing spacecraft, since the linearized system has a very simple structure, using

this linearized reduced quaternion model, one can derive an analytical formula

for LQR optimal control that is explicitly related to the cost matrices Q and R.

Moreover, it can be shown that under some mild restriction, the LQR feedback

controller globally stabilizes the original nonlinear spacecraft. In addition, the

LQR controller has a diagonal structure in the state feedback matrices D and K.

Using this structure, it can be proved that the LQR design is actually a robust pole

assignment design. The main results presented here are based on [9, 306, 310].

9.1 LQR design for nadir pointing spacecraft

We first consider the general linear system described as follows.

ẋ = Ax+Bu,
y = Cx.

(9.1)
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The LQR design is to find a state feedback matrix

u =−[D,K]x =−Gx

to minimize the following cost function

L =
1

2

∫ ∞

0

(
xTQx+uTRu

)
dt. (9.2)

where Q and R are positive definite matrices, xTQx represents the cost of the

deviation from desired equilibrium point, uTRu represents the cost of the energy

consumption. The LQR control problem was first considered by Hall [83] and

Wiener [286], but Kalman [110] provided a much better solution and popular-

ized the design. If Kalman filter [109] is used as part of the feedback loop, then

the control design method is the LQG control. Surprisingly, Kalman filter and

LQR control law can be designed separately because of the separation theorem

obtained by Wonham [291].

For nadir pointing spacecraft system given by (4.36), the optimal control of

LQR design is uniquely given by (see Appendix B or a comprehensive treatment

of [9])

u(t) =−R−1BTFx(t) =−Gx, (9.3)

where F is a constant positive definite matrix which is the solution of the alge-

braic Riccati matrix equation

−FA−ATF+FBR−1BTF−Q = 0. (9.4)

This control law can be directly used for the nadir pointing spacecraft without

any modification.

For inertial pointing spacecraft, due to the simple structure of the linearized

reduced quaternion model, analytic solution to LQR design can be obtained. In

the remainder of this chapter, we will focus on the controller design for inertial

pointing spacecraft.

9.2 The LQR design for inertial pointing spacecraft

In this section, we consider LQR design for inertial pointing spacecraft for which

A and B are defined in (4.13). We assume further that the constant inertia matrix

of the spacecraft J defined in (4.1) is diagonal. This assumption is reasonable

because in practical spacecraft design, J is always designed close to a diagonal

matrix. In the rest of the discussion of this subsection, we assume further that

Q, and R are diagonal matrices because Q and R are oftentimes selected to be

diagonal in engineering design practice. With these assumptions, the problem

can greatly be simplified.
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9.2.1 The analytic solution

It is well known that the LQR feedback based on (9.3) and (9.4) guarantees the

stability of the linearized closed loop system and minimizes the cost function of

(9.2) that is a combined cost of cumulative control system error and cumulative

energy consumption.

First, we derive the analytical solution for the spacecraft model (4.12). Let

F =

[
F11 F12

F21 F22

]

, Q =

[
Q11 0

0 Q22

]

, (9.5)

where the elements of F and Q in (9.5) are all 3 by 3 matrices. Substituting A

and B defined in (4.13), F and Q defined in (9.5) into (9.4), after simple manip-

ulations, we get

[
F11J−1R−1J−1F11 F11J−1R−1J−1F12

F−1
12 J−1R−1J−1F11 FT

12J−1R−1J−1F12

]

=

[
1
2

(
FT

12 +F12

)
+Q11

1
2
F22

1
2
F22 Q22

]

.

(9.6)

Since J, Q and R are positive definite, noticing that FT
21 = F12, comparing the

(2,2) block on both sides of (9.6) yields,

F12 = JR
1
2 Q

1
2

22. (9.7)

Since J, Q11 = diag(q1i), Q22 = diag(q2i), and R = diag(ri) are diagonal, we

conclude that F12 is diagonal. Substituting (9.7) into the (1,1) block of (9.6) gives,

F11 = JR
1
2

(

Q11 +
1

2

(

JR
1
2 Q

1
2

22 +Q
1
2

22R
1
2 J
))

1
2

. (9.8)

Therefore, F11 is diagonal. Substituting (9.7) and (9.8) into the (2,1) block of

(9.6) gives

F22 = 2Q
1
2

22

(

Q11 +JR
1
2 Q

1
2

22

) 1
2

. (9.9)

which is also diagonal. Equations (9.7), (9.8), and (9.9) give a complete solution

of Riccati matrix equation (9.4). Therefore, (9.3) can be rewritten as

u(t) =−R−1BTFx(t) =−[R−1J−1F11,R
−1J−1F12]x =−[D,K]x. (9.10)

Clearly, matrices D and K are diagonal.

9.2.2 The global stability of the design

To show the global stability of the design, we first review the definition of global

stability for nonlinear systems [117, page 111].

Definition 9.1 Let x(t) be the solution of the nonlinear inertial pointing spacecraft
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system defined by (4.11) and (4.9). If for any initial state x(0), the trajectory x(t)

approaches the origin as t → ∞, no matter how large ‖x(0)‖ is, then the region of

attraction (also called region of asymptotic stability) is the entire space Rn. If an

asymptotically stable equilibrium point at the origin has this property, it is said to be

globally asymptotically stable.

A theorem on globally asymptotically stable is given in [117, Corollary 3.2]1,

which is restated below.

Theorem 9.1

Let x = 0 be an equilibrium point for the system defined by (4.11) and (4.9). Let a

Lyapunov function V : Rn → R be a continuously differentiable, radially unbounded,

positive definite function such that V̇ (x)≤ 0 for all x ∈ Rn. Let S = {x ∈ Rn|V̇ (x) =

0}, and suppose that no solution can stay forever in S, other than the trivial solution

(equilibrium). Then, the origin is globally asymptotically stable.

Next, we show that under some additional conditions, the LQR optimal con-

trol given by (9.10) globally stabilizes the nonlinear system described by (4.11)

and (4.8). Let P = Q
− 1

2

22 R
1
2 J, and the Lyapunov function be

V =
1

2
ωT

I Pω I +q2
1 +q2

2 +q2
3 +(1−q0)

2. (9.11)

It is easy to check, in view of (4.8), that

d

dt

(
q2

1 +q2
2 +q2

3 +(1−q0)
2
)

= 2qTq̇−2(1−q0)q̇0

= 2q ·
(

−1

2
ω I ×q+

1

2
q0ω I

)

+2(1−q0)

(
1

2
qTω I

)

= q0qTω I +(1−q0)q
Tω I

= qTω I . (9.12)

Using definition of P and (9.7), it is easy to see that

ωT
I PJ−1R−1J−1F12q

= ωT
I (Q

− 1
2

22 R
1
2 J)J−1R−1J−1(JR

1
2 Q

1
2

22)q

= ωT
I q. (9.13)

Therefore, using (9.12), (9.13), (9.3), and (4.13), the derivative of the Lyapunov

1The original result is applicable to a much more general case.
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function along the trajectory described by the nonlinear system equations (4.11)

and (4.8) is given by

dV

dt
=

d

dt

(
1

2
ωT

I Pω I +q2
1 +q2

2 +q2
3 +(1−q0)

2

)

= ωT
I P

(

−J−1ω I ×Jω I −J−1R−1
[

J−1 0
]
[

F11 F12

FT
12 F22

][
ω I

q

])

+ωT
I q

= −ωT
I PJ−1ω I ×Jω I −ωT

I PJ−1R−1J−1F11ω I −ωT
I PJ−1R−1J−1F12q

+ωT
I q

= −ωT
I PJ−1ω I ×Jω I −ωT

I Q
− 1

2

22

(

Q11 +
1

2

(

JR
1
2 Q

1
2

22 +Q
1
2

22R
1
2 J
))

1
2

ω I

= −ωT
I Q

− 1
2

22 R
1
2 ω I ×Jω I −ωT

I Q
− 1

2

22

(

Q11 +
1

2

(

JR
1
2 Q

1
2

22 +Q
1
2

22R
1
2 J
))

1
2

ω I

(9.14)

Since P, Q, R, and J are all diagonal positive definite matrices, the second term

of the last expression is negative definite. If Q−1
22 R = cI i.e.,

R = cQ22 (9.15)

or Q−1
22 R = cJ, i.e.,

R = cQ22J, (9.16)

where c is a constant, then the first term vanishes; therefore dV
dt

is negative semi-

definite, and the nonlinear system described by (4.11) and (4.8) is globally stable

with the optimal controller given by (9.10). To show that the closed loop non-

linear system is asymptotically stable, we define S = {x|V̇(x) = 0}. Since J,

Q, and R are positive definite matrices, clearly, equation (9.14) indicates that

S = {x|x = (ω I ,q) = (0,q)}. From (4.11), since D and K are full rank matrices

and u = −Dω I −Kq 6= 0 if q 6= 0, no solution can always stay in S except a

subset S1 = {x = (ω I,q) = (0,0)} ⊂ S. Using Theorem 9.1, the origin is glob-

ally asymptotically stable. Therefore, the region of attraction (see [117]) of the

nonlinear system is the whole space spanned by Rn.

Remark 9.1 Spacecraft rotation is a special case of the attitude motion of a rigid

body which can be expressed mathematically by SO(3), the group of rotational ma-

trices. Bhat and Bernstein [26] showed that there is an intrinsic windup problem as-

sociated with the attitude motion of a rigid body when q0 < 0. But many researchers

realize that there are designs that eventually stabilize the system at q̄ = [1,0,0,0].

Tayebi in his paper [257] referred this type of designs as to “almost global asymp-

totic stability” design.
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In system design practice, if the performance and the local stability are the

only design considerations, Q and R can be chosen without any restriction; if

the global stability is also required for the nonlinear spacecraft system, some

restriction, though it is mild, should be placed on Q and R, i.e., either R = cQ22

or R = cQ22J, where c is any positive constant.

9.2.3 The closed-loop poles

To establish the relationship between the closed loop poles and the design matri-

ces Q and R, we can simplify (9.10) further as follows.

D = R− 1
2

(

Q11 +
1

2

(

JR
1
2 Q

1
2

22 +Q
1
2

22R
1
2 J
))

1
2

= diag(di) = diag

(√

q1i

ri

+ Jii

√
q2i

ri

)

(9.17)

with

di =

√

q1i

ri

+ Jii

√
q2i

ri

,

and

K = R− 1
2 Q

1
2

22 = diag(ki) = diag

(√
q2i

ri

)

(9.18)

with

ki =

√
q2i

ri

.

Therefore, (9.10) becomes

u(x) =−[D,K]x

= −





d1 0 0 k1 0 0

0 d2 0 0 k2 0

0 0 d3 0 0 k3















ωI1

ωI2

ωI3

q1

q2

q3











.

(9.19)

From (4.12), it is straightforward to write the closed loop system as follows:

[
dω I

dt
dq

dt

]
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=



 −J−1R− 1
2

(

Q11 +
1
2

(

JR
1
2 Q

1
2

22 +Q
1
2

22R
1
2 J
)) 1

2 −J−1R− 1
2 Q

1
2

22

1
2
I3 03





[
ω I

q

]

=











− d1

J11
0 0 − k1

J11
0 0

0 − d2

J22
0 0 − k2

J22
0

0 0 − d3

J33
0 0 − k3

J33

0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0





















ωI1

ωI2

ωI3

q1

q2

q3











= Āx. (9.20)

For i=1, 2, and 3, let si =
di

Jii
, ti =

ki

Jii
, and

Ci =

di

Jii
+

√
(

di

Jii

)2

−2 ki

Jii

2 ki

Jii

=
si +

√

s2
i −2ti

2ti
. (9.21)

Then, we have

Ā =











−s1 0 0 −t1 0 0

0 −s2 0 0 −t2 0

0 0 −s3 0 0 −t3
0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0











. (9.22)

Let the linear matrix transformation Ti j(C) be a matrix with the following prop-

erties: (a) the (i,j) element of Ti j(C) is C, (b) the diagonal elements are ones, (c)

all the remaining elements are zeros. It is well known that the inverse of Ti j(C)
is T−1

i j (C) = Ti j(−C). Pre-multiplying T41(C1) to Ā is equivalent to multiply the

first row of Ā by C1 and add this result to the 4th row of the matrix. This gives

T41(C1)Ā =












−s1 0 0 −t1 0 0

0 −s2 0 0 −t2 0

0 0 −s3 0 0 −t3

− s2
1+s1

√
s2

1
−2t1

2t1
+0.5 0 0 − s1+

√
s2

1
−2t1

2
0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0












.

(9.23)

Post-multiplying T41(−C1) to this matrix is equivalent to multiply the 4th col-

umn by −C1 and add this result to the first column of the matrix. Since

−s1 +
t1

(

s1 +
√

s2
1 −2t1

)

2t1
=

−s1 +
√

s2
1 −2t1

2
,
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and
s1 +

√

s2
1 −2t1

2

s1 +
√

s2
1 −2t1

2t1
=

s2
1 + s1

√

s2
1 −2t1

2t1
−0.5,

this gives,

T41(C1)ĀT41(−C1)=












−s1+
√

s2
1
−2t1

2
0 0 −t1 0 0

0 −s2 0 0 −t2 0

0 0 −s3 0 0 −t3

0 0 0
−s1−

√
s2

1
−2t1

2
0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0












.

(9.24)

Repeating the similar manipulation, we have

T63(C3)T52(C2)T41(C1)ĀT41(−C1)T52(−C2)T63(−C3)

=







diag

(
−si+

√
s2

i −2ti

2

)

diag(−ti)

0 diag

(
−si−

√
s2

i −2ti

2

)






. (9.25)

Since

si =
di

Jii

=
1

Jii

√

q1i

ri

+ Jii

√
q2i

ri

=

√

q1i

J2
iiri

+
1

Jii

√
q2i

ri

,

and

s2
i −2ti =

q1i

J2
iiri

+
1

Jii

√
q2i

ri

−2
ki

Jii

=
q1i

J2
iiri

+
1

Jii

√
q2i

ri

− 2

Jii

√
q2i

ri

=
q1i

J2
iiri

− 1

Jii

√
q2i

ri

,

(9.26)

the closed loop eigenvalues of the linear system (9.20) using LQR design are

given by, for i=1, 2, and 3,

λi,λi+3 =
−si ±

√

s2
i −2ti

2
=

−
√

1
Jii

√
q2i

ri
+ q1i

J2
ii ri

±
√

q1i

J2
ii ri

− 1
Jii

√
q2i

ri

2
. (9.27)

Equation (9.27) provides a lot of useful information for the LQR design. First,

as ri → 0, the corresponding pair of eigenvalues go to minus infinity of the com-

plex plane; as ri →∞, the corresponding pair of eigenvalues go to origin of the

complex plane. Second, As long as q1i >
√

q2iriJii, the corresponding pair of
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-0.01273212110421 +/- 0.01272387326295i;

-0.00798572833825 +/- 0.00798369205833i;

-0.00947996395486 +/- 0.00947655794419i.

Table 9.1: Required closed-loop poles

eigenvalues are real and unequal; since di

Jii
>

√
(

di

Jii

)2

−2 ki

Jii
, these two eigenval-

ues are always negative. Third, if q1i =
√

q2iriJii, there are two equal real negative

eigenvalues. Fourth, if q1i <
√

q2iriJii, there is a pair of complex eigenvalues with

negative real part. Therefore increasing q1i and decreasing q2i will increase the

dumping ratio; otherwise, it will decrease the dumping ratio. Finally, increasing

q2i and decreasing ri will increase the natural frequency; otherwise, it will de-

crease the natural frequency. This information can be useful in spacecraft system

design.

Using the LQR design, we implicitly assign the closed loop poles as defined

by (9.20) and we can balance the requirements on accumulative control error and

power consumption (both are important in practical design).

9.2.4 The simulation result

We use an example in [339] to illustrate the design procedure. The spacecraft

inertia matrix is give by

J =





1200 100 −200

100 2200 300

−200 300 3100



 (9.28)

It is clear that the diagonal elements of the matrix are significantly larger than off-

diagonal elements. Assume that the spacecraft inertia matrix can be approximate

by a diagonal matrix whose diagonal elements are equal to these of J, let Q =
diag(5,5,5,5,5,5) and R = diag(8,8,8), the closed loop poles are then given as

in Table 9.1 and the feedback matrix D and K are as follows

D =





31.06637549427606 0 0

0 41.71184140316478 0

0 0 49.51151569716377





(9.29)

K =





0.7905694150429 0 0

0 0.7905694150429 0

0 0 0.7905694150429



 (9.30)

We apply the designed feedback controller to the nonlinear spacecraft system de-

scribed by (4.5) and (4.8) with the full Monte Carlo perturbation model described
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as follows: (a) in inertia matrix J, the off-diagonal elements are randomly selected

between [0, 310], (b) the initial Euler angle errors of the nonlinear spacecraft

system are randomly selected between [0,π] and these initial Euler angles are

converted into quaternion, and (c) the initial angular rates are randomly selected

between [0, 0.1] deg/second, and we conduct 300 Monte Carlo simulation runs;

the simulated runs are all asymptotically stable. This result is shown in Figure

9.1.
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Figure 9.1: Monte Carlo simulation for the nonlinear spacecraft model with pertur-

bation.

9.3 LQR and robust pole assignment for inertial point

spacecraft

“nobreak

9.3.1 Robustness of the closed-loop poles

In the previous section, we have derived a simple analytic LQR control design

method. The closed loop eigenvalues are explicitly related to the spacecraft in-

ertia matrix and the selected Q and R matrices. Therefore, the LQR design is

equivalent to the pole assignment design. In this section, we will show that the
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pole assignment design is a robust pole assignment design which is insensitive

to the modeling error.

First, we have seen that the closed-loop system eigenvalues for the LQR de-

sign are

λi,λi+3 =
− di

Jii
±
√
(

di

Jii

)2

−2 ki

Jii

2
. (9.31)

Let the desired spacecraft closed-loop eigenvalues be expressed as

λi,λi+3 =−ζiωin ± jωin

√

1−ζ 2
i =−ζiωin ± jωid . (9.32)

Comparing (9.31) and (9.32) yields the analytic feedback controller

ki = 2ω2
inJii, (9.33)

di = 2ζiωinJii. (9.34)

Therefore, for any LQR design which minimizes (9.2), there is an implicit set of

desired spacecraft closed-loop eigenvalues defined by (9.27) or (9.31) or (9.32),

the diagonal feedback matrices D and K with diagonal elements given by (9.33)

and (9.34) assign the prescribed closed-loop eigenvalues. It is shown in the pre-

vious section that the closed-loop nonlinear system is globally asymptotically

stable if some additional condition holds.

It is well known that for any controllable linear system and for any prescribed

closed-loop pole locations, one can always find a state feedback controller such

that the closed-loop system has the prescribed pole locations. For multi-input

systems, the solution that achieves the closed-loop pole positions is not unique.

As an example, let (A,B) be a linear system with

A =

[
0 0

0 1

]

, B =

[
1 0

0 1

]

.

The open-loop system has two eigenvalues (0, 1) and the system is not stable.

Assuming that the desired close-loop eigenvalues are (-1,-1), one may select two

different feedback matrices

G1 =

[
−1 0

0 −2

]

, G2 =

[
1 4∗1010

−10−10 −4

]

such that

A+BG1 =

[
−1 0

0 −1

]

, A+BG2 =

[
1 4∗1010

−10−10 −3

]

.

It is easy to verify that det(λ I− (A+BG1)) = det(λ I− (A+BG2)) = (λ +1)2.

Both feedbacks achieve the desired closed-loop poles. The first system is robust

because any small perturbation will not destabilize the system. However, the

second system is not robust as a small perturbation of 10−10 in the left low corner

of the matrix A+BG2 will change the closed-loop eigenvalues to (1,−3). We

show that the LQR defined pole assignment is a robust pole assignment.
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9.3.2 The robust pole assignment

For readers who are not familiar with the robust pole assignment, we refer them

to Appendix C.

The robust pole assignment design makes full use of the extra degrees of free-

dom in a multi-input system to find the most robust controller from indefinitely

many solutions of the pole assignment feedback matrices. Since the spacecraft at-

titude control system is a typical multi-input system that has three control torque

inputs (roll, pitch, and yaw), getting a robust pole assignment design that is in-

sensitive to the modeling error is very attractive and desirable. We will show that

the controller with diagonal D and K proposed in the previous subsection is a

robust pole assignment design.

There are many different robust metrics that can be used in robust pole as-

signment (see Appendix C or [288] [115]. We will adopt the robust measurement

proposed in [300] as the design criterion because some algorithms based on this

robust measurement lead to some efficient and effective design [234]. These de-

sign algorithms extend a well-known algorithm proposed by Kautsky, Nichols,

and Van Dooren (KNV) [115], in which the angles of closed loop eigenvectors

are intuitively maximized one by one in a cyclic manner. Let X be the matrix

whose columns are the unit length closed-loop eigenvectors. The robustness of

the closed-loop eigenvalues (poles) can be measured by the absolute value of the

determinant of X. Geometrically, this determinant measures how close the ma-

trix X is to an orthogonal matrix. Yang and Tits [323] showed that one of the

KNV algorithm is equivalent to maximizing the absolute value of the determi-

nant of X. The greater the absolute value of the determinant, the more robust

the closed-loop eigenvalues will be (see detailed discussions in Appendix C or

[300, 302]). By maximizing the absolute value of the determinant under some

constraints, we are guaranteed that the closed-loop poles obtained by the robust

pole assignment design are insensitive to the modeling errors [310]. For a con-

trollable linear system (A,B), where B is full column rank, and any given set of

desired closed-loop eigenvalues λi, the corresponding closed-loop eigenvectors

xi must be in the subspace (see Appendix C)

Si = {x : (A−λ I)x ∈ Rc(B)}, (9.35)

where

Rc(B) = {By : y ∈ Cm},

m is the rank of B, and Cm is a m-dimensional complex space. First, using QR

decomposition on B, we have

B =
[

U0 U1

]
[

V

0

]

.

Let Λ be the diagonal matrix whose diagonal elements are the desired closed-
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loop eigenvalues, and X be the matrix whose columns are composed of the eigen-

vectors corresponding to the desired eigenvalues. Then,

BG = U0VG = XΛX−1 −A. (9.36)

Pre-multiplication of UT
0 and UT

1 gives

VG = UT
0 (XΛX−1 −A) (9.37a)

0 = UT
1 (XΛX−1 −A) (9.37b)

The first relation gives the closed-loop feedback matrix as

G = V−1UT
0 (A−XΛX−1). (9.38)

The second relation shows that xi must be in the subspace Si, or

UT
1 (A−λiI)xi = 0.

Therefore, xi must be in the null space of (AT−λiI)U1. Using QR decomposition

again on (AT −λiI)U1 gives

(AT −λiI)U1 =
[

W1i W2i

]
[

R

0

]

.

W2i forms the basis of Si. We now apply the similar procedure to the linearized

spacecraft system (4.12). Since B can be written as

B =

[
I 0

0 I

][
J−1

0

]

,

therefore and

U0 =

[
I

0

]

, U1 =

[
0

I

]

, V = J−1. (9.39)

Since A is defined as in (4.13), we can write a similar decomposition of (AT −
λiI)U1 as

(AT −λiI)U1 =

[
−λiI

1
2
I

0 −λiI

][
0

I

]

=

[
1
2
I

−λiI

]

=

[
0.5I −λiI

−λiI −0.5I

][
I

0

]

, (9.40)

therefore,

W1i =

[
0.5I

−λiI

]

,
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which is orthogonal to the subspace

W2i =

[
−λiI

−0.5I

]

.

Though
[

W1i W2i

]
may not be a unitary matrix, it is clear that W2i forms the

basis of Si (and we can always normalize W2i to make it orthonormal). For the

sake of simplicity, we prove, only for the case where all eigenvalues are real, that

the design given by (9.19) is a robust pole assignment. For robust pole assign-

ment design, since xi ∈ Si, we can write xi = W2ipi, where pi = [pi1, pi2, pi3]
T,

therefore, the closed-loop eigenvector matrix must have the form,

X =











λ1 p11 λ2 p21 λ3 p31 λ4 p41 λ5 p51 λ6 p61

λ1 p12 λ2 p22 λ3 p32 λ4 p42 λ5 p52 λ6 p62

λ1 p13 λ2 p23 λ3 p33 λ4 p43 λ5 p53 λ6 p63

0.5p11 0.5p21 0.5p31 0.5p41 0.5p51 0.5p61

0.5p12 0.5p22 0.5p32 0.5p42 0.5p52 0.5p62

0.5p13 0.5p23 0.5p33 0.5p43 0.5p53 0.5p63











,

where pi j, i = 1,2,3,4,5,6 and j = 1,2,3, are the real parameters that will be

used to optimize the objective function. Therefore, the robust pole assignment

design for linearized spacecraft system (11) becomes2

max det(X)

s.t.

3∑

j=1

(
|λi|2 +0.52

)
p2

i j = 1, i = 1,2,3,4,5,6. (9.41)

It is well-known that an optimal solution for a general optimization problem

has to satisfy the KKT conditions (see Appendix A). For (9.41), let the µi i =
1,2,3,4,5,6 be the Lagrangian multipliers, the Lagrangian function of (9.41) is

given by

L = det(X)−µ1





3∑

j=1

(
|λ1|2 +0.52

)
p2

1 j −1



−µ2





3∑

j=1

(
|λ2|2 +0.52

)
p2

2 j −1





− µ3





3∑

j=1

(
|λ3|2 +0.52

)
p2

3 j −1



−µ4





3∑

j=1

(
|λ4|2 +0.52

)
p2

4 j −1





− µ5





3∑

j=1

(
|λ5|2 +0.52

)
p2

5 j −1



−µ6





3∑

j=1

(
|λ6|2 +0.52

)
p2

6 j −1



 .

2In [302], |det(X)| is used as the measurement of the robustness. If the maximum of |det(X)| is

achieved at −det(X∗), let X0 be the matrix obtained by changing the sign of some column of X∗, |det(X)|
is also achieved at X0. Therefore, we can simply use det(X) here as the objective function in our problem.
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The corresponding KKT conditions are as follows (see Appendix A):

∂L
∂ pi j

= 0, i = 1,2,3,4,5,6, j = 1,2,3, (9.42a)

− ∂L
∂ µ1

=

3∑

j=1

(
|λ1|2 +0.52

)
p2

1 j −1 = 0, (9.42b)

− ∂L
∂ µ2

=

3∑

j=1

(
|λ2|2 +0.52

)
p2

2 j −1 = 0, (9.42c)

− ∂L
∂ µ3

=

3∑

j=1

(
|λ3|2 +0.52

)
p2

3 j −1 = 0. (9.42d)

− ∂L
∂ µ4

=

3∑

j=1

(
|λ4|2 +0.52

)
p2

4 j −1 = 0, (9.42e)

− ∂L
∂ µ5

=

3∑

j=1

(
|λ5|2 +0.52

)
p2

5 j −1 = 0, (9.42f)

− ∂L
∂ µ6

=

3∑

j=1

(
|λ6|2 +0.52

)
p2

6 j −1 = 0. (9.42g)

It is tedious but straightforward to verify that the following solution satisfies the

KKT conditions:






pi,i =
√

1
|λi|2+0.52 , i = j, i = 1,2,3, j = 1,2,3

pi+3, j =
√

1
|λi+3|2+0.52 , i = j, i = 1,2,3, j = 1,2,3

pi, j = 0, i 6= j, i 6= j+3, i = 1,2,3,4,5,6, j = 1,2,3.
(9.43)

Clearly, this set of pi, j meets (9.42b), (9.42c), (9.42d), (9.42e), (9.42f), and

(9.42g). To show that the set of pi,i satisfies (9.42a), we use the observation

that
∂ det(X)

∂ pi j
= 0 for all pi j defined in (9.43) except p11, p22, p33, p41, p52, p63;

therefore, ∂L
∂ pi j

= 0 for all pi j /∈ {p11, p22, p33, p41, p52, p63}. As an example, let us

consider ∂L
∂ p12

, since

∂ det(X)

∂ p12

= λ1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 λ4 p41 0 0

0 λ3 p33 0 0 λ6 p63

0 0 0.5p41 0 0

0.5p22 0 0 0.5p52 0

0 0.5p33 0 0 0.5p63

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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+ 0.5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 λ4 p41 0 0

λ2 p22 0 0 λ5 p52 0

0 λ3 p33 0 0 λ6 p63

0 0 0.5p41 0 0

0 0.5p33 0 0 0.5p63

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

(the last equation holds because the first row and the third row are proportional

in the first determinant and the first row and the fourth row are proportional in

the second determinant), we have

∂L
∂ p12

=
∂ det(X)

∂ p12

−2µ1 p12

(
|λ1|2 +0.52

)∣
∣

p12=0
= 0. (9.44)

Similarly, for all pi j /∈ {p11, p22, p33, p41, p52, p63}, the same way can be

used to check that equation (9.42a) is valid. For each of these 6 pi j ∈
{p11, p22, p33, p41, p52, p63},

∂ det(X)
∂ pi j

6= 0, one can select one of the multipliers µ1,

µ2, µ3, µ4, µ5, µ6 to make ∂L
∂ pi j

= 0. Therefore, the set of pi j satisfying (9.43)

is a candidate of the optimal solution of (9.41). This proves that the closed-loop

eigenvector matrix has the form as

X =











λ1 p1,1 0 0 λ4 p4,1 0 0

0 λ2 p2,2 0 0 λ5 p5,2 0

0 0 λ3 p3,3 0 0 λ6 p6,3

0.5p1,1 0 0 0.5p4,1 0 0

0 0.5p2,2 0 0 0.5p5,2 0

0 0 0.5p3,3 0 0 0.5p6,3











=

[
diag(λi pi,i) diag(λi+3 pi+3,i)
diag(0.5pi,i) diag(0.5pi+3,i)

]

, i = 1,2,3. (9.45)

It is easy to verify that

X−1 =




diag

(
1

(λi−λi+3)pi,i

)

diag
(

−λi+3

0.5(λi−λi+3)pi,i

)

diag
(

−1
(λi−λi+3)pi+3,i

)

diag
(

λi

0.5(λi−λi+3)pi+3,i

)



 , (9.46)

Substituting (9.39), (9.45), and (9.46) into (9.38) gives the robust pole assign-
ment state feedback

G = J
[

I 0
]

([
0 0

0.5I 0

]

−

[
diag(λi pi,i) diag(λi+3 pi+3,i)
diag(0.5pi,i) diag(0.5pi+3,i)

][
diag(λi) 0

0 diag(λi+3)

]

X−1

)

= −J
[

diag(λi pi,i) diag(λi+3 pi+3,i)
]
[

diag(λi) 0

0 diag(λi+3)

]

X−1

= −J
[

diag(λ 2
i pi,i) diag(λ 2

i+3 pi+3,i)
]




diag

(
1

(λi−λi+3)pi,i

)

diag
(

−λi+3

0.5(λi−λi+3)pi,i

)

diag
(

−1
(λi−λi+3)pi+3,i

)

diag
(

λi

0.5(λi−λi+3)pi+3,i

)




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= −J

[

diag

(
λ2

i −λ2
i+3

λi−λi+3

)

, diag

(
λ2

i+3λi−λ2
i λi+3

0.5(λi−λi+3)

) ]

= −J
[

diag(λi +λi+3), diag(−2λiλi+3)
]
, (9.47)

or

G =
[

diag(−Jii(λi +λi+3)), diag(2Jii(λiλi+3))
]
. (9.48)

Substituting (9.27) into (9.48) yields (9.19). Therefore, we conclude that the

LQR design method is actually a robust pole assignment design for the linearized

system (4.12), and the feedback matrix G =−[D,K] is composed of two diago-

nal matrices D and K. With the same restriction as discussed before, the robust

pole assignment controller globally stabilizes the nonlinear spacecraft system.

9.3.3 Disturbance rejection of robust pole assignment

In Appendix C, we have shown that maximizing det(X) amounts to minimizing

an upper bound of the condition number κ2, which improves the robustness of

the closed-loop eigenvalues to the modeling uncertainties (see [288] and [244]).

We show now that minimizing the upper bound of the condition number also

reduces the impact of disturbance torques on the system output. It is easy to see

that the spacecraft system with disturbance torques can be modeled as

ẋ = Ax+Bu+ td , y = Cx, (9.49)

where td is the vector of disturbance torques. Since u =Gx, taking Laplace trans-

formation, we have

sx(s) = Ax(s)+Bu(s)+ td(s), y(s) = Cx(s), (9.50)

In view of (9.36), this gives

Y(s) = C(sI− (A+BG))−1td(s) = CX(sI−Λ)−1X−1td(s).

Therefore,

‖Y(s)‖= ‖C‖‖X‖‖(sI−Λ)−1‖‖X−1‖‖td(s)‖.
Since Λ is a diagonal matrix whose elements are the prescribed closed-loop

eigenvalues, and C is fixed by a spacecraft design, minimizing condition num-

ber κ2 = ‖X‖‖‖X−1‖ will reduce the impact of the disturbance torques on the

system output.

9.3.4 A design example

The same example used in the previous subsection is used to describe the pole

assignment design procedure. The spacecraft inertia matrix is given in (9.28).
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The spacecraft inertia matrix is approximated by a diagonal matrix whose diag-

onal elements are equal to the diagonal elements of J. First, assuming that the

desired closed-loop linear system has a fast settling time of Ts ≤ 10 seconds, and

small percentage of overshoot (smaller than 5%), we design the system by first

considering the dominant pole positions and then loosely assigning the remain-

ing poles to certain desired regions such that their real parts are smaller than the

real parts of the dominant poles. Since the settling time is (see for example, [56,

pages 84-85])

Ts =
4

ζ3ω3n

,

ζ3ω3n = 0.4. We select ζ3 = 0.8 to meet the requirement of low percentage of

overshoot (smaller than 5%). This gives ω3n = 0.5. Therefore, the dominant poles

are at −0.4+ j0.3. To make sure the design is globally asymptotically stable (see

(9.33) and (9.15)), we use

α =
1

ω2
3nJ33

=
1

0.25∗3100
=

4

3100
=

1

ω2
2nJ22

=
1

ω2
1nJ11

.

Similarly, we select

ω2n =
1√

αJ22

=

√

3100

4∗2200
= 0.5935,

ω1n =
1√

αJ11

=

√

3100

4∗1200
= 0.8036.

Clearly, by selecting ζ1 = ζ2 = 1, we have two closed-loop poles at −0.5935 and

two closed-loop poles at −0.8036. All of these poles have smaller real parts than

the real part of the dominant poles. Therefore, from (9.34), the feedback matrices

are given by

d1 =
2ζ1

√
J11√

α
= 1928.73, d2 =

2ζ2

√
J22√

α
= 2611.513, d3 =

2ζ3

√
J33√

α
= 2480.

and from (9.33),

k1 = k2 = k3 =
2

α
= 1550.

Noticing that K = diag(k1,k2,k3) = 1550I, from (9.18), we have K2 = 15002I =
R−1Q22, i.e., R= cQ22, which is the condition of (9.15). Therefore, the designed

system is globally asymptotically stable.

Applying the designed feedback controller to the linearized system (4.12)

with diagonal inertia matrix (9.28), assuming that the initial Euler angle errors of

the linearized system are 10 degrees in roll, pitch, and yaw, and converting these

initial Euler angles into quaternion, we have the simulated quaternion response

as shown by Figure 9.2. It is clear that the designed control system meets the
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design criteria, i.e., the settling time is less than 10 seconds and the percentage

overshoot is smaller than 5% even though the design is focused on the dominant

poles while the remaining poles are loosely placed left to the dominant poles.

The closed-loop system is globally asymptotically stable as we expected.

Figure 9.2: Designed controller applied to the linear spacecraft model.

Applying the same designed feedback controller to the original nonlinear sys-

tem with non-diagonal matrix J given by (9.28), again assuming that the initial

Euler angle errors of the linearized system are 10 degrees in roll, pitch, and yaw,

and converting these initial Euler angles into quaternion, we have the simulated

quaternion response as shown by Figure 9.3. This simulation result shows that the

robust pole assignment design is insensitive to the perturbation in off-diagonal

elements of J.

As real spacecraft control torques are normally restricted by the solar panel

size, energy consumption of the on-board instruments, fuel, etc., we prefer to

have a slow response with a low percentage overshoot to reduce energy consump-

tion. Therefore, we consider a different but a representative design. We choose

Q = diag(5,5,5,5,5,5) and R = diag(8,8,8). This is equivalent to select the

closed-loop poles as

−0.0127+/−0.0127i;−0.0080+/−0.0080i;−0.0095+/−0.0095i.

Notice that this is the same design of the LQR as we described in the previous

subsection. The feedback matrices D and K in this design are given in (9.29) and

(9.30) which are significantly smaller than the ones in the previous design.

Applying the designed feedback controller to the linearized system (4.12)
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Figure 9.3: Designed controller applied to the nonlinear spacecraft model.

Quaternion 1 Quaternion 2 Quaternion 3
Rising time (seconds) 140 196 222
Settling time (seconds) 310 430 500
Overshoot (percentage) 3.4% 4% 3.4%

Table 9.2: Performance of the nominal linearized system

with diagonal inertia matrix (9.28), and assuming that the initial Euler angle

errors of the linearized system are 10 degrees in roll, pitch, and yaw, convert-

ing these initial Euler angles into quaternion, the simulation result is shown in

Figure 9.4, the rising time, settling time, and overshoot of the three quaternion

components for the nominal linearized system are given in Table 9.2.

We have done a very aggressive test for this design (see the previous sub-

section, i.e., apply the same designed feedback controller to the nonlinear space-

craft system described by (4.11) and (4.8) with the full Monte Carlo perturbation

model described as follows: (a) in inertia matrix J, the off-diagonal elements

are randomly selected between [0,310], (b) the initial Euler angle errors of the

nonlinear spacecraft system are randomly selected between [0,π] and these ini-

tial Euler angles are converted into quaternion, and (c) the initial angular rates

are randomly selected between [0,0.1] deg/second. We conduct 300 Monte Carlo

simulation runs; the simulated quaternion response is given in Figure 9.1. This

simulation result shows that although the designed robust pole assignment con-

troller is obtained from the linearized system with diagonal inertia matrix, it ac-
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Figure 9.4: Designed controller applied to the linear spacecraft model.

Quaternion 1 Quaternion 2 Quaternion 3
Mean rising time (seconds) 225 227 259
Std rising time 88 71 107
Mean settling time (seconds) 430 612 666
Std settling time 64 86 93
Mean overshoot (percentage) 15% 45% 30%
Std overshoot 18 37 29

Table 9.3: Performance of the perturbed nonlinear system

tually stabilizes the original nonlinear spacecraft system with any initial Euler

angles, any small initial angular rates (less than 0.1deg/second), and any pertur-

bation in off-diagonal elements whose magnitudes are smaller than 10% of the

magnitude of the largest element in the inertia matrix. Table 9.3 provides the

means and standard deviations of the rising time, settling time, and overshoot

of the perturbed nonlinear systems. Although these standard deviations appear

somewhat large, the design meets the most important design target which is to

stabilize the system in a few hours under all uncertainties related to the model-

ing error and initial conditions. A similar simulation is done for the Euler angle

controller. The system is first designed for a linearized Euler angle model (see

[232]) using LQR method and exactly the same set of closed-loop eigenvalues

−0.0127+/−0.0127i;−0.0080+/−0.0080i;−0.0095+/−0.0095i

to get the feedback control matrices D and K. Use the same Monte Carlo pertur-
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bation model described as above with perturbed nonlinear system (a) in inertia

matrix J, the off-diagonal elements are randomly selected between [0,310], (b)

the initial Euler angle errors of the nonlinear spacecraft system are randomly

selected between [0,π], and (c) the initial angular rates are randomly selected

between [0,0.1] deg/second. In 300 Monte Carlo runs, the Euler angle controller

stabilizes only 132 cases. The comparison is clearly in favor of the quaternion

design described in this section. Sidi [232, page 156-158] has done some inter-

esting comparisons of Euler angle design and quaternion design for maneuvers

operation. The result shows that for small maneuvers, both designs have similar

performance, but for large maneuvers, the quaternion design is clearly superior.
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Spacecraft actuators are components that produce the control torques to achieve

the desired attitude. The desired control torques can be calculated using the meth-

ods proposed in the previous chapter. The most frequently used actuators are re-

action wheel, momentum wheel, control moment gyros (CMG), magnetic torque

rods, and thrusters. In this chapter, we will discuss these actuators. We will see

that given the designed torques, some actuators, such as reaction wheels and

thruster, can easily provide the desired torques. But some other actuators, such as

magnetic torque bars and CMGs, may not be able to provide the desired torques,

at least in some situations, which means that we need to have alternative design

methods specifically for those actuators. We will discuss these topics in Chapters

11 and 14.

10.1 Reaction wheel and momentum wheel

Reaction wheel and momentum wheel are very similar. They all have flywheel(s)

and are all driven by electric motors, they are both used for attitude control. A

reaction wheel is spun up and down to create the torque to either compensate

155



156 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

disturbance torque to stabilize the spacecraft or to create a torque and force the

spacecraft to rotate for attitude manipulation. A momentum wheel is always spin-

ning at a very high speed, which creates a momentum bias, making it resistant

to changing its attitude. But a momentum wheel can also be used as a reaction

wheel, meaning that the acceleration and deceleration is near a momentum bi-

ased high speed instead of near the zero speed. The torques of both reaction

wheel and the momentum wheel are generated from acceleration or deceleration

of the rotational flywheel and torque can be calculated by the following relation

[136]

u =−ḣw =−Jwω̇, (10.1)

where the hw is the angular momentum vector of the flywheel, Jw is the moment

of inertia about the flywheel rotation axis, ω is the angular velocity vector of the

flywheel. The electricity that drives a flywheel of reaction wheel or momentum

wheel, comes from the batteries which are charged by solar panels.

Both reaction wheel and momentum wheel are normally aligned with body

axes. [232] has a chapter to discuss momentum biased spacecraft attitude sta-

bilization. Since flywheels have maximum speed, once the maximum speed is

reached, from (10.1), one cannot get the torque by increasing the flywheel speed.

Therefore, the momentum management control, which makes sure that the fly-

wheel speed does not approach to the maximum speed, is necessary. The momen-

tum management control uses magnetic torque rods or thrusters to balance the

total torques required by the attitude control, thereby maintaining the flywheel’s

speed within its limit. There are many papers discuss this topic, for example,

[41, 71]. This issue will be discussed later in Chapter 11.

Many times, the simple reaction wheel model (10.1) is good enough for

spacecraft control system designs. However, there are space missions, where

the higher performance requirements for the spacecraft attitude control system

(ACS) need more accurate reaction models, such as the one discussed in [1, 209].

Some most challenging space missions will consider spacecraft jitter effect. Most

jitter phenomena is excited by moving components, such as reaction wheel, due

to the offset from wheel center of mass (CM) to wheel mounting interface which

will cause the lateral disturbance forces to create a moment at the interface. The

rocking dynamics model is therefore considered in [143].

10.2 Control moment gyros

Like a reaction wheel, a control moment gyro has a spinning flywheels controlled

by an electrical motor. Unlike a reaction wheel, which has a fixed rotational axis,

the spinning axis of a control moment gyros changes as the flywheel is suspended

in a gimbal and a second motor controls the gimbal axis. Another difference be-

tween a reaction wheel and a control moment gyro is that the torque of a reaction

wheel is produced by changing the flywheel speed, while flywheel in a CMG
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rotate in a constant speed, the torque of a CMG is obtained by changing the gim-

bal’s rotational speed. There are two different CMGs. One is single gimbal CMG

and the other is double gimbal CMG. The advantage of the single CMG is the

well-known torque amplification property, i.e., a rate about the gimbal axis can

produce an output torque orthogonal to both the gimbal and spin axes which is

much greater than the gimbal axis torque [68]. But CMG is more complicate

to model and more expensive. Only the single gimbal control moment gyro is

discussed because it is the most effective CMG. Some good references about

CMG are [125, 126]. A thorough performance comparison between CMGs and

reaction wheels is discussed in [273].

Figure 10.1: Orthonormal vectors of a CMG unit.

Three mutually orthogonal unit vectors are shown in Fig. 10.1 and defined

as follows: Let ĝ be the unit-length gimbal vector, h be the angular momentum

vector of the flywheel, c = ĝ×h be the normalized CMG torque vector, then the
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torque of the CMG is given by

tc = cωg = (ĝ×h)ωg = g×h, (10.2)

where the ωg is the rotational speed of the gimbal and g = ĝωg. Therefore, the

control variable is ωg. If n identical single control moment gimbals are used, the

total torque is given by

tc = [c1, . . . ,cn][ωg1
, . . . ,ωgn

]T = Cωg, (10.3)

where ci is the ith CMG’s torque vector. Using the control system design method

described in Chapter 9, we can find the desired control torque tc. Then the gimbal

rotational speed ωg is given by

ωg = CT(CCT)−1tc. (10.4)

A solution does not exist when det(CCT) = 0. This is the so-called gimbal sin-

gularity.

It is worthwhile to note that although the gimbal vector ĝ is a constant in

body frame, the angular momentum vector h and therefore the normalized CMG

torque vector c depend on the gimbal angle θ . Several methods are proposed to

deal with the gimbal singularity problem, for example, [182, 186, 70, 284, 282].

An experimental comparison for these methods is given in [105]. Chapter 14 will

discuss a novel method of CMG control.

10.3 Magnetic torque rods

Magnetic torque rods has been used in most low orbit earth satellites. Mag-

netic torque rods are generally planar coils of uniform wire rigidly placed along

the spacecraft body axes. When electricity passes through the coils, a magnetic

dipole is created. The strength of the dipole depends on several factors, such as

amount of electricity and total area enclosed by the coils, etc. This dipole inter-

acts with Earth’s magnetic field, causing the coils to attempt to align their own

magnetic field in the direction opposite to that of Earth’s.

The advantages of magnetic torque rods are that they are lightweight, reliable,

and energy-efficient. The electricity comes from battery which is charged by

solar panels. Unlike reaction wheel and momentum wheel, magnetic torque rods

do not have moving parts; therefore, they are much more reliable.

The disadvantages are the magnetic torques generated by the magnetic tongue

rods depends not only on the electricity applied, but also on the spacecraft loca-

tion or the orbit, i.e., depends on Earth’s magnetic field strength and direction. It

is also impossible to control attitude in all three axes at any time even if the full

three coils are used because the torque can be generated only perpendicular to

the Earth’s magnetic field vector.
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Let m be the magnetic moment created by the magnetic torque rods, rm be the

Earth’s magnetic field intensity, the mechanical torque tm applied to the space-

craft, due to the interaction between m and rm is given by

tm = m× rm, (10.5)

which should be equal to the required torque u obtained by attitude controller

design described in Chapter 9. But in the implementation of attitude control,

given the desired u and the geomagnetic field rm which is given by (5.14) (we

need to represent the field rm in the body frame), one can only select m such that

‖u−m× rm‖ is minimized. Since tm can be generated only perpendicular to the

Earth’s magnetic field vector, it is very likely that u 6= tm. The best we can do

is to find a minimum norm solution to the least squared problem. Denote r̂m the

normalized vector of rm, since tm = m× rm, we have

rm × tm = rm × (m× rm) = rT
mrmm− rmrT

mm

= rT
mrmm− rT

mrm

rm

‖rm‖
rT

m

‖rm‖
m = rT

mrm(I− r̂mr̂T
m)m.

This gives
rm × tm

rT
mrm

= (I− r̂mr̂T
m)m.

It is clear that

m =
rm × tm

rT
mrm

(10.6)

is the solution of the above equation because rm × tm is orthogonal to rm. There-

fore, from the vector m, the current applied to each magnetic torque rods can be

obtained.

10.4 Thrusters

Thrusters are another type of actuators. They can be used for attitude control for

any spacecraft. Fuels have to be loaded to thrusters and fuel budget is a major

limitation on the use of thrusters. Thrusters use different propellants, such as

cold gas propellant, solid chemical propellant, liquid chemical propellant, and

electrical propellant. The same basic equation of propulsion holds for all kinds

of propellants. The thrust force F is related to the exhaust velocity Ve relative to

the satellite body, the fuel consumption rate dm
dt

, the gas and ambient pressures Pe

and Pa, and the area of the nozzle exit Ae. More specifically (see [232]),

F = Ve

dm

dt
+Ae(Pe −Pa). (10.7)

Given the force and the thruster mounting information, the torques generated by

thrusters can be obtained. We will discuss this later in Chapters 12 and 15.
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Table 10.1: Summary of Propulsion Technologies

Technology Thrust range Specific impulse Isp

Hydrazine Monopropellant 0.25 – 28 N 180 – 285

Alternative Mono- and Bipropellants 50 mN – 22 N 150 – 310

Hybrids 8 – 222 N 215 – 300

Cold Gas 10 µN – 3.6 N 40 – 110

Solid Motors 37 – 461 N 187 – 269

Electrothermal 0.1 mN – 1 N 20 – 350

Electrosprays 20 µN – 20 mN 225 – 3,000

Gridded Ion 0.1 – 20 mN 500 – 3,000

Hall-Effect 0.25 – 55 mN 200 – 1,920

Pulsed Plasma and Vacuum Arc Thrusters 4 – 500 µN 87 – 3,200

Ambipolar 0.5 – 17 mN 400 – 1,100

To select thrusters in a specific application, besides the force of the thrusters,

at least two more factors should be considered, i.e., the thrusters’ efficiency and

their cost. A thruster’s efficiency is defined by the thruster’s specific impulse

which is give as

Isp =
F

ṁg0

, (10.8)

where ṁ < 0 is the rate of fuel consumption, and g0 ≈ 9.8m/s2 is the standard

gravitational constant at sea level. Reference [181] provides a table that summa-

rizes different thrusters’ thrust range and specific impulse range.
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In principle, the control system design methods presented in Chapter 9 can be

implemented using any control actuators. But we have seen in Chapter 10 that

this may not be a good idea for magnetic torque control because given a desired

control torque vector u, one can only obtain an approximate solution tm =m×rm

given by m which minimizes the norm of ‖u− tm‖. For thrust control system, the

torques generated by thruster(s) depend on the selections of the thrusters and the

thrusters’ configuration design. For control system using CMGs, given the de-

sired torques, there are singular points where the desired torques are not achiev-

able by any CMG gimbals’ speeds. Therefore, to improve the control system

design involving actuators other than reaction wheels only, we need to use mod-

els with more detailed information such as geomagnetic field in magnetic torque

control system design and thrusters’ installation information in thrust control

system design. In this chapter, we focus on the control system design involving

magnetic torque bars/coils1. The materials of this chapter are mainly based on

[313, 314, 315, 317].

Spacecraft attitude control using magnetic torque is a very attractive tech-

nique because the implementation is seamless, the system is reliable (without

moving mechanical parts), the torque coils are inexpensive, and their weights are

light. The main issue of using only magnetic torques to control the attitude is that

the magnetic torques generated by magnetic coils are not available in all desired

axes at any time [232]. However, because of the constant change of the Earth’s

magnetic field as a spacecraft circles around the earth, the controllable subspace

changes all the time, many researchers believe that spacecraft’s attitude is actu-

ally controllable by using only magnetic torques. Numerous spacecraft attitude

control designs were proposed in the last twenty five years exploring the features

of the time-varying systems [206, 330, 211, 205, 180, 202, 289, 146, 233, 147,

298, 42]. Some of these papers tried Euler angle model and Linear Quadratic

Regulator (LQR) formulations [205, 180, 202, 289, 42] which are explicitly or

implicitly assumed that the controllability for the linear time-varying system

holds so that the optimal solutions exist [109]. Therefore, we need to establish

the controllability conditions for the problem of spacecraft attitude control using

only magnetic torque.

Other researchers [146, 233, 147] proposed direct design methods using Lya-

1Since the functions of magnetic torque bar and magnetic torque coils are the same, we use these

names interchangeably.
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punov stability theory. The existence of the solutions for these methods implic-

itly depends on the controllability for the nonlinear time-varying system. There-

fore, Bhat [25] investigated controllability of the nonlinear time-varying systems.

However, the condition for the controllability of the nonlinear time-varying sys-

tems obtained by Bhat is hard to be verified and is a sufficient condition.

A reduced quaternion model was discussed in previous chapters and its mer-

its over Euler angle model were discussed (see also in [304, 306, 310]). The

reduced quaternion model was also used for the design of spacecraft attitude

control system using magnetic torque [206, 211, 330]. Because the controllabil-

ity of the linear time-varying (LTV) systems was not established, the existence

of the solutions was not guaranteed.

In this chapter, we first consider the reduced linear quaternion model pro-

posed in [304] for the case that magnetic torques are the only control torques.

We establish the conditions of the controllability for this linear time-varying sys-

tem. The same strategy can easily be used to prove the controllability of the

Euler angle based linear time-varying system considered in [205]. However, we

will not derive the similar result because of the merits of the reduced quaternion

model as discussed in [304, 306, 310]. In Section 11.3, the LQR design is dis-

cussed for the linear periodic system. Instead of directly applying a well-known

algorithm, the author has proposed a different algorithm that makes full use of

the feature that only input matrix B of the system is a periodic matrix. Then, a

combined method is suggested in Section 11.4 to design the attitude control and

the momentum management system at the same time, which were normally con-

sidered as two different problems in separate designs. In the last section of this

Chapter, a different LQR design for the linear periodic system is discussed. This

design uses a novel lifting method to convert the linear periodic system into an

augmented linear time-invariant system and then proposed a new method to solve

the Riccati equation. Numerical simulation is performed to show the efficiency

of the new method.

11.1 The linear time-varying model

We focus our discussion in this section on the nadir pointing spacecraft using

a reduced quaternion model2. Therefore, the attitude of the spacecraft is repre-

sented by the rotation of the spacecraft body fixed frame relative to the local

vertical and local horizontal (LVLH) frame. Let ω = [ω1,ω2,ω3]
T be the body

rate with respect to the LVLH frame represented in the body frame, ω0 be the

orbit (and LVLH frame) rate with respect to the inertial frame, represented in

the LVLH frame. Let q̄ = [q0,q1,q2,q3]
T = [q0,q

T]T = [cos(α
2
), êT sin(α

2
)]T be

2The same idea can be used to derive the controllability condition for inertial pointing spacecraft and/or

using Euler angle model.
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the quaternion representing the rotation of the body frame relative to the LVLH

frame, where ê is the unit length rotational axis and α is the rotational angle about

ê. Therefore, the reduced quaternion-based kinematics equation can be expressed

as (4.9).

Assume that the inertia matrix of the spacecraft is diagonal which is approx-

imately correct for real systems, let the control torque vector be u = [ux,uy,uz]
T,

then the linearized nadir pointing spacecraft model with gravity gradient distur-

bance torque is a special case of (4.36) and is given as follows:











q̇1

q̇2

q̇3

ω̇1

ω̇2

ω̇3











=











0 0 0 .5 0 0

0 0 0 0 .5 0

0 0 0 0 0 .5
f41 0 0 0 0 f46

0 f52 0 0 0 0

0 0 f63 f64 0 0





















q1

q2

q3

ω1

ω2

ω3











+











0

0

0

ux/J11

uy/J22

uz/J33











(11.1)

where

f41 = [8(J33 − J22)ω
2
0 ]/J11 (11.2a)

f46 = (J11 − J22+ J33)ω0/J11 (11.2b)

f64 = (−J11 + J22− J33)ω0/J33 (11.2c)

f52 = [6(J33 − J11)ω
2
0 ]/J22 (11.2d)

f63 = [2(J11 − J22)ω
2
0 ]/J33. (11.2e)

The control torques generated by magnetic coils interacting with the Earth’s

magnetic field is given by (see [232])

u = m×b

where the vector of the Earth’s magnetic field represented in spacecraft coor-

dinates, b(t) = [b1(t),b2(t),b3(t)]
T, is computed using the spacecraft position,

the spacecraft attitude, and a spherical harmonic model of the Earth’s magnetic

field as we discussed in Section 5.3 (see also [280]); and m = [m1,m2,m3]
T is

the spacecraft magnetic coils’ induced magnetic moment in the spacecraft body

coordinates.

The time-variation of the system is an approximate periodic function of

b(t) = b(t +T ) where T = 2π
ω0

is the orbital period (see (2.55)). This magnetic

field b(t) can be approximately expressed as follows [205]:





b1(t)
b2(t)
b3(t)



=
µ f

a3





cos(ω0t) sin(im)
−cos(im)

2sin(ω0t) sin(im)



 , (11.3)

where im is the inclination of the spacecraft orbit with respect to the magnetic
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equator, µ f = 7.9× 1015 Wb-m is the field’s dipole strength, and a is the orbit’s

semi-major axis. The time t = 0 is measured at the ascending node crossing of the

magnetic equator. Therefore, the reduced quaternion linear time-varying system

is given as follows:










q̇1

q̇2

q̇3

ω̇1

ω̇2

ω̇3











=











0 0 0 .5 0 0

0 0 0 0 .5 0

0 0 0 0 0 .5
f41 0 0 0 0 f46

0 f52 0 0 0 0

0 0 f63 f64 0 0





















q1

q2

q3

ω1

ω2

ω3











+












0 0 0

0 0 0

0 0 0

0
b3(t)
J11

− b2(t)
J11

− b3(t)
J22

0
b1(t)
J22

b2(t)
J33

− b1(t)
J33

0
















m1

m2

m3





:=

[
03

1
2
I3

Λ1 Σ1

][
q

ω

]

+

[
03

B2(t)

]

m

= Ax+B(t)m. (11.4)

Substituting (11.3) into (11.4) yields

B2(t) =





0 b42(t) b43(t)
b51(t) 0 b53(t)
b61(t) b62(t) 0



 (11.5)

where

b42(t) =
2µ f

a3J11

sin(im) sin(ω0t) (11.6a)

b43(t) =
µ f

a3J11

cos(im) (11.6b)

b53(t) =
µ f

a3J22

sin(im)cos(ω0t) (11.6c)

b51(t) =− 2µ f

a3J22

sin(im) sin(ω0t) =−b42

J11

J22

(11.6d)

b61(t) =− µ f

a3J33

cos(im) =−b43

J11

J33

(11.6e)

b62(t) =− µ f

a3J33

sin(im)cos(ω0t) =−b53

J22

J33

. (11.6f)

Therefore, taking the first order and second order derivatives, we have

b′
42(t) =

2µ f ω0

a3J11

sin(im)cos(ω0t) (11.7a)
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b′
43(t) = 0 (11.7b)

b′
53(t) =−µ f ω0

a3J22

sin(im) sin(ω0t) (11.7c)

b′
51(t) =−2µ f ω0

a3J22

sin(im)cos(ω0t) =−b′
42

J11

J22

(11.7d)

b′
61(t) = 0 (11.7e)

b′
62(t) =

µ f ω0

a3J33

sin(im) sin(ω0t) =−b53

J22

J33

(11.7f)

and

b′′
42(t) =−2µ f ω

2
0

a3J11

sin(im) sin(ω0t) (11.8a)

b′′
43(t) = 0 (11.8b)

b′′
53(t) =−µ f ω

2
0

a3J22

sin(im)cos(ω0t) (11.8c)

b′′
51(t) =

2µ f ω
2
0

a3J22

sin(im) sin(ω0t) =−b′′
42

J11

J22

(11.8d)

b′′
61(t) = 0 (11.8e)

b′′
62(t) =

µ f ω
2
0

a3J33

sin(im)cos(ω0t) =−b′′
53

J22

J33

. (11.8f)

In matrix format, we have

B′
2(t) =





0 b′
42 0

b′
51 0 b′

53

0 b′
62 0



 , (11.9)

and

B′′
2 (t) =





0 b′′
42 0

b′′
51 0 b′′

53

0 b′′
62 0



 . (11.10)

A special case is when im = 0, i.e., the spacecraft orbit is on the equator plane

of the Earth’s magnetic field. In this case, b(t) = [0,− µ f

a3 ,0]
T is a constant vector.

The linear time-varying system of this special case is reduced to a linear time-

invariant system whose model is given by











q̇1

q̇2

q̇3

ω̇1

ω̇2

ω̇3











=











0 0 0 .5 0 0

0 0 0 0 .5 0

0 0 0 0 0 .5
f41 0 0 0 0 f46

0 f52 0 0 0 0

0 0 f63 f64 0 0





















q1

q2

q3

ω1

ω2

ω3










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+











0 0 0

0 0 0

0 0 0

0 0 −b2/J11

0 0 0

b2/J33 0 0















m1

m2

m3





= Ax+Bm. (11.11)

11.2 Spacecraft controllability using magnetic torques

The definition of controllability of linear time-varying systems can be found in

[217, page 124].

Definition 11.1 The linear state equation (11.4) is called controllable on [t0, t f ] if

given any x0, there exists a continuous input signal m(t) defined on [t0, t f ] such that

the corresponding solution of (11.4) satisfies x(t f ) = 0.

A main theorem used to prove the controllability of (11.4) is also given in

[217, page 127].

Theorem 11.1

Let the state transition matrix Φ(t,τ) = eA(t−τ). Denote

K j(t) =
∂ j

∂τ j
[Φ(t,τ)B(τ)]

∣
∣
∣
τ=t

, j = 1,2, . . . (11.12)

if p is a positive integer such that, for t ∈ [t0, t f ], B(t) is p time continuously differ-

entiable. Then, the linear time-varying equation (11.4) is controllable on [t0, t f ] if for

some tc ∈ [t0, t f ]
rank [K0(tc),K1(tc), . . . ,Kp(tc)] = n. (11.13)

Remark 11.1 If A and B are constant matrices, the rank condition of (11.13) for

the linear time-varying system is reduced to the rank condition for the linear time-

invariant system [217, page 128], i.e., if

rank
[
B,AB, . . . ,An−1B

]
= n. (11.14)

then the linear time-invariant system (A,B) is controllable.

First, we consider the special case of (11.11), the time-invariant system when
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the spacecraft orbit is on the equator plane of the Earth’s magnetic field (im = 0).

Let Σ denote any 3 × 3 anti-diagonal and Π be any diagonal matrix with the

second row composed of zeros

Σ :=

{



0 0 ×
0 0 0

× 0 0





}

and Π :=

{



× 0 0

0 0 0

0 0 ×





}

,

and Λ denote any 3×3 diagonal matrix with the form

Λ :=

{



× 0 0

0 × 0

0 0 ×





}

.

It is easy to verify that if Σi ∈ Σ, Σ j ∈ Σ, and Λk ∈ Λ, then ΣiΣ j ∈ Σ, Σi +Σ j ∈ Σ,

and ΛkΣi ∈ Σ. A similar claim is true for Π. Using this fact to expand the matrix

[B,AB,A2B,A3B,A4B,A5B], where A and B are defined in (11.11), shows that

the second row of the controllability matrix in (11.14) is composed of all zeros.

This proves that if the spacecraft orbit is on the equator plane of the Earth’s mag-

netic field, the spacecraft attitude cannot be stabilized by using only magnetic

torques.

Now we show that under some simple conditions, the linear time-varying

system (11.4) is controllable for any orbit which is not on the equator plane of

the Earth’s magnetic field, i.e., im 6= 0. From (11.12), we have

K0(t) = Φ(t, t)B(t) = eA(t−t)B(t) = B(t),

K1(t) =
∂

∂ τ
[Φ(t,τ)B(τ)]

∣
∣
∣
τ=t

=
∂

∂ τ

[

eA(t−τ)B(τ)
]∣
∣
∣
τ=t

=
[

−AeA(t−τ)B(τ)+ eA(t−τ)B′(τ)
]∣
∣
∣
τ=t

= −AB(t)+B′(t), (11.15)

K2(t) =
∂ 2

∂ τ2
[Φ(t,τ)B(τ)]

∣
∣
∣
τ=t

=
[

A2eA(t−τ)B(τ)−2AeA(t−τ)B′(τ)+ eA(t−τ)B′′(τ)
]∣
∣
∣
τ=t

= A2B(t)−2AB′(t)+B′′(t). (11.16)

Using the notation of (11.4), we can rewrite equation (11.15) as

K1(t) =−
[

03
1
2
I3

Λ1 Σ1

][
03

B2

]

+

[
03

B′
2

]

=

[
− 1

2
B2

−Σ1B2 +B′
2

]

.
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Since

A2B=A

[
03

1
2
I3

Λ1 Σ1

][
03

B2

]

=

[
03

1
2
I3

Λ1 Σ1

][
1
2
B2

Σ1B2

]

=

[
1
2
Σ1B2

1
2
Λ1B2 +Σ2

1B2

]

and

−2AB′ =−2

[
03

1
2
I3

Λ1 Σ1

][
03

B′
2

]

=

[
−B′

2

−2Σ1B′
2

]

,

equation (11.16) is reduced to

K2(t) = A2B−2AB′+B′′ =

[
1
2
Σ1B2 −B′

2
1
2
Λ1B2 +Σ2

1B2 −2Σ1B′
2 +B′′

2

]

.

Hence,

[K0(t),K1(t),K2(t)]

= [B(t) | −AB(t)+B′(t) | A2B(t)−2AB′(t)+B′′(t)]

=
[

03

B2

∣
∣
∣

− 1
2

B2

−Σ1B2+B′
2

∣
∣
∣

1
2

Σ1B2−B′
2(t)

1
2

Λ1B2+Σ2
1B2−2Σ1B′

2+B′′
2

]

. (11.17)

Notice that

rank[K0(t),K1(t),K2(t)]

= rank

([
I3 03

−2Σ1 I3

][
03

B2

∣
∣
∣

− 1
2

B2

−Σ1B2+B′
2

∣
∣
∣

1
2

Σ1B2−B′
2(t)

1
2

Λ1B2+Σ2
1B2−2Σ1B′

2+B′′
2

])

= rank
[

03

B2

∣
∣
∣
− 1

2
B2

B′
2

∣
∣
∣

1
2

Σ1B2−B′
2(t)

1
2

Λ1B2+B′′
2

]

= rank
[

03

B2

∣
∣
∣
−B2

B′
2

∣
∣
∣

Σ1B2−2B′
2(t)

1
2

Λ1B2+B′′
2

]

, (11.18)

Σ1B2 −2B′
2(t)

=





0 0 f46

0 0 0

f64 0 0









0 b42(t) b43(t)
b51(t) 0 b53(t)
b61(t) b62(t) 0



−2





0 b′
42 0

b′
51 0 b′

53

0 b′
62 0





=





f46b61(t) f46b62(t)−2b′
42 0

−2b′
51 0 2b′

53

0 f64b42(t)−2b′
62 f64b43(t)



 , (11.19)

and

1

2
Λ1B2 +B′′

2 (t)

=
1

2





f41 0 0

0 f52 0

0 0 f63









0 b42(t) b43(t)
b51(t) 0 b53(t)
b61(t) b62(t) 0



+





0 b′′
42 0

b′′
51 0 b′′

53

0 b′′
62 0




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=





0 1
2

f41b42(t)+b′′
42

1
2

f41b43(t)
1
2

f52b51(t)+b′′
51 0 1

2
f52b53(t)+b′′

53
1
2

f63b61(t)
1
2

f63b62(t)+b′′
62 0



 , (11.20)

we have
[

03

B2

∣
∣
∣
−B2

B′
2

∣
∣
∣

Σ1B2−2B′
2(t)

1
2

Λ1B2+B′′
2

]

=











0 0 0 0 a15 a16 a17 a18 0

0 0 0 a24 0 a26 a27 0 a29

0 0 0 a34 a35 0 0 a38 a39

0 a42 a43 0 a45 0 0 a48 a49

a51 0 a53 a54 0 a56 a57 0 a59

a61 a62 0 0 a65 0 a67 a68 0











,

where

a15 =−b42(t), a16 =−b43(t), a17 = f46b61(t), a18 = f46b62(t)−2b′
42,

a24 =−b51(t), a26 =−b53(t), a27 =−2b′
51, a29 = 2b′

53,

a34 =−b61(t), a35 =−b62(t), a38 = f64b42(t)−2b′
62, a39 = f64b43(t),

a42 = b42(t), a43 = b43(t), a45 = b′
42, a48 =

1

2
f41b42(t)+b′′

42, a49 =
1

2
f41b43(t),

a51 = b51(t), a53 = b53(t), a54 = b′
51, a56 = b′

53(t),

a57 =
1

2
f52b51(t)+b′′

51, a59 =
1

2
f52b53(t)+b′′

53,

a61 = b61(t), a62 = b62(t), a65 = b′
62, a67 =

1

2
f63b61(t), a68 =

1

2
f63b62(t)+b′′

62.

To show that this matrix is full rank for some tc, we show that there is a 6×6

sub-matrix whose determinant is not zero for ω0tc =
π
2

. In view of (11.6), (11.7),

and (11.8), for this tc, we have

b53(tc) = b62(tc) = b′
51(tc) = b′

42(tc) = b′′
53(tc) = b′′

62(tc) = 0. (11.21)

Considering the sub-matrix composed of the 1st, 2nd, 4th, 5th, 7th, 8th columns,

and using (11.21), we have

det











0 0 0 a15 a17 a18

0 0 a24 0 a27 0

0 0 a34 a35 0 a38

0 a42 0 a45 0 a48

a51 0 a54 0 a57 0

a61 a62 0 a65 a67 a68










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= det











0 0 0 a15 a17 0

0 0 a24 0 0 0

0 0 a34 0 0 a38

0 a42 0 0 0 a48

a51 0 0 0 a57 0

a61 0 0 a65 a67 0











= −a24 det









0 0 a15 a17 0

0 0 0 0 a38

0 a42 0 0 a48

a51 0 0 a57 0

a61 0 a65 a67 0









= a38a24 det







0 0 a15 a17

0 a42 0 0

a51 0 0 a57

a61 0 a65 a67







= a42a38a24 det





0 a15 a17

a51 0 a57

a61 a65 a67





= a42a38a24 (a15a57a61 +a51a65a17 −a15a51a67)

= −b42(tc) ( f64b42(tc)−2b′
62)b51(tc)

[

b51b′
62 f46b61 −b42

(
1

2
f52b51 +b′′

51

)

b61 +
1

2
f63b61b42b51

]

.

(11.22)

Therefore, in view of Theorem 11.1, the time-varying system is controllable if

f64b42(tc)−2b′
62 6= 0, (11.23)

and

b51b′
62 f46b61 −b42

(
1

2
f52b51 +b′′

51

)

b61+
1

2
f63b61b42b51 6= 0. (11.24)

Using (11.2), (11.6), (11.7), (11.8), and noticing that sin(ω0tc) = sin( π
2
) = 1, we

have

f64b42(tc)−2b′
62

=
(−J11+ J22 − J33)ω0

J33

2µ f

a3J11

sin(im)−2
µ f ω0

a3J33

sin(im)

=
2µ f ω0 sin(im)

a3(J11J33)
(−2J11− J33 + J22),

the first condition (11.23) is reduced to

2J11 + J33 6= J22. (11.25)
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Repeatedly using the same relations, we have

b51b′
62 f46b61

=

(

− 2µ f

a3J22

sin(im)

)(
µ f ω0

a3J33

sin(im)

)

(
(J11 − J22 + J33)ω0

J11

)(

− µ f

a3J33

cos(im)

)

=
2µ3

f ω2
0 (J11− J22 + J33)

a9J11J22J2
33

sin2(im)cos(im), (11.26)

−b42

(
1

2
f52b51 +b′′

51

)

b61

= −
(

2µ f

a3J11

sin(im)

)(
3(J33− J11)ω

2
0

J22

(

− 2µ f

a3J22

sin(im)

)

+
2µ f ω

2
0

a3J22

sin(im)

)

(

− µ f

a3J33

cos(im)

)

= −
(

2µ f

a3J11

sin(im)

)(
2µ f ω

2
0

a3J2
22

sin(im)(−3J33+3J11+ J22)

)

(

− µ f

a3J33

cos(im)

)

=
4µ3

f ω2
0 (−3J33+3J11 + J22)

a9J11J2
22J33

sin2(im)cos(im), (11.27)

and

1

2
f63b61b42b51 =

(J11− J22)ω
2
0

J33

(

− µ f

a3J33

cos(im)

)

(
2µ f

a3J11

sin(im)

)(

− 2µ f

a3J22

sin(im)

)

=
4µ3

f ω2
0 (J11 − J22)

a9J11J22J2
33

sin2(im)cos(im). (11.28)

Combining (11.26), (11.27), and (11.28), we can rewrite (11.24) as

b51b′
62 f46b61 −b42

(
1

2
f52b51 +b′′

51

)

b61+
1

2
f63b61b42b51

=
µ3

f ω2
0

a9J11J2
22J2

33

sin2(im)cos(im)

[2J22(J11 − J22+ J33)+4J33(−3J33+3J11+ J22)+4J22(J11− J22)]
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=
µ3

f ω2
0

a9J11J2
22J2

33

sin2(im)cos(im)

[2J11J22 −2J2
22+2J22J33 −12J2

33+12J11J33+4J22J33+4J11J22 −4J2
22]

=
µ3

f ω2
0

a9J11J2
22J2

33

sin2(im)cos(im)[6J11J22 −6J2
22+6J22J33−12J2

33+12J11J33]

=
6µ3

f ω2
0

a9J11J2
22J2

33

sin2(im)cos(im)[J11J22 − J2
22+ J22J33 −2J2

33+2J11J33].

(11.29)

Therefore, the second condition of (11.24) is reduced to

J22(J11− J22 + J33) 6= 2J33(J33 − J11). (11.30)

We summarize the above result as the main theorem of this section.

Theorem 11.2

For the linear time-varying spacecraft attitude control system (11.4) using only mag-

netic torques, if the orbit is on the equator plane of the Earth’s magnetic field, then

the spacecraft attitude is not fully controllable. If the orbit is not on the equator plane

of the Earth’s magnetic field, and the following two conditions hold:

2J11 + J33 6= J22, (11.31a)

J22(J11 − J22 + J33) 6= 2J33(J33 − J11), (11.31b)

then the spacecraft attitude is fully controllable by magnetic coils.

Remark 11.2 The controllability conditions include only the spacecraft orbit plane

and the spacecraft inertia matrix which can be easily verified.

The idea developed in this section is applied to attitude control of a 2U cube-

sat by magnetic and air drag torques [256].

11.3 LQR design based on periodic Riccati equation

In this section, we discuss the attitude control system design using only mag-

netic torque. We consider linear quadratic regulator (LQR) design method for this

problem. Riccati equation plays an important role in the LQR problem [135]. For

continuous-time linear systems, the optimal solution of the LQR problem is as-

sociated with the differential Riccati equation. For discrete-time linear systems,

the optimal solution of the LQR is associated with the algebraic Riccati equation.

The numerical algorithms for these Riccati equations have been thoroughly stud-

ied since the work of Macfarlane [151], Kleinman [120], and Vaughan [269]. If
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the linear system is periodic, the optimal solution of the LQR is then associated

with the periodic Riccati equation [28]. For continuous-time periodic linear sys-

tem, algorithms and solutions of the differential periodic Riccati equation have

been studied, for example, in [29, 30, 267]. For discrete-time periodic linear

system, an efficient algorithm was proposed for the algebraic periodic Riccati

equation in [90].

Because the spacecraft attitude control system using magnetic torques is

a time-varying period system, using a periodic feedback control will im-

prove the system performance [66]. However, many researches, for exam-

ple [205, 146, 147], were still focused on time-invariant feedbacks. Others

[298, 42] sought feedbacks that approximate the optimal solution even though

the optimal feedback exists. Most optimal control designs for this problem

[206, 330, 211, 180, 289] solved the continuous differential Riccati equation

using some traditional backward integration, which is inefficient and needs large

memory space. As a matter of fact, a more efficient algorithm [90] developed for

general periodic time-varying optimal control system has been available since

1994, even though the algorithm in [90] is not designed to use the features of this

specific problem.

In this section, we will explore the features of the problem of attitude control

using only magnetic torques. By utilizing these features, we are able to propose

an efficient algorithm to solve the discrete-time periodic Riccati equation. We

show that the new algorithm is more efficient than the widely recognized algo-

rithm developed in [90] for this problem.

Note that the orbital period in system (11.4) is given by (2.54) (see also [232])

T =
2π

ω0

= 2π

√

a3

µ
, (11.32)

where a is the orbital radius (for circular orbit) and µ = 3.986005 ∗ 1014m3/s2

is the standard gravitational parameter (see also [280]). Oftentimes, a spacecraft

controller is implemented in a discrete computer system. Therefore, the follow-

ing discrete model is used for the design in real implementation:

xk+1 = Akxk +Bkmk. (11.33)

The system matrices (Ak,Bk) in the discrete model can be derived from (11.4)

and (11.5) by different methods. Let ts be the sample time, we use the following

formulations.

Ak = (I+Ats), Bk = B(kts)ts. (11.34)

Note that

det(I+Ats) = det

[
I 0.5tsI

tsΛ1 I+ tsΣ1

]

= det

[
I 0.5tsI

03 I+ tsΣ1 −0.5t2
s Λ1

]
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is invertible as long as ts is selected small enough. It is worthwhile to mention

that in both continuous-time and discrete-time models, the time-varying feature

is introduced by time-varying matrices B(t) or Bk; the system matrices A and

Ak are constants and invertible, which are important for us to derive an efficient

computational algorithm.

The discussion about the computational algorithm is focused on the solution

of the periodic discrete Riccati equation using the special properties of (11.33),

i.e., Ak is constant and invertible for all k.

11.3.1 Preliminary Results

First, a matrix M is called a real quasi-upper-triangular if (a) M is a real block

triangular matrix, (b) each diagonal block is either 1× 1 or 2× 2, (c) for each

2×2 block, it has the form of

[
c −s

s c

]

,

and c± js is a pair of complex conjugate eigenvalues of M. We use σ(M) to

denote the set of all eigenvalues of M. Let

L =

[
0 I

−I 0

]

∈ R2n×2n, (11.35)

where n is the dimension of A or Ak. Note that LT = L−1 =−L. A matrix M ∈
R2n×2n is said to be symplectic if it meets the condition L−1MTL = M−1. The

symplectic matrix plays a fundamental role in finding the solution of the Riccati

equation [129]. An important property for the symplectic matrix is given as the

following theorem which is shown in [128, 269].

Theorem 11.3

If M is symplectic, then λ ∈ σ(M) implies 1
λ ∈ σ(M) with the same multiplicity.

Proof 11.1 Let λ ∈ σ(M) be an eigenvalue of M, f and g be n-dimensional vectors

such that

M

[
f

g

]

=

[
M11 M12

M21 M22

][
f

g

]

= λ

[
f

g

]

.

Then,

M−1 = L−1MTL =

[
0 −I

I 0

][
MT

11 MT
21

MT
12 MT

22

][
0 I

−I 0

]

=

[
MT

22 −MT
12

−MT
21 MT

11

]

.



176 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

Therefore,

M−T

[
g

−f

]

=

[
M22 −M21

−M12 M11

][
g

−f

]

= λ

[
g

−f

]

,

which means that λ is an eigenvalue of M−1. Since λ is an eigenvalue of M−1, 1/λ

is an eigenvalue of M.

A stable numerical solution of the Riccati equation depends on the so-called

real Schur decomposition [178]. The following Proposition is a natural extension

of the real Schur decomposition for the symplectic matrix.

Proposition 11.1

Let M ∈ R2n×2n be symplectic. Then there exists an orthogonal similarity transfor-

mation U such that
[

U11 U12

U21 U22

]T

M

[
U11 U12

U21 U22

]

=

[
S11 S12

0 S22

]

(11.36)

where U11,U12,U21,U22,S11,S12,S22 ∈ Rn×n, and S11, S22 are quasi-upper-

triangular. Moreover, σ(S11) lies inside (or outside) the unit circle and σ(S22) lies

outside (or inside) the unit circle.

We will also use a simple result in our derivation of the main result.

Proposition 11.2

If M1 and M2 are symplectic, then M1M2 is symplectic.

Proof 11.2 Since L−1MT
1 L = M−1

1 and L−1MT
2 L = M−1

2 , we have

L−1(M1M2)
TL = L−1MT

2 MT
1 L = L−1MT

2 LL−1MT
1 L = M−1

2 M−1
1 = (M1M2)

−1.

This concludes the proof.

11.3.2 Solution of the Algebraic Riccati Equation

For a discrete linear time-varying system (11.33), the LQR state feedback con-

trol is to find the optimal solution mk to minimize the following quadratic cost

function

min
1

2
xT

NQNxN +
1

2

N−1∑

k=0

xT
k Qkxk +mT

k Rkmk (11.37)

where

Qk ≥ 0, (11.38)
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Rk > 0, (11.39)

and the initial condition x0 is given. The existence of the solution implicitly de-

pends on the controllability of spacecraft attitude control using only magnetic

torques which is discussed in the previous section. Let the co-state vector of xk is

denoted by yk. A very important assumption in the so-called sweep method [33]

to solve the optimization problem (11.37) under the state constraint of (11.33) is

the relation between yk and xk which is given as follows:

yk = Pkxk, (11.40)

If (Ak,Qk) is detectable or Qk > 0, the optimal feedback mk is given in Appendix

B (B.21) (see also [90, 135] )

mk =−(Rk +BT
k Pk+1Bk)

−1BT
k Pk+1Akxk, (11.41)

where Pk defined in (11.40) is the unique positive semi-definite solution of the

discrete Riccati equation (B.19) (see also [90, 129, 135])

Pk = Qk +AT
k Pk+1Ak −AT

k Pk+1Bk(Rk +BT
k Pk+1Bk)

−1BT
k Pk+1Ak, (11.42)

with the boundary condition PN = QN . For this discrete Riccati equation (not

necessarily periodic) given as (11.42), it can be solved using a symplectic system

associated with (11.33) and (11.37) as follows :

Let zk = [xT
k ,y

T
k ]

T. Appendix B gives (B.26), which is repeated below.

[
xk

yk

]

=

[
A−1

k A−1
k BkR−1

k BT
k

QkA−1
k AT

k +QkA−1
k BkR−1

k BT
k

][
xk+1

yk+1

]

:= Hk

[
xk+1

yk+1

]

.

(11.43)

Let

Ek =

[

I BkR−1
k BT

k

0 AT
k

]

, (11.44)

Fk =

[
Ak 0

−Qk I

]

. (11.45)

Assume that Ek is invertible, which is true for det(I+T Σ1 − 1
2
T 2Λ1) 6= 0. It is

easy to verify that

Zk := H−1
k =

[
Ak +BkR−1

k BT
k A−T

k Qk −BkR−1
k BT

k A−T
k

−A−T
k Qk A−T

k

]

= E−1
k Fk =

[
I −BkR−1

k BT
k A−T

k

0 A−T
k

][
Ak 0

−Qk I

]

. (11.46)

Therefore, (11.43) can be rewritten as

Ekzk+1 = Ek

[
xk+1

yk+1

]

= Fk

[
xk

yk

]

= Fkzk. (11.47)
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It is straightforward to verify that L−1ZT
k L = Z−1

k , therefore, from Proposi-

tion 11.1, there exists an orthogonal matrix U such that

[
U11 U12

U21 U22

]T

Zk

[
U11 U12

U21 U22

]

=

[
S11 S12

0 S22

]

, (11.48)

and all eigenvalues of S11 are inside unit circle. For linear time-invariant system,

Ak = A, Bk = B, Qk = Q, Rk = R, and Zk = Z are all constant matrices, the

(steady state) solution of (11.42) is given as follows (see Appendix B.3 and [129,

Theorem 6])

P = U21U−1
11 .

11.3.3 Solution of the Periodic Riccati Algebraic Equation

Now, we consider the periodic time-varying system

lim
N→∞

[

min
1

2
xT

NQNxN +
1

2

N−1∑

k=0

xT
k Qkxk +mT

k Rkmk

]

, (11.49a)

xk+1 = Akxk +Bkmk, (11.49b)

where

Ak = Ak+1 = . . .= Ak+p, (11.50)

Bk = Bk+p, (11.51)

Qk = Qk+1 = . . .= Qk+p ≥ 0, (11.52)

Rk = Rk+p > 0, (11.53)

only Bk (and possibly Rk) are periodic with period p = T
ts

. It is worthwhile to

mention that Ak and Qk are actually constant matrices. The optimal feedback

given by (11.42) is periodic with Pk = Pk+p, a unique periodic positive semi-

definite solution of the periodic Riccati equation (cf. [28]). Therefore, using the

similar process for the general discrete Riccati equation and noticing that Fk = F

in (11.45) is a constant matrix because Ak and Qk are constant matrices, we get

Ekzk+1 = Fzk (11.54)

Ek+1zk+2 = Fzk+1 (11.55)

... (11.56)

Ek+p−1zk+p = Fzk+p−1. (11.57)

This gives

zk+p = Πkzk, (11.58)
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with

Πk = E−1
k+p−1F . . .E−1

k+1FE−1
k F. (11.59)

Using Proposition 11.2, we conclude that Πk is a symplectic matrix. Therefore,

from Proposition 11.1 there is an orthogonal matrix Tk such that

[
T11k T12k

T21k T22k

]T

Πk

[
T11k T12k

T21k T22k

]

=

[
S11k S12k

0 S22k

]

. (11.60)

According to [90, pp. 1197-1198], the matrix S11k has eigenvalues in the open

unit disk, and for each sampling time k ∈ {0,1, . . ., p− 1} the steady state solu-

tion of the Riccati equation corresponding to (11.58) is given by

Pk = T21kT−1
11k. (11.61)

Since F is invertible in the problem of spacecraft attitude control using only

magnetic torques, this method is more efficient than the one in [196] because

the latter is designed for singular F. However, the method of calculating (11.59),

(11.60), and (11.61) as described above (proposed in [90]) is still not the best

way for the problem of spacecraft attitude control using only magnetic torques.

As a matter of fact, equation (11.58) can be written as

[
xk

yk

]

= zk = Γkzk+p = Γk

[
xk+p

yk+p

]

(11.62)

with the initial state x0, the boundary condition [135]

yN = QNxN , (11.63)

and

Γk = F−1EkF−1Ek+1 . . . ,F
−1Ek+p−2F−1Ek+p−1. (11.64)

Remark 11.3 Since the same F−1 is a constant matrix and is used repeatedly in

Γk, the computation of Γk avoids p−1 matrix inverse comparing to the computation

of Πk. For large p, the difference is tremendous.

We propose a better way to solve (11.49). The derivations is similar to the

method proposed in [129]. Since

F−1 =

[
A−1

k 0

QkA−1
k I

]

,

M = F−1Ek =

[
A−1

k 0

QkA−1
k I

][
I BkR−1

k BT
k

0 AT
k

]
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=

[
A−1

k A−1
k BkR−1

k BT
k

QkA−1
k QkA−1

k BkR−1
k BT

k +AT
k

]

, (11.65)

which is a similar formula as given in [269]. It is straightforward to verify that

M is symplectic.

L−1MTL =

[
0 −I

I 0

][
A−T

k A−T
k Qk

BkR−1
k BT

k A−T
k Ak +BkR−1

k BT
k A−T

k Qk

]

L

=

[
−BkR−1

k BT
k A−T

k −Ak −BkR−1
k BT

k A−T
k Qk

A−T
k A−T

k Qk

][
0 I

−I 0

]

=

[
Ak +BkR−1

k BT
k A−T

k Qk −BkR−1
k BT

k A−T
k

−A−T
k Qk A−T

k

]

= M−1. (11.66)

Since M is symplectic, using Proposition 11.2 again, Γk is symplectic. Let

Vk =

[
V11k V12k

V21k V22k

]

be a matrix that transform Γk into a Jordon form, we have

ΓkVk = Vk

[
∆k 0

0 ∆−1
k

]

(11.67)

where ∆k is the Jordan block matrix of the n eigenvalues outside of the unit circle.

One of the main results of this section is the following theorem.

Theorem 11.4

The solution of the Riccati equation corresponding to (11.62) is given by

Pk = V21kV−1
11k, k = 0, . . . , p− 1. (11.68)

Proof 11.3 The proof uses similar ideas to [269, 135]. Since the system is pe-

riodic, the Riccati equation corresponding to (11.62) represents any one of k ∈
{0,1, . . . , p−1} equations, which has a sample period increasing by p with the patent

k,k+ p,k+ 2p, . . . ,k+ ℓp, . . .. In the following discussion, we consider one Riccati

equation and drop the subscript k to simplify the notation to 0, p,2p, . . . , ℓp, . . .. To

make the notation simpler, we will drop p and use ℓ for this step increment. Assume

that the solution has the form

yℓ = Pxℓ. (11.69)

Using the method described in Appendix B, one can show that P satisfies the discrete-

time periodic Riccati equation

0 = Q+ATPA−P−ATPB(R+BTPB)BTPA.
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Further, we assume for simplicity that the eigenvalues of Γ are distinct; therefore, ∆
is diagonal. For any integer ℓ≥ 0, let

[
xℓ
yℓ

]

=

[
V11 V12

V21 V22

][
tℓ
sℓ

]

, (11.70)

from (11.62), (11.67) and (11.70), we have

V

[
tℓ
sℓ

]

=

[
xℓ
yℓ

]

= Γ

[
xℓ+1

yℓ+1

]

= ΓV

[
tℓ+1

sℓ+1

]

= V

[
∆ 0

0 ∆−1

][
tℓ+1

sℓ+1

]

,

which is equivalent to

[
tℓ
sℓ

]

=

[
∆ 0

0 ∆−1

][
tℓ+1

sℓ+1

]

.

Hence,
[

tℓ
sℓ

]

=

[
∆N−ℓ 0

0 ∆−(N−ℓ)

][
tN

sN

]

, (11.71)

Using the boundary condition (11.63) and (11.70), we have

QN(V11tN +V12sN) = QNxN = yN = V21tN +V22sN ,

this gives

−(V21 −QNV11)tN = (V22 −QNV12)sN ,

or equivalently

sN =−(V22 −QNV12)
−1(V21 −QNV11)tN := HtN . (11.72)

Combining (11.71) and (11.72) yields

sℓ = ∆−(N−ℓ)sN = ∆−(N−ℓ)HtN = ∆−(N−ℓ)H∆−(N−ℓ)tℓ := Gtℓ,

with G = ∆−(N−ℓ)H∆−(N−ℓ). Finally, using this relation, equations (6.22) and

(11.69), we conclude that

yℓ =V21tℓ+V22sℓ = (V21+V22G)tℓ = Pxℓ = P(V11tℓ+V12sℓ) = P(V11+V12G)tℓ

holds for all tℓ; therefore

(V21 +V22G) = P(V11 +V12G)

or

P = (V21 +V22G)(V11 +V12G)−1. (11.73)

Note that G → 0 as N →∞. This finishes the proof.

Since the eigen-decomposition is not numerically stable, we suggest using
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the Schur decomposition instead. Since Γk is symplectic, Proposition 11.1 claims

that there is an orthogonal matrix Wk such that

[
W11k W12k

W21k W22k

]T

Γk

[
W11k W12k

W21k W22k

]

=

[
S11k S12k

0 S22k

]

, (11.74)

where S11k is upper-triangular and has all of its eigenvalues outside the unit circle.

We have the main result of the section as follows.

Theorem 11.5

Let the Schur decomposition of Γk be given by (11.74). The solution of the Riccati

equation corresponding to (11.62) is given by

Pk = W21kW−1
11k. (11.75)

Proof 11.4 The proof follows the same argument of [129, Remark 1]. From

(11.67), we have

Γk

[
V11k

V21k

]

=

[
V11k

V21k

]

∆k. (11.76)

From (11.74), we have

Γk

[
W11k

W21k

]

=

[
W11k

W21k

]

S11k.

Let T be an invertible transformation matrix such that

T−1S11kT = ∆k,

then we have

Γk

[
W11k

W21k

]

T =

[
W11k

W21k

]

TT−1S11kT =

[
W11k

W21k

]

T∆k. (11.77)

Comparing (11.76) and (11.77) we must have

[
W11k

W21k

]

T =

[
V11k

V21k

]

D

where D is a diagonal and invertible matrix. Thus,

W21kW−1
11k = V21kDT−1TD−1V−1

11k = V21kV−1
11k.

This finishes the proof.

We can apply the algorithm to the problem described in (11.49).
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Algorithm 11.1

Step 0: Data J, im, Q, R, altitude of the spacecraft, and selected sample

period ts.

Step 1: Calculate Ak and Bk using (11.33-11.34).

Step 2: Calculate Ek and Fk using (11.44-11.45).

Step 3: Calculate Γk using (11.64).

Step 4: Use Schur decomposition (11.74) to get Wk.

Step 5: Calculate Pk using (11.75).

Remark 11.4 This algorithm makes full use of the fact that A is a constant matrix

in (11.45). Therefore, F is a constant matrix and the inverse of F in (11.64) does not

need to be repeated many times which is the main difference between the method

discussed in this section and the method in [90].

11.3.4 Simulation test

The following problem is used to demonstrate the effectiveness of proposed de-

sign algorithm. Let the spacecraft inertia matrix be J = diag(250,150,100)kg ·
m2. The orbital inclination im = 57o, the orbit is circular with an altitude of

657 km. In view of equation (11.32), the orbital period is 5863 seconds, and

the orbital rate is ω0 = 0.0011 rad/second. Assuming that the total number of

samplestaken in one orbit is p = 100, then, each sample period is 58.6352 sec-

onds. Select Q = diag(1.5∗10−9,1.5∗10−9,1.5∗10−9,0.001,0.001,0.001) and

R = diag(2 ∗ 10−3,2 ∗ 10−3,2 ∗ 10−3). The Riccati equation solutions Pk for

k = 0,1,2, . . . ,99 are calculated using Algorithm 11.1 and are stored. Assuming

that the initial quaternion error is (0.01,0.01,0.01) and the initial body rate is

(0.00001,0.00001,0.00001) radians per second, applying the feedback (11.41)

to the system (11.33), the simulated spacecraft attitude response is given in Fig-

ures 11.1-11.6.

The designed controller stabilizes the spacecraft using only magnetic torques.

This shows the effectiveness of the design method. Since this time-varying sys-

tem has a long period 5863 seconds and the number of samples in each period is

100, this means that using Γk in (11.64) instead of Πk in (11.59) saves about 100

matrix inverses, a significant improvement in the computation compared to the

well-known algorithm of [90]. For more detailed discussion of the computational

comparison, readers are referred to [315].
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Figure 11.1: Attitude response q1.
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Figure 11.2: Attitude response q2.
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Figure 11.3: Attitude response q3.
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Figure 11.4: Body rate response ω1.
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Figure 11.5: Body rate response ω2.
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Figure 11.6: Body rate response ω3.
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11.4 Attitude and desaturation combined control

Spacecraft attitude control and reaction wheel desaturation are normally regarded

as two different control system design problems and are discussed in separate

chapters in text books, such as [232, 280]. While spacecraft attitude control us-

ing magnetic torques has been one of the main research areas (see, for example,

[214, 233] and extensive references therein), there are many research papers that

address reaction wheel momentum management, see for example, [41, 59, 75]

and references therein. In [59], Dzielsk et al. formulated the problem as an op-

timization problem and a nonlinear programming method was proposed to find

the solution. His method can be very expensive and there is no guarantee to

find the global optimal solution. Chen et al. [41] discussed optimal desaturation

controllers using magnetic torques and thrusters. Their methods find the optimal

torques which, however, may not be able to achieve by magnetic torque coils

because given the desired torques in a three dimensional space, magnetic torque

coils can only generate torques in a two dimensional plane [232]. Like most pub-

lications on this problem, the above two papers do not consider the time-varying

effect of the geomagnetic field in body frame, which arises when a spacecraft

flies around the Earth. Giulietti et al. [75] considered the same problem with

more details on the geomagnetic field, but the periodic feature of the magnetic

field along the orbit was not used in their proposed design. In addition, all these

proposed designs considered only momentum management but not attitude con-

trol.

Since both attitude control and reaction wheel desaturation are performed at

the same time using the same magnetic torque coils, the control system design

should consider these two design objectives at the same time and some recent

research papers tackled the problem in this direction, for example, [6, 262]. In

[262], Tregouet et al. studied the problem of the spacecraft stabilization and reac-

tion wheel desaturation at the same time. They considered time-variation of the

magnetic field in body frame, and their reference frame was the inertial frame.

However, for a Low Earth Orbit (LEO) spacecraft that uses Earth’s magnetic

field, the reference frame for the spacecraft is most likely Local Vertical Local

Horizontal (LVLH) frame. In addition, their design method depends on some as-

sumption which is not easy to verify and their proposed design does not use the

periodic feature of the magnetic field. Moreover, their design is composed of two

loops, which is essentially an idea of dealing with attitude control and wheel mo-

mentum management in separate considerations. In [6], a heuristic proportional

controller was proposed and a Lyapunov function was used to prove that the

controller can simultaneously stabilize the spacecraft with respect to the LVLH

frame and achieve reaction wheel management. But this design method does not

consider the the time-varying effect of the geomagnetic field in body frame. Al-

though these two designs are impressive, as we have seen, these designs do not

consider some factors in reality and their solutions are not optimal.
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This section proposes a more attractive design method which considers as

many factors as practical. The controlled attitude is aligned with LVLH frame.

A general reduced quaternion model, including (a) reaction wheels, (b) magnetic

torque coils, (c) the gravity gradient torque, and (d) the periodic time-varying

effects of the geomagnetic field along the orbit and its interaction with mag-

netic torque coils, is proposed. The model is an extension of the one discussed in

Chapter 4 (see also [304]). A single objective function, which considers the per-

formance of both attitude control and reaction wheel management at the same

time, is suggested. Since a well-designed periodic controller for a period sys-

tem is better than constant controllers as pointed out in [66, 119], this objective

function is optimized using the solution of a matrix periodic Riccati equation

described earlier in this Chapter, which leads to a periodic time-varying optimal

control. It is shown that the design can be calculated in an efficient way and the

designed controller is optimal for both the spacecraft attitude control and for the

reaction wheel momentum management at the same time. A simulation test is

then provided to demonstrate that the designed system achieves more accurate

attitude than the optimal control system that uses only magnetic torques. More-

over, it will be shown that the designed controller based on LQR method works

on the nonlinear spacecraft system.

11.4.1 Spacecraft model for attitude and reaction wheel desat-

uration control

Throughout the rest of this section, it is assumed that the inertia matrix of a

spacecraft J = diag(J1,J2,J3) is a diagonal matrix. This assumption is reason-

able because in practical spacecraft design, spacecraft inertia matrix J is always

designed as close to a diagonal matrix as possible [307]. (It is actually very close

to a diagonal matrix.) For spacecraft using Earth’s magnetic torques, the nadir

pointing model is probably the mostly desired one by the missions. Therefore,

the attitude of the spacecraft is represented by the rotation of the spacecraft body

frame relative to the local vertical and local horizontal frame. This means that

the quaternion and spacecraft body rate should be represented in terms of the

rotation of the spacecraft body frame relative to the LVLH frame.

Let ω = [ω1,ω2,ω3]
T be the body rate with respect to the LVLH frame rep-

resented in the body frame, ω lvlh = [0,−ω0,0]
T the orbit rate (the rotation of

LVLH frame) with respect to the inertial frame represented in the LVLH frame3,

and ω I = [ωI1,ωI2,ωI3]
T be the angular velocity vector of the spacecraft body

with respect to the inertial frame, represented in the spacecraft body frame. Let

Ab
l represent the rotational transformation matrix from the LVLH frame to the

3For a circular orbit, given the spacecraft orbital period around the Earth P, ω0 = 2π
P

is a known

constant.
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spacecraft body frame. Then, ω I is expressed as in (4.17)

ω I = ω +Ab
l ω lvlh = ω +ωb

lvlh, (11.78)

where ωb
lvlh is the rotational rate of LVLH frame relative to the inertial frame

represented in the spacecraft body frame. Assuming that the orbit is circular, i.e.,

ω̇ lvlh = 0, using the fact of (3.16)

Ȧb
l =−ω ×Ab

l , (11.79)

and taking the derivative of (11.78) give

ω̇ I = ω̇ + Ȧb
l ω lvlh +Ab

l ω̇ lvlh

= ω̇ −ω ×Ab
l ω lvlh = ω̇ −ω ×ωb

lvlh. (11.80)

Assuming that the three reaction wheels are aligned with the body frame axes,

the total angular momentum of the spacecraft hT in the body frame comprises

the angular momentum of the spacecraft Jω I and the angular momentum of the

reaction wheels hw = [hw1,hw2,hw3]
T is given by

hT = Jω I +hw, (11.81)

where

hw = JwΩ, (11.82)

Jw = diag(Jw1
,Jw2

,Jw3
) is the inertia matrix of the three reaction wheels aligned

with the spacecraft body axes, and Ω = [Ω1,Ω2,Ω3]
T is the angular rate vector of

the three reaction wheels. Let h′
T be the same vector of hT represented in inertial

frame. Let tT be the total external torques acting on the spacecraft, then it must

have (see [227])

tT =
dh′

T

dt

∣
∣
∣
∣
b

.

Taking derivative of (11.81) and using the above equation and (3.17) lead to the

dynamics equations of the spacecraft as follows

Jω̇ I + ḣw =

(
dhT

dt

)∣
∣
∣
∣
b

=−ω I ×hT +

(
dh′

T

dt

)∣
∣
∣
∣
b

= −ω I × (Jω I +hw)+ tT , (11.83)

where tT includes the gravity gradient torque tg, magnetic control torque tm,

and internal and external disturbance torque td (including residual magnetic mo-

ment induced torque, atmosphere induced torque, solar radiation torque, etc).

The torques generated by the reaction wheels tw are given by

tw =−ḣw =−JwΩ̇.
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Substituting these relations into (11.83) gives

Jω̇ I =−ω I × (Jω I +JwΩ)+ tw + tg + tm + td . (11.84)

Substituting (11.78) and (11.80) into (11.84) yields

Jω̇ = Jω ×ωb
lvlh − (ω +ωb

lvlh)× [J(ω +ωb
lvlh)+JwΩ]

+tw + tg + tm + td. (11.85)

Let

q̄ = [q0,q1,q2,q3]
T = [q0,q

T]T =
[

cos(
α

2
), êT sin(

α

2
)
]T

(11.86)

be the quaternion representing the rotation of the body frame relative to the

LVLH frame, where ê is the unit length rotational axis and α is the rotation

angle about ê. Therefore, from the derivation of (4.9), the reduced kinematics

equation becomes ( see also [304])





q̇1

q̇2

q̇3



 =
1

2





q0 −q3 q2

q3 q0 −q1

−q2 q1 q0









ω1

ω2

ω3





= g(q1,q2,q3,ω), (11.87)

since q0 =
√

1−q2
1 −q2

2 −q2
3. It can be rewritten simply as

q̇ = g(q,ω). (11.88)

From (3.61), (see also [304, 307]),

Ab
l =





2q2
0 −1+2q2

1 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 2q2
0 −1+2q2

2 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 2q2
0−1+2q2

3



 ,

we have

ωb
lvlh = Ab

l ω lvlh =





2q1q2 +2q0q3

2q2
0−1+2q2

2

2q2q3 −2q0q1



(−ω0), (11.89)

which is a function of q. Interestingly, given spacecraft inertia matrix J, tg is also

a function of q. Using the facts (a) the spacecraft mass is negligible compared to

the Earth mass, and (b) the size of the spacecraft is negligible compared to the

magnitude of the vector from the center of the Earth to the center of the mass of

the spacecraft R, the gravitational torque is given by (5.5) (see also [281, page

367]):

tg =
3µ

|R|5 R×JR, (11.90)
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where µ =GM, G= 6.669∗10−11m3/kg−s2 is the universal constant of gravita-

tion, and M is the mass of the Earth. Noticing that in local vertical local horizontal

frame, Rl = [0,0,−|R|]T, we can represent R in body frame as

R = Ab
l Rl =





2q2
0 −1+2q2

1 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 2q2
0 −1+2q2

2 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 2q2
0 −1+2q2

3









0

0

−|R|



 .

(11.91)

Denote the last column of Ab
l as Ab

l (:,3). Using the relation (2.55) (see also

[232, page 109])

ω0 =

√
µ

|R|3 (11.92)

and (11.91), we can rewrite (11.90) as

tg = 3ω2
0 Ab

l (:,3)×JAb
l (:,3). (11.93)

Let b(t) = [b1(t),b2(t),b3(t)]
T be the Earth’s magnetic field in the space-

craft coordinates, computed using the spacecraft position, the spacecraft atti-

tude, and a spherical harmonic model of the Earth’s magnetic field [280]. Let

m = [m1,m2,m3]
T be the spacecraft magnetic torque coils’ induced magnetic

moment in the spacecraft coordinates. The desired magnetic control torque tm

may not be achievable because

tm = m×b =−b×m (11.94)

provides only a torque in a two dimensional plane but not in the three di-

mensional space [232]. However, the spacecraft magnetic torque coils’ induced

magnetic moment m is an achievable engineering variable. Therefore, equation

(11.85) should be rewritten as

Jω̇ = f(ω,Ω,q)+ tw + tg −b×m+ td, (11.95)

where

f(ω,Ω,q) = Jω ×ωb
lvlh − (ω +ωb

lvlh)× [J(ω +ωb
lvlh)+JwΩ]. (11.96)

Notice that the cross product of b×m can be expressed as product of an asym-

metric matrix b× and the vector m with

b× =





0 −b3(t) b2(t)
b3(t) 0 −b1(t)
−b2(t) b1(t) 0



 . (11.97)

Denote the system states x = [ωT,ΩT,qT]T and control inputs u = [tT
w,m

T]T. The

spacecraft control system model can be written as follows:

Jω̇ = f(ω,Ω,q)+ tg +[I,−b×]u+ td , (11.98a)



192 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

JwΩ̇ =−tw, (11.98b)

q̇ = g(q,ω). (11.98c)

Remark 11.5 The reduced quaternion, instead of the full quaternion, is proposed

in this model because of many merits discussed in Chapter 9 (see also [304, 306,

311]).

11.4.2 Linearized model for attitude and reaction wheel desat-

uration control

The nonlinear model of (11.98) can be used to design control systems. One pop-

ular design method for nonlinear model involves Lyapunov stability theorem,

which is actually used in [6, 262]. A design based on this method focuses on

stability but not on performance. Another widely known method is nonlinear op-

timal control design [59], it normally produces an open loop controller which is

not robust [135] and its computational cost is high. Therefore, it is proposed to

use Linear Quadratic Regulator (LQR) which achieves the optimal performance

for the linearized system and is a closed-loop feedback control. Our task in this

section is to derive the linearized model for the nonlinear system (11.98).

In view of (4.21), ωb
lvlh in (11.89) can be expressed approximately as a linear

function of q as follows

ωb
lvlh ≈





0 0 −2ω0

0 0 0

2ω0 0 0



q−





0

ω0

0



 . (11.99)

Similarly, tg in (11.93) can be expressed approximately as a linear function of q

as in (5.9):

tg ≈





6ω2
0 (J3 − J2) 0 0

0 6ω2
0 (J3 − J1) 0

0 0 0



q := Tq. (11.100)

Since tg and ωb
lvlh are functions of q, the linearized spacecraft model can be

expressed as follows:





J 0 0

0 Jw 0

0 0 I









ω̇
Ω̇
q̇



 =






∂ f
∂ ω

∂ f
∂ Ω

∂ f
∂ q

+T

0 0 0
∂ g

∂ ω 0
∂ g

∂ q










ω
Ω
q




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+





I −b×

−I 0

0 0





[
tw

m

]

+





td

0

0



 ,

(11.101)

where ∂ f
∂ ω , ∂ f

∂ Ω , ∂ f
∂ q

, ∂ g

∂ ω , and ∂ g

∂ q
are evaluated at the desired equilibrium point

ω = 0, Ω = 0, and q = 0. Using the definition of (11.97), (11.99), (11.100), and

(11.96), we have

∂ f

∂ ω

∣
∣
∣
∣ω≈0
Ω≈0
q≈0

≈−J(ωb
lvlh)

×+(Jωb
lvlh)

×− (ωb
lvlh)

×J

∣
∣
∣
∣ω≈0
Ω≈0
q≈0

= −J





0 0 −ω0

0 0 0

ω0 0 0



+





0 0 −J2ω0

0 0 0

J2ω0 0 0



−





0 0 −ω0

0 0 0

ω0 0 0



J

=





0 0 ω0(J1 − J2 + J3)
0 0 0

ω0(−J1 + J2 − J3) 0 0



 , (11.102)

∂ f

∂ Ω

∣
∣
∣
∣ω≈0
Ω≈0
q≈0

≈ −(ω)×Jw − (ωb
lvlh)

×Jw

∣
∣
∣
∣ω≈0
Ω≈0
q≈0

=





0 0 ω0

0 0 0

−ω0 0 0



Jw

=





0 0 ω0Jw3

0 0 0

−ω0Jw1
0 0



 , (11.103)

and

∂ f

∂ q

∣
∣
∣
∣ω≈0
Ω≈0
q≈0

≈− ∂

∂ q

(
ωb

lvlh ×Jωb
lvlh

)
∣
∣
∣
∣ω≈0
Ω≈0
q≈0

= (Jωb
lvlh)

× ∂ ωb
lvlh

∂ q
−ωb

lvlh ×J
∂ ωb

lvlh

∂ q

∣
∣
∣
∣ω≈0
Ω≈0
q≈0

≈ (Jωb
lvlh)

×





0 0 −2ω0

0 0 0

2ω0 0 0



− (ωb
lvlh)

×J





0 0 −2ω0

0 0 0

2ω0 0 0





≈









0

−ω0J2

0





×

−





0 0 −ω0

0 0 0

ω0 0 0



J









0 0 −2ω0

0 0 0

2ω0 0 0




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≈





0 0 −ω0(J2 − J3)
0 0 0

−ω0(J1 − J2) 0 0









0 0 −2ω0

0 0 0

2ω0 0 0





=





2ω2
0 (J3 − J2) 0 0

0 0 0

0 0 2ω2
0 (J1 − J2)



 . (11.104)

From (11.88), we have

∂ g

∂ ω

∣
∣
∣
∣ω≈0

q≈0

≈ 1

2
I, (11.105)

∂ g

∂ q

∣
∣
∣
∣ω≈0

q≈0

≈ 0. (11.106)

Substituting (11.100), (11.97), (11.102), (11.103), (11.104), (11.105), and

(11.106) into (11.101) yields

ẋ :=





ω̇
Ω̇
q̇





=






J−1 ∂ f
∂ ω J−1 ∂ f

∂ Ω J−1
(

∂ f
∂ q

+T
)

0 0 0
∂ g

∂ ω 0 ∂ g

∂ q










ω
Ω
q





+





J−1 −J−1b×

−J−1
w 0

0 0





[
tw

m

]

+





J−1

0

0



 td

=

















0 0 a13 0 0 a16 a17 0 0

0 0 0 0 0 0 0 a28 0

a31 0 0 a34 0 0 0 0 a39

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0 0.5 0 0 0 0 0 0 0

0 0 0.5 0 0 0 0 0 0

































ω1

ω2

ω3

Ω1

Ω2

Ω3

q1

q2

q3
















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+


















J−1
1 0 0 0

b3(t)
J1

− b2(t)
J1

0 J−1
2 0 − b3(t)

J2
0

b1(t)
J2

0 0 J−1
3

b2(t)
J3

− b1(t)
J3

0

−J−1
w1

0 0 0 0 0

0 −J−1
w2

0 0 0 0

0 0 −J−1
w3

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




























tw1

tw1

tw1

m1

m2

m3











+


















td1

J1
td2

J2
td3

J3

0

0

0

0

0

0


















:= Ax+Bu+d. (11.107)

where a13 = ω0
J1−J2+J3

J1
, a16 =

ω0Jw3

J1
, a17 = 8ω2

0
J3−J2

J1
, a28 = 6ω2

0
J3−J1

J2
, a31 =

ω0
J1−J2+J3

−J3
, a34 =

ω0Jw1

−J3
, a39 = 2ω2

0
J1−J2

J3
. It is worthwhile to notice that (11.107)

is in general a time-varying system. The time-variation of the system arises from

an approximately periodic function of b(t) = b(t + T ), where T is the orbital

period given in (11.32). This magnetic field b(t) is given in (11.3). The time t = 0

is measured at the ascending-node crossing of the magnetic equator. Therefore,

the periodic time-varying matrix B in (11.107) can be written as

B =

















J−1
1 0 0 0 b15 b16

0 J−1
2 0 b24 0 b26

0 0 J−1
3 b34 b35 0

−J−1
w1

0 0 0 0 0

0 −J−1
w2

0 0 0 0

0 0 −J−1
w3

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

















, (11.108)

where

b15 =
2µ f

a3J1
sin(im) sin(ω0t),

b16 =
µ f

a3J1
cos(im),

b24 =− 2µ f

a3J2
sin(im) sin(ω0t),

b26 =
µ f

a3J2
sin(im)cos(ω0t),

b34 =− µ f

a3J3
cos(im),

b35 =− µ f

a3J3
sin(im)cos(ω0t).

A special case is when im = 0, i.e., the spacecraft orbit is on the equator plane

of the Earth’s magnetic field. In this case, b(t) = [0,− µ f

a3 ,0]
T is a constant vector
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and B is reduced to a constant matrix given as follows:

B =

















J−1
1 0 0 0 0

µ f

a3J1

0 J−1
2 0 0 0 0

0 0 J−1
3 − µ f

a3J3
0 0

−J−1
w1

0 0 0 0 0

0 −J−1
w2

0 0 0 0

0 0 −J−1
w3

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

















. (11.109)

In the remainder of the discussion, we will consider the discrete time system of

(11.107) because it is more suitable for computer controlled system implemen-

tations. The discrete time system is given as follows:

xk+1 = Axk +Bkuk +dk. (11.110)

Assuming that the sampling time is ts, the simplest but less accurate discretization

formulas to get Ak and Bk are given as (11.34). A slightly more complex but more

accurate discretization formulas to get Ak and Bk are given as follows [135, page

53]:

Ak = eAts , Bk =

∫ ts

0

eAτB(τ)dτ. (11.111)

11.4.3 The LQR design

Given the linearized spacecraft model (11.107) which has the state variables

composed of spacecraft quaternion q, the spacecraft rotational rate with respect

to the LVLH frame ω , and the reaction wheel rotational speed Ω, one can see that

to control the spacecraft attitude and to manage the reaction wheel momentum

are equivalent to minimize the following objective function

∫ ∞

0

(xTQx+uTRu)dt (11.112)

under the constraints of (11.107). The corresponding discrete time system is

given as follows:

lim
N→∞

(

min
1

2
xT

NQNxN +
1

2

N−1∑

k=0

xT
k Qkxk +uT

k Rkuk

)

s.t. xk+1 = Axk +Bkuk +dk. (11.113)
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This is clearly a LQR design problem which has known efficient methods to

solve. However, in each special case, this system has some special properties

which should be fully utilized to select the most efficient and effective method

for each of these cases.

11.4.3.1 Case 1: im = 0

It was shown earlier in this Chapter that a spacecraft in this orbit is not control-

lable if only magnetic torque bars are used. But for a spacecraft with three reac-

tion wheels as we discussed in this section, the system is fully controllable. The

controllability condition can be checked straightforward but the check is tedious

and is omitted in this section (also the controllability check is not the focus of this

section). In this case, as we have seen from (11.107), (11.109), and (11.34) that

the linear system is time-invariant. Therefore, a method for time-varying system

is not appropriate for this simple problem. For this linear time-invariant system

(LTI), the optimal solution of (11.113) is given by (B.50) (see also [135, page

69])

uk =−(R+BTPB)−1BTPAxk =−Kxk, (11.114)

where P is a constant positive semi-definite solution of the following discrete-

time algebraic Riccati equation (DARE) (B.29)

P = Q+ATPA−ATPB(R+BTPB)−1BTPA. (11.115)

The solution of (11.115) is discussed in Appendix B.3. There is an efficient algo-

rithms [7] for this DARE system and an Matlab function dare implements this

algorithm.

11.4.3.2 Case 2: im 6= 0

It was shown earlier in this Chapter that a spacecraft without any reaction wheel

in any orbit of this case is controllable if the spacecraft design satisfies some

additional conditions imposed on J matrix. By intuition, the system is also con-

trollable by adding reaction wheels. As a matter of fact, adding reaction wheels

will achieve better performance of spacecraft attitude as we will see later in this

section (which is also pointed out in [280, page 19]). A better algorithm for this

case is the one developed earlier in this Chapter because B is a time-varying ma-

trix but A is a constant matrix. The optimal solution of (11.113) is discussed in

the previous section, which is given by

uk =−(Rk +BT
k PkBk)

−1BT
k PkAkxk =−Kkxk, (11.116)

where Pk is a periodic positive semi-definite solution of the periodic time-varying

Riccati (PTVR) equation (B.19) which is rewritten here

Pk = Qk +AT
k PkAk
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−AT
k PkBk(Rk +BT

k PkBk)
−1BT

k PkAk.

(11.117)

The periodic Riccati equation for this case is discussed in the previous section

and the algorithm is presented below:

Algorithm 11.2

Data: im, J, Jw, Q, R, the altitude of the spacecraft (for the calculation of a

in (11.3)), ts (the selected sample time period), and p (the total samples in

one period T = 2π
ω0

).

Step 1: For k = 1, . . . , p, calculate Ak and Bk using (11.34) or (11.111).

Step 2: Calculate Ek and Fk using

Ek =

[
I BkR−1BT

k

0 AT

]

, (11.118)

Fk =

[
A 0

−Q I

]

= F. (11.119)

Step 3: Calculate Γk, for k = 1, . . . , p, using

Γk = F−1EkF−1Ek+1 . . . ,F
−1Ek+p−2F−1Ek+p−1. (11.120)

Step 4: Use Schur decomposition

[
W11k W12k

W21k W22k

]T

Γk

[
W11k W12k

W21k W22k

]

=

[
S11k S12k

0 S22k

]

. (11.121)

Step 5: Calculate Pk using

Pk = W21kW−1
11k. (11.122)

11.4.4 Simulation test and implementation consideration

This section has several goals. First, it shows, by using a design example, that the

proposed design achieves both attitude control and reaction wheel momentum

management. Second, it compares with the design in the previous section which
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does not use reaction wheels for the purpose to show that using reaction wheels

achieves better attitude pointing accuracy. More important, it demonstrates that

the LQR design works very well for both attitude and desaturation control for the

nonlinear spacecraft in the environment close to the reality. Finally, it discusses

the strategy in real spacecraft control system implementation.
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Figure 11.7: Body rate response ω1, ω2, and ω3.

11.4.4.1 Comparison with the design without reaction wheels

The proposed design algorithm has been tested using the same spacecraft model

and orbit parameters as in the previous section with the spacecraft inertia matrix

given by

J = diag(250,150,100)kg ·m2.

The orbital inclination im = 57o and the orbit is assumed to be circular with the

altitude 657 km. In view of equation (11.32), the orbital period is 5863 seconds

and the orbital rate is ω0 = 0.0011 rad/second. Assuming that the total number

of samples taken in one orbit is 100, then, each sample period is 58.6352 second.

It is easy to see that all parameters are selected the same as the simulation exam-

ple in the previous section so that the two different designs can be compared.

Select Q = diag([0.001,0.001,0.001,0.001,0.001,0.001,0.02,0.02,0.02]) and

R= diag([103,103,103,102,102,102]). The solution of the periodic Riccati equa-

tions Pk for k = 0,1,2, . . . ,99 have been calculated and stored using Algorithm

11.2. Assuming that the initial quaternion error is (0.01,0.01,0.01), initial body

rate vector is (0.00001,0.00001,0.00001) radians/second, and the initial wheel
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Figure 11.8: Reaction wheel response Ω1, Ω2, and Ω3.
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Figure 11.9: Attitude response q1, q2, and q3.

speed vector is (0.00001,0.00001,0.00001) radians/second, applying the feed-

back (11.116) to the linearized system (11.107) and (11.108), the linearized

spacecraft rotational rate response is obtained and given in Figure 11.7, the reac-

tion wheel response is given in Figure 11.8, and the spacecraft attitude response

is given in Figures 11.9.

Comparing the response obtained here using both reaction wheels and mag-

netic torque coils and the response obtained in previous section that uses mag-
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Figure 11.10: Body rate response ω1, ω2, and ω3.
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Figure 11.11: Reaction wheel response Ω1, Ω2, and Ω3.

netic torques only, one can see that both control methods stabilize the spacecraft,

but using reaction wheels achieve much accurate nadir pointing. Also reaction

wheel speeds approach to zero as t goes to infinity. Therefore, the second design

goal for reaction wheel desaturation is achieved nicely.
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Figure 11.12: Attitude response q1, q2, and q3.

11.4.4.2 Control of the nonlinear system

It is nature to ask the following question: can the designed controller (11.116),

which is based on the linearized model, stabilize the original nonlinear spacecraft

system (11.98) with satisfied performance? This question is answered by apply-

ing the designed controller to the original nonlinear spacecraft system (11.98).

More specifically, the LVLH frame rotational rate ωb
lvlh is calculated using the

accurate nonlinear formula (11.89) rather than the approximated linear model

(11.99). The gravity gradient torque tg is calculated using the accurate nonlinear

formula (11.93) rather than the approximated linear model (11.100). The Earth’s

magnetic field is calculated using the much accurate International Geomagnetic

Reference Field (IGRF) model [64] rather than the simplified model (11.3). This

is done as follows. First, combining (2.32) and (2.55) gives the lateral speed of

the spacecraft v = Rω0. Given the altitude of the spacecraft (657 km) and the or-

bital radius R is 7028 kilometers, the lateral speed of the spacecraft is obtained.

Assuming that the ascending node at t = 0 (“now”) is the X axis of the ECEF

frame, the velocity vector v = [0,vcos(im),v sin(im)]
T. Using Algorithm 3.4 of

[50, page 142], one can get the spacecraft coordinate in ECI frame at any time

after t = 0. Converting ECI coordinate to ECEF coordinate, one can calculate a

much accurate Earth magnetic field vector b using IGRF model [64], which has

been implemented in Matlab. Applying this Earth magnetic field vector b and

feedback control uk =−Kkxk designed by the LQR method to (11.98), the non-

linear spacecraft system is controlled by using the LQR controller. Also, larger

initial errors in 100 test cases (possibly 10 time larger than they were used in the

previous simulation test) are randomly generated.
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The nonlinear spacecraft system response to the LQR controller is given in

Figures 11.10, 11.11, and 11.12. These figures show that the proposed design

does achieve the design goals. Moreover, the difference between the linear (ap-

proximate) system response and nonlinear (true) system response for the LQR

design is very small.

11.4.4.3 Implementation to real system

In real space environment, even the magnetic field vector obtained from the high

fidelity IGRF model may not be identical to the real magnetic field vector which

can be measured by magnetometer installed on spacecraft. Therefore, it is sug-

gested to use the measured magnetic field vector b to form Bk in the state feed-

back (11.116). Because of the interaction between the magnetic torque coils and

the magnetometer, it is a common practice that measurement and control are not

taken at the same time (some time slot in a sample period is allocated to the

measurement and the rest time in the sample period is allocated for control).

Therefore, a scaling for the control gain should be taken to compensate for the

time loss in the sample period when measurement is taken. For example, if the

magnetic field measurement uses half time of the sample period, the control gain

should be doubled because only half sample period is used for control. This is

similar to the method used in [311], which will be discussed in the next Chapter.

11.5 LQR design based on a novel lifting method

It has been known for about six decades that linear periodic time-varying system

can be converted to some equivalent linear time-invariant systems [107, 108].

The most popular and widely used methods that convert the linear periodic time-

varying model into linear time-invariant models are the so-called lifting methods

proposed in [79, 169]. But the LQR design for linear periodic system has been

focused on the periodic system not on the equivalent linear time-invariant sys-

tems proposed in [79, 169]. This strategy leads to extensive research on the solu-

tions of the periodic Riccati equations (see [28, 29, 30, 267, 268] and references

therein). For the discrete-time linear periodic system, two efficient algorithms

are discussed in this chapter for Discrete-time Periodic Algebraic Riccati Equa-

tion (DPARE).

This section considers a novel lifting method that converts the linear periodic

system to an augmented Linear Time-Invariant (LTI) system. It shows that the

LQR design method can be directly applied to this LTI system. Moreover, by

making full use of the structure of the augmented LTI system, one can derive a

very efficient algorithm. The new algorithm is compared to the ones discussed

in the previous sections of this chapter. In addition to some simple analysis, the

efficiency and effectiveness of the new algorithm is demonstrated by the simu-
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lation test for the design problems of spacecraft attitude control using magnetic

torques.

11.5.1 Periodic LQR design based on linear periodic system

First, the two efficient algorithms for solving DPARE discussed in the previous

sections are briefly reviewed. This will be beneficial later in the comparison of

the proposed method to the existing methods.

Let p be an integer representing the total number of samples in one period

of a periodic discrete-time system. The following discrete-time linear periodic

system is considered:

xk+1 = Akxk +Bkuk, (11.123)

where Ak =Ak+p ∈Rn×n and Bk =Bk+p ∈Rn×m are periodic time-varying matri-

ces. For this discrete-time linear periodic system (11.33), the LQR state feedback

control is to find the optimal uk to minimize the following quadratic cost function

lim
N→∞

(

min
1

2
xT

NQNxN +
1

2

N−1∑

k=0

xT
k Qkxk +uT

k Rkuk

)

(11.124)

where

Qk = Qk+p ≥ 0, (11.125)

Rk = Rk+p > 0, (11.126)

and the initial condition x0 is given. It is now known that the LQR design

for problem (11.33-11.37) can be solved by using the periodic solution of the

discrete-time periodic algebraic Riccati equation described in the previous sec-

tions. These two algorithms solve p n-dimensional matrix Riccati equations to

find p positive semidefinite matrices Pk, k = 1, . . . , p. Given Pk, the periodic feed-

back controllers are given by the following equations:

uk =−(Rk +BT
k PkBk)

−1BT
k PkAkxk. (11.127)

These two algorithms are summarized as follows: Let

Ek =

[
I BkR−1

k BT
k

0 AT
k

]

= Ek+p, (11.128)

Fk =

[
Ak 0

−Qk I

]

= Fk+p. (11.129)

If Ak is invertible, then Ek and Fk are invertible, and

E−1
k =

[
I −BkR−1

k BT
k A−T

k

0 A−T
k

]

= E−1
k+p.
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and

F−1
k =

[
A−1

k 0

QkA−1
k I

]

= F−1
k+p.

Let yk be the costate of xk, zk = [xT
k ,y

T
k ]

T, and

Πk = E−1
k+p−1Fk+p−1E−1

k+p−2Fk+p−2 . . .E
−1
k+1Fk+1E−1

k Fk = Πk+p, (11.130)

Γk = F−1
k EkF−1

k+1Ek+1 . . . ,F
−1
k+p−2Ek+p−2F−1

k+p−1Ek+p−1 = Γk+p. (11.131)

The solutions of p discrete-time periodic algebraic Riccati equations are sym-

metric positive semi-definite matrices, Pk, k = 1, . . . , p, which are related to the

solutions of either one of the two linear systems of equations:

zk+p = Πkzk, (11.132)

zk = Γkzk+p. (11.133)

Therefore, Pk, k = 1, . . . , p, can be obtained by two methods. The first method

uses Schur decomposition:

[
T11k T12k

T21k T22k

]T

Πk

[
T11k T12k

T21k T22k

]

=

[
S11k S12k

0 S22k

]

, (11.134)

where S11k is upper-triangular and has all of its eigenvalues inside the unit circle.

The periodic solution Pk, k = 1, . . . , p, is given by

Pk = T21kT−1
11k. (11.135)

The second method uses Schur decomposition:

[
W11k W12k

W21k W22k

]T

Γk

[
W11k W12k

W21k W22k

]

=

[
U11k U12k

0 U22k

]

, (11.136)

where U11k is upper-triangular and has all of its eigenvalues outside the unit

circle. The periodic solution Pk, k = 1, . . . , p, is given by

Pk = W21kW−1
11k. (11.137)

Remark 11.6 When Ak and Qk are constant matrices, the second method is much

efficient because Fk becomes a constant matrix and F−1
k = · · · = F−1

k+p−1 = F−1,

which makes the computation of (11.131) much more efficient than the computation

of (11.130).
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11.5.2 Periodic LQR design based on linear time-invariant

system

This section discusses a lifting method that converts the discrete-time linear pe-

riodic system into an augmented linear time-invariant system. Thereby, the peri-

odic LQR design is reduced to the LQR design for the augmented linear time-

invariant system.

To simplify the discussion, assume that the number of samples in a period is

p = 3. In this section, the small case k is used for the discrete-time in the periodic

system and the capital K is used for the discrete-time in the augmented system.

x1 = A0x0 +B0u0,

x2 = A1x1 +B1u1,

x3 = A2x2 +B2u2,

x4 = A0x3 +B0u3,

x5 = A1x4 +B1u4,

x6 = A2x5 +B2u5,

x7 = A0x6 +B0u6,

...

It is ease to regroup the periodic system and to rewrite it as the following form:

x̄1 =





x1

x2

x3



=





0 0 A0

0 0 A1A0

0 0 A2A1A0









0

0

x0





+





B0 0 0

A1B0 B1 0

A2A1B0 A2B1 B2









u0

u1

u2





= Āx̄0 + B̄ū0,

x̄2 =





x4

x5

x6



=





0 0 A0

0 0 A1A0

0 0 A2A1A0









x1

x2

x3





+





B0 0 0

A1B0 B1 0

A2A1B0 A2B1 B2









u3

u4

u5





= Āx̄1 + B̄ū1,

in general, for k ≥ 0 (K ≥ 0), we have

x̄K+1 :=





xpk+1

xpk+2

xpk+3




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=





0 0 A0

0 0 A1A0

0 0 A2A1A0









xp(k−1)+1

xp(k−1)+2

xp(k−1)+3





+





B0 0 0

A1B0 B1 0

A2A1B0 A2B1 B2









upk

upk+1

upk+2





:= Āx̄K + B̄ūK , (11.139)

where

x̄0 =





x−2

x−1

x0



 :=





0

0

x0



 , ū0 =





u0

u1

u2



 .

It is worthwhile to note that (11.139) is a linear time-invariant system. It is ease

to extend the result to the general case. Let

x̄K =








xp(k−1)+1

xp(k−1)+2

...

xp(k−1)+p







, x̄0 :=








0
...

0

x0







, ūK =







upk

upk+1

. . .
upk+p−1






,

and

x̄K+1 =








xpk+1

xpk+2

...

xpk+p







, ūK+1 =







up(k+1)

up(k+1)+1

. . .
up(k+1)+p−1






.

Theorem 11.6

Given a linear periodic discrete-time system with period of p as follows:

xpk+1 = A0xpk +B0upk,

xpk+2 = A1xpk+1 +B1upk+1,

...

xpk+p = Ap−1xpk+p−1+Bp−1upk+p−1. (11.140)

Then, this discrete-time periodic system is equivalent to the linear time-invariant

system given as follows:

x̄K+1 :=








xpk+1

xpk+2

...

xpk+p







=








0 . . . 0 A0

0 . . . 0 A1A0

...
...

...
...

0 . . . 0 Ap−1 . . .A2A1A0















xp(k−1)+1

xp(k−1)+2

...

xp(k−1)+p







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+








B0 0 . . . 0

A1B0 B1 . . . 0
...

...
...

...

Ap−1 . . .A1B0 Ap−1 . . .A2B1 . . . Bp−1














upk

upk+1

. . .
upk+p−1







:= Āx̄K + B̄ūK , (11.141)

where Ā ∈ Rpn×pn and B̄ ∈ Rpn×pm. Moreover, the structure of B̄ matrix guarantees

the causality of the system (11.141).

It is worthwhile to emphasize that there is no overlap between x̄K+1 and x̄K ; in

addition, there is no overlap between ūK+1 and ūK . This is the major difference

between the proposed lifting method and the existing lifting methods in [79,

169] (see also [268]). This feature makes it possible to apply existing design

methods to the linear time-invariant system (11.141) which is equivalent to the

linear periodic system (11.140). The remainder of this section discusses the LQR

design for the system (11.141). Again, let

Qk = Qk+p ≥ 0, (11.142)

Rk = Rk+p > 0, (11.143)

hold and

Q̄K := diag(Q1, . . . ,Qp−1,Q0)≥ 0,

R̄K := diag(R0, . . . ,Rp−1)> 0, (11.144)

be the constant matrices. Since the initial condition x̄0 is given. The LQR state

feedback control is to find the optimal ūK to minimize the following quadratic

cost function

lim
N→∞

min
1

2

[

xT
N pQN pxN p +

N p−1
∑

k=0

(
xT

k Qkxk +uT
k Rkuk

)

]

= lim
N→∞

min
1

2




xT

0 Q0x0
︸ ︷︷ ︸

x̄T
0
Q̄K x̄0

+uT
0 R0u0 + . . .+uT

p−1Rp−1up−1
︸ ︷︷ ︸

ūT
0

R̄K ū0

+xT
1 Q1x1 + . . .+xT

p−1Qp−1xp−1 +xT
pQ0xp

︸ ︷︷ ︸

x̄T
1
Q̄K x̄1

+uT
pR0up + . . .+uT

2p−1Rp−1u2p−1
︸ ︷︷ ︸

ūT
1

R̄K ū1
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+xT
p+1Q1xp+1 + . . .+xT

2p−1Qp−1x2p−1+xT
2pQ0x2p

︸ ︷︷ ︸

x̄T
2
Q̄K x̄2

+ . . .

+uT
p(N−1)R0up(N−1)+ . . .+uT

pN−1Rp−1upN−1
︸ ︷︷ ︸

ūT
N−1

R̄K ūN−1

+xT
p(N−1)+1Q1xp(N−1)+1+ . . .+xT

pN−1Qp−1xpN−1 +xT
pNQ0xpN

︸ ︷︷ ︸

x̄T
NQ̄K x̄N

)

= lim
N→∞

min
1

2

[

x̄T
NQ̄N x̄N +

N−1∑

K=0

(
x̄T

KQ̄K x̄K + ūT
KR̄K ūK

)

]

(11.145)

It is straightforward to see that the optimal control problem described by (11.141)

and (11.145) is time-invariant but equivalent to the time-varying periodic system

described by (11.33) and (11.37). Moreover, the optimal feedback matrix of the

system (11.141 -11.145) is given in (B.21) as follows:

ūK =−(R̄+ B̄TP̄B̄)−1B̄TP̄Āx̄K, (11.146)

where P̄ is the solution of the following time-invariant algebraic Riccati equation

(see (B.29) and (B.50)):

ĀTP̄Ā− P̄− ĀTP̄B̄(R̄+ B̄TP̄B̄)−1B̄TP̄Ā+ Q̄ = 0. (11.147)

Notice that Ā is not invertible, this time-invariant algebraic Riccati equation can-

not be directly solved by using the algorithms either described in Appendix B.3

or proposed in [129, 269], but it can be solved by using the algorithm proposed in

[196]. However, because of the structure of Ā, there is a more efficient algorithm

than the one of [196]. The new algorithm makes full use of the specific structure

of Ā in which the first (p−1)n columns are zeros. Denote

Q̄ := Q̄K =

[
diag(Q1, . . . ,Qp−1) 0

0 Q0

]

= diag(Q̄1,Q̄2), (11.148)

where Q̄1 = diag(Q1, . . . ,Qp−1) ∈ R(p−1)n×(p−1)n and Q̄2 = Q0 ∈ Rn×n,

R̄ := R̄K =

[
diag(R0, . . . ,Rp−2) 0

0 Rp−1

]

= diag(R̄1, R̄2), (11.149)

where R̄1 = diag(R0, . . . ,Rp−2) ∈ R(p−1)m×(p−1)m and R̄2 = Rp−1 ∈ Rm×m. Let

Ā =










0 . . . 0 A0

0 . . . 0 A1A0

...
...

...
...

0 . . . 0 Ap−2 . . .A1A0

0 . . . 0 Ap−1 . . .A2A1A0










=






0 ... 0
0 ... 0

...
...

...
0 ... 0
0 ... 0

∣
∣
∣
∣
∣
∣
∣

A0

A1A0

...
Ap−2...A1A0

Ap−1...A2A1A0





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=







0
︸︷︷︸

(p−1)n columns

Ā1

Ā2

︸︷︷︸

n columns






= [ 0 | F̄ ] , (11.150)

where Ā1 ∈ R(p−1)n×n, Ā2 ∈ Rn×n, and F̄ =
[
ĀT

1 , Ā
T
2

]T ∈ Rpn×n;

B̄ =










B0 0 . . . 0 0

A1B0 B1 . . . 0 0
...

...
...

...
...

Ap−2 . . .A1B0 Ap−2 . . .A2B1 . . . Bp−2 0

Ap−1 . . .A1B0 Ap−1 . . .A2B1 . . . Ap−1Bp−2 Bp−1










=









B̄1

B̄2









,

(11.151)

where B̄1 ∈ R(p−1)n×pm and B̄2 ∈ Rn×pm; and

P̄ =

[
P̄11 P̄12

P̄21 P̄22

]

, (11.152)

where P̄11 ∈ R(p−1)n×(p−1)n, P̄12 ∈ R(p−1)n×n, P̄21 ∈ Rn×(p−1)n, and P̄22 ∈ Rn×n.

Let

Y = P̄B̄(R̄+ B̄TP̄B̄)−1B̄TP̄. (11.153)

Substituting (11.148), (11.149), (11.150), (11.151), (11.152), and (11.153) into

(11.147) yields

[
0

F̄T

]

P̄
[

0 F̄
]
−
[

P̄11 P̄12

P̄21 P̄22

]

−
[

0

F̄T

]

Ȳ
[

0 F̄
]
+

[
Q̄1 0

0 Q̄2

]

= 0,

(11.154)

or equivalently

[
0 0

0 F̄TP̄F̄

]

−
[

P̄11 P̄12

P̄21 P̄22

]

−
[

0 0

0 F̄TȲF̄

]

+

[
Q̄1 0

0 Q̄2

]

= 0. (11.155)

This proves P̄12 = P̄T
21 = 0 and P̄11 = P̄T

11 = Q̄1. By examining the lower right

block of (11.155), it is easy to see

F̄TP̄F̄ = ĀT
1 Q̄1Ā1 + ĀT

2 P̄22Ā2 ∈ Rn×n, (11.156)

and

F̄TȲF̄

= [ ĀT
1 , Ā

T
2 ]
[

Q̄1B̄1

P̄22B̄2

]

[ R̄+ B̄T
1 Q̄1B̄1 + B̄T

2 P̄T
22B̄2 ]

−1
[ B̄T

1 Q̄1 B̄T
2 P̄22 ]

[
Ā1

Ā2

]

=
[

ĀT
1 Q̄1B̄1 + ĀT

2 P̄22B̄2

]

︸ ︷︷ ︸

n×pm

[
R̄+ B̄T

1 Q̄1B̄1 + B̄T
2 P̄22B̄2

]
−1

︸ ︷︷ ︸

pm×pm

[

B̄T
1 Q̄1Ā1 + B̄T

2 P̄22Ā2

]

︸ ︷︷ ︸

pm×n

.
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(11.157)

Let

Â = Ā2 ∈ Rn×n, (11.158a)

B̂ = B̄2 ∈ Rn×pm, (11.158b)

Q̂ = Q̄2 + ĀT
1 Q̄1Ā1 ∈ Rn×n, (11.158c)

R̂ = R̄+ B̄T
1 Q̄1B̄1 ∈ Rpm×pm, (11.158d)

Ŝ = ĀT
1 Q̄1B̄1 ∈ Rn×pm, (11.158e)

P̂ = P̄22 ∈ Rn×n. (11.158f)

The lower right block of (11.155) can be rewritten as follows:

ÂTP̂Â− P̂−
(
ÂTP̂B̂+ Ŝ

)

︸ ︷︷ ︸

n×pm

(
B̂TP̂B̂+ R̂

)−1

︸ ︷︷ ︸

pm×pm

(
B̂TP̂Â+ ŜT

)

︸ ︷︷ ︸

pm×n

+Q̂ = 0. (11.159)

The Riccati equation (11.159) is a special case discussed in [7, Eq. (6)]. An

efficient Matlab function dare that implements an algorithm of [7] is available

to solve (11.159).

Remark 11.7 Comparing to the methods described in the previous section which

need to solve p n-dimensional discrete-time Riccati equations, one needs only to

solve one n-dimensional discrete-time Riccati equation using the method proposed

in this section.

To compare the efficiency of the method to the ones discussed in Section

11.5.1, The Matlab function dare is not used directly because dare calculates

more information than the solution of the Riccati equation (11.159). Let B̃ = B̂,

R̃ = R̂,

Ã = Â− B̂R̂−1ŜT, (11.160)

and

Q̃ = Q̂− ŜR̂−1ŜT. (11.161)

Riccati equation (11.159) can be solved by either eigen-decomposition or Schur

decomposition for the following generalized eigenvalue problem [7, page 1748,

equation (8)]:

λ

[
I B̃R̃−1B̃T

0 ÃT

]

−
[

Ã 0

−Q̃ I

]

:= λ E−F. (11.162)

If Ã is invertible, then det(E) 6= 0 and 0 = det(λ E−F) = det(λ I−E−1F), the

problem is reduced to solve the eigenvalue for problem (11.46):

Z = E−1F =

[
I −B̃R̃−1B̃TÃ−T

0 Ã−T

][
Ã 0

−Q̃ I

]

. (11.163)
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Using Schur decomposition for (11.163), the following equation holds:

[
W11 W12

W21 W22

]T

Z

[
W11 W12

W21 W22

]

=

[
S11 S12

0 S22

]

, (11.164)

where S11 is upper-triangular and has all of its eigenvalues inside the unit circle.

The solution of the discrete algebraic Riccati equation (11.159) is given by

P̂ = W21W−1
11 . (11.165)

The proposed algorithm is as follows:

Algorithm 11.3

Data: A0, . . . ,Ap−1, B0, . . . ,Bp−1, Q0, . . . ,Qp−1, R0, . . . ,Rp−1.

Step 1: Form

Ā1 =








A0

A1A0

...

Ap−2 . . .A2A1A0







, (11.166a)

B̄1 =








B0 0 . . . 0 0

A1B0 B1 . . . 0 0
...

...
...

...
...

Ap−2 . . .A1B0, Ap−2 . . .A2B1, . . . Bp−2, 0







, (11.166b)

Ā2 = Ap−1 . . .A2A1A0, (11.166c)

B̄2 =
[

Ap−1 . . .A1B0, Ap−1 . . .A2B1, . . . Bp−1

]
, (11.166d)

Q̄1 = diag(Q0, . . . ,Qp−2), Q̄2 = Qp−1, (11.166e)

R̄1 = diag(R0, . . . ,Rp−2), R̄2 = Rp−1. (11.166f)

Step 2: Form Â, B̂, Q̂, R̂, and Ŝ using (11.158).

Step 3: Find the solution P̂ of the discrete-time algebraic Riccati equation

(11.159) using the algorithm of [7] implemented as dare or using the algo-

rithm described in (11.164) and (11.165).

Step 4: The solution of the discrete-time algebraic Riccati equation (11.147)

is given by

P̄ = diag(Q̄1, P̂). (11.167)

Given x̄K, the feedback control can be calculated by (11.146). Applying this

feedback control to (11.141) yields the next state x̄K+1.



Spacecraft Control Using Magnetic Torques � 213

11.5.3 Implementation and numerical simulation

In this section, some details of implementation, which will reduce some compu-

tation time comparing to the directly implementation described in the previous

section, is discussed. The test result of the proposed algorithm for the problems

discussed in 11.3.4 and 11.4.4 is reported. The comparison of the test results ob-

tained from the method discussed here and the ones obtained in 11.3.4 and 11.4.4

is performed.

11.5.3.1 Implementation consideration

The most expensive calculations in Algorithm 11.3 are the calculation of Q̂, R̂ ,

and Ŝ in Step 2, and the calculation of R̂−1 = R̃−1 in Step 3. It is easy to check

(cf. [77]):

(1) direct calculation of Q̂ requires

O(2(p−1)2n3)+O(2(p−1)n3)+O(n2) flops,

(2) direct calculation of R̂ requires

O(2p(p−1)2n2m)+O(2p2(p−1)nm2)+O(p2m2) flops,

(3) direct calculation of Ŝ requires

O(2(p−1)2n3)+O(2(p−1)n3) flops,

(4) directly calculation of R̂−1 requires

O(p3m3) flops.

For extremely large p, i.e., very long period of the system, the majority of the

computation is the computation of R̂ and R̂−1.

Let QA = Q
1
2

1 Ā1 ∈ R(p−1)n×n and QB = Q
1
2

1 B̄1 ∈ R(p−1)n×pm. We use Matlab

notation for sub-matrices. Since Q̄1, Q̄2, and R̄ are positive diagonal matrices,

Q̂1, Ŝ2, and R̂ in (11.158) can be calculated more efficiently as follows:

for i = 1 : (p−1)n

QA(i, :) = Q
1
2

1 (i, i)Ā1(i, :);

end

Q̂ = QT
AQA

for i = 1 : n
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Q̂(i, i) = Q̂(i, i)+ Q̄2(i, i);

end

for i = 1 : (p−1)n

QB(i, :) = Q
1
2

1 (i, i)B̄1(i, :);

end

R̂ = QT
BQB

for i = 1 : pm

R̂(i, i) = R̂(i, i)+ R̄(i, i);

end

Ŝ = QT
AQB

It is easy to check (cf. [77]) the flops for the following calculations:

(1) the calculation of Q̂ requires

O((p−1)n)+O((p−1)n2)+O(2(p−1)2n3)+O(n) flops,

(2) the calculation of R̂ requires

O(p(p−1)nm)+O(2p2(p−1)nm2)+O(pm) flops,

(3) the calculation of Ŝ requires

O(2(p−1)pn2m) flops,

(4) this does not reduce the computation of R̂−1.

11.5.3.2 Simulation test for the problem in Section 11.3

The first simulation test problem is the spacecraft attitude control design using

only magnetic torques discussed in Section 11.3. The number of states of this

system is n = 6. The number of control inputs of this system is m = 3. The

controllability of this problem is established in Section 11.2. In this simulation

test, the same discrete-time linear periodic model as in Section 11.3 with the

same parameters, such as the spacecraft inertia matrix, orbital inclination, orbital

altitude, weight matrices Q and R, and the same initial conditions, is used.

Using p = 100, p = 500, and p = 1000, all three algorithms discussed in this

chapter are used for this design and the CPU times for all three algorithms are

recorded. The result is presented in Table 11.1.

Clearly, the proposed Algorithm 11.3 is significantly cheaper than the algo-

rithms 11.1 and the algorithm proposed in [90].
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Samples per period Algorithm 11.3 Algorithm 11.1 Algorithm [90]

100 0.0097 (s) 0.0757 (s) 0.2711 (s)

500 0.2528 (s) 1.6042 (s) 6.5435 (s)

1000 4.2821 (s) 6.3155 (s) 25.8996 (s)

Table 11.1: CPU time comparison for problem in [315]

11.5.3.3 Simulation test for the problem in Section 11.4

The second simulation test problem is a combined method for the spacecraft

attitude and desaturation control design using both reaction wheels and magnetic

torques discussed in Section 11.4. The number of states of this system is n = 9.

The number of control inputs of this system is m = 6. The controllability of

problem is guaranteed because three reaction wheels are assumed to be available.

Using the parameters provided in Section 11.4, for p= 100, p= 500, and p=
1000, the solutions for the corresponding algebraic Riccati equations is obtained

and the CPU times for all three algorithms are recorded. The result is presented

in Table 11.2.

Samples per period Algorithm 11.3 Algorithm 11.2 Algorithm [90]

100 0.0284 (s) 0.1120 (s) 0.3807 (s)

500 3.6376 (s) 2.5629 (s) 9.0144 (s)

1000 38.4912 (s) 10.0629 (s) 36.0690 (s)

Table 11.2: CPU time comparison for problem in [313]

For this problem, m = 6 is twice as large as the previous problem, the algo-

rithm 11.3 is faster than the algorithm 11.2 and the algorithm developed in [90]

when the total number of samples in one period is moderate (p = 100 samples

per period), but when the total number of samples in one period increases (to

p = 500 or p = 1000 samples per period), the advantage of the proposed algo-

rithm will be lost because the computation of the inverse of R̃ ∈ R6000×6000 is

O(p3m3) which is very expensive.

11.5.3.4 A nonperiodic implementation

One drawback of the above implementation is that the actuation is periodic. If

there exist disturbances, because the acutators use the periodic feedback law,
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the feedback law will not make a timely change until the next period. To have a

timely response to the disturbances, A more efficient implementation is discussed

by Midoes et al in [171].
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Attitude Maneuver and
Orbit-Raising
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12.1 Attitude maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

12.2 Orbit-raising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

12.3 Comparing quaternion and Euler angle designs . . . . . . . . . . . . . . . . . . . . . . 224

During its life span, spacecraft normally needs to change the attitude from one

orientation to another one to accommodate different mission requirements. One

example is orbital-raising described in [245]. In this Chapter, we discuss the

same problem but with a design based on reduced quaternion model.

The coordinate system of Orbview-2 satellite is provided in [245], which

is defined in Figure 12.1. The satellite is sent to the parking orbit about 300

kilometers (km) above the earth by the launch vehicle. The spacecraft thrust

control system is designed to transfer the satellite from the parking orbit to a sun-

synchronous orbit. The attitude of the satellite before orbit-raising is stabilized

in the nadir-pointing orientation as in Figure 12.1. To perform the orbit raising

task, the spacecraft needs to rotate 90o degree around y-axis so that the thrusters,

which are mounted on the anti-nadir face, are aligned parallel to the velocity

vector as described in Figure 12.2. This is a typical example of spacecraft attitude

maneuver.

217
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Figure 12.1: Coordinate definition.

12.1 Attitude maneuver

Attitude maneuver has been discussed in most popular textbooks, such as [280],

[232], and [281]. The controller design is normally very simple, and it can use ei-

ther Euler angle error, the direction cosine error matrix, Euler axis command, or

the quaternion error vector. Among these different methods, Euler angle method

and quaternion method are the most widely used because they have fewer param-

eters and these parameters are measured directly in all spacecraft. Sidi [232] has

shown, by numerical simulations, that the quaternion based maneuver control

law is clearly superior to the Euler angle based maneuver control law.

Let the current attitude quaternions be q̄ = (q0,q1,q2,q3) = (q0,q) and the

desired (or target) attitude quaternion be p̄ = (p0, p1, p2, p3) = (p0,p). Then the

error quaternion is defined by r̄ = (r0,r1,r2,r3) = (r0,r) which is given by

r̄ = p̄−1 ⊗ q̄ = p̄∗⊗ q̄ = (p0−p)⊗ (q0 +q).

In view of (3.64), r̄ can be written as






r0

r1

r2

r3






=







p0 p1 p2 p3

−p1 p0 p3 −p2

−p2 −p3 p0 p1

−p3 p2 −p1 p0













q0

q1

q2

q3






. (12.1)

The obvious PD controller is therefore given by

u =−Kr−Dω, (12.2)
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Figure 12.2: Coordinate definition.

where K and D are positive gain matrix. This control law can be verified in-

tuitively using the example of Orbview-2 satellite where to perform the orbit

raising task, the spacecraft needs to rotate 90o degree around y-axis so that

the thrusters are aligned parallel to the velocity vector (see Figures 12.1 and

12.2). Assume that the initial attitude is perfectly aligned with local vertical lo-

cal horizontal frame, i.e., q̄ = (q0,q1,q2,q3) = (1,0,0,0). The target quaternion

is p̄ = (p0, p1, p2, p3) =
(
cos
(

π
4

)
,0,sin

(
π
4

)
,0
)

which require the spacecraft to

rotate around y-axis 90o. Substituting q̄ and p̄ into (12.1) yields







r0

r1

r2

r3






=








√
2

2
0

√
2

2
0

0
√

2
2

0 −
√

2
2

−
√

2
2

0
√

2
2

0

0
√

2
2

0
√

2
2














1

0

0

0






=







√
2

2

0

−
√

2
2

0






. (12.3)

Therefore, −rT =
(

0,
√

2
2
,0
)

is a vector that a torque should be applied around y-

axis. If the spacecraft is rotated 90o degree around y-axis, the attitude quaternion

is given by q̄ =
(√

2
2
,0,

√
2

2
,0
)

. From (12.1), the error quaternion r̄ is given by







r0

r1

r2

r3






=








√
2

2
0

√
2

2
0

0
√

2
2

0 −
√

2
2

−
√

2
2

0
√

2
2

0

0
√

2
2

0
√

2
2














√
2

2

0√
2

2

0






=







1

0

0

0






. (12.4)
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Therefore, −rT = (0,0,0) requires no torque as the spacecraft has been reached

the required attitude.

12.2 Orbit-raising

The quaternion model for orbit raising depends on the spacecraft design. This

section uses OrbView-2 spacecraft [245] as an example to describe the modeling

process. Most materials in this section is directly from [311].

OrbView-2 has a momentum wheel with the angular momentum vector

aligned parallel to the orbit-normal (-y axis), the spacecraft attitude control is

performed by this wheel and three magnetic torque bars. The parking-orbit of

OrbView-2 is about 300 km above the Earth surface, and the working-orbit is

about 705 km. Orbit-raising is performed by four thrusters which are mounted

on the anti-nadir face of the spacecraft in each corner of a square with a side

length of 2d as shown in Figure 12.3.

Figure 12.3: Thrusters coordinate definition.

The thrusters point to +z direction (into the page) and are canted 5o degree

from z-axis to produce moments to maintain the spacecraft attitude during the

burns. they are mounted a distance l along −z axis from the spacecraft center

of mass (based on the coordinate system origin). To conduct Hohmann transfers

[232] to raise the orbit, the momentum wheel provides the torque to rotate the
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spacecraft ±90o degrees to align the thrusters along with or anti-parallel to the

velocity vector (see Figure 12.2).

At this orientation, the thruster burns will raise the spacecraft orbit. Let hw be

the angular momentum produced by the momentum wheel, q̄ = [q0,q1,q2,q3]
T =

[q0,q
T]T be the quaternion that represents the rotation of the spacecraft body

frame relative to the frame described by Figure 12.2 (with x-axis aligned with

anti-nadir direction) represented in the body frame, ω = [ωx,ωy,ωz]
T be the an-

gular rate of the rotation represented in the body frame,

J =





Jx 0 0

0 Jy 0

0 0 Jz



 (12.5)

be the diagonal inertia matrix of the spacecraft, m = [mx,my,mz]
T be the control

torques generated by the thrusters, h = [Jxωx,Jyωy+hw,Jzωz]
T be the inertial an-

gular momentum vector of the spacecraft, then the spacecraft dynamics equation

is given by (4.2)

ḣ = Jω̇ =−ω ×h+m = h×ω +m, (12.6)

or equivalently





Jx 0 0

0 Jy 0

0 0 Jz









ω̇x

ω̇y

ω̇z





=





0 −Jzωz Jyωy +hw

Jzωz 0 −Jxωx

−Jyωy −hw Jxωx 0









ωx

ωy

ωz



+





mx

my

mz



 . (12.7)

From Figure 12.3, the matrices of thruster force directions F and moment arms

R in the body frame are given as

F = [f1, f2, f3, f4] =





−a −a a a

a −a −a a

1 1 1 1



 , (12.8)

and

R = [r1,r2,r3,r4] =





−d −d d d

−d d d −d

−l −l −l −l



 , (12.9)

where a =
√

2
2

sin(5× π
180

) ≈ 0.707× 5× ( π
180

) Newtons, columns 1, 2, 3, and 4

represent the thruster 1, 2, 3, and 4. Denote T1,T2,T3, and T4 the thruster levels

of thrusters 1, 2, 3, 4, and u = [T1,T2,T3,T4]
T, then the control torque m can be



222 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

expressed as

m =
[

r1 × f1,r2 × f2,r3 × f3,r4 × f4

]







T1

T2

T3

T4






. (12.10)

Combining (12.7) and (12.10) gives





ω̇x

ω̇y

ω̇z



 =






0 − Jzωz

Jx

Jyωy+hw

Jx
Jzωz

Jy
0 − Jxωx

Jy

− Jyωy+hw

Jz

Jxωx

Jz
0










ωx

ωy

ωz





+






1
Jx

0 0

0 1
Jy

0

0 0 1
Jz












r1 × f1

r2 × f2

r3 × f3

r4 × f4







T





T1

T2

T3

T4






. (12.11)

From [304], the vector part of the quaternion q̄ meets the following relation




q̇1

q̇2

q̇3



 =
1

2





f −q3 q2

q3 f −q1

−q2 q1 f









ωx

ωy

ωz



 , (12.12)

where f =
√

1−q2
1 −q2

2 −q2
3. The linearized form of (12.11) is given as





ω̇x

ω̇y

ω̇z



 =





0 0 hw

Jx

0 0 0

− hw

Jz
0 0









ωx

ωy

ωz





+





J−1
x 0 0

0 J−1
y 0

0 0 J−1
z











r1 × f1

r2 × f2

r3 × f3

r4 × f4







T





T1

T2

T3

T4






. (12.13)

The linearized form of (12.12) is given as

q̇ =
1

2
I3ω. (12.14)

Combining (12.13) and (12.14) gives the linearized quaternion based thruster

control system equation as follows


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



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ω̇z
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



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




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0 0 0

0 0 0 0 0 0
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0 0 1
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
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




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ωz

q1

q2
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
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+











J−1
x 0 0

0 J−1
y 0

0 0 J−1
z

0 0 0

0 0 0

0 0 0

















r1 × f1
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


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

T





T1

T2

T3

T4







:= Ax+Bu, (12.15)

where

A =


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
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



0 0 hw

Jx
0 0 0

0 0 0 0 0 0
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0 1
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
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and

B =
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
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J−1
x 0 0

0 J−1
y 0

0 0 J−1
z

0 0 0

0 0 0

0 0 0




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
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









r1 × f1

r2 × f2

r3 × f3

r4 × f4






.

For the convenience of computer control system design, following the same steps

performed in [245], the continuous system is converted to discrete form given by

x6(n+1) = Φ6x6(n)+Γ6×4u(n), (12.16)

where x6 = [ωx,ωy,ωz,q1,q2,q3]
T, Φ6 = eAts , Γ6×4 =

∫ ts

0
eA(t−τ)Bdτ , and ts is the

sample period.

In [245], it is shown that a PID control design is very successful for orbit-

raising. To incorporate the integral terms, the discrete integrators defined by iq =

[iq1, iq2, iq3]
T =

[∫ ts

0
q1,
∫ ts

0
q2,
∫ ts

0
q3

]T

are added simply as

iq(n+1) = iq(n)+ ts ∗q(n), (12.17)

where q(n) is the vector value of the quaternion at n-sampling time. Combining

(12.16) and (12.17) gives

x9(n+1) =

[
x6(n+1)
iq(n+1)

]

=

[
Φ6 06×3

ts [03×3 I3×3] I3×3

][
x6(n)
iq(n)

]

+

[
Γ6×4

03×4

]

u(n).

(12.18)
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The thrust control design is to select control u(n) to maintain the attitude in the

orbit-raising operation. This can be represented as a LQR design which mini-

mizes the cost function

J =
1

2

∞∑

n=0

[
xT(n)Qx(n)+uT(n)Ru(n)

]

under the constraints of (12.18). Using Matlab control toolbox [78], the discrete

state feedback control can directly obtained by function dare as

u(n) =−Kx9(n), (12.19)

where K is the 4×9 state feedback matrix.

12.3 Comparing quaternion and Euler angle designs

This section compares two different orbit-raising designs, the design based on

the reduced quaternion model established in the previous section and the de-

sign based on the Euler angle model given in [245]. Both designs use the stan-

dard LQR method. The same spacecraft parameters as reported in [245] are

used in both designs. In particular, the sampling interval is 4 second; the di-

agonal elements of the inertia matrix are Jx = 189(kg ·m2), Jy = 159(kg ·m2),
Jz = 114(kg · m2); the momentum wheel moment is −2.8(N ·m · sec); the di-

agonal elements of the Q matrix are Q1 = Q2 = Q3 = 1/(2.5rad/sec)2 and

Q4 = Q5 = Q6 = 1/(9rad)2, Q7 = Q8 = Q9 = 1/(1822rad2sec2); the diagonal

elements of the R matrix are R1 = R2 = R3 = R4 = 1N2. It is assumed further

that the same thrusters are installed and the same alignments are used as in Fig-

ure 12.3 where d = 0.248m and l = 0.815m.

The LQR design based on Euler angle model has been successfully used for

OrbView-2 orbit-raising and the results have been reported in [245]. Using the

parameters listed above and the design model described in [245] and applying

dlqr command in Matlab toolbox [78] yields the feedback matrix

Ke =









−23.3459 12.0068 −40.7442 0.0473 0.4753 −1.1156 −0.0002 0.0023 −0.0034

23.3459 12.0068 40.7442 −0.0473 0.4753 1.1156 0.0002 0.0023 0.0034

17.4922 −12.0068 −25.5628 1.0759 −0.4753 −0.2488 0.0035 −0.0023 −0.0004

−17.4922 −12.0068 25.5628 −1.0759 −0.4753 0.2488 −0.0035 −0.0023 0.0004









.

For the reduced quaternion model (12.18) with the same set of parameters

listed above, applying dlqr command in Matlab toolbox gives the feedback ma-

trix of the LQR design

Kq =









−19.0183 9.6756 −30.6404 0.2488 0.6127 −1.3928 0.0003 0.0024 −0.0035

19.0183 9.6756 30.6404 −0.2488 0.6127 1.3928 −0.0003 0.0024 0.0035

14.1902 −9.6756 −17.8344 1.4606 −0.6127 −0.1312 0.0036 −0.0024 0.0000

−14.1902 −9.6756 17.8344 −1.4606 −0.6127 0.1312 −0.0036 −0.0024 −0.0000









.

These feedback matrices (Ke and Kq) are applied to the orginal nonlinear
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system (12.11) and (12.12) in their discretized form as follows:





ωx(n+1)
ωy(n+1)
ωz(n+1)





= ts






1 − Jzωz(n)
Jx

Jyωy(n)+hw

Jx
Jzωz(n)

Jy
1 − Jxωx(n)

Jy

− Jyωy(n)+hw

Jz

Jxωx(n)
Jz

1










ωx(n)
ωy(n)
ωz(n)





+ ts






1
Jx

0 0

0 1
Jy

0

0 0 1
Jz






[
r1 × f1,r2 × f2,r3 × f3,r4 × f4

]
Kx9(n),

(12.20)

where K is either Ke or Kq. For Euler angle model, the nonlinear kinematics

equation of motion is given as follows [124]:





φ̇
θ̇
ψ̇



=





1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)









ωx

ωy

ωz



 (12.21)

which has its discretized form as follows:




φ(n+1)
θ(n+1)
ψ(n+1)



−





φ(n)
θ(n)
ψ(n)





= ts





1 sin(φ(n)) tan(θ(n)) cos(φ(n)) tan(θ(n))
0 cos(φ(n)) − sin(φ(n))
0 sin(φ(n)) sec(θ(n)) cos(φ(n)) sec(θ(n))









ωx(n)
ωy(n)
ωz(n)



 .

(12.22)

For reduced quaternion model, the nonlinear kinematics equation of motion has

its discretized form as follows:




q1(n+1)
q2(n+1)
q3(n+1)



−





q1(n)
q2(n)
q3(n)





=
ts

2





√

1−q2
1(n)−q2

2(n)−q2
3(n)ωx(n)−q3(n)ωy(n)+q2(n)ωz(n)

q3(n)ωx(n)+
√

1−q2
1(n)−q2

2(n)−q2
3(n)ωy(n)−q1(n)ωz(n)

−q2(n)ωx(n)+q1(n)ωy(n)+
√

1−q2
1(n)−q2

2(n)−q2
3(n)ωz(n)



 .

(12.23)

It is worthwhile to note that (12.17) is used to propagate for the last 3 integral
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states for the feedback control. For the Euler angle feedback control, the discrete

Euler angle integrators

ie = [ie1, ie2, ie3]
T =

[ ∫ ts

0
φ ,

∫ ts

0
θ ,

∫ ts

0
ψ
]T

is given by

ie(n+1) = ie(n)+ ts ∗ [φ(n),θ(n),ψ(n)]T

to propagate the last 3 integral states.

In the simulation test, it is assumed that the initial quaternion rates are ze-

ros; the initial Euler angles are 2 degrees in roll, pitch, and yaw which is about

2π/180 radians; the initial Euler angle is converted to initial quaternion and used

as the initial feedback in quaternion model based design; the initial integral terms

for quaternion and for Euler angles are all set to zeros. At the end of every itera-

tion for quaternion based design simulation, the quaternion is converted back to

the Euler angles and saved so that the responses of the two different designs can

be compared using the same error measurement. The simulation results are pro-

vided in Figures 12.4-12.9. In these figures, the solid lines are the response of the

closed loop system of quaternion based design; the dashed lines are the response

of the closed loop system of Euler angle based design. Clearly, the system based

on quaternion model design has slightly better responses than the system based

on Euler angle model design in terms of widely used metrics such as percentage

of overshoot, settling time, etc [56].
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Figure 12.4: Design comparison for quaternion rate ωx.
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Figure 12.5: Design comparison for quaternion rate ωy.
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Figure 12.6: Design comparison for quaternion rate ωz.
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Figure 12.7: Design comparison for quaternion q1.
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Figure 12.8: Design comparison for quaternion q2.
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Model predictive control (MPC) design [19, 167, 207, 3] has been a major re-

search area and many successful applications have been reported [207]. The main

idea of the model predictive control is to repeatedly solve a continuously updated

control problem based on the latest information and apply the control action to

the system based on the latest solution of the updated control problem. This re-

quires significantly more on-line computational effort than most other control

strategies. Therefore, model predictive control was not immediately adopted in

spacecraft attitude control system designs when on-board computational power

was limited. But as computers become more and more powerful, research of

model predictive control designs for spacecraft application becomes very active,

for example, Hegrenæs et. al. in [89, 292] discussed model predictive control

231



232 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

in different scenarios for spacecraft attitude control, Hartley et. al. in [86] con-

sidered model predictive control design for spacecraft rendezvous problem, Di

Cairano et. al. in [35] investigated spacecraft rendezvous and proximity maneu-

vering, and Morgan et.al. in [176] proposed model predictive control design for

swarms of spacecraft using sequential convex programming.

One of the most attractive and popular methods in model predictive control

is to repeatedly solve a Constrained Linear Quadratic Regulator (CLQR) design

problem because (a) the problem is relatively easy to solve on-line and (b) most

nonlinear systems may be appropriately simplified as a linear system. To ensure

that the model predictive control will be workable for the purpose of on-line ap-

plication, researchers have been working on efficient and effective algorithms

for the CLQR even though some algorithms were available as early as 1982 (see

[24]). Since the CLQR problem can be reduced to a quadratic programming (QP)

problem, most efficient algorithms up to the date are focused on the efficient so-

lutions of QP. For example, Rao et. al. in [210] proposed an interior-point al-

gorithms with desirable theoretical properties (polynomial complexity). Bempo-

rad et. al. in [20, 261] proposed a multi-parametric program method which was

aimed at reducing on-line computational burden and use off-line computation

as much as possible. Wang et. al. in [277] suggested some fast algorithm spe-

cially designed for on-line convex QP for the model predictive control. Though

these methods proposed innovative ideas to enhance on-line optimization effi-

ciency, there are rooms and needs to further improve these methods. For example,

the most efficient interior-point algorithm for general QP problems is infeasible

interior-point algorithms (finding a feasible starting point for general QP is ex-

pensive) which is a defect for MPC application, i.e., if early termination has to be

enforced because of the on-line application requirement, the solution may not be

feasible (because the intermediate iterates of infeasible interior-point algorithm

are very likely infeasible). The multi-parametric QP proposed in [20, 261] would

generate a look-up table growing exponentially with the horizon, state, and in-

put dimensions, as noted in [277]; therefore, multi-parametric QP can be used

for some very small problems (state dimensions is no more than 5). The convex

QP algorithm proposed in [277] also uses infeasible interior-point; therefore, its

intermediate iterates are likely infeasible. Moreover, like the method in [210],

the size of the QP problem obtained by [277] is big (for a system of n = 20,

m = 3, and a horizon N = 30, the corresponding QP has 450 variables and 1260

constraints).

In this chapter, constrained MPC design problem subject to actuators satu-

ration is considered. This problem is slightly simpler than the problems con-

sidered in [210, 20, 261, 277] but is still general enough for most real world

problems. Several significant improvements over the aforementioned methods

are proposed. First, the numbers of the variables and constraints of the corre-

sponding QP problem can be reduced significantly and all equality constraints

can be removed. This means that the corresponding QP problem is not only much
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smaller but also has a special structure, i.e., the problem is reduced to a convex

quadratic programming subject to box constraints, for which we can easily find

a feasible starting point. This idea was first proposed by this author in [309], and

then reinvented in [332]. The second improvement over [210, 277] is to solve

the reduced problem using a feasible interior-point algorithm which has several

advantages over infeasible interior-point algorithms: (a) in general, the feasible

interior-point algorithms have lower polynomial bound (more efficient) and (b)

all intermediate iterates are feasible; therefore, early termination will give a fea-

sible near-optimal solution. To further reduce the on-line computational cost, the

third improvement is to devise a new algorithm that improves the efficiency of

existing algorithms. By using the special structures of the problem, one can show

that the algorithm proposed in this section enhances the general QP algorithm

proposed in [308] in two aspects: (a) search in a larger neighborhood (the algo-

rithm is more efficient) and (b) use an explicit initial feasible interior point (the

algorithm does not need a phase-one process to find a feasible point). It is also

shown that this algorithm has the best polynomial complexity bound, a very de-

sirable theoretical property. By using the Matlab code to a spacecraft orbit-raising

MPC design example, it is then verified that the proposed constrained MPC de-

sign has superior performance in computation because of the above mentioned

improvements. The content of this chapter is based on [309, 319, 322].

Throughout this chapter, the notation e denotes a vector whose elements are

all ones, and the notation ◦ denotes Hadamard product.

13.1 Some technical lemmas

Some technical lemmas, which are independent of the problem, are introduced

in this section. The first two simple lemmas are given in [308, 309].

Lemma 13.1

Let p > 0, q > 0, and r > 0 be some constants. If p+ q ≤ r, then pq ≤ r2

4
.

Lemma 13.2

For α ∈ [0, π
2
],

sin(α)≥ sin2(α) = 1− cos2(α)≥ 1− cos(α).

The next Lemma is proved in [175].
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Lemma 13.3

Let u, v, and w be real vectors of same size satisfying u+v = w and uTv ≥ 0. Then,

2‖u‖ · ‖v‖≤ ‖u‖2 + ‖v‖2 ≤ ‖u‖2 + ‖v‖2+ 2uTv = ‖u+ v‖2 = ‖w‖2. (13.1)

The following technical lemma is from [294, page 88].

Lemma 13.4

Let u and v be any vectors of the same dimension, and uTv ≥ 0. Then

‖u◦ v‖≤ 2−
3
2 ‖u+ v‖2.

The famous Cardano’s formula can be found in [203].

Lemma 13.5

Let p and q be any real numbers that are related to the following cubic algebra

equation

x3 + px+ q= 0.

If

∆ =
(q

2

)2

+
( p

3

)3

> 0,

then the cubic equation has one real root that is given by

x =
3

√

−q

2
+

√
(q

2

)2

+
( p

3

)3

+
3

√

−q

2
−
√
(q

2

)2

+
( p

3

)3

.

For quartic polynomials, the roots can be represented by several different

formulas, which are not discussed here but are referred to [229] and references

therein. The last technical lemma in this section is as follows.

Lemma 13.6

Let u and v be any n-dimensional vectors. Then

∥
∥
∥u◦ v− 1

n

(
uTv
)

e

∥
∥
∥≤

∥
∥
∥u◦ v

∥
∥
∥.
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Proof 13.1 Simple calculation gives

∥
∥
∥u◦ v− 1

n

(
uTv
)

e

∥
∥
∥

2

=

n∑

i=1

(

uivi −
1

n

n∑

i=1

uivi

)2

=

n∑

i=1



u2
i v2

i −
2uivi

n

n∑

i=1

uivi +
1

n2

(
n∑

i=1

uivi

)2




=

n∑

i=1

(
u2

i v2
i

)
− 2

n

(
n∑

i=1

uivi

)2

+
1

n

(
n∑

i=1

uivi

)2

=

n∑

i=1

(
u2

i v2
i

)
− 1

n

(
n∑

i=1

uivi

)2

≤ ‖u◦ v‖2.

This finishes the proof.

13.2 Constrained MPC and convex QP with box con-

straints

Constrained MPC design under consideration repeatedly solves the following

CLQR design problem. Let x ∈ Rr be the system state, u ∈ Rm be the control

vector, A ∈ Rr×r and B ∈ Rr×m be system matrices. The discrete linear time-

invariant system is given by

xs+1 = Axs +Bus, (13.2)

while fulfilling the constraints

−e ≤ us ≤ e, (13.3)

where s = t, . . . , t +N − 1. Let P ∈ Rr×r, Q ∈ Rr×r, and R ∈ Rm×m be positive

definite matrices. The design is to optimize the following cost function

J = min
ut ,ut+1,··· ,ut+N−1

1

2
xT

t+NPxt+N +
1

2

N−1∑

k=0

[
xT

t+kQxt+k +uT
t+kRut+k

]
(13.4)

under the system dynamics equality constraints (13.2) and control saturation in-

equality constraints (13.3). Given current state xt , this CLQR (or MPC) design

problem is a typical convex quadratic programming problems with Nr+Nm vari-

ables xt+1, · · · ,xt+N , ut , · · · ,ut+N−1. Though this problem can be directly solved
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as suggested by [24], it can be significantly reduced to an equivalent but much

smaller convex quadratic programming problem subject only to box constraints.

Denote

Ak = A · · ·A
︸ ︷︷ ︸

product of k A

:= Ak ∈ Rr×r

with A0 = I. Since

xt+k = Axt+k−1 +But+k−1 = Akxt +

k−1∑

j=0

A jBut+k− j−1

= Akxt +

k−1∑

j=0

A jBut+k− j−1, (13.5)

equation (13.4) can be rewritten as

J = min
ut ,ut+1,··· ,ut+N−1

1

2



ANxt +

N−1∑

j=0

A jBut+N− j−1





T

P



ANxt +

N−1∑

j=0

A jBut+N− j−1





+
1

2

N−1∑

k=1



Akxt +

k−1∑

j=0

A jBut+k− j−1





T

Q



Akxt +

k−1∑

j=0

A jBut+k− j−1





+
1

2

N−1∑

k=0

(
uT

t+kRut+k

)
(13.6)

Notice that xt is a constant vector, A j, P, Q, and R are constant matrices, the

(13.6) can be reduced to

J0 = min
ut ,ut+1,··· ,ut+N−1

1

2





N−1∑

j=0

A jBut+N− j−1





T

P





N−1∑

j=0

A jBut+N− j−1





+ (ANxt)
TP





N−1∑

j=0

A jBut+N− j−1





+
1

2

N−1∑

k=1





k−1∑

j=0

A jBut+k− j−1





T

Q





k−1∑

j=0

A jBut+k− j−1





+
N−1∑

k=1



(Akxt)
TQ





k−1∑

j=0

A jBut+k− j−1









+
1

2

N−1∑

k=0

(
uT

t+kRut+k

)
. (13.7)
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Denote

k−1∑

j=0

A jBut+k− j−1 = [Ak−1B,Ak−2B, · · · ,B]
︸ ︷︷ ︸

φ k∈Rr×(km)






ut

...

ut+k−1






︸ ︷︷ ︸

vk∈Rkm

= φ kvk, k ∈ {1,2, . . . ,N}, (13.8)

Qk =

[
φ T

k Qφ k 0

0 0

]

∈ R(Nm)×(Nm), φ T
k Qφ k ∈ R(km)×(km),

k ∈ {1,2, . . . ,N −1}, (13.9)

RN =






R · · · 0
...

. . .
...

0 · · · R






︸ ︷︷ ︸

N diagonal matrices

∈ R(Nm)×(Nm), (13.10)

and

Sk =
[

AT
k Qφ k 0

]
∈ Rr×(Nm), AT

k Qφ k ∈ Rr×(km),

k ∈ {1,2, . . . ,N −1}, (13.11)

where 0’s are zero matrices with appropriate dimensions. The CLQR (or MPC)

design is reduced further to

J0 = min
ut ,ut+1,··· ,ut+N−1

1

2
vT

N

(

φ T
NPφ N +

N−1∑

k=1

Qk +RN

)

vN + xT
t

(

AT
NPφ N +

N−1∑

k=1

Sk

)

vN

s.t. − e ≤ vN ≤ e. (13.12)

Let n = Nm,

x = vN , (13.13)

H =

(

φ T
NPφ N +

N−1∑

k=1

Qk +RN

)

, (13.14)

cT = xT
t

(

AT
NPφ N +

N−1∑

k=1

Sk

)

. (13.15)

The CLQR (or MPC) design problem can be written in a standard form of convex

quadratic problem with box constraints:

(QP) min 1
2
xTHx+ cTx, subject to − e ≤ x ≤ e, (13.16)



238 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

where 0 < H ∈ Rn×n is a positive definite matrix, c ∈ Rn is given, and x ∈ Rn is

the control vector to be optimized. This convex quadratic programming problem

has Nm variables and 2Nm box constraints, and its size is independent of the

system dimension r, a much smaller and simpler problem than the original one.

A quick comparison of the MPC problem sizes and reduced QP sizes using the

method of this section and methods mentioned in [277] (cf. [277, Table 1]) is

given in Table 1.

Table 13.1: Comparison of reduced QP sizes of the proposed method and other

methods

system control horizon QP size of this section QP size of [277] and other papers
state r input m N # of variables # of constraints # of variables # of constraints

4 2 20 40 80 100 320

10 3 30 90 180 360 1080

16 4 30 120 240 570 1680

30 8 30 240 480 1110 3180

The bigger the linear system is, the more advantage of the proposed method

will be. A bigger advantage of the proposed method is that the constraints in

(13.16) is very simple that admits an feasible initial interior point (see Section

13.6), and the proposed method allows users to use more efficient feasible (ini-

tial) interior-point algorithms rather than an infeasible (initial) interior-point al-

gorithm as used in [277]. Moreover, if a premature termination is enforced due

to the on-line computational requirement, the solution is feasible.

All the simplifications described in this section is off-line. But it greatly re-

duces the on-line problem size and simplifies the problem constraints. However,

it is not wise to use an interior-point algorithm designed for general problems for

this very special convex quadratic programming problem which has only box

constraints. In the remainder of this chapter, the structure of the box con-

straints will be fully investigated and a every efficient algorithm for the problem

(13.16) will be devised.

13.3 Central path of convex QP with box constraints

In view of the KKT conditions (see Appendix A or [185]), since H is positive

definite matrix, x is an optimal solution of (13.16) if and only if x, λ , and γ
satisfy

−λ + γ −Hx = c, (13.17a)
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−e ≤ x ≤ e, (13.17b)

(λ ,γ)≥ 0, (13.17c)

λi(ei − xi) = 0, γi(ei + xi) = 0, i = 1, . . . ,n. (13.17d)

Denote y = e−x ≥ 0, z = e+x ≥ 0. The KKT conditions can be rewritten as

Hx+ c+λ − γ = 0, (13.18a)

x+y = e, x− z =−e, (13.18b)

(y,z,λ ,γ)≥ 0, (13.18c)

λiyi = 0, γizi = 0, i = 1, . . . ,n. (13.18d)

For the convex (QP) problem, the KKT conditions are also sufficient for x to

be a global optimal solution (see Appendix A). Denote the feasible set F as a

collection of all points that meet the constraints (13.18a), (13.18b), (13.18c)

F = {(x,y,z,λ ,γ) : Hx+ c+λ − γ = 0, (y,z,λ ,γ)≥ 0, x+y = e,x− z =−e},
(13.19)

and the strictly feasible set F o as a collection of all points that meet the con-

straints (13.18a), (13.18b), and are strictly positive in (13.18c)

F o = {(x,y,z,λ ,γ) : Hx+c+λ −γ = 0, (y,z,λ ,γ)> 0, x+y = e,x−z =−e}.
(13.20)

Similar to the linear programming, the central path C ∈ F o ⊂F is defined as

a curve in finite dimensional space parameterized by a scalar τ > 0 as follows.

For each interior point (x,y,z,λ ,γ) ∈ F o on the central path, there is a τ > 0

such that

Hx+ c+λ − γ = 0, (13.21a)

x+y = e, x− z =−e, (13.21b)

(y,z,λ ,γ)> 0, (13.21c)

λiyi = τ, γizi = τ, i = 1, . . . ,n. (13.21d)

Therefore, the central path is an arc that is parameterized as a function of τ and

is denoted as

C = {(x(τ),y(τ),z(τ),λ(τ),γ(τ)) : τ > 0}. (13.22)

As τ → 0, the moving point (x(τ),y(τ),z(τ),λ(τ),γ(τ)) on the central path

represented by (13.21) approaches the solution of (QP) represented by (13.16).

Throughout the rest of this chapter, the following assumption is made.

Assumption:

1. F o is not empty.
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Assumption 1 implies the existence of a central path. This assumption is always

true for the CLQR problem. An explicit initial interior point will be provided

later in this chapter.

Let 1 > θ > 0, denote p = (y,z), ω = (λ ,γ), and the duality measure

µ =
λ

T
y+ γTz

2n
=

pTω

2n
. (13.23)

A set of neighborhood of the central path is defined as

N2(θ) = {(x,y,z,λ ,γ) ∈ F o : ‖p◦ω −µe‖ ≤ θ µ} ⊂ F o. (13.24)

As the duality measure is reduced to zero, the neighborhood of N2(θ) will be

a neighborhood of the central path that approaches the optimizer(s) of the QP

problem, therefore, all points inside N2(θ) will approach the optimizer(s) of the

QP problem. For (x,y,z,λ ,γ)∈N2(θ), since (1−θ)µ ≤ωi pi ≤ (1+θ)µ , where

ωi are either λi or γi, and pi are either yi or zi, it must have

ωi pi

1+θ
≤ maxi ωi pi

1+θ
≤ µ ≤ mini ωi pi

1−θ
≤ ωi pi

1−θ
. (13.25)

13.4 An algorithm for convex QP with box constraints

The idea of arc-search proposed in this section is very simple. The algorithm

starts from a feasible point in N2(θ) close to the central path, constructs an arc

that passes through the point and approximates the central path, searches along

the arc to a new point in a larger area N2(2θ) that reduces the duality measure

pTω and meets (13.21a), (13.21b), and (13.21c). The process is repeated by find-

ing a better point close to the central path or on the central path in N2(θ) that

simultaneously meets (13.21a), (13.21b), and (13.21c).

Following the idea used in [308], an ellipse E [37] in an appropriate dimen-

sional space will be used to approximate the central path C described by (13.21),

where

E = {(x(α),y(α),z(α),λ(α),γ(α)) :

(x(α),y(α),z(α),λ(α),γ(α)) =~acos(α)+~bsin(α)+~c},
(13.26)

~a ∈ R5n and ~b ∈ R5n are the axes of the ellipse, ~c ∈ R5n is the center of the

ellipse. Given a point (x,y,z,λ ,γ) = (x(α0),y(α0),z(α0),λ(α0),γ(α0)) ∈ E
which is close to or on the central path,~a,~b,~c are functions of α , (x,λ ,γ,y,z),
(ẋ, ẏ, ż, λ̇ , γ̇), and (ẍ, ÿ, z̈, λ̈ , γ̈), where (ẋ, ẏ, ż, λ̇ , γ̇) and (ẍ, ÿ, z̈, λ̈ , γ̈) are defined

as
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







H 0 0 I −I

I I 0 0 0

I 0 −I 0 0

0 Λ 0 Y 0

0 0 Γ 0 Z

















ẋ

ẏ

ż

λ̇
γ̇









=









0

0

0

λ ◦y

γ ◦ z









, (13.27)









H 0 0 I −I

I I 0 0 0

I 0 −I 0 0

0 Λ 0 Y 0

0 0 Γ 0 Z

















ẍ

ÿ

z̈

λ̈
γ̈









=









0

0

0

−2λ̇ ◦ ẏ

−2γ̇ ◦ ż









, (13.28)

where Λ = diag(λ ), Γ = diag(γ), Y = diag(y), and Z = diag(z). The first rows

of (13.27) and (13.28) are equivalent to

Hẋ = γ̇ − λ̇ , Hẍ = γ̈ − λ̈ . (13.29)

The next 2 rows of (13.27) and (13.28) are equivalent to

ẋ =−ẏ, ẋ = ż, ẍ =−ÿ, ẍ = z̈. (13.30)

The last 2 rows of (13.27) and (13.28) are equivalent to

p◦ ω̇ + ṗ◦ω = p◦ω, (13.31)

p◦ ω̈ + p̈◦ω =−2ṗ◦ ω̇, (13.32)

where ◦ denotes the Hadamard product which will be used in the remainder of

this chapter.

It has been shown in [306, 308] that one can avoid the calculation of~a,~b, and

~c in the expression of the ellipse. The following formulas are used instead.

Theorem 13.1

Let (x(α),y(α),z(α),λ (α),γ(α)) be an arc defined by (13.26) passing through

a point (x,y,z,λ ,γ) ∈ E , and its first and second derivatives at (x,y,z,λ ,γ) be

(ẋ, ẏ, ż, λ̇ , γ̇) and (ẍ, ÿ, z̈, λ̈ , γ̈) which are defined by (13.27) and (13.28). Then an

ellipse approximation of the central path is given by

x(α) = x− ẋsin(α)+ ẍ(1− cos(α)), (13.33)

y(α) = y− ẏsin(α)+ ÿ(1− cos(α)), (13.34)

z(α) = z− żsin(α)+ z̈(1− cos(α)), (13.35)

λ(α) = λ − λ̇ sin(α)+ λ̈(1− cos(α)), (13.36)

γ(α) = γ − γ̇ sin(α)+ γ̈(1− cos(α)). (13.37)
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Two compact representations for p(α) = (y(α),z(α)) and ω(α) =
(λ(α),γ(α)) are given below:

p(α) = p− ṗ sin(α)+ p̈(1− cos(α)), (13.38)

ω(α) = ω − ω̇ sin(α)+ ω̈(1− cos(α)). (13.39)

The duality measure at point (x(α),p(α),ω(α)) is defined as:

µ(α) =
λ (α)Ty(α)+ γ(α)Tz(α)

2n
=

p(α)Tω(α)

2n
. (13.40)

Assuming (y,z,λ ,γ) > 0, one can easily see that if
ẏ

y
, ż

z
, λ̇

λ ,
γ̇
γ ,

ÿ

y
, z̈

z
, λ̈

λ ,
γ̈
γ are

bounded (this will be shown to be true), and if α is small enough, then, y(α)> 0,

z(α) > 0, λ (α) > 0, and γ(α) > 0. It will also be shown that searching along

this ellipse will reduce the duality measure, i.e., µ(α)< µ .

Lemma 13.7

Let (x,y,z,λ ,γ) be a strictly feasible point of (QP), (ẋ, ẏ, ż, λ̇ , γ̇) and (ẍ, ÿ, z̈, λ̈ , γ̈)
meet (13.27) and (13.28), (x(α),y(α),z(α),λ (α),γ(α)) be calculated using

(13.33), (13.34), (13.35), (13.36), and (13.37), then the following conditions hold.

x(α)+ y(α) = e, x(α)− z(α) =−e, Hx(α)+ c+λ(α)+ γ(α) = 0.

Proof 13.2 Since (x,y,z,λ ,γ) is a strictly feasible point, the result follows from

direct calculation by using (13.20), (13.27), (13.28), and Theorem 13.1.

Lemma 13.8

Let (ẋ, ṗ, ω̇) be defined by (13.27), (ẍ, p̈, ω̈) be defined by (13.28), and H be positive

definite matrix. Then the following relations hold:

ṗTω̇ = ẋT(γ̇ − λ̇) = ẋTHẋ ≥ 0, (13.41)

the equality holds if and only if ‖ẋ‖= 0;

p̈Tω̈ = ẍT(γ̈ − λ̈) = ẍTHẍ ≥ 0, (13.42)

the equality holds if and only if ‖ẍ‖= 0;

p̈Tω̇ = ẍT(γ̇ − λ̇) = ẋT(γ̈ − λ̈) = p̈Tω̈ = ẋTHẍ; (13.43)

−(ẋTHẋ)(1− cos(α))2 − (ẍTHẍ)sin2(α)
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≤ (ẍT(γ̇ − λ̇)+ ẋT(γ̈ − λ̈))sin(α)(1− cos(α))

≤ (ẋTHẋ)(1− cos(α))2 +(ẍTHẍ)sin2(α); (13.44)

and

−(ẋTHẋ)sin2(α)− (ẍTHẍ)(1− cos(α))2

≤ (ẍT(γ̇ − λ̇)+ ẋT(γ̈ − λ̈))sin(α)(1− cos(α))

≤ (ẋTHẋ)sin2(α)+ (ẍTHẍ)(1− cos(α))2. (13.45)

For α = π
2

, (13.44) and (13.45) reduce to

−
(
ẋTHẋ+ ẍTHẍ

)
≤ (ẍTHẋ+ ẋTHẍ)≤ ẋTHẋ+ ẍTHẍ. (13.46)

The proof of this lemma is given in the last section.

From Lemmas 13.8, 13.1, and 13.3, it can be shown that ṗ

p
:=
(

ẏ

y
, ż

z

)

,

ω̇
ω :=

(
λ̇
λ ,

γ̇
γ

)

, p̈

p
:=
(

ÿ

y
, z̈

z

)

, and ω̈
ω :=

(
λ̈
λ ,

γ̈
γ

)

are all bounded as claimed in the

following two Lemmas.

Lemma 13.9

Let (x,p,ω) = (x,y,z,λ ,γ) ∈ N2(θ ) and (ẋ, ṗ, ω̇) = (ẋ, ẏ, ż, λ̇ , γ̇) meet equation

(13.27). Then,
∥
∥
∥

ṗ

p

∥
∥
∥

2

+
∥
∥
∥

ω̇

ω

∥
∥
∥

2

≤ 2n

1−θ
, (13.47)

∥
∥
∥

ṗ

p

∥
∥
∥

2∥
∥
∥

ω̇

ω

∥
∥
∥

2

≤
(

n

1−θ

)2

, (13.48)

0 ≤ ṗTω̇

µ
≤ 1+θ

1−θ
n := δ1n. (13.49)

The proof of this lemma is given in the last section.

Lemma 13.10

Let (x,p,ω) = (x,y,z,λ ,γ) ∈ N2(θ ), (ẋ, ẏ, ż, λ̇ , γ̇) and (ẍ, ÿ, z̈, λ̈ , γ̈) meet equations

(13.27) and (13.28). Then

∥
∥
∥

p̈

p

∥
∥
∥

2

+
∥
∥
∥

ω̈

ω

∥
∥
∥

2

≤ 4(1+θ )n2

(1−θ )3
, (13.50)

∥
∥
∥

p̈

p

∥
∥
∥

2∥
∥
∥

ω̈

ω

∥
∥
∥

2

≤
(

2(1+θ )n2

(1−θ )3

)2

, (13.51)
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0 ≤ p̈Tω̈

µ
≤ 2(1+θ )2

(1−θ )3
n2 := δ2n2, (13.52)

∣
∣
∣
ṗTω̈

µ

∣
∣
∣≤ (2n(1+θ ))

3
2

(1−θ )2
:= δ3n

3
2 ,

∣
∣
∣
p̈Tω̇

µ

∣
∣
∣≤ (2n(1+θ ))

3
2

(1−θ )2
:= δ3n

3
2 . (13.53)

The proof of this lemma is given in the last section.

From the bounds established in Lemmas 13.8, 13.9, 13.10, and 13.2, the

lower bound and upper bound for µ(α) can be obtained.

Lemma 13.11

Let (x,p,ω) = (x,y,z,λ ,γ) ∈ N2(θ ), (ẋ, ẏ, ż, λ̇ , γ̇) and (ẍ, ÿ, z̈, λ̈ , γ̈) meet equations

(13.27) and (13.28). Let x(α), y(α), z(α), λ(α), and γ(α) be defined by (13.33),

(13.34), (13.35), (13.36), and (13.37). Then,

µ(1− sin(α))− 1

2n
ẋTHẋ

(

(1− cos(α))2 + sin2(α)
)

≤µ(α) = µ(1− sin(α))+
1

2n

(

ẍT(γ̈ − λ̈)− ẋT(γ̇ − λ̇)
)

(1− cos(α))2

− 1

2n

(

ẋT(γ̈ − λ̈)+ ẍT(γ̇ − λ̇)
)

sin(α)(1− cos(α))

≤µ(1− sin(α))+
1

2n
ẍTHẍ

(

(1− cos(α))2 + sin2(α)
)

. (13.54)

The proof of this lemma is given in the last section.

To keep all the iterates of the algorithm inside the strictly feasible set,

(p(α),ω(α))> 0 for all iterations is required. This is guaranteed when µ(α)> 0

holds. The following corollary states the condition for µ(α)> 0 to hold.

Corollary 13.1

If µ > 0, then for any fixed θ ∈ (0,1), there is an ᾱ > 0 depending on θ , such that

for any sin(α)≤ sin(ᾱ), µ(α)> 0. In particular, if θ = 0.19, sin(ᾱ)≥ 0.6158.

Proof 13.3 From Lemmas 13.8 and 13.2, it is easy to see that ẋTHẋT = ẋT(γ̇ −
λ̇ ) = ṗTω̇ and ((1− cos(α))2 ≤ sin4(α). Therefore, from Lemmas 13.11 and 13.9,

it must have

µ(α)≥ µ

(

1− sin(α)− 1

2nµ
ṗTω̇

(

sin4(α)+ sin2(α)
))

≥ µ

(

1− sin(α)− (1+θ )

2(1−θ )

(

sin4(α)+ sin2(α)
))

:= µr(α).
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Since µ > 0, and r(α) is a monotonic decreasing function in [0, π
2
] with r(0) > 0

and r(π
2
) < 0, there is a unique real solution sin(ᾱ) ∈ (0,1) of r(α) = 0 such that

for all sin(α)< sin(ᾱ), r(α) > 0 , or µ(α) > 0. It is easy to check that if θ = 0.19,

sin(ᾱ) = 0.6158 is the solution of r(α) = 0.

Remark 13.1 Corollary 13.1 indicates that for any θ ∈ (0,1), there is a positive ᾱ

such that for α ≤ ᾱ , µ(α)> 0. Intuitively, to search in a wider region will generate

a longer step. Therefore, the larger the θ is, the better. But to derive the convergence

result, θ ≤ 0.22 is imposed in Lemma 13.15 and θ ≤ 0.19 is imposed in Lemma

13.19.

To reduce the duality measure in an iteration, it must have µ(α) ≤ µ . For

linear programming, it is known [308] that µ(α)≤ µ for α ∈ [0, α̂] with α̂ = π
2

,

and the larger the α in the interval is, the smaller the µ(α) will be. This claim is

not true for the convex quadratic programming with box constraints and it needs

to be modified as follows.

Lemma 13.12

Let (x,p,ω) = (x,y,z,λ ,γ) ∈ N2(θ ), (ẋ, ẏ, ż, λ̇ , γ̇) and (ẍ, ÿ, z̈, λ̈ , γ̈) meet equations

(13.27) and (13.28). Let x(α), y(α), z(α), λ(α), and γ(α) be defined by (13.33),

(13.34), (13.35), (13.36), and (13.37). Then, there exists

α̂ =







π
2
, if ẍTHẍ

nµ ≤ 1

sin−1(g), if ẍTHẍ
nµ > 1

(13.55)

where

g =
3

√
√
√
√ nµ

ẍTHẍ
+

√
( nµ

ẍTHẍ

)2

+

(
1

3

)3

+
3

√
√
√
√ nµ

ẍTHẍ
−
√
( nµ

ẍTHẍ

)2

+

(
1

3

)3

,

such that for every α ∈ [0, α̂], µ(α)≤ µ .

The proof of this lemma is given in the last section.

According to Theorem 13.1, Lemmas 13.7, 13.9, 13.10, and 13.12, if α is

small enough, then (p(α),ω(α)) > 0, and µ(α) < µ , i.e., the search along the

ellipse defined by Theorem 13.1 will generate a strictly feasible point with a

smaller duality measure. Since (p,ω) > 0 holds in all iterations, reducing the

duality measure to zero means approaching the solution of the convex quadratic

programming. This can be achieved by applying a similar idea used in [174], i.e.,

starting with an iterate in N2(θ), searching along the approximated central path

to reduce the duality measure and to keep the iterate in N2(2θ), and then making
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a correction to move the iterate back to N2(θ). The following notations will be

used.

a0 =−θ µ < 0,

a1 = θ µ > 0,

a2 = 2θ
ṗTω̇

2n
= 2θ

ẋT(γ̇ − λ̇)

2n
= 2θ

ẋTHẋ

2n
≥ 0,

a3 =
∥
∥
∥ṗ◦ ω̈ + ω̇ ◦ p̈− 1

2n
(ṗTω̈ + ω̇Tp̈)e

∥
∥
∥≥ 0,

and

a4 =
∥
∥
∥p̈◦ ω̈ − ω̇ ◦ ṗ− 1

2n
(p̈Tω̈ − ω̇Tṗ)e

∥
∥
∥+2θ

ṗTω̇

2n

=
∥
∥
∥p̈◦ ω̈ − ω̇ ◦ ṗ− 1

2n
(p̈Tω̈ − ω̇Tṗ)e

∥
∥
∥+2θ

ẋTHẋ

2n
≥ 0.

Denote a quartic polynomial in terms of sin(α) as follows:

q(α) = a4 sin4(α)+a3 sin3(α)+a2 sin2(α)+a1 sin(α)+a0 = 0. (13.56)

Since q(α) is a monotonic increasing function of α ∈ [0, π
2
], q(0) = −θ µ < 0

and q( π
2
) = a2 + a3 + a4 > 0 if ẋ 6= 0, the polynomial has exactly one positive

root in [0, π
2
]. Moreover, since (13.56) is a quartic equation, all the solutions

are analytical and the computational cost is independent of the size of H and

negligible [203].

Lemma 13.13

Let (x,p,ω) = (x,y,z,λ ,ω) ∈ N2(θ ), (ẋ, ẏ, ż, λ̇ , ω̇) and (ẍ, ÿ, z̈, λ̈ , ω̈) be calculated

from (13.27) and (13.28). Denote sin(α̃) the only positive real solution of (13.56) in

[0,1]. Assume sin(α)≤ min{sin(α̃),sin(ᾱ)}, let (x(α),y(α),z(α),λ (α),γ(α)) and

µ(α) be updated as follows:

(x(α),y(α),z(α),λ (α),γ(α))

= (x,y,z,λ ,γ)− (ẋ, ẏ, ż, λ̇ , γ̇)sin(α)+ (ẍ, ÿ, z̈, λ̈ , γ̈)(1− cos(α)),(13.57)

µ(α) = µ(1− sin(α))

+
1

2n

(

(p̈Tω̈ − ṗTω̇)(1− cos(α))2 − (ṗTω̈ + p̈Tω̇)sin(α)(1− cos(α))
)

.

(13.58)

Then (x(α),y(α),z(α),λ (α),γ(α)) ∈ N2(2θ ).

The proof of this lemma is given in the last section.
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The lower bound of sin(ᾱ) is estimated in Corollary 13.1. To estimate the

lower bound of sin(α̃), the following lemma is needed.

Lemma 13.14

Let (x,p,ω) ∈ N2(θ ), (ẋ, ṗ, ω̇) and (ẍ, p̈, ω̈) meet equations (13.27) and (13.28).

Then
∥
∥
∥ṗ◦ ω̇

∥
∥
∥≤ (1+θ )

(1−θ )
nµ , (13.59)

∥
∥
∥p̈◦ ω̈

∥
∥
∥≤ 2(1+θ )2

(1−θ )3
n2µ , (13.60)

∥
∥
∥p̈◦ ω̇

∥
∥
∥≤ 2

√
2(1+θ )

3
2

(1−θ )2
n

3
2 µ , (13.61)

∥
∥
∥ṗ◦ ω̈

∥
∥
∥≤ 2

√
2(1+θ )

3
2

(1−θ )2
n

3
2 µ . (13.62)

The proof of this lemma is given in the last section.

Lemma 13.15

Let θ ≤ 0.22. Then sin(α̃)≥ θ√
n
.

The proof of this lemma is given in the last section.

Corollary 13.1, Lemmas 13.13, and 13.15 prove the feasibility of searching

optimizer along the ellipse. To move the iterate back to N2(θ), one can use the

direction (∆x,∆y,∆z,∆λ ,∆γ) defined by









H 0 0 I −I

I I 0 0 0

I 0 −I 0 0

0 Λ(α) 0 Y(α) 0

0 0 Γ(α) 0 Z(α)

















∆x

∆y

∆z

∆λ
∆γ









=









0

0

0

µ(α)e−λ(α)◦y(α)
µ(α)e− γ(α)◦ z(α)









.

(13.63)

and update (xk+1,pk+1,ωk+1) and µk+1 by

(xk+1,pk+1,ωk+1) = (x(α),p(α),ω(α))+(∆x,∆p,∆ω), (13.64)

µk+1 =
pk+1T

ωk+1

2n
, (13.65)

where ∆p = (∆y,∆z) and ∆ω = (∆λ ,∆γ). Denote P(α) =

[
Y(α) 0

0 Z(α)

]

,
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Ω(α) =

[
Λ(α) 0

0 Γ(α)

]

, and D = P
1
2 (α)Ω− 1

2 (α). Then, the last 2 rows of

(13.63) can be rewritten as

P∆ω +Ω∆p = µ(α)e−P(α)Ω(α)e. (13.66)

Now, it is ready to show that the correction step brings the iterate from N2(2θ)
back to N2(θ).

Lemma 13.16

Let (x(α),p(α),ω(α)) ∈ N2(2θ ) and (∆x,∆p,∆ω) be defined as in (13.63). Let

(xk+1,pk+1,ωk+1) be updated by using (13.64). Then, for θ ≤ 0.29 and sin(α) ≤
sin(ᾱ), (xk+1,pk+1,ωk+1) ∈N2(θ ).

The proof of this lemma is given in the last section.

The next step is to show that the combined step (searching along the arc

in N2(2θ) and moving back to N2(θ)) will reduce the duality measure of the

iterate, i.e., µk+1 < µk, if some appropriate θ and α are selected. The following

two Lemmas are introduced for this purpose.

Lemma 13.17

Let (x(α),p(α),ω(α)) ∈ N2(2θ ) and (∆x,∆p,∆ω) be defined as in (13.63). Then

0 ≤ ∆pT∆ω

2n
≤ θ 2(1+ 2θ )

n(1− 2θ )2
µ(α) :=

δ0

n
µ(α). (13.67)

The proof of this lemma is given in the last section.

Lemma 13.18

Let (x(α),p(α),ω(α)) ∈ N2(2θ ) and (∆x,∆p,∆ω) be defined as in (13.63). Let

(xk+1,pk+1,ωk+1) be defined as in (13.64). Then

µ(α)≤ µk+1 :=
pk+1T

ωk+1

2n
≤ µ(α)

(

1+
θ 2(1+ 2θ )

n(1− 2θ )2

)

= µ(α)

(

1+
δ0

n

)

.

Proof 13.4 Using the fact that p(α)T∆ω +ω(α)T∆p = 0 established in (13.114)

in the proof of Lemma 13.16, and Lemma 13.17, it is straightforward to obtain

µ(α) ≤ p(α)Tω(α)

2n
+

1

2n
∆pT∆ω
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=
(p(α)+∆p)T(ω(α)+∆ω)

2n
= µk+1

≤ µ(α)+
θ 2(1+ 2θ )

n(1− 2θ )2
µ(α). (13.68)

This proves the lemma.

For linear programming, it is known [174, 308] that µk+1 = µ(α). This claim

is not always true for the convex quadratic programming as is pointed out in

Lemma 13.18. Therefore, some extra work is needed to make sure that the µk

will be reduced in every iteration.

Lemma 13.19

For θ ≤ 0.19, if

sin(α) =
θ√
n
, (13.69)

then µk+1 < µk. Moreover, for sin(α) = θ√
n
= 0.19√

n
,

µk+1 ≤ µk

(

1− 0.0185√
n

)

. (13.70)

The proof of this lemma is given in the last section.

Remark 13.2 As one has seen in this section that starting with (x0,p0,ω0), the

interior-point algorithm proceeds with finding (x(α),p(α),ω(α)) ∈ N2(2θ ) and

(xk+1,pk+1,ωk+1) ∈ N2(θ ) such that µk+1 < µk. In view of the proofs of Lem-

mas 13.13, 13.16, and 13.19, the positivity conditions of (x(α),p(α),ω(α)) > 0

and (xk+1,pk+1,ωk+1) > 0 relies on µ(α) > 0 which, according to Corollary 13.1,

is achievable for any θ and is given by a bound in terms of ᾱ . The proximity con-

dition for (x(α),p(α),ω(α)) relies on the real positive root of q(sin(α)) = 0, de-

noted by sin(α̃), which is conservatively estimated in Lemma 13.15 under the con-

dition that θ ≤ 0.22; the proximity condition for (xk+1,pk+1,ωk+1) is established in

Lemma 13.16 under the condition that θ ≤ 0.29. Finally, duality measure reduction

µk+1 < µk is established in Lemma 13.19 under the condition that θ ≤ 0.19. For all

these results to hold, it just needs to take the smallest bound θ = 0.19.

Summarizing all the results in this section leads to the following theorem.

Theorem 13.2

Let θ = 0.19 and (xk,pk,ωk) ∈ N2(θ ). Then, (x(α),p(α),ω(α)) ∈ N2(2θ );

(xk+1,pk+1,ωk+1) ∈N2(θ ); and µk+1 ≤ µk
(

1− 0.0185√
n

)

.
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Proof 13.5 From Corollary 13.1 and Lemma 13.15, one can select sin(α) ≤
min{sin(α̃),sin(ᾱ)}. Therefore, Lemma 13.13 holds, i.e., (x(α),p(α),ω(α)) ∈
N2(2θ ). Since sin(α) ≤ sin(ᾱ) and (x(α),p(α),ω(α)) ∈ N2(2θ ), Lemma 13.16

states (xk+1,pk+1,ωk+1) ∈ N2(θ ). For θ = 0.19 and sin(α) = θ√
n
, Lemma 13.19

states µk+1 ≤ µk
(

1− 0.0185√
n

)

. This finishes the proof.

Remark 13.3 It is worthwhile to point out that θ = 0.19 for the box constrained

quadratic optimization problem is larger than the θ = 0.148 for linearly constrained

quadratic optimization problem. This makes the searching neighborhood larger and

the following algorithm more efficient than the algorithm in [308].

The proposed method can be presented as the following algorithm.

Algorithm 13.1

(Arc-search path-following)

Data: H ≥ 0, c, n, θ = 0.19, ε > 0.

Initial point (x0,p0,ω0) ∈N2(θ ), and µ0 = p0T
ω0

2n
.

for iteration k = 1,2, . . .

Step 1: Solve the linear systems of equations (13.27) and (13.28) to get

(ẋ, ṗ, ω̇) and (ẍ, p̈, ω̈).

Step 2: Let sin(α) = θ√
n
. Update (x(α),p(α),ω(α)) and µ(α) by (13.57)

and (13.58).

Step 3: Solve (13.63) to get (∆x,∆p,∆ω), update (xk+1,pk+1,ωk+1) and

µk+1 by using (13.64) and (13.65).

Step 4: Set k+ 1 → k. Go back to Step 1.

end (for)

13.5 Convergence analysis

The first result in this section extends a result of linear programming (c.f. [294])

to convex quadratic programming subject to box constraints.

Lemma 13.20

Suppose Fo 6= ∅. Then for each K ≥ 0, the set

{(x,p,ω) | (x,p,ω) ∈ F , pTω ≤ K}
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is bounded.

Proof 13.6 The proof is similar to the proof in [294]. It is given here for complete-

ness. First, x is bounded because −e ≤ x ≤ e. Since x+ y = e and −e ≤ x ≤ e, it is

easy to see 0 ≤ y = e−x ≤ 2e. Since x−z =−e, it is easy to see 0 ≤ z = x+e ≤ 2e.

Therefore, y and z are also bounded. Let (x̄, ȳ, z̄, λ̄ , γ̄) be any fixed point in Fo, and

(x,y,z,λ ,γ) be any point in F with yTλ + zTγ ≤ K. Using the definition of Fo and

F yields

H(x̄− x)+ (λ̄ −λ)− (γ̄ − γ) = 0.

Therefore

(x̄− x)TH(x̄− x)+ (x̄− x)T(λ̄ −λ)− (x̄− x)T(γ̄ − γ) = 0,

or equivalently

(x̄− x)T(γ̄ − γ)− (x̄− x)T(λ̄ −λ) = (x̄− x)TH(x̄− x)≥ 0.

This gives

((x̄+ e)− (x+ e))T(γ̄ − γ)− ((x̄− e)− (x− e))T(λ̄ −λ)≥ 0.

Substituting x− e =−y and x+ e = z yields

(z̄− z)T(γ̄ − γ)+ (ȳ− y)T(λ̄ −λ)≥ 0.

This leads to

z̄Tγ̄ + zTγ − zTγ̄ − z̄Tγ + ȳTλ̄ + yTλ − yTλ̄ − ȳTλ ≥ 0,

or in a compact form

p̄Tω̄ +pTω −pTω̄ − p̄Tω ≥ 0.

Sine (p̄, ω̄)> 0 is fixed, let

ξ = min
i=1,··· ,n

min{ p̄i, ω̄i},

then, using pTω ≤ K,

p̄Tω̄ +K ≥ ξ eT(p+ω)≥ max
i=1,··· ,n

max{ξ pi,ξ ωi},

i.e., for i ∈ {1, · · · ,n},

0 ≤ pi ≤
1

ξ
(K + p̄Tω̄), 0 ≤ ωi ≤

1

ξ
(K + p̄Tω̄).

This proves the lemma.
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The following theorem is a direct result of Lemmas 13.20, 13.7, Theorem

13.2, KKT conditions, Theorem A.2 in [294].

Theorem 13.3

Suppose that Assumption 1 holds, then the sequence generated by Algorithm 13.1

converges to a set of accumulation points, and all these accumulation points are

global optimal solutions of the convex quadratic programming subject to box con-

straints.

Let (x∗,p∗,ω∗) be any solution of (13.17), following the notation of [23],

denote index sets B, S , and T as

B = { j ∈ {1, . . . ,2n} | p∗
j 6= 0}. (13.71)

S = { j ∈ {1, . . . ,2n} | ω∗
j 6= 0}. (13.72)

T = { j ∈ {1, . . . ,2n} | p∗
j = ω∗

j = 0}. (13.73)

According to Goldman-Tucker theorem [76], for the linear programming, B ∩
S = ∅ = T and B ∪ S = {1, . . . ,2n}. A solution with this property is called

strictly complementary (see Appendix A). This property has been used in many

papers to prove the locally super-linear convergence of interior-point algorithms

in linear programming. However, it is pointed out in [82] that this partition does

not hold for general quadratic programming problems. But a convex quadratic

programming subject to box constraints has strictly complementary solution(s),

an interior-point algorithm will generate a sequence to approach strict comple-

mentary solution(s). As a matter of fact, from Lemma 13.20, the result of [294,

Lemma 5.13] can be extended to the case of convex quadratic programming sub-

ject to box constraints, and the following lemma, which is independent of any

algorithm, holds.

Lemma 13.21

Let µ0 > 0, and ρ ∈ (0,1). Assume that the convex QP (13.16) has strictly comple-

mentary solution(s). Then for all points (x,p,ω) with (x,p,ω)∈Fo, piωi > ρµ , and

µ < µ0, there are constants M, C1, and C2 such that

‖(p,ω)‖ ≤ M, (13.74)

0 < pi ≤ µ/C1 (i ∈ S), 0 < ωi ≤ µ/C1 (i ∈ B). (13.75)

ωi ≥C2ρ (i ∈ S), pi ≥C2ρ (i ∈ B). (13.76)

Proof 13.7 The proof mimics the one in [294, Lemma 5.13]. It is presented here
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for completeness. The first result (13.74) follows immediately from Lemma 13.20

by setting K = 2nµ0. Let (x∗,p∗,ω∗) be any strictly complementary solution. Since

(x∗,p∗,ω∗) and (x,p,ω) are both feasible, it must have

(y− y∗) =−(x− x∗) =−(z− z∗), H(x− x∗)+ (λ −λ∗)− (γ − γ∗) = 0.

Therefore,

(y− y∗)T(λ −λ∗)+ (z− z∗)T(γ − γ∗) = (x− x∗)TH(x− x∗)≥ 0. (13.77)

Since (x∗,y∗,z∗,λ∗,γ∗) = (x∗,p∗,ω∗) is strictly complementary solution, it must

have T = ∅, p∗i = 0 for i ∈S, and ω∗
i = 0 for i ∈B. Since pTω = 2nµ , (p∗)Tω∗ = 0,

from (13.77), it must have

pTω = yTλ + zTγ +
(
(y∗)Tλ∗+(z∗)Tγ∗

)

≥ yTλ∗+ zTγ∗+
(
(y∗)Tλ +(z∗)Tγ

)
= pTω∗+ωTp∗

⇐⇒ 2nµ ≥ pTω∗+ωTp∗ =
∑

i∈S piω
∗
i +

∑

i∈B p∗i ωi. (13.78)

Since each term in the summations is positive and bounded above by 2nµ , it must

have ω∗
i > 0 for any i ∈ S; therefore,

0 < pi ≤
2nµ

ω∗
i

.

Denote ΩD = {(p∗,ω∗)|ω∗
i > 0} and ΩP = {(p∗,ω∗)|p∗i > 0}, it must have

0 < pi ≤
2nµ

sup(p∗,ω∗)∈ΩD
ω∗

i

.

This leads to

max
i∈S

pi ≤
2nµ

mini∈S sup(p∗,ω∗)∈ΩD
ω∗

i

.

Similarly,

max
i∈B

ωi ≤
2nµ

mini∈B sup(p∗,ω∗)∈ΩP
p∗i

.

Combining these two inequalities gives

max{max
i∈S

pi,max
i∈B

ωi}

≤ 2nµ

min{mini∈S sup(p∗,ω∗)∈ΩD
ω∗

i ,mini∈B sup(p∗,ω∗)∈ΩP
p∗i }

=
µ

C1

. (13.79)

This proves (13.75). Finally, since piωi ≥ ρµ , we have, for any i ∈ S,

ωi ≥
ρµ

pi

≥ ρµ

µ/C1

=C2ρ .
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Similarly, for any i ∈ B,

pi ≥
ρµ

ωi

≥ ρµ

µ/C1

=C2ρ .

Lemma 13.21 leads to the following

Theorem 13.4

Let (xk,pk,ωk) ∈ N2(θ ) be generated by Algorithms 13.1. Assume that the convex

QP with box constraints has strictly complementary solution(s). Then every limit

point of the sequence is a strictly complementary solution of the convex quadratic

programming with box constraints, i.e.,

ω∗
i ≥C2ρ (i ∈ S), p∗i ≥C2ρ (i ∈ B). (13.80)

Proof 13.8 From Lemma 13.21, (pk,ωk) is bounded; therefore there is at least one

limit point (p∗,ω∗). Since (pk
i ,ω

k
i ) is in the neighborhood of the central path, i.e.,

pk
i ωk

i > ρµk := (1− 3θ )µk,

ωk
i ≥C2ρ (i ∈ S), pk

i ≥C2ρ (i ∈ B),

every limit point will meet (13.80) due to the fact that C2ρ is a constant.

It is now ready to show that the complexity bound of Algorithm 13.1 is

O(
√

n log(1/ε)). The following theorem from [294] is needed for this purpose.

Theorem 13.5

Let ε ∈ (0,1) be given. Suppose that an algorithm for solving (13.17) generates a

sequence of iterations that satisfies

µk+1 ≤
(

1− δ

nχ

)

µk, k = 0,1,2, . . . , (13.81)

for some positive constants δ and χ . Suppose that the starting point (x0,p0,ω0)
satisfies µ0 ≤ 1/ε . Then there exists an index K with

K = O(nχ log(1/ε))

such that

µk ≤ ε for ∀k ≥ K.

Combining Lemma 13.19 and Theorems 13.5 gives
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Theorem 13.6

The complexity of Algorithm 13.1 is bounded by O(
√

n log(1/ε)).

13.6 Implementation issues

Algorithm 13.1 is presented in a form that is convenient for the convergence

analysis. Some implementation details that make the algorithm more efficient

are discussed in this section.

13.6.1 Termination criterion

Algorithm 13.1 needs a termination criterion in real implementation. One can

use

µk ≤ ε, (13.82a)

‖rX‖= ‖Hxk +λ
k − γk + c‖ ≤ ε, (13.82b)

‖rY‖= ‖xk +yk − e‖ ≤ ε, (13.82c)

‖rZ‖= ‖xk − zk + e‖ ≤ ε, (13.82d)

‖rt‖= ‖PkΩke−µe‖ ≤ ε, (13.82e)

(pk,ωk)> 0. (13.82f)

An alternate criterion is similar to the one used in linprog [333]

κ :=
‖rY‖+‖rZ‖

2n
+

‖rX‖
max{1,‖c‖} +

µk

max{1,‖xkT
Hxk + cTxk‖} ≤ ε. (13.83)

13.6.2 Initial (x0,y0,z0,λ 0,γ0) ∈N2(θ)

For feasible interior-point algorithms, an important prerequisite is to start with a

feasible interior point. While finding an initial feasible point may not be a simple

and trivial task for even linear programming with equality constraints [294], for

quadratic programming subject to box constraints, finding the initial point is not

an issue. As a matter of fact, the following initial point (x0,y0,z0,λ 0,γ0) is an

interior point, moreover (x0,y0,z0,λ 0,γ0) ∈N2(θ).

x0 = 0, y0 = z0 = e > 0, (13.84a)

λ 0
i = 4(1+‖c‖2)− ci

2
> 0, (13.84b)

γ0
i = 4(1+‖c‖2)+

ci

2
> 0. (13.84c)
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It is easy to see that this selected point meets (13.20). Since

µ0 =

∑n

i=1

(
λ 0

i + γ0
i

)

2n
=

∑n

i=1

(
8(1+‖c‖2)

)

2n
= 4(1+‖c‖2), (13.85)

for θ = 0.19, it must have

∥
∥
∥p0 ◦ω0 −µ0e

∥
∥
∥

2

=

n∑

i=1

(λ 0
i −µ0)2 +

n∑

i=1

(γ0
i −µ0)2

=
‖c‖2

2
≤ 16θ 2(1+‖c‖2)2 = θ 2(µ0)2.

This shows that (x0,y0,z0,λ 0,γ0) ∈ N2(θ).

13.6.3 Step size

Directly using sin(α) = θ√
n

in Algorithm 13.1 provides an effective formula to

prove the polynomiality. However, this choice of sin(α) is too conservative in

practice because this search step in N2(2θ) is too small and the speed of duality

measure reduction is slow. A better choice of sin(α) should have a larger step

in every iteration so that the polynomiality is reserved and fast convergence is

achieved. In view of Remark 13.2, conditions that restrict step size are positivity

conditions, proximity conditions, and duality reduction condition. This section

examines how to enlarge the step size under these restrictions.

First, from (13.108) and (13.117), µ(α)> 0 is required for positivity condi-

tions (p(α),ω(α))> 0 and (pk+1,ωk+1)> 0 to hold. Since sin(ᾱ) estimated in

Corollary 13.1 is conservative, a better selection of ᾱ is directly from (13.54),

Lemmas 13.2 and 13.8:

µ(α) ≥ µ(1− sin(α))− 1

2n
ẋTHẋ

(
(1− cos(α))2 + sin2(α)

)

≥ µ(1− sin(α))− 1

2n
(ṗTω̇)

(

sin4(α)+ sin2(α)
)

:= f (sin(α)) = σ , (13.86)

where σ > 0 is a small number, and f (sin(α)) is a monotonic decreasing function

of sin(α) with f (sin(0)) = µ and f (sin( π
2
))< 0. Therefore, equation (13.86) has

a unique positive real solution for α ∈ [0, π
2
]. Since (13.86) is a quartic function

of sin(α), the cost of finding the smallest positive solution is negligible [203].

Second, in view of (13.116), the proximity condition for

(xk+1,yk+1,zk+1,λ k+1,γk+1) ∈N2(θ)

holds for θ ≤ 0.19 without further restriction. The proximity condition (13.107)

is met for sin(α) ∈ [0,sin(α̃)], where sin(α̃) is the smallest positive solution
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of (13.56) and it is estimated very conservatively in Lemma 13.15. An efficient

implementation should use sin(α̃), the smallest positive solution of (13.56). Ac-

tually, there exist a ά which is normally larger than α̃ such that the proximity

condition (13.107) is met for sin(α) ∈ [0,sin(ά)]. Let

b0 =−θ µ < 0,

b1 = θ µ > 0,

b3 =
∥
∥
∥ṗ◦ ω̈ + ω̇ ◦ p̈− 1

2n
(ṗTω̈ + ω̇Tp̈)e

∥
∥
∥+

θ

n

(
ṗTω̈ + p̈Tω̇

)
,

b4 =
∥
∥
∥p̈◦ ω̈ − ω̇ ◦ ṗ− 1

2n
(p̈Tω̈ − ω̇Tṗ)e

∥
∥
∥− θ

n

(
p̈Tω̈ − ṗTω̇

)
,

and

p(α) := b4(1− cos(α))2 +b3 sin(α)(1− cos(α))+b1 sin(α)+b0. (13.87)

Applying the second inequality of (13.45) to θ
n

(
ṗTω̈ + p̈Tω̇

)
sin(α)(1 −

cos(α)), one can easily show that

p(α)≤ q(α),

where q(α) is defined in (13.56). Therefore, the smallest positive solution ὰ of

p(α) is larger than the smallest positive solution α̃ of q(α). Hence, the goal is to

show that for sin(α) ∈ [0,sin(ὰ)], the proximity condition (13.107) holds. Since

for sin(α) ∈ [0,sin(ὰ)], p(α)≤ 0, it must have

∥
∥
∥p̈◦ ω̈ − ω̇ ◦ ṗ− 1

2n
(p̈Tω̈ − ω̇Tṗ)e

∥
∥
∥(1− cos(α))2

+
∥
∥
∥ṗ◦ ω̈ + ω̇ ◦ p̈− 1

2n
(ṗTω̈ + ω̇Tp̈)e

∥
∥
∥sin(α)(1− cos(α))

≤ (2θ )

(
1

2n

(

p̈Tω̈ − ṗTω̇
)

(1− cos(α))2 −
1

2n

(

ṗTω̈ + p̈Tω̇
)

sin(α)(1− cos(α))

)

+θ µ(1− sin(α)). (13.88)

Substituting this inequality into (13.106) gives

∥
∥
∥p(α)◦ω(α)−µ(α)e

∥
∥
∥

≤ 2θ
[

µ(1− sin(α))+
1

2n

(

ẍT(γ̈ − λ̈ )− ẋT(γ̇ − λ̇)
)

(1− cos(α))2

− 1

2n

(

ẋT(γ̈ − λ̈)+ ẍT(γ̇ − λ̇)
)

sin(α)(1− cos(α))
]

= 2θ µ(α).

(13.89)
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This is the proximity condition for (x(α),y(α),z(α),λ(α),γ(α)). Denote b̂0 =
b0, b̂1 = b1,

b̂3 =

{
b3 if b3 ≥ 0,
0 if b3 < 0,

b̂4 =

{
b4 if b4 ≥ 0,
0 if b4 < 0,

and

p̂(α) := b̂4(1− cos(α))2 + b̂3 sin(α)(1− cos(α))+ b̂1 sin(α)+ b̂0. (13.90)

Since p̂(α) ≥ p(α), the smallest positive solution ά of p̂(α) is smaller than

smallest positive solution ὰ of p(α). To estimate the smallest solution of ά , by

noticing that p̂(α) is a monotonic increasing function of α and p̂(0) =−θ µ < 0,

one can simply use the bisection method. The computational cost is independent

of the problem size n and is negligible. Since both estimated step sizes ά and

α̃ guarantee the proximity condition for (x(α),y(α),z(α),λ(α),γ(α)) to hold,

one can select α̌ = max{ά, α̃} ≥ α̃ which guarantees the polynomiality claim to

hold.

Third, from (C.76a) and Lemmas 13.11, 13.8, and 13.2, it must have

µk+1 ≤ µk

[

1+
θ 2(1+2θ)

n(1−2θ)2
−
(

1+
θ 2(1+2θ)

n(1−2θ)2

)

sin(α)

+

(

1+
θ 2(1+2θ)

n(1−2θ)2

)
p̈Tω̈

2nµ

(
sin2(α)+ sin4(α)

)
]

. (13.91)

For µk+1 ≤ µk to hold, one needs

θ 2(1+2θ)

n(1−2θ)2
−
(

1+
θ 2(1+2θ)

n(1−2θ)2

)

sin(α)

+

(

1+
θ 2(1+2θ)

n(1−2θ)2

)
p̈Tω̈

2nµ

(
sin2(α)+ sin4(α)

)
≤ 0.

For the sake of convenience in convergence analysis, a conservative estimate

is used in Lemma 13.19. For efficient implementation, the following solution

should be adopted. Denote u = θ 2(1+2θ )
n(1−2θ )2 > 0, v = p̈Tω̈

2nµ > 0, z = sin(α) ∈ [0,1],

and

F(z) = (1+u)vz4+(1+u)vz2− (1+u)z+u.

For z ∈ [0,1] and v ≤ 1
6
, F ′(z) = (1+u)(4vz3+2vz−1)≤ 0; therefore, the upper

bound of the duality measure is a monotonic decreasing function of sin(α) for

α ∈ [0, π
2
]. The larger α is, the smaller the upper bound of the duality measure

will be. For v > 1
6
, to minimize the upper bound of the duality measure, one can

find the solution of F ′(z)= 0. It is easy to check from discriminator [203] that the

cubic polynomial F ′(z) has only one real solution which is given by (see Lemma



Attitude MPC Control � 259

13.5)

sin(ᾰ)=
3

√
√
√
√ nµ

4p̈Tω̈
+

√
(

nµ

4p̈Tω̈

)2

+

(
1

6

)3

+
3

√
√
√
√ nµ

4p̈Tω̈
−
√
(

nµ

4p̈Tω̈

)2

+

(
1

6

)3

.

Since F ′′(sin(ᾰ)) = (1+ u)(12v sin2(ᾰ)+ 2v)> 0 at sin(ᾰ) ∈ [0,1), the upper

bound of the duality measure is minimized. Therefore, one can define

ᾰ =







π
2
, if p̈Tω̈

2nµ
≤ 1

6

sin−1

(

3

√

nµ
4p̈Tω̈

+

√
(

nµ
4p̈Tω̈

)2
+
(

1
6

)3 + 3

√

nµ
4p̈Tω̈

−

√
(

nµ
4p̈Tω̈

)2
+
(

1
6

)3

)

, if p̈Tω̈
2nµ > 1

6
.

(13.92)

It is worthwhile to note that for α < ᾰ , F ′(sin(α)) < 0, i.e., F(sin(α)) is a

monotonic decreasing function of α ∈ [0, ᾰ].
The step size selection process is therefore a simple algorithm as follows.

Algorithm 13.2

(Step Size Selection)

Data: σ > 0.

Step 1: Find the positive real solution of (13.86) to get sin(ᾱ).

Step 2: Find the smallest positive real solution of (13.90) to get sin(ά), the smallest

positive real solution of (13.56) to get sin(α̃), and set sin(α̌) =max{sin(α̃),sin(ά)}.

Step 3: Calculate ᾰ given by (13.92).

Step 4: The step size is obtained as sin(α) = min{sin(ᾱ),sin(α̌),sin(ᾰ)}.

13.6.4 The practical implementation

Therefore, Algorithm 13.1 can be implemented as follows:

Algorithm 13.3

(Arc-search path-following)

Data: H ≥ 0, c, n, θ = 0.19, ε > σ > 0.

Step 0: Find initial point (x0,p0,ω0) ∈ N2(θ ) using (13.84), κ using (13.83), and

µ0 using (13.85).

while κ > ε

Step 1: Compute (ẋ, ṗ, ω̇) and (ẍ, p̈, ω̈) using (13.27) and (13.28).

Step 2: Select sin(α) using Algorithm 13.2. Update (x(α),p(α),ω(α)) and

µ(α) using (13.57) and (13.58).
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Step 3: Compute (∆x,∆p,∆ω) using (13.63), update (xk+1,pk+1,ωk+1) and

µk+1 using (13.64) and (13.65).

Step 4: Computer κ using (13.83).

Step 5: Set k+ 1 → k. Go back to Step 1.

end (while)

Remark 13.4 The condition µ > σ guarantees that the equation (13.86) has a

positive solution before termination criterion is met.

13.7 A design example

In this section, OrbView-2 spacecraft orbit-raising design example discussed

in Chapter 12 is used to demonstrate the effectiveness and efficiency of the

proposed algorithm. Let w = (wx,wy,wz) be the spacecraft body rate with re-

spect to the reference frame expressed in the body frame, q̄ = (q0,q1,q2,q3)
be the quaternion of the spacecraft attitude with respect to the reference frame

represented in the body frame and q = (q1,q2,q3) be the reduced quaternion,

J = diag(Jx,Jy,Jz) be the spacecraft inertia matrix, and hw be the angular mo-

mentum produced by a momentum wheel. Orbit-raising is performed by 4 fixed

thrusters (1 Newton) with on/off switches which are mounted on the anti-nadir

face of the spacecraft in each corner of a square with a side length of 2d meter.

The thrusters point to +z direction and canted 5 degree from z-axis. (more details

were provided in Chapter 12). The matrices of the thruster force direction F and

moment arms R in the body frame are given as

F = [f1, f2, f3, f4] =





−a −a a a

a −a −a a

1 1 1 1





Ra = [r1,r2,r3,r4] =





−d −d d d

−d d d −d

−ℓ −ℓ −ℓ −ℓ



 .

Let x = (wx,wy,wz,q1,q2,q3) the states of the attitude and u = (T1,T2,T3,T4)
be the control variable with T1,T2,T3,T4 the thrust level of the four thrusters.

The linear time-invariant system under consideration is represented in a reduced
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quaternion model (see Chapter 12).

ẋ =











0 0 hw

Jx
0 0 0

0 0 0 0 0 0
hw

Jz
0 0 0 0 0

0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0











x

+











1
Jx

0 0

0 1
Jy

0

0 0 1
Jz

0 0 0

0 0 0

0 0 0

















r1 × f1

r2 × f2

r3 × f3

r4 × f4







T





T1

T2

T3

T4







= Ax+Bu, (13.93)

with the control constraints

−e ≤ u = (T1,T2,T3,T4)≤ e. (13.94)

The problem is converted to discrete model using Matlab function c2d with sam-

pling time 1 second. The design is to minimize

J = min
u0,u1,··· ,uN−1

1

2
xT

NPxN +
1

2

N−1∑

k=0

[
xT

k Qxk +uT
k Ruk,

]
(13.95)

where the horizon number N = 30, the matrices P, Q, and R are given by

P = Q =

[
1

2.5 I3 0

0 10000I3

]

, R = I6.

Other spacecraft parameters (d = 0.248m, ℓ = 0.815m, Ix = 189kg.m2, Iy =
159kg.m2, and Iz = 114kg.m2, and hw =−2.8N.m.s) are the same as the ones of

Chapter 12 and are taken from [245]. The algorithm is implemented in Matlab.

In our implementation of Algorithm 13.3, ε = 10−6 and σ = 10−10 are selected.

Since Matlab is an interpreted language (meaning that in the execution, every

line has to be translated into machine language before the computer executes this

line), Matlab code is normally magnitudes slower than compiled languages such

as C, C++, and Fortran. But it turns out that even this Matlab code is very fast. In

0.88 second, after 20 iterations, the algorithm converges (any intermediate result

can be used in real time because they are all feasible). Using the optimal control

inputs, we can calculate the state space response from (13.93). The control inputs

and state space response are displayed in Figures 13.1, 13.2, and 13.3.
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Figure 13.1: Optimal control with saturation constraint.

13.8 Proofs of technical lemmas

Proof of Lemma 13.8:

From (13.30), we have

ẋT(γ̇ − λ̇ ) = żTγ̇ + ẏTλ̇ = ṗTω̇,

ẍT(γ̈ − λ̈ ) = z̈Tγ̈ + ÿTλ̈ = p̈Tω̈,

ẍT(γ̇ − λ̇) = p̈Tω̇,

and

ẋT(γ̈ − λ̈) = ṗTω̈.

Pre-multiplying ẋT and ẍT to (13.29) gives

ẋT(γ̇ − λ̇ ) = ẋTHẋ,

ẍT(γ̈ − λ̈ ) = ẍTHẍ,

ẍT(γ̇ − λ̇ ) = ẍTHẋ = ẋTHẍ = ẋT(γ̈ − λ̈).

Equations (13.41) and (13.42) follow from the first two equations and the fact that

H is positive definite. The last equation is equivalent to (13.43). Using (13.41),

(13.42), and (13.43) gives

(ẋ(1− cos(α))+ ẍsin(α))TH(ẋ(1− cos(α))+ ẍsin(α))

= (ẋTHẋ)(1− cos(α))2 +2(ẋTHẍ) sin(α)(1− cos(α))+(ẍTHẍ) sin2(α)

= (ẋTHẋ)(1− cos(α))2 +(ẍTHẍ) sin2(α)
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Figure 13.2: spacecraft body rate response.

+ (ẍT(γ̇ − λ̇ )+ ẋT(γ̈ − λ̈)) sin(α)(1− cos(α))≥ 0,

which is the first inequality of (13.44). Using (13.41), (13.42), and (13.43) also

gives

(ẋ(1− cos(α))− ẍsin(α))TH(ẋ(1− cos(α))− ẍsin(α))

= (ẋTHẋ)(1− cos(α))2 −2(ẋTHẍ) sin(α)(1− cos(α))+(ẍTHẍ) sin2(α)

= (ẋTHẋ)(1− cos(α))2 +(ẍTHẍ) sin2(α)

−(ẍT(γ̇ − λ̇ )+ ẋT(γ̈ − λ̈ )) sin(α)(1− cos(α))≥ 0,

which is the second inequality of (13.44). Replacing ẋ(1− cos(α)) and ẍsin(α)
by ẋ sin(α) and ẍ(1−cos(α)), and using the same method, one can obtain equa-

tion (13.45).

Proof of Lemma 13.9:

From the last two rows of (13.27) or equivalently (13.31), it must have

Λẏ+Yλ̇ = ΛYe,

Γż+Zγ̇ = ΓZe.

Pre-multiplying Y− 1
2 Λ− 1

2 on both sides of the first equality gives

Y− 1
2 Λ

1
2 ẏ+Y

1
2 Λ− 1

2 λ̇ = Y
1
2 Λ

1
2 e.

Pre-multiplying Z− 1
2 Γ− 1

2 on both sides of the second equality gives

Z− 1
2 Γ

1
2 ż+Z

1
2 Γ− 1

2 γ̇ = Z
1
2 Γ

1
2 e. (13.96)
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Figure 13.3: spacecraft quaternion response.

Let u =

[

Y− 1
2 Λ

1
2 ẏ

Z− 1
2 Γ

1
2 ż

]

, v =

[

Y
1
2 Λ− 1

2 λ̇

Z
1
2 Γ− 1

2 γ̇

]

, and w =

[

Y
1
2 Λ

1
2 e

Z
1
2 Γ

1
2 e

]

, using (13.30)

and Lemma 13.8 yields uTv = ẏTλ̇ + żTγ̇ = ẋT(γ̇ − λ̇) ≥ 0. Using Lemma 13.3

and (13.23) yields

‖u‖2 +‖v‖2 =

n∑

i=1

(
ẏ2

i λi

yi

+
ż2

i γi

zi

)

+

n∑

i=1

(

λ̇ 2
i yi

λi

+
γ̇2

i zi

γi

)

≤
n∑

i=1

(yiλi + ziγi) =

2n∑

i=1

piωi = 2nµ. (13.97)

Since pi > 0 and ωi > 0, dividing both sides of the inequality by min j piωi and

using (13.25) gives

n∑

i=1

(
ẏ2

i

y2
i

+
ż2

i

z2
i

)

+
n∑

i=1

(

γ̇2
i

γ2
i

+
λ̇ 2

i

λ 2
i

)

=
∥
∥
∥

ṗ

p

∥
∥
∥

2

+
∥
∥
∥

ω̇

ω

∥
∥
∥

2

≤ 2nµ

min j piωi

≤ 2n

1−θ
.

(13.98)

This proves (13.47). Combining (13.47) and Lemma 13.1 yields

∥
∥
∥

ṗ

p

∥
∥
∥

2∥
∥
∥

ω̇

ω

∥
∥
∥

2

≤
(

n

(1−θ)

)2

.

This leads to,
∥
∥
∥

ṗ

p

∥
∥
∥

∥
∥
∥

ω̇

ω

∥
∥
∥≤ n

(1−θ)
. (13.99)
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Therefore, using (13.25) and Cauchy-Schwarz inequality yields

ṗTω̇

µ
≤ |ṗ|T|ω̇ |

µ
≤ (1+θ)

|ṗ|T|ω̇|
maxi piωi

≤ (1+θ)

( |ṗ|
p

)T( |ω̇|
ω

)

≤ (1+θ)
∥
∥
∥

ṗ

p

∥
∥
∥

∥
∥
∥

ω̇

ω

∥
∥
∥≤ 1+θ

1−θ
n, (13.100)

which is the second inequality of (13.49). From Lemma 13.8, ṗTω̇ = ẋT(γ̇− λ̇)=
ẋTHẋ ≥ 0, the first inequality of (13.49) follows.

Proof of Lemma 13.10:

Similar to the proof of Lemma 13.9, from (13.32), it must have

Λÿ+Yλ̈ =−2
(

ẏ◦ λ̇
)

⇐⇒ Y− 1
2 Λ

1
2 ÿ+Y

1
2 Λ− 1

2 λ̈ =−2Y− 1
2 Λ− 1

2

(

ẏ◦ λ̇
)

,

and

Γz̈+Zγ̈ =−2 (ż◦ γ̇)

⇐⇒ Z− 1
2 Γ

1
2 z̈+Z

1
2 Γ− 1

2 γ̈ =−2Z− 1
2 Γ− 1

2 (ż◦ γ̇) .

Let u =

[

Y− 1
2 Λ

1
2 ÿ

Z− 1
2 Γ

1
2 z̈

]

, v =

[

Y
1
2 Λ− 1

2 λ̈

Z
1
2 Γ− 1

2 γ̈

]

, and w =

[

−2Y− 1
2 Λ− 1

2

(

ẏ◦ λ̇
)

−2Z− 1
2 Γ− 1

2 (ż◦ γ̇)

]

,

using (13.30) and Lemma 13.8 yields uTv = ÿTλ̈ + z̈Tγ̈ = ẍT(γ̈ − λ̈)≥ 0. Using

Lemma 13.3 yields

‖u‖2 +‖v‖2 =

n∑

i=1

(
ÿ2

i λi

yi

+
z̈2

i γi

zi

)

+

n∑

i=1

(

λ̈ 2
i yi

λi

+
γ̈2

i zi

γi

)

≤
∥
∥
∥−2Y− 1

2 Λ− 1
2

(

ẏ◦ λ̇
)∥
∥
∥

2

+
∥
∥
∥−2Z− 1

2 Γ− 1
2 (ż◦ γ̇)

∥
∥
∥

2

= 4

n∑

i=1

(

ẏ2
i

yi

λ̇ 2
i

λi

+
ż2

i

zi

γ̇2
i

γi

)

.

Dividing both sides of the inequality by µ and using (13.25) gives

(1−θ)

(
n∑

i=1

(
ÿ2

i

y2
i

+
z̈2

i

z2
i

)

+

n∑

i=1

(

λ̈ 2
i

λ 2
i

+
γ̈2

i

γ2
i

))

= (1−θ)

(∥
∥
∥

p̈

p

∥
∥
∥

2

+
∥
∥
∥

ω̈

ω

∥
∥
∥

2
)
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≤ 4(1+θ)

(
n∑

i=1

(

ẏ2
i

y2
i

λ̇ 2
i

λ 2
i

+
ż2

i

z2
i

γ̇2
i

γ2
i

))

,

in view of Lemma 13.9, this leads to

∥
∥
∥

p̈

p

∥
∥
∥

2

+
∥
∥
∥

ω̈

ω

∥
∥
∥

2

≤ 4
1+θ

1−θ

∥
∥
∥

ṗ

p
◦ ω̇

ω

∥
∥
∥

2

≤ 4
1+θ

1−θ

∥
∥
∥

ṗ

p

∥
∥
∥

2∥
∥
∥

ω̇

ω

∥
∥
∥

2

≤ 4(1+θ)n2

(1−θ)3
.

(13.101)

This proves (13.50). Combining (13.50) and Lemma 13.1 yields

∥
∥
∥

p̈

p

∥
∥
∥

2∥
∥
∥

ω̈

ω

∥
∥
∥

2

≤
(

2(1+θ)n2

(1−θ)3

)2

.

Using (13.25) and Cauchy-Schwarz inequality yields

p̈Tω̈

µ
≤ |p̈|T|ω̈ |

µ
≤ (1+θ)

|p̈|T|ω̈|
maxi piωi

≤ (1+θ)

( |p̈|
p

)T( |ω̈|
ω

)

≤ (1+θ)
∥
∥
∥

p̈

p

∥
∥
∥

∥
∥
∥

ω̈

ω

∥
∥
∥≤ 2n2(1+θ)2

(1−θ)3
,

which is the second inequality of (13.52). Using (13.30) and Lemma 13.8, one

must have p̈Tω̈ = ÿTλ̈ + z̈Tγ̈ = ẍT(γ̈ − λ̈ ) = ẍTHẍ ≥ 0. This proves the first

inequality of (13.52). Finally, using (13.25), Cauchy-Schwarz inequality, (13.47),

and (13.50) yields

∣
∣ṗTω̈

∣
∣

µ
≤ |ṗ|T|ω̈|

µ
≤ (1+θ)

|ṗ|T|ω̈ |
maxi piωi

≤ (1+θ)

( |ṗ|
p

)T( |ω̈|
ω

)

≤ (1+θ)
∥
∥
∥

ṗ

p

∥
∥
∥

∥
∥
∥

ω̈

ω

∥
∥
∥≤ (1+θ)

(
2n

1−θ

) 1
2
(

4(1+θ)n2

(1+θ)3

) 1
2

≤ (2n(1+θ))
3
2

(1−θ)2
.

This proves the first inequality of (13.53). Replacing ṗ by p̈ and ω̈ by ω̇ , then

using the same reasoning, one can prove the second inequality of (13.53).

Proof of Lemma 13.11:

Using (13.34), (13.36), (13.31), and (13.32), one must have

yT(α)λ (α)

=
(

yT − ẏT sin(α)+ ÿT(1− cos(α))
)(

λ − λ̇ sin(α)+ λ̈(1− cos(α))
)

=yTλ −yTλ̇ sin(α)+yTλ̈(1− cos(α))

− ẏTλ sin(α)+ ẏTλ̇ sin2(α)− ẏTλ̈ sin(α)(1− cos(α))

+ ÿTλ (1− cos(α))− ÿTλ̇ sin(α)(1− cos(α))+ ÿTλ̈ (1− cos(α))2
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=yTλ − (yTλ̇ +λ T
ẏ) sin(α)+(yTλ̈ +λ T

ÿ)(1− cos(α))

− (ẏTλ̈ + λ̇
T
ÿ) sin(α)(1− cos(α))+ ẏTλ̇ sin2(α)+ ÿTλ̈ (1− cos(α))2

=yTλ (1− sin(α))−2ẏTλ̇ (1− cos(α))

− (ẏTλ̈ + λ̇
T
ÿ) sin(α)(1− cos(α))

+ ẏTλ̇ (1− cos2(α))+ ÿTλ̈(1− cos(α))2

=yTλ (1− sin(α))+(ÿTλ̈ − ẏTλ̇ )(1− cos(α))2

− (ẏTλ̈ + λ̇
T
ÿ) sin(α)(1− cos(α)). (13.102)

Using (13.35), (13.37), (13.31), (13.32), and a similar derivation of (13.102), one

gets

zT(α)γ(α) = zTγ(1− sin(α))+(z̈Tγ̈ − żTγ̇)(1− cos(α))2

−(żTγ̈ + γ̇Tz̈) sin(α)(1− cos(α)). (13.103)

Combining (13.102) and (13.103), then using (13.30) and (13.44) yield

2nµ(α) = pT(α)ω(α)

=yT(α)λ(α)+ zT(α)γ(α)

=(yTλ + zTγ)(1− sin(α))+(ÿTλ̈ + z̈Tγ̈ − ẏTλ̇ − żTγ̇)(1− cos(α))2

− (ẏTλ̈ + żTγ̈ + ÿTλ̇ + z̈Tγ̇) sin(α)(1− cos(α))

=(yTλ + zTγ)(1− sin(α))+(ẍT(γ̈ − λ̈)− ẋT(γ̇ − λ̇ ))(1− cos(α))2

− (ẋT(γ̈ − λ̈)+ ẍT(γ̇ − λ̇ )) sin(α)(1− cos(α)) (13.104)

≤(yTλ + zTγ) (1− sin(α))+(ẍTHẍ− ẋTHẋ)(1− cos(α))2

+ ẋTHẋ(1− cos(α))2 + ẍTHẍsin2(α)

=(yTλ + zTγ) (1− sin(α))+ ẍTHẍ(1− cos(α))2 + ẍTHẍsin2(α).

Dividing the both side by 2n proves the second inequality of the lemma. Com-

bining (13.104) and (13.45) proves the first inequality of the lemma.

Proof of Lemma 13.12:

From the second inequality of (13.54), it must have

µ(α)−µ ≤ µ sin(α)

(

−1+
ẍTHẍ

2nµ
sin(α)+

ẍTHẍ

2nµ
sin3(α)

)

.

Clearly, if ẍTHẍ
2nµ ≤ 1

2
, for any α ∈ [0, π

2
], the function

f (α) :=

(

−1+
ẍTHẍ

2nµ
sin(α)+

ẍTHẍ

2nµ
sin3(α)

)

≤ 0,
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and µ(α) ≤ µ . If ẍTHẍ
2nµ > 1

2
, using Lemma 13.5, the function f has one real

solution sin(α) ∈ (0,1). The solution is given as

sin(α̂) =
3

√
√
√
√ nµ

ẍTHẍ
+

√
( nµ

ẍTHẍ

)2

+

(
1

3

)3

+
3

√
√
√
√ nµ

ẍTHẍ
−
√
( nµ

ẍTHẍ

)2

+

(
1

3

)3

.

This proves the Lemma.

Proof of Lemma 13.13:

Since sin(α̃) is the only positive real solution of (13.56) in [0,1] and q(0) < 0,

substituting a0,a1,a2,a3 and a4 into (13.56) yields, for all sin(α)≤ sin(α̃),

(∥
∥
∥p̈◦ ω̈ − ω̇ ◦ ṗ− 1

2n
(p̈Tω̈ − ω̇Tṗ)e

∥
∥
∥

)

sin4(α)

+

(∥
∥
∥ṗ◦ ω̈ + ω̇ ◦ p̈− 1

2n
(ṗTω̈ + ω̇Tp̈)e

∥
∥
∥

)

sin3(α)

≤−
(

2θ
ṗTω̇

2n

)

sin4(α)−
(

2θ
ṗTω̇

2n

)

sin2(α)+θ µ(1− sin(α)). (13.105)

Using (13.38), (13.39), (13.31), (13.32), (13.58), Lemma 13.2, (13.105), and

the first inequality of (13.54) yields

∥
∥
∥p(α)◦ω(α)−µ(α)e

∥
∥
∥

=
∥
∥
∥

(

p− ṗ sin(α)+ p̈(1− cos(α))
)

◦
(

ω − ω̇ sin(α)+ ω̈(1− cos(α))
)

−µ(α)e
∥
∥
∥

=
∥
∥
∥(p◦ω −µe)(1− sin(α))+

(

p̈◦ ω̈ − ṗ◦ ω̇ − 1

2n
(p̈Tω̈ − ṗTω̇)e

)

(1− cos(α))2

−
(

ṗ◦ ω̈ + ω̇ ◦ p̈− 1

2n
(ṗTω̈ + p̈Tω̇)e

)

sin(α)(1− cos(α))
∥
∥
∥

≤(1− sin(α))
∥
∥
∥p◦ω −µe

∥
∥
∥+

∥
∥
∥(p̈◦ ω̈ − ṗ◦ ω̇ − 1

2n
(p̈Tω̈ − ṗTω̇))e

∥
∥
∥(1− cos(α))2

+
∥
∥
∥(ṗ◦ ω̈ + ω̇ ◦ p̈− 1

2n
(ṗTω̈ + p̈Tω̇)e

∥
∥
∥sin(α)(1− cos(α)) (13.106)

≤θ µ(1− sin(α))+
∥
∥
∥(p̈◦ ω̈ − ṗ◦ ω̇ − 1

2n
(p̈Tω̈ − ṗTω̇))e

∥
∥
∥sin4(α)+a3 sin3(α)

≤2θ µ(1− sin(α))−
(

2θ
ṗTω̇

2n

)

(sin4(α)+ sin2(α))

≤2θ

(

µ(1− sin(α))−
( ẋTHẋ

2n

)(

(1− cos(α))
2
+ sin2(α)

))

≤2θ µ(α). (13.107)
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Hence, the point (x(α),p(α),ω(α)) satisfies the proximity condition for

N2(2θ). To check the positivity condition (p(α),ω(α))> 0, in view of the ini-

tial condition (p,ω) > 0, it follows from (13.107) and Corollary 13.1 that, for

sin(α)≤ sin(ᾱ) and θ < 0.5,

pi(α)ωi(α)≥ (1−2θ)µ(α)> 0. (13.108)

Therefore, it cannot have pi(α) = 0 or ωi(α) = 0 for any index i when α ∈
[0,sin−1(ᾱ)]. This proves (p(α),ω(α))> 0.

Remark 13.5 It is worthwhile to note, by examining the proof of Lemma 13.13,

that sin(α̃) is selected for the proximity condition (13.107) to hold, and sin(ᾱ) is

selected for µ(α) > 0, thereby assuring the positivity condition (13.108) to hold.

Proof of Lemma 13.14:

Since
∥
∥
∥

ṗ

p

∥
∥
∥

2

=

2n∑

i=1

(
ṗi

pi

)2

,
∥
∥
∥

ω̇

ω

∥
∥
∥

2

=

2n∑

i=1

(
ω̇i

ωi

)2

,

from Lemma 13.9 and (13.25), it must have

(
n

1−θ

)2

≥
∥
∥
∥

ṗ

p

∥
∥
∥

2∥
∥
∥

ω̇

ω

∥
∥
∥

2

=

(
2n∑

i=1

(
ṗi

pi

)2
)(

2n∑

i=1

(
ω̇i

ωi

)2
)

≥
2n∑

i=1

(
ṗi

pi

ω̇i

ωi

)2

=
∥
∥
∥

ṗ

p
◦ ω̇

ω

∥
∥
∥

2

≥
2n∑

i=1

(
ṗiω̇i

(1+θ)µ

)2

=
1

(1+θ)2µ2

∥
∥
∥ṗ◦ ω̇

∥
∥
∥

2

,

i.e.,
∥
∥
∥ṗ◦ ω̇

∥
∥
∥

2

≤
(

1+θ

1−θ
nµ

)2

.

This proves (13.59). Using

∥
∥
∥

p̈

p

∥
∥
∥

2

=

2n∑

i=1

(
p̈i

pi

)2

,
∥
∥
∥

ω̈

ω

∥
∥
∥

2

=

2n∑

i=1

(
ω̈i

ωi

)2

,
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and Lemma 13.10, then following the same procedure, it is easy to verify (13.60).

From (13.47) and (13.50), one obtains
(

2n

(1−θ)

)(
4(1+θ)n2

(1−θ)3

)

≥
(∥
∥
∥

ṗ

p

∥
∥
∥

2

+
∥
∥
∥

ω̇

ω

∥
∥
∥

2
)(∥

∥
∥

p̈

p

∥
∥
∥

2

+
∥
∥
∥

ω̈

ω

∥
∥
∥

2
)

≥
∥
∥
∥

p̈

p

∥
∥
∥

2∥
∥
∥

ω̇

ω

∥
∥
∥

2

+
∥
∥
∥

ṗ

p

∥
∥
∥

2∥
∥
∥

ω̈

ω

∥
∥
∥

2

=

(
2n∑

i=1

(
p̈i

pi

)2
)(

2n∑

i=1

(
ω̇i

ωi

)2
)

+

(
2n∑

i=1

(
ṗi

pi

)2
)(

2n∑

i=1

(
ω̈i

ωi

)2
)

≥
2n∑

i=1

(
p̈iω̇i

piωi

)2

+

2n∑

i=1

(
ṗiω̈i

piωi

)2

≥
2n∑

i=1

(
p̈iω̇i

(1+θ)µ

)2

+
2n∑

i=1

(
ṗiω̈i

(1+θ)µ

)2

=
1

(1+θ)2µ2

(∥
∥
∥p̈◦ ω̇

∥
∥
∥

2

+
∥
∥
∥ṗ◦ ω̈

∥
∥
∥

2
)

,

(13.109)

i.e.,
∥
∥
∥p̈◦ ω̇

∥
∥
∥

2

+
∥
∥
∥ṗ◦ ω̈

∥
∥
∥

2

≤ (2n)3(1+θ)3

(1−θ)4
µ2.

This proves the lemma.

Proof of Lemma 13.15:

First notice that q(sin(α)) is a monotonic increasing function of sin(α) for α ∈
[0, π

2
] and q(sin(0)) < 0, therefore, one needs only to show that q( θ√

n
) < 0 for

θ ≤ 0.22. Using Lemma 13.6 yields

∥
∥
∥ṗ◦ ω̈ + ω̇ ◦ p̈− 1

2n
(ṗTω̈ + ω̇Tp̈)e

∥
∥
∥≤

∥
∥
∥ṗ◦ ω̈

∥
∥
∥+

∥
∥
∥ω̇ ◦ p̈

∥
∥
∥,

∥
∥
∥p̈◦ ω̈ − ω̇ ◦ ṗ− 1

2n
(p̈Tω̈ − ω̇Tṗ)e

∥
∥
∥≤

∥
∥
∥p̈◦ ω̈

∥
∥
∥+

∥
∥
∥ω̇ ◦ ṗ

∥
∥
∥.

In view of Lemmas 13.14, 13.9, and 13.10, from (13.56), it must have, for α ∈
[0, π

2
],

q(sin(α))≤
(∥
∥
∥p̈◦ ω̈

∥
∥
∥+

∥
∥
∥ω̇ ◦ ṗ

∥
∥
∥+2θ

ṗTω̇

2n

)

sin4(α)

+
(∥
∥
∥ṗ◦ ω̈

∥
∥
∥+

∥
∥
∥ω̇ ◦ p̈

∥
∥
∥

)

sin3(α)

+2θ
ṗTω̇

2n
sin2(α)+θ µ sin(α)−θ µ
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≤µ
((2(1+θ)2

(1−θ)3
n2 +

n(1+θ)

(1−θ)
+

θ(1+θ)

(1−θ)

)

sin4(α)

+4
√

2
(1+θ)

3
2

(1−θ)2
n

3
2 sin3(α)

+
θ(1+θ)

(1−θ)
sin2(α)+θ sin(α)−θ

)

.

Since n ≥ 1 and θ > 0, substituting sin(α) = θ√
n

gives

q
( θ√

n

)

≤µ
((2(1+θ)2

(1−θ)3
n2 +

n(1+θ)

(1−θ)
+

θ(1+θ)

(1−θ)

)
θ 4

n2

+4
√

2
(1+θ)

3
2 n

3
2

(1−θ)2

θ 3

n
3
2

+
θ(1+θ)

(1−θ)

θ 2

n
+θ

θ√
n
−θ
)

=θ µ
(2θ 3(1+θ)2

(1−θ)3
+

θ 3(1+θ)

n(1−θ)
+

θ 4(1+θ)

(1−θ)n2

+
4
√

2θ 2(1+θ)
3
2

(1−θ)2
+

θ 2(1+θ)

n(1−θ)
+

θ√
n
−1
)

≤θ µ
(2θ 3(1+θ)2

(1−θ)3
+

θ 3(1+θ)

(1−θ)
+

θ 4(1+θ)

(1−θ)

+
4
√

2θ 2(1+θ)
3
2

(1−θ)2
+

θ 2(1+θ)

(1−θ)
+θ −1

)

:= θ µ p(θ). (13.110)

Since p(θ) is monotonic increasing function of θ ∈ [0,1), p(0) < 0, and it is

easy to verify that p(0.22)< 0, this proves the lemma.

Proof of Lemma 13.16:

Using Lemma 13.6 yields

0 ≤
∥
∥
∥∆p◦∆ω − 1

2n
(∆pT∆ω)e

∥
∥
∥

2

≤ ‖∆p◦∆ω‖2. (13.111)

Pre-multiplying
(

P(α)Ω(α)
)− 1

2

on the both sides of (13.66) yields

D∆ω +D−1∆p =
(

P(α)Ω(α)
)− 1

2
(

µ(α)e−P(α)Ω(α)e
)

.

Let u = D∆ω , v = D−1∆p, from (13.63), it must have

uTv = ∆pT∆ω = ∆yT∆λ +∆zT∆γ = ∆xT(∆γ −∆λ ) = ∆xTH∆x ≥ 0. (13.112)

Using Lemma 13.4 and the assumption of (x(α),p(α),ω(α)) ∈ N2(2θ) yields

∥
∥
∥∆p◦∆ω

∥
∥
∥ =

∥
∥
∥u◦v

∥
∥
∥≤ 2− 3

2

∥
∥
∥

(

P(α)Ω(α)
)− 1

2
(

µ(α)e−P(α)Ω(α)e
)∥
∥
∥

2
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= 2− 3
2

2n∑

i=1

(µ(α)− pi(α)ωi(α))2

pi(α)ωi(α)

≤ 2− 3
2
‖µ(α)e−p(α)◦ω(α)‖2

mini pi(α)ωi(α)

≤ 2− 3
2
(2θ)2µ(α)2

(1−2θ)µ(α)
= 2

1
2

θ 2µ(α)

(1−2θ)
. (13.113)

Define (pk+1(t),ωk+1(t)) = (p(α),ω(α)) + t(∆p,∆ω). From (13.66) and

(13.40), one gets

p(α)T∆ω +ω(α)T∆p = 2nµ −
2n∑

i=1

pi(α)ωi(α) = 0. (13.114)

Therefore,

µk+1(t) =

(

p(α)+ t∆p
)T(

ω(α)+ t∆ω
)

2n

=
p(α)Tω(α)+ t2∆pT∆ω

2n
= µ(α)+ t2 ∆pT∆ω

2n
. (13.115)

Since ∆pT∆ω = ∆xTH∆x ≥ 0, it must have µk+1(t) ≥ µ(α). Using (13.115),

(13.66), (13.111), and (13.113) yields

∥
∥
∥pk+1(t)◦ωk+1(t)−µk+1(t)e

∥
∥
∥

=
∥
∥
∥(p(α)+ t∆p)◦ (ω(α)+ t∆ω)−µ(α)e− t2

2n

(
∆pT∆ω

)
e

∥
∥
∥

=
∥
∥
∥p(α)◦ω(α)+ t[ω(α)◦∆p+p(α)◦∆ω]+ t2∆p◦∆ω − µ(α)e−

t2

2n

(

∆pT∆ω
)

e

∥
∥
∥

=
∥
∥
∥p(α)◦ω(α)+ t[µ(α)e−p(α)◦ω(α)]+ t2∆p◦∆ω − µ(α)e−

t2

2n

(

∆pT∆ω
)

e

∥
∥
∥

=
∥
∥
∥(1− t) [p(α)◦ω(α)−µ(α)e]+ t2

(

∆p◦∆ω − 1

2n

(
∆pT∆ω

)
e

)∥
∥
∥

≤ (1− t)(2θ)µ(α)+ t2 2
1
2 θ 2

(1−2θ)
µ(α)

≤
(

(1− t)(2θ)+ t2 2
1
2 θ 2

(1−2θ)

)

µk+1 := f (t,θ)µk+1. (13.116)

Therefore, taking t = 1 gives

∥
∥
∥pk+1 ◦ωk+1 − µk+1e

∥
∥
∥≤ 2

1
2 θ 2

(1−2θ )µk+1. It is easy to

see that, for θ ≤ 0.29,

2
1
2 θ 2

(1−2θ)
= 0.2832 < θ .
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For θ ≤ 0.29 and t ∈ [0,1], noticing

0 ≤ f (t,θ)≤ f (t,0.29)≤ 0.58(1− t)+0.2832t2 < 1,

and using Corollary 13.1, one gets, for an additional condition sin(α) ≤
sin−1(ᾱ),

pk+1
i (t)ωk+1

i (t)≥ (1− f (t,θ))µk+1(t)

= (1− f (t,θ))

(

µ(α)+
t2

n
∆pT∆ω

)

≥ (1− f (t,θ))µ(α)

> 0, (13.117)

Therefore, (pk+1(t),ωk+1(t)) > 0 for t ∈ [0,1], i.e., (pk+1,ωk+1) > 0. This fin-

ishes the proof.

Proof of Lemma 13.17:

The first inequality of (13.67) follows from (13.112). Pre-multiplying both sides

of (13.66) by P− 1
2 (α)Ω− 1

2 (α) gives

P− 1
2 (α)Ω

1
2 (α)∆p+P

1
2 (α)Ω− 1

2 (α)∆ω =P− 1
2 (α)Ω− 1

2 (α)
(

µ(α)e−P(α)Ω(α)e
)

.

Let

u = P− 1
2 (α)Ω

1
2 (α)∆p,

v = P
1
2 (α)Ω− 1

2 (α)∆ω,

and

w = P− 1
2 (α)Ω− 1

2 (α)
(

µ(α)e−P(α)Ω(α)e
)

,

in view of (13.112), it must have

uTv = ∆pT∆ω ≥ 0.

Using Lemma 13.3 and the assumption of (x(α),p(α),ω(α)) ∈ N2(2θ) yields

‖u‖2 +‖v‖2 =

2n∑

i=1

(
(∆pi)

2ωi(α)

pi(α)
+

(∆ωi)
2 pi(α)

ωi(α)

)

≤‖w‖2 =

2n∑

i=1

(µ(α)− pi(α)ωi(α))2

pi(α)ωi(α)

≤
∑2n

i=1(µ(α)− pi(α)ωi(α))2

mini pi(α)ωi(α)
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≤ (2θ)2µ2(α)

(1−2θ)µ(α)
=

(2θ)2µ(α)

(1−2θ)
.

(13.118)

Dividing both sides by µ(α) and using pi(α)ωi(α)≥ µ(α)(1−2θ) yields

2n∑

i=1

(1−2θ)

(
(∆pi)

2

p2
i (α)

+
(∆ωi)

2

ω2
i (α)

)

=(1−2θ)

(∥
∥
∥

∆p

p(α)

∥
∥
∥

2

+
∥
∥
∥

∆ω

ω(α)

∥
∥
∥

2
)

≤ (2θ)2

(1−2θ)
,

(13.119)

i.e.,

∥
∥
∥

∆p

p(α)

∥
∥
∥

2

+
∥
∥
∥

∆ω

ω(α)

∥
∥
∥

2

≤
(

2θ

1−2θ

)2

. (13.120)

Invoking Lemma 13.1, one gets

∥
∥
∥

∆p

p(α)

∥
∥
∥

2

·
∥
∥
∥

∆ω

ω(α)

∥
∥
∥

2

≤ 1

4

(
2θ

1−2θ

)4

. (13.121)

This gives

∥
∥
∥

∆p

p(α)

∥
∥
∥ ·
∥
∥
∥

∆ω

ω(α)

∥
∥
∥≤ 2θ 2

(1−2θ)2
. (13.122)

Using Cauchy-Schwarz inequality leads to

(∆p)T(∆ω)

µ(α)

≤
2n∑

i=1

|∆pi||∆ωi|
µ(α)

≤(1+2θ)
2n∑

i=1

|∆pi|
pi(α)

|∆ωi|
ωi(α)

=(1+2θ)
∣
∣
∣

∆p

p(α)

∣
∣
∣

T∣
∣
∣

∆ω

ω(α)

∣
∣
∣

≤(1+2θ)
∥
∥
∥

∆p

p(α)

∥
∥
∥ ·
∥
∥
∥

∆ω

ω(α)

∥
∥
∥
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≤2θ 2(1+2θ)

(1−2θ)2
. (13.123)

Therefore,

(∆p)T(∆ω)

2n
≤ θ 2(1+2θ)

n(1−2θ)2
µ(α). (13.124)

This proves the lemma.

Proof of Lemma 13.19:

Using Lemmas 13.18, 13.11, 13.2, 13.8, 13.9, and 13.10, and noticing p̈Tω̈ ≥ 0

and ṗTω̇ ≥ 0 yields

µk+1 ≤ µ(α)

(

1+
θ 2(1+2θ)

n(1−2θ)2

)

= µ(α)

(

1+
δ0

n

)

(13.125a)

=µk

[

1− sin(α)+

(
p̈Tω̈

2nµ
− ṗTω̇

2nµ

)

(1− cos(α))2

−
(

ṗTω̈

2nµ
+

ω̇Tp̈

2nµ

)

sin(α)(1− cos(α))

](

1+
δ0

n

)

≤µk

(

1− sin(α)+
p̈Tω̈

2nµ
sin4(α)+

(∣
∣
∣
∣

ṗTω̈

2nµ

∣
∣
∣
∣
+

∣
∣
∣
∣

ω̇Tp̈

2nµ

∣
∣
∣
∣

)

sin3(α)

)(

1+
δ0

n

)

≤µk

(

1− sin(α)+
n(1+θ)2

(1−θ)3
sin4(α)+

2(2n)
1
2 (1+θ)

3
2

(1−θ)2
sin3(α)

)(

1+
δ0

n

)

.

(13.125b)

Substituting sin(α) = θ√
n

into (13.125b) gives

µk+1 ≤µk

(

1− θ√
n
+

n(1+θ)2

(1−θ)3

θ 4

n2
+

2(2n)
1
2 (1+θ)

3
2

(1−θ)2

θ 3

n
3
2

)(

1+
δ0

n

)

=µk

(

1− θ√
n
+

θ 4(1+θ)2

n(1−θ)3
+

2
3
2 θ 3(1+θ)

3
2

n(1−θ)2

)(

1+
δ0

n

)

=µk

(

1− θ√
n
+

δ0

n
+

θ 4(1+θ)2

n(1−θ)3
+

2
3
2 θ 3(1+θ)

3
2

n(1−θ)2
− θδ0

n
3
2

+
δ0

n

[

θ 4(1+θ)2

n(1−θ)3
+

2
3
2 θ 3(1+θ)

3
2

n(1−θ)2

])

=µk

(

1− θ√
n

[

1− δ0√
nθ

− θ 3(1+θ)2

√
n(1−θ)3

− 2
3
2 θ 2(1+θ)

3
2√

n(1−θ)2

]
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−θδ0

n
3
2

[

1− θ 3(1+θ)2

√
n(1−θ)3

− 2
3
2 θ 2(1+θ)

3
2√

n(1−θ)2

])

.

Since

1− θ 3(1+θ)2

√
n(1−θ)3

− 2
3
2 θ 2(1+θ)

3
2√

n(1−θ)2

≥ 1− θ 3(1+θ)2

(1−θ)3
− 2

3
2 θ 2(1+θ)

3
2

(1−θ)2
:= f (θ),

where f (θ) is a monotonic decreasing function of θ , and for θ ≤ 0.37, f (θ)> 0.

Therefore, for θ ≤ 0.37, the following relation holds.

µk+1 ≤µk

(

1− θ√
n

[

1− δ0√
nθ

− θ 3(1+θ)2

√
n(1−θ)3

− 2
3
2 θ 2(1+θ)

3
2√

n(1−θ)2

])

=µk

(

1− θ√
n

[

1− θ(1+2θ)√
n(1−2θ)2

− θ 3(1+θ)2

√
n(1−θ)3

− 2
3
2 θ 2(1+θ)

3
2√

n(1−θ)2

])

.

(13.126)

Since

1− θ(1+2θ)√
n(1−2θ)2

− θ 3(1+θ)2

√
n(1−θ)3

− 2
3
2 θ 2(1+θ)

3
2√

n(1−θ)2

≥ 1− θ(1+2θ)

(1−2θ)2
− θ 3(1+θ)2

(1−θ)3
− 2

3
2 θ 2(1+θ)

3
2

(1−θ)2
:= g(θ), (13.127)

where g(θ) is a monotonic decreasing function of θ , one can conclude, for θ ≤
0.19, g(θ)> 0.0976 > 0. For θ = 0.19, it must have θg(θ)> 0.0185 and

µk+1 ≤ µk

(

1− 0.0185√
n

)

.

This proves (13.70).
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Control Moment Gyros (CMGs) are an important type of actuators used in

spacecraft control because of their well-known torque amplification property

[125]. The conventional use of CMG keeps the flywheel spinning in a constant

speed, while torques of the CMG are produced by changing the gimbal’s ro-

tational speed [105]. A more complicated operational concept is the so-called

variable-speed control moment gyros (VSCMG) in which the flywheel’s speed

of the CMG is allowed to be changed too. This idea was first proposed by

Ford in his Ph.D dissertation [68] where he derived a mathematical model for

VSCMGs which is now widely used in literatures. Because of the extra freedom

of VSCMG, it can generate torques on a plane perpendicular to the gimbal axis

while the conventional CMG can only generate a torque in a single direction at

any instant of time [328].

The existing designs of spacecraft control system using CMG or VSCMG

rely on the calculation of the desired torques and then determines the VSCMG’s
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gimbal speed and flywheel speed. These designs have a fundamental problem

because there are singular points where the gimbals speed and flywheel speed

cannot be found given the desired torques. Extensive literatures focus on this dif-

ficulty of implementation in the last few decades, for example, Oh and Vadali

[186] proposed singularity-robust steering law which avoids failure but produces

an errant torque; Junkins and Kim [106] enhanced the pseudo-inverse technical

using singular value decomposition (SVD); Ford and Hall [70] extended SVD

analysis to singular direction avoidance; Zhang et. al. [335] formulated the sin-

gularity avoidance problem as a nonlinear optimization problem. Gui et. al. [81]

adopted a modified direct-inverse steering law. There are good survey papers

[126, 284] that include extensive references.

Another difficulty associated with the control system design using CMG or

VSCMG is that the nonlinear dynamical models for these type of actuators are

much more complicated than other types of actuators used for spacecraft attitude

control systems. Most proposed designs, for example [69, 70, 81, 101, 105, 155,

224, 326, 328], use Lyapunov stability theory for nonlinear systems. There are

two shortcomings of this design method: first, there is no systematic way to find

the desired Lyapunov function, and second, the design does not consider the

system performance but only stability.

In this chapter, we propose a different operational concept for VSCMG: the

flywheels of the cluster of the VSCMG do not always spin at high speed, they

spin at high speed only when they need to. The same is true for the gimbals.

This operational strategy makes the origin (the state variables at zero) an equi-

librium point of the nonlinear system which can be regarded as an equivalent

linear time-varying (LTV) system. Therefore, some mature linear system design

methods can be used and system performance can be part of the design by using

these linear system design methods. Additional advantages of the proposed op-

erational concept are: (a) energy saving due to normally reduced spin speed of

flywheels and gimbals, (b) singularity-free because the control of the spacecraft

is always achievable by accelerating or decelerating the flywheels and gimbals,

therefore, there is no inverse from desired torques to the speeds of the gimbals

and flywheels.

It is worthwhile to point out that the nonlinear model can be viewed as a linear

time-varying (LTV) system. The design methods for linear time-invariant (LTI)

systems may be repeatedly applied to LTV systems. A popular design method

for LTV system is the so-called gain scheduling design method, which has been

discussed in several decades, for example, [131, 216, 218, 228]. The basic idea

is to fix the time-varying model in a number of “frozen” models and using linear

system design method for each of these “frozen” linear time-invariant systems.

When the parameters of the LTV system are not in these “frozen” points, inter-

polation is used to calculate the feedback gain matrix.

Although, gain scheduling design has been proved to be effective for many

applications of LTV systems, it has an intrinsic limitation for some time-varying
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systems that have many independent time-varying variables, which is the case

for spacecraft control using VSCMGs. As we will see that if a control system

model has many independent time-varying parameters, then, the computation

for the gain scheduling design will be too expensive to be feasible. Therefore,

we will consider another popular control system design method, the so-called

model predictive control (MPC) [8]. To meet some required stability conditions

imposed on the LTV system [217], we propose using the robust pole assignment

design [260, 323] for the MPC design and establish the condition of uniformly

exponential stability. The content of this chapter is based on [316].

14.1 Spacecraft model using variable-speed CMG

Assuming that there are N variable-speed CMGs installed in a spacecraft, fol-

lowing the notations of [68], we define a matrix As = [s1,s2, . . . ,sN ] such that

the columns of As, s j ( j = 1, . . . ,N), specify the unit spin axes of the flywheels

in the spacecraft body frame. Similarly, we define Ag = [g1,g2, . . . ,gN ] the ma-

trix whose columns are the unit gimbal axes and At = [t1, t2, . . . , tN ] the ma-

trix whose columns are the unit axes of the transverse (torque) directions, both

are represented in the spacecraft body frame. Whereas Ag is a constant matrix,

the matrices As and At depend on the gimbal angles. Let γ = [γ1, . . . ,γN ]
T ∈

[0,2π]×·· ·× [0,2π] := Π be the vector of N gimbal angles, and

[γ̇1, . . . , γ̇N ]
T = γ̇ := ωg = [ωg1

, . . . ,ωgN
]T (14.1)

be the vector of N gimbal speed, then the following relations hold [327] (see

Figure 14.1).

ṡi = γ̇iti = ωgi
ti, ṫi =−γ̇isi =−ωgi

si, ġi = 0. (14.2)

Denote

Γc = diag(cos(γ)), Γs = diag(sin(γ)). (14.3)

A different but related expression is given in [68] 1. Let As0
and At0 be initial

spin axes and gimbal axes matrices at γ0 = 0, then

As(γ) = As0
Γc +At0 Γs, (14.4a)

At(γ) = At0 Γc −As0
Γs. (14.4b)

This gives

Ȧs = Atdiag(γ̇) = Atdiag(ωg), (14.5a)

Ȧt =−Asdiag(γ̇) =−Asdiag(ωg), (14.5b)

1There are some typos in the signs in [68] which are corrected in (14.4) and (14.5).
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Figure 14.1: Spacecraft body with a single VSCMG.

which are identical to the formulas of (14.2). Let Js j
, Jg j

, and Jt j
be the wheel

spin axis inertia, the gimbal axis inertia, and the transverse axis inertia of the j-th

CMG, let three N ×N matrices be defined as

Js = diag(Js j
), Jg = diag(Jg j

), Jt = diag(Jt j
). (14.6)

Let ω = [ω1,ω2,ω3]
T be the spacecraft body angular rate with respect to the

inertial frame, β = [β1, . . . ,βN ]
T be the vector of N flywheel angles, and

[β̇1, . . . , β̇N ]
T = β̇ := ω s = [ωs1

, . . . ,ωsN
]T (14.7)

be the vector of N flywheel speeds. Denote

hs = [Js1
β̇1, . . . ,JsN

β̇N ]
T = Jsω s, (14.8)

hg = [Jg1
γ̇1, . . . ,JgN

γ̇N ]
T = Jgωg, (14.9)

and ht be the N-dimensional vectors representing the components of absolute an-

gular momentum of the VSCMGs about their spin axes, gimbal axes, and trans-

verse axes respectively. Note that the angular momentum generated by the ith
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flywheel represented in the body frame is given by siJsi
β̇i and the angular mo-

mentum generated by the ith gimbal represented in the body frame is given by

giJgi
γ̇i, the total angular momentum of the spacecraft with a cluster of VSCMGs

represented in the body frame is given as

h = Jbω +

N∑

i=1

siJsi
β̇i +

N∑

i=1

giJgi
γ̇i = Jbω +Ashs +Aghg

= Jbω +AsJsω s +AgJgωg. (14.10)

Taking derivative of (14.10) and using (14.2) and J̇ = 0, noticing that gimbal

axes are fixed, we have

ḣ = Jbω̇ +

N∑

i=1

(

ṡiJsi
β̇i + siJsi

β̈i

)

+

N∑

i=1

(ġiJgi
γ̇i +giJgi

γ̈i)

= Jbω̇ +

N∑

i=1

(

γ̇itiJsi
β̇i + siJsi

β̈i

)

+

N∑

i=1

giJgi
γ̈i

= −ω ×h+ te, (14.11)

where te is the external torque. Denote Ωs = diag(ω s) and Ωg = diag(ωg). This

equation can be written as a compact form as follows.

Jbω̇ +AtJsΩsωg +AsJsω̇ s +AgJgω̇g

= −ω × (Jbω +AsJsω s +AgJgωg)+ te, (14.12)

Note that the torques generated by wheel acceleration or deceleration in the di-

rections defined by As are given by

ts =−Jsω̇ s = [ts1
, . . . , tsN

]T (14.13)

(note that vectors ti in At are axes and scalars tsi
in ts are torques) and the torques

generated by gimbals’ acceleration or deceleration in the directions defined by

Ag are given by

tg =−Jgω̇g = [tg1
, . . . , tgN

]T, (14.14)

the dynamical equation can be expressed as

Jbω̇ +AtJsΩsωg +ω × (Jbω +AsJsω s +AgJgωg) = Asts +Agtg + te. (14.15)

Let

q̄ = [q0,q1,q2,q3]
T = [q0,q

T]T =
[

cos(
α

2
), êT sin(

α

2
)
]T

(14.16)

be the quaternion representing the rotation of the body frame relative to the in-

ertial frame, where ê is the unit length rotational axis and α is the rotation angle
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about ê. Therefore, in view of (4.9), the reduced kinematics equation becomes





q̇1

q̇2

q̇3



 =
1

2





f −q3 q2

q3 f −q1

−q2 q1 f









ω1

ω2

ω3





= g(q1,q2,q3,ω) =
1

2

(√

1−q2
1 −q2

2 −q2
3I3 +q×

)

ω,

where f =
√

1−q2
1 −q2

2 −q2
3, or simply

q̇ = g(q,ω). (14.17)

The nonlinear time-varying spacecraft control system model can be written as

follows:






ω̇g

ω̇ s

ω̇
q̇







=







0

0

−J−1
b [AtJsΩsωg +ω × (Jbω +AsJsω s +AgJgωg)]

g(q,ω)







+







−J−1
g tg

−J−1
s ts

J−1
b (Asts +Agtg + te)

0







= F(ω,ωg,ω s,q, t)+G(ts, tg, te, t), (14.18)

or simply

ẋ = F(x,γ(t))+G(u, te,γ(t)), (14.19)

where the state variable vector is x = [ωT
g ,ω

T
s ,ω

T,qT]T, the control variable vec-

tor is u = [tT
g , t

T
s ]

T, disturbance torque vector is te, and F and G are functions of

time t because the parameters of ω , ω s, ωg, q, As and At are functions of time t.

The system dimension is n = 2N+6. The control input dimension is 2N. Clearly,

an equilibrium of (14.18) is xe = 0 = [ωT,ωT
s ,ω

T
g ,q

T]T. Notice that

AtJsΩsωg =
1

2
(AtJsΩsωg +AtJsΩgω s) , (14.20)

and

ω × (Jbω +AsJsω s +AgJgωg)

= (ω ×Jb)ω +
1

2
[(ω ×AsJs)ωs +(ω ×AgJg)ωg

−(AsJsω s +AgJgωg)
×ω
]
. (14.21)

Let

F31 =−1

2
J−1

b [AtJsΩs +ω ×AgJg] , (14.22)
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F32 =−1

2
J−1

b [AtJsΩg +ω ×AsJs] , (14.23)

F33 = J−1
b

[

(Jbω)×+
1

2
(AsJsω s +AgJgωg)

×
]

, (14.24)

and

F43 =
1

2

(√

1−q2
1−q2

2 −q2
3I3 +q×

)

. (14.25)

Then, Eq. (14.18) can be written as the following linear time-varying model







ω̇g

ω̇ s

ω̇
q̇







=







0 0 0 0

0 0 0 0

F31 F32 F33 0

0 0 F43 0













ωg

ω s

ω
q







+







−J−1
g 0

0 −J−1
s

J−1
b Ag J−1

b As

0 0







[
tg

ts

]

+







0

0

J−1
b

0







te

= A(t)x+B(t)u+Cte, (14.26)

where C is a time-invariant matrix. The linear system is time-varying because ω ,

ω s, ωg, q, As and At in A and B are all functions of t.

Given As0
, At0 , and ωg, then, As and At can be calculated by the integration

of (14.5). But using (14.3) and (14.4) is a better method because it ensures that

the columns of As and At are unit vectors as required. Notice that the ith column

of As and the ith column of At , i = 1, . . . ,n, must be perpendicular to each other,

an even better method to update At is to use the cross product

ti = gi × si, i = 1, . . . ,n, (14.27)

to prevent ti and si from losing perpendicularity due to the numerical error ac-

cumulation. In simulation, integration of (14.1) can be used to obtain γ which

is needed in the computation of (14.3), but in engineering practice, the encoder

measurement should be used to get γ .

14.2 Spacecraft attitude control using VSCMG

Assuming that the closed-loop linear time-varying system is given by

ẋ = Ā(t)x(t), x(t0) = x0. (14.28)

It is well-known that even if all the eigenvalues of Ā(t), denoted by Re[λ (t)], are

in the left half complex plane for all t, the system may not be stable [217, pages
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113-114]. But the following theorem (cf. [217, pages 117-119]) provides a nice

stability criterion for the closed-loop system (14.28).

Theorem 14.1

Suppose for the linear time-varying system (14.28) with Ā(t) continuously differen-

tiable there exist finite positive constants α , µ such that, for all t, ‖Ā(t)‖ ≤ α and

every point-wise eigenvalue of Ā(t) satisfies Re[λ (t)]≤−µ . Then there exists a pos-

itive constant β such that if the time derivative of Ā(t) satisfies ‖ ˙̄A(t)‖ ≤ β for all t,

the state equation is uniformly exponentially stable.

This theorem is the theoretical base for the linear time-varying control system

design. We need at least that Re[λ (t)]≤−µ holds for t ≥ 0, which is the design

criterion in this section.

14.2.1 Gain scheduling control

Gain scheduling control design is fully discussed in [216] and it seems to be

applicable to this LTV system. The main idea of gain scheduling is: (a) select a

set of fixed parameters’ values, which represent the range of the plant dynam-

ics, each member in the fixed parameter set is called a “frozen model”, for each

frozen model, the gain is designed by a linear time-invariant design method, and

all gains are installed in the computer on-board; (b) when spacecraft flies on or-

bit, in between operating points, the gain is interpolated using the designs for

the fixed parameters’ values that cover the operating points. As an example, for

i = 1, . . . ,N, let γi ∈ {2π/pγ,4π/pγ, · · · ,2π} be a set of pγ fixed points equally

spread in [0,2π]. Then, for N VSCMGs, there are pN
γ possible fixed parameters’

combinations. For example, if N = 4 and pγ = 8, we can represent the grid com-

posed of these fixed points in a matrix form as follows:







π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π






, (14.29)

and each fixed γ is a vector composed of γi (i = 1,2,3,4) which can be any

element of ith row. If γ is not one of those fixed points, we have γi ∈ [κ(i),κ(i)+
1] for all i ∈ [1, · · · ,N]. Assume that γi is in the interior of (κ(i),κ(i)+1) for all

i ∈ [1, · · · ,N]. Then, γ meets the following conditions:

γ =






γ1 ∈ (κ(1),κ(1)+1)
...

γN ∈ (κ(N),κ(N)+1)




 . (14.30)



Spacecraft Control Using CMG � 285

Using the example of (14.29), if γ =
[

5π
8
, 3π

8
, 7π

16
, 15π

8

]T
, then

γ ∈
[(

π

2
,

3π

4

)

,
(π

4
,

π

2

)

,
(π

4
,

π

2

)

,

(
7π

4
,2π

)]T

.

To use gain scheduling control, we need also to consider fixed points for ω ,

ω s, ωg, and q in their possible operational ranges. Let pw, pws
, pwg

, and pq be

the number of the fixed points for ω , ω s, ωg, and q. The total vertices for the

entire polytope (including a grid of all possible time-varying parameters) will be

pN
γ p3

w pN
ws

pN
wg

p3
q.

For each of these (pN
γ p3

w pN
ws

pN
wg

p3
q) fixed models, we need conduct a control

design to calculate the feedback gain matrix for each “frozen” model. If the sys-

tem (14.26) at time t happens to have all parameters equal to some fixed point,

we can use a “frozen” feedback gain to control the system (14.26). Otherwise, we

need to construct a gain matrix based on these “frozen” gain matrices. Assuming

that each parameter has some moderate number of fixed points, say 8, and the

control system has N = 4 gimbals, the total number of the fixed models will be

818, each needs to compute a feedback matrix, an impossibly computational task.

14.2.2 Model predictive control

Unlike the gain scheduling control design in which most computation is done

off-line, model predictive control computes the feedback gain matrix on-line for

the LTV system (14.26) in which A and B matrices are updated in every sampling

period. It is straightforward to verify that for any given γ , if x 6= xe, the frozen

linear system (14.26) is controllable. In theory, one can use either robust pole

assignment [323, 260], or LQR design [135], or H∞ design [338] for the on-line

design, but H∞ design costs significant more computational time and should not

be considered for this on-line design problem. Since LTV system design should

meet the condition of Re[λ (t)]≤−µ required in Theorem 14.1, robust pole as-

signment design is clearly a better choice than LQR design for this purpose.

Another attractive feature of the robust pole assignment design is that the per-

turbation of the closed loop eigenvalues between sampling period are expected

to be small. It is worthwhile to note that a robust pole assignment design [260]

minimizes an upper bound of H∞ norm which means that the design is robust to

the modeling error and reduces the impact of disturbance torques on the system

output [302, 311]. Additional merits about this method, such as computational

speed which is important for the on-line design, is discussed in [195]. Therefore,

we use the method of [260] in the proposed design.

The proposed design algorithm is given as follows:

Algorithm 14.1
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Data: Jb, Js, Jg, and Ag.

Initial condition: x = x0, γ = γ0, As0
, and At0 .

Step 1: Update A and B based on the latest γ and x.

Step 2: Calculate the gain K using robust pole assignment algorithm

robpole (cf. [260]).

Step 3: Apply feedback u = Kx to (14.18) or (14.26).

Step 4: Update γ and x = [ωT,ωT
s ,ω

T
g ,q

T]T. Go back to Step 1.

14.2.3 Robust pole assignment

Although robpole developed in [260] is the most efficient robust pole assign-

ment algorithm [195], the efficiency of robpole in on-line application should be

further improved by exploring the system structure of A and the fact that Jg, Jb,

and Ag are constant matrices in (14.26). Let Λ = diag(λi) and X = [x1, . . . ,xn]
with ‖xi‖= 1 such that

(A+BK)X = XΛ. (14.31)

The algorithm of robpole can be summarized as follows (for details, see Ap-

pendix C):

Algorithm 14.2

robpole

Data: A, B, and diagonal matrix Λ = diag(λi) with λi being the desired closed-loop

poles.

Step 1: QR decomposition for B yields orthogonal Q = [Q0 Q1] and trian-

gular R such that

B = [Q0 Q1]

[
R

0

]

. (14.32)

Step 2: QR decomposition for (AT−λiI)Q1 yields orthogonal V= [V0i V1i]
and triangular Y such that

(AT −λiI)Q1 = [V0i V1i]

[
Y

0

]

, i = 1, . . . ,n. (14.33)

Step 3: Cyclically select one real or a pair of (real or complex conjugate)

unit length eigenvectors such that xi ∈ Si = span(V1i) and the robustness

measure det(X) is maximized.

Step 4: The feedback matrix is given by

K = R−1QT
0 (XΛX−1 −A). (14.34)
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Step 3 in Algorithm 14.2 looks very complex but it turns out, by some careful

investigation, that this step mainly involves two rank-one QR decomposition up-

dates and a rank-two singular value decomposition (SVD). The rank-two SVD

admits an analytical solution [260]. Since A in (14.26) has a lot of zeros, the

calculation in parentheses in Steps 2 and 4 can save substantial flops, especially

in Step 2 which is done for i = 1, . . . ,n. Another major saving can be achieved

in Step 1 by using the fact that the first three columns of B are constant (not

time-varying). Assume that

B =







−J−1
g 0

0 −J−1
s

J−1
b Ag J−1

b As

0 0






= [Q0 Q1]

[
R

0

]

, (14.35)

or equivalently

QTB =

[
QT

0

QT
1

]

B = [R1 R2]. (14.36)

As time evolves and As changes, R2 = QT
[

0 −J−T
s AT

s J−T
b 0

]T
changes

but R1 is constant and triangular. Therefore, the QR decomposition needs only to

zero a few non-zeros in R2 to make R triangular. This reduces significant amount

of flops in every sampling time.

14.3 Simulation test

The proposed design method is simulated using the model and data in [105, 327,

326]. We assume that the four VSCMGs are mounted in pyramid configuration2

as shown in Figures 14.2 and 14.3. The angle of each pyramid side to its base is

θ = 54.75 degree; the inertia matrix of the spacecraft is given by [326] as

Jb =





15053 3000 −1000

3000 6510 2000

−1000 2000 11122



 kg ·m2. (14.37)

The spin axis inertial matrix is given by Js = diag(0.7,0.7,0.7,0.7) kg ·m2 and

the gimbal axis inertia matrix is given by Jg = diag(0.1,0.1,0.1,0.1) kg ·m2. The

initial wheel speeds are 2π radians per second for all wheels. The initial gimbal

speeds are all zeros. The initial spacecraft body rate vector is randomly generated

by Matlab using rand(3,1) ∗ 10−3 and the initial spacecraft attitude vector is a

2Pyramid configuration was extensively studied because four CMGs are the minimum having one de-

gree of redundancy [125]. But detailed study [125] showed that CMG control using Pyramid configuration

and inverse from torque to flywheel speed cannot avoid singularity.
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Figure 14.2: VSCMG system with pyramid configuration concept.

reduced quaternion randomly generated by Matlab using rand(3,1) ∗ 10−1. The

gimbal axis matrix is fixed and given by [327] (cf. Figures 14.2 and 14.3.)

Ag =





sin(θ) 0 − sin(θ) 0

0 sin(θ) 0 − sin(θ)
cos(θ) cos(θ) cos(θ) cos(θ)



 (14.38)

The initial flywheel axis matrix can be obtained using Figures 14.2 and 14.3 and

is given by

As =





0 −1 0 1

1 0 −1 0

0 0 0 0



 (14.39)

The initial transverse matrix At can be obtained by the formula of (14.27). The
desired or designed closed-loop poles are selected as

{−3.0,−3.1,−2.9,−3.2,−2.1,−2.2,−2.0,−1.9,−3.4,−3.5,−3.3,−2.7,−2.6,−2.8}.

The simulation test results for (14.26) using control Algorithm 3.1 are given in

Figures 14.4-14.7.
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Figure 14.3: VSCMG system with pyramid configuration.

Remark 14.1 The simulation shows that the computational time for robust pole

assignment design is very efficient. But if this algorithm does not meet the on-line

computational requirement, a faster but not a robust pole assignment algorithm pro-

posed by Misrikhanov and Ryabchenko is available [172], which is discussed in Ap-

pendix C.
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Figure 14.4: Gimbal wheel ωg response.
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Figure 14.5: Spin wheel ω s response.
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15.1 Introduction

Spacecraft rendezvous is an important operation in many space missions. There

are extensive research in this field and hundreds successful rendezvous missions,

see, for example, the survey paper [149] and references therein. The entire ren-

dezvous process can be divided into several phases, including phasing, close-

range rendezvous, final approaching, and docking. In the early phase, the chaser

flies to the target with the aid from the ground station and orbital translation con-

trol is the main concern. For this purpose, the well-known Hill [92] or Clohessy

and Wiltshire [45] equations are adequate for the control system design if the

293
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orbit is circular. But in the final approaching and docking phase, coupled orbital

and attitude control may be required. Moreover, it is desired to consider the case

that the orbit of the target spacecraft is not circular. To achieve this requirement,

more complex models introduced in [121, 193, 276] should be considered. Al-

though these models are developed for more general purpose, they can be easily

tailored for the use of spacecraft rendezvous and docking control.

The research of spacecraft rendezvous has attracted renewed interest in re-

cent years as a result of new development in control theory and increased space

missions involving rendezvous and soft docking. Various design methods have

been considered for this control system design problem. For example, reach-

ability was considered in [329]; an adaptive output feedback control was pro-

posed for this purpose in [242]; a multi-objective robust H∞ control method

was investigated in [73]; a Lyapunov differential equation approach was stud-

ied for elliptical orbital rendezvous with constrained controls [336]; a gain

scheduled control of linear systems was applied to spacecraft rendezvous prob-

lem subject to actuator saturation [337]; and various control design methods

were considered for 6 degree of freedom (DOF) spacecraft proximity operations

[122, 138, 156, 166, 250, 252, 254, 255, 296, 334]. NASA is working on some

concept validation flight test [215]. All these methods have their merits in solving

the challenging problem under various conditions, but none of them addressed a

fundamental issue, i.e., to achieve the soft docking.

In this chapter, a recently proposed model in [121] is carefully examined. The

measurable variables and controllable inputs in the mission of the final approach-

ing and docking phase are then determined. Some reasonable assumptions that

normally hold via engineering design are made clear. Because of the merits dis-

cussed in [304, 311], a reduced quaternion concept proposed in [304] is adopted,

which slightly simplifies the model of [121]. To make the general model useful

for the control system design, a thruster configuration is considered and modeled

in the control system model. This control system model can be viewed either

as a nonlinear model or a linear time-varying (LTV) model. Using the linear

time-varying model is preferred because a linear system is easier to handle than

a nonlinear system and the corresponding design methods are capable to con-

sider the system performance which is very important as soft docking does not

allow oscillation crossing the horizontal line for the relative position and rela-

tive attitude (between the target and the chaser) in the spacecraft rendezvous and

docking phase.

There are two popular methods that deal with time-varying control system de-

sign with the consideration of system performance. The first one is gain schedul-

ing [218] and the second one is model predictive control (MPC) [8]. A simple

analysis in the previous chapter shows that the former is the most efficient when

all time-varying parameters explicitly depends on time; and the later is more ap-

propriate when many parameters depend implicitly on time. The rendezvous and

docking control falls into the second category. Therefore, we propose a MPC-
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based method to design the rendezvous and docking control. Although several

LTI design methods, such as LQR, H∞, and robust pole assignment, take the

performance into the design consideration and can be used in the MPC-based

design, only robust pole assignment method can directly take system oscillation

into the design consideration because oscillation is directly related to the closed-

loop pole positions [56]. In addition, robust pole assignment guarantees that the

closed-loop poles are not sensitive to the parameter changes in the system [195]

that is important given the system is time-varying. Moreover, robust pole assign-

ment design minimizes an upper bound of H∞ norm which means that the design

is robust to the modeling error and reduces the impact of disturbance forces on

the system output (see Chapter 9 and [311]). Among many robust pole assign-

ment algorithms, we suggest a globally convergent algorithm [260] because of

its fast on-line computation and other merits [195]. We use two design examples

and simulation to show the efficiency and effectiveness of the proposed method.

This Chapter is mainly based on [318]. Section 2 summarizes the complete

rendezvous model and its implication for rendezvous and docking control. Sec-

tion 3 discusses the MPC-based method for spacecraft control using robust pole

assignment. Section 4 provides some design examples and simulation results.

15.2 Spacecraft model for rendezvous

In this section, we first present the model developed by Kristiansen et. al. in

[121]. We then discuss the assumptions derived from the application of final ap-

proaching and docking phase in the rendezvous process and present a simplified

version to be used in this chapter. For the sake of simplicity, we use the scalar no-

tation a for the magnitude of ‖a‖. We make the following assumption throughout

the chapter.

Assumption 1 Chaser and target can exchange position, attitude and rotational

rate information in real time.

This assumption can be achieved by engineering design. But this assumption

is not essential because extensive research for relative pose determination tech-

niques has been performed and many of these techniques are expected to be used

in the future missions (see a survey paper [188]).

15.2.1 The model for translation dynamics

As shown in Fig. 15.1, the inertial frame is defined by standard earth-centered

inertial (ECI) frame Fi with ix, iy, and iz being the coordinate axes. Let rt be the

vector from the Earth center to the center of the mass of the target. Let the angular

momentum vector of the target orbit be denoted by h = rt × ṙt . The target orbital
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Figure 15.1: Spacecraft coordinate frame.

frame Fto is the spacecraft RSW frame discussed in Chapter 3 with the origin at

center of the mass of the target. The coordinate vectors of the RSW frame are

er = rt/rt , (15.1a)

ew = h/h, (15.1b)

es = ew × er. (15.1c)

Several other vectors are defined in RSW frame Fto: ev is the vector in the space-

craft velocity direction. en is defined to be orthogonal to ev and ew as en = ev×ew.

If the spacecraft orbit is circular, then ev = es and en = er. The transformation

from ECI frame to the RSW frame (the target orbit frame) is given in (3.16).

The body frames of the target and chaser, Ftb and Fcb, have their origins at their

centers of mass and their coordinate vectors are their principal axes of the inertia.

The relative position vector between target and chaser is defined by

p = rc − rt = xer + yes + zew. (15.2)

p is available in real time if GPS is installed in both spacecraft and Assumption

1 holds. Spacecraft acceleration can be written as

a = arer +ases +awew = anen +avev +awew. (15.3)

The spacecraft velocity vector can be derived according to Figure 15.2 as

follows. Let vr and vs be the velocity components in er and es. Than, vr = ṙt , and
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Figure 15.2: Spacecraft coordinate in orbital plan.

vs = rt θ̇ , where θ is the true anomaly. We will use equations (2.51), (2.14), and

(2.29) which are listed below for easy reference:

rt =
p

1+ ecos(θ)
=

a(1− e2)

1+ ecos(θ)
, (15.4)

where e is the eccentricity of the spacecraft orbit, a is the semi-major axis of the

orbit, and p is semi-latus rectum,

h = r2
t

dθ

dt
, (15.5)

and

rt =
h2/µ

1+ ecos(θ)
, (15.6)

where µ is the geocentric gravitational constant of the Earth. From aforemen-

tioned equations, the following relations follow:

vr = ṙt =
a(1− e2)e sin(θ)θ̇

(1+ ecos(θ))2

=
a(1− e2)eh sin(θ)

r2
t (1+ ecos(θ))2

=
eh sin(θ)

rt(1+ ecos(θ))

=
eh sin(θ)

h2/µ
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=
µ

h
e sin(θ). (15.7)

Using (2.30) p = h2

µ yields

vs = rt θ̇ = rth/r2
t = h/rt =

h2µ

hrt µ
=

pµ

hrt

. (15.8)

Combining (15.7) and (15.8) gives

v = ṙt =
µ

h

(

e sin(θ)er +
p

rt

es

)

. (15.9)

Since ev is pointing to the velocity vector,

ev =
v

v
=

h

pv

(

e sin(θ)er +
p

rt

es

)

. (15.10)

Since en is perpendicular to ev and ew (unit length in the direction of h),

en = ev × ew =
h

pv

(
p

rt

er − e sin(θ)es

)

. (15.11)

The coordinate transformation between the orbit plane acceleration vector com-

ponents can be found from above equations as

[
ar

as

]

=
h

pv

[ p

rt
e sin(θ)

−e sin(θ) p

rt

][
an

av

]

(15.12)

so that

Cl
a =

h

pv





p

rt
e sin(θ) 0

−e sin(θ) p

rt
0

0 0 pv

h



 (15.13)

Note that Cl
a is not in general a proper rotation matrix since det(Cl

a) = 1+ e2 +
2ecos(θ). When e = 0, Cl

a is a rotational matrix.

For the two-body problem, using equation (2.2) f = Gm1m2r
r3 (m1 is the mass

of the Earth and m2 is the mass of the spacecraft) and a = dr2

dt2 , the fundamental

differential equation can be found as

dr2

dt2
+

µ

r3
r = 0, (15.14)

where µ = G(m1 +m2) ≈ Gm1, G = 6.669 ∗ 10−11m3/kg− s2 is the universal

constant of gravitation. This equation can be generalized to include force terms

due to aerodynamic disturbances, gravitational forces from other bodies, solar

radiation, magnetic fields and so on. In addition, it can be augmented to include
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control input vectors from on-board actuators. Accordingly, (15.14) should be

expressed for the target and chaser spacecraft as

dr2
t

dt2
=− µ

r3
t

rt +
fdt

mt

+
fat

mt

, (15.15)

dr2
c

dt2
=− µ

r3
c

rc +
fdc

mc

+
fac

mc

, (15.16)

where fdt and fdc are the disturbance actions due to external effects; fat and fac are

the actuator forces of the target and chaser spacecraft, respectively. In addition,

spacecraft masses are assumed to be small relative to the mass of the Earth. The

second order derivative of the relative position vector is given by

p̈ = r̈c − r̈t =− µ

r3
c

rc +
fdc

mc

+
fac

mc

+
µ

r3
t

rt −
fdt

mt

− fat

mt

. (15.17)

Simple manipulating on the formula gives

mcp̈ =−mcµ

(
rt +p

(rt + p)3
− rt

r3
t

)

+ fac + fdc −
mc

mt

(fat + fdt) . (15.18)

In view of (15.2), the dynamics of the chaser spacecraft relative to the target

spacecraft, referenced in the target orbit frame Fto, can be expressed as

rc = rt +p = (rt + x)er + yes + zew. (15.19)

Taking derivative on this equation twice with respect to time yields

r̈c = (r̈t + ẍ)er +2(ṙt + ẋ)ėr +(rt + x)ër + ÿes

+2ẏės + yës + z̈ew +2żėw + zëw. (15.20)

By using the true anomaly θ of the target spacecraft, the following relationships

hold.

ėr = θ̇es, ės =−θ̇er, ër = θ̈es − θ̇ 2er, ës =−θ̈er − θ̇ 2es. (15.21)

Substituting of (15.21) into (15.20), while recognizing that no out-of-plane mo-

tion exists in the ideal case, and hence ėw = ëw = 0, yields

r̈c =
[
r̈t + ẍ−2ẏθ̇ − θ̇ 2(rt + x)− yθ̈

]
er

+
[
ÿ+2θ̇(ṙt + ẋ)+ θ̈ (rt + x)− yθ̇ 2

]
es + z̈ew. (15.22)

Moreover, the position of the target spacecraft can be expressed as rt = rter,

and taking derivative for this expression twice with respect to time and inserting

(15.21), result in

r̈t = r̈t ėr +2ṙt ėr + rt ër = (r̈t − rt θ̇
2)er +(2ṙt θ̇ + rt θ̈ )es. (15.23)
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Subtracting (15.23) and (15.22) into (15.17) results in the formulation of the

position vector acceleration represented in the Fto frame:

p̈ = r̈c − r̈t = (ẍ−2ẏθ̇ − θ̇ 2x− θ̈y)er +(ÿ+2θ̇ ẋ+ θ̈x− θ̇ 2y)es + z̈ew. (15.24)

Substituting (15.24), (15.19), and (15.1) into (15.18) gives

mcp̈ = mc

(
ẍ−2ẏθ̇ − θ̇ 2x− θ̈y)er +(ÿ+2θ̇ ẋ+ θ̈x− θ̇ 2y)es + z̈ew

)

= −mcµ

(
rc

r3
c

− rt

r3
t

)

+ fa + fd

= −mcµ

(
(rt + x)

r3
c

er +
y

r3
c

es +
z

r3
c

ew −
1

r2
t

er

)

+ fa + fd, (15.25)

where fa = fac and fd = fdc and forces on target spacecraft is omitted. Denoting

d =





x

y

z



 , ḋ =





ẋ

ẏ

ż



 , d̈ =





ẍ

ÿ

z̈



 ,

as in [299], we can rewrite the nonlinear model (15.25) of spacecraft translation

dynamics as follows:

mcd̈+Ct(θ̇)ḋ+Dt(θ̇ , θ̈ ,rc)d+nt(rc,rt) = fa + fd , (15.26)

where

Ct(θ̇) = 2mcθ̇





0 −1 0

1 0 0

0 0 0



 (15.27)

Dt(θ̇ , θ̈ ,rc) = mc






µ
r3

c
− θ̇ 2 −θ̈ 0

θ̈ µ
r3

c
− θ̇ 2 0

0 0
µ
r3

c




 (15.28)

nt(rc,rt) = mcµ





rt/r3
c −1/r2

t

0

0



 , (15.29)

fa is the control force vector, and fd is the disturbance force vector, both are

applied in chaser’s body frame. It is worthwhile to note that

nt(rc,rt)
∣
∣
rc=rt

= 0. (15.30)

The calculation of θ̇ is given by (15.5)

θ̇ =
h

r2
t

,

where h is a constant depending on the specific orbit, and rt is provided by GPS.
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Case 1: If the orbit is circular, θ̇ is a constant because both h and rt are

constants. Hence, θ̈ = 0. Noticing that, during the docking phase, rc ≈ rt

and the latter is a constant, therefore, Ct(θ̇ ) and Dt(θ̇ , θ̈ ,rc) are constants.

Case 2: If the orbit is elliptic, using (15.4) gives

θ̇ =
h

r2
t

=
h(1+ ecos(θ))2

p2
=

h(1+ ecos(θ))2

a2(1− e2)2
, (15.31)

where e, a, and p are all constants. Taking derivative for both sides of

r2
t θ̇ = h and noticing that h is a constant yields

2rt ṙt θ̇ + r2
t θ̈ = 0.

Substituting (15.4) and (15.7) into this equation gives

θ̈ =−2ṙt θ̇

rt

=−2µe sin(θ)θ̇

hrt

=
2µeθ̇ sin(θ)(1+ ecos(θ))

ha(1− e2)
. (15.32)

According to (15.31) and (15.32), to calculate ṙt(t), θ̇ and θ̈ , one needs

to know θ . Let t = 0 be the time that the spacecraft passing from the

perigee. A function of θ(t) can be found as follows: from (2.61)

M =
2πt

T
= ψ − e sin(ψ),

where T is the spacecraft orbital period, t is the time elapsed since the

spacecraft passes the perigee, M is the mean anomaly, ψ is the eccentric

anomaly. Therefore, given t, one can calculate M. Given M and e, one

can calculate ψ by using Newton’s method. Given ψ , one can calculate

θ by using (2.50) which is given as follows:

tan

(
θ

2

)

=

√

1+ e

1− e
tan
(ψ

2

)

. (15.33)

Therefore, according to Assumption 1, Ct(θ̇), Dt(θ̇ , θ̈ ,rc) and nt(rc,rt) are

known but in general are time-varying since rc, rt , θ , θ̇ , and θ̈ are all time-

varying.

15.2.2 The model for attitude dynamics

Let the unit quaternion q̄ =
[
q0,q

T
]T

be the relative attitude of the target and

chaser, where

qT = [q1,q2,q3]. (15.34)

The inverse of the quaternion is defined in (3.50) as q̄−1 =
[
q0,−qT

]T
. Let

q̄i,cb = [qc0,qc1,qc2,qc3] be the relative quaternion from chaser’s body frame to
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the inertial frame, and q̄i,tb = [qt0,qt1,qt2,qt3] be the the relative quaternion from

target’s body frame to the inertial frame. Notice that q̄i,cb is measurable from the

chaser and q̄i,tb is measurable from the target. Using the Assumption 1, equations

(3.50) and (3.64), we have

q̄ = q̄−1
i,cbq̄i,tb =







qt0 −qt1 −qt2 −qt3

qt1 qt0 qt3 −qt2

qt2 −qt3 qt0 qt1

qt3 qt2 −qt1 qt0













qc0

−qc1

−qc2

−qc3






, (15.35)

which, according to Assumption 1, is measurable. The relative angular velocity

between frames Fcb and Ftb expressed in frame Fcb is given by

ω = ωcb
i,cb −Rcb

tb ω tb
i,tb = [ω1,ω2,ω3]

T, (15.36)

where ωcb
i,cb is the angular velocity of the chaser spacecraft body frame relative to

the inertial frame, expressed in the chaser spacecraft body frame, ωcb
i,cb is measur-

able from chaser; ω tb
i,tb is the angular velocity of the target spacecraft body frame

relative to the inertial frame, expressed in the target spacecraft body frame, ω tb
i,tb

is measurable from target; Rcb
tb is the rotational matrix from Ftb to Fcb which is

an equivalent rotation of q̄ and is given by (3.56)

Rcb
tb = (q2

0 −qTq)I+2qqT −2q0S(q), (15.37)

where S(q) = q× is the cross product operator. Using Assumption 1 again, we

conclude that ω is available from measurements. Let Jc and Jt be the inertia

matrices of the chaser and target, respectively.

Assume that a quaternion q̄ rotates frame a to frame b, then the correspond-

ing direction cosine matrix is given by (3.61) which is provided below for easy

reference.

Rb
a =





2q2
0 −1+2q2

1 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 2q2
0 −1+2q2

2 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 2q2
0 −1+2q2

3



 . (15.38)

Let ω sb
i,sb be the angular velocity of the spacecraft relative to the inertial frame,

expressed in the spacecraft body frame, where s ∈ {c, t}. In view of (4.2), the

spacecraft dynamical model can be written as

Jsω̇
sb
i,sb =−S(ω sb

i,sb)Jsω
sb
i,sb + tds + tas (15.39)

where tds is the disturbance torque applied to the spacecraft body and expressed

in the body frame, and tas is the control torque applied to the spacecraft body and

expressed in the body frame. In view of (3.13), the derivative of the rotational

matrixRa
b that rotates from b frame to a frame is given by

Ṙa
b =−S(ωb

a,b)R
a
b = S(ωa

a,b)R
a
b. (15.40)
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Using definition of ω in (15.36), (15.40), and a×b=−b×a, the relative attitude

dynamics can be expressed as

Jcω̇ = Jc

(
ω̇cb

i,cb − Ṙcb
tb ω tb

i,tb −Rcb
tb ω̇ tb

i,tb

)

= Jcω̇
cb
i,cb −JcS(ω

cb
cb,tb)R

cb
tb ω tb

i,tb −JcR
cb
tb ω̇ tb

i,tb

= Jcω̇
cb
i,cb −JcS(ω

cb
cb,tb)ω

cb
i,tb −JcR

cb
tb ω̇ tb

i,tb

= Jcω̇
cb
i,cb +JcS(ω

cb
i,tb)ω

cb
cb,tb −JcR

cb
tb ω̇ tb

i,tb

= Jcω̇
cb
i,cb −JcS(ω

cb
i,tb)ω

cb
tb,cb −JcR

cb
tb ω̇ tb

i,tb

= Jcω̇
cb
i,cb −JcS(ω

cb
i,tb)ω −JcR

cb
tb ω̇ tb

i,tb (15.41)

where ωcb
cb,tb = −ωcb

tb,cb and ωcb
tb,cb = ω are used in the last two equalities. Using

ωcb
i,cb = ω +Rcb

tb ω tb
i,tb and applying (15.39) to Jcω̇

cb
i,cb yield

Jcω̇
cb
i,cb = −S(ω +Rcb

tb ω tb
i,tb)Jc(ω +Rcb

tb ω tb
i,tb)+ tdc + tac

= −S(ω)Jc(ω +Rcb
tb ω tb

i,tb)−S
(
Rcb

tb ω tb
i,tb

)
Jc

(
ω +Rcb

tb ω tb
i,tb

)
+ tdc + tac

= S
(
Jc(ω +Rcb

tb ω tb
i,tb)
)

ω −S(Rcb
tb ω tb

i,tb)Jc

(
ω +Rcb

tb ω tb
i,tb

)
+ tdc + tac

=
[
S
(
Jc(ω +Rcb

tb ω tb
i,tb)
)
−S

(
Rcb

tb ω tb
i,tb

)
Jc

]
ω

−S
(
Rcb

tb ω tb
i,tb

)
Jc

(
Rcb

tb ω tb
i,tb

)
+ tdc + tac. (15.42)

It is straightforward to see that

JcS
(
ωcb

i,tb

)
ω = JcS

(
Rcb

tb ω tb
i,tb

)
ω. (15.43)

Using (15.39) again gives

JcR
cb
tb ω̇ tb

i,tb

= JcR
cb
tb J−1

t Jt ω̇
tb
i,tb

= −JcR
cb
tb J−1

t S
(
ω tb

i,tb

)
Jtω

tb
i,tb +JcR

cb
tb J−1

t tdt +JcR
cb
tb J−1

t tat . (15.44)

Substituting (15.42), (15.43), and (15.44) into (15.41), we get the model of rel-

ative attitude dynamics which is given in chaser’s frame as follows (see also

[121, 334]):

Jcω̇ +Cr(ω,q)ω +nr(ω,q) = tc + td , (15.45)

where tc = tac − JcR
cb
tb J−1

t tat and td = tdc − JcR
cb
tb J−1

t tdt are control torque and

disturbance torque respectively, Cr(ω) and nr(ω) are given as follows:

Cr(ω,q) = JcS(R
cb
tb ω tb

i,tb)+S(Rcb
tb ω tb

i,tb)Jc −S(Jc(ω +Rcb
tb ω tb

i,tb)), (15.46)

nr(ω,q) = S(Rcb
tb ω tb

i,tb)JcR
cb
tb ω tb

i,tb −JcR
cb
tb J−1

t S(ω tb
i,tb)Jtω

tb
i,tb. (15.47)

In the rest discussion, we consider the rendezvous and soft docking by control-

ling the chaser spacecraft. Therefore, tc = tac and td = tdc. At the end of the
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docking phase, the rotation matrix satisfies Rcb
tb = I. If target spacecraft is aligned

with the inertial frame, then ω tb
i,tb = 0, Cr(ω,q) =−S(Jcω), and nr(ω,q) = 0.

In the final approaching and docking phase, using reduced quaternion dy-

namics equation as proposed in [304] can easily be justified because of the small

attitude error. The attitude dynamics is given as follows:

q̇ =





q̇1

q̇2

q̇3





=
1

2


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√

1− q2
1 − q2

2 − q2
3 −q3 q2

q3

√

1− q2
1
− q2

2
− q2

3
−q1

−q2 q1

√

1− q2
1 − q2

2 − q2
3






[
ω1

ω2

ω3

]

=
1

2
Tω. (15.48)

15.2.3 A complete model for rendezvous and docking

Let

v = ḋ, (15.49)

which can be obtained by ḋ ≈ ∆d/∆t. Now, we can summarize the result by com-

bining equations (15.49), (15.26), (15.45), and (15.48), which yields the com-

plete model for rendezvous and docking:

ẋ =


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

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


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1
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
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





0
1

mc
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0

J−1
c tc






. (15.50)

Since Dt , Ct , T, Cr, nt , and nr depend on q, ω , rc, rt , θ which are all time-

varying, equation (15.50) can be treated as a linear time-varying system.

It is well-known that the control force vector and control torque vector depend

on the thruster configurations and many configurations are reported in different

systems, for example, [49, 297, 310]. Let Fa and Ta be the thruster configuration

related matrices that define the control force vector and control torque vector,

i.e.,

fc = Fafa, tc = Tafa, (15.51)

where fa is the vector of forces generated by thrusters. Substituting (15.51) into



Spacecraft Rendezvous and Docking � 305

(15.50), we have
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
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fa

= A(t)x−nd(t)+Bfa. (15.52)

Assuming that the chaser’s mass change due to fuel consumption is negligi-

ble, the matrix B is then time-invariant. For illustrative purpose, in the rest of

the discussion, it is assumed that the thrusters have the configuration considered

in [334] which is described in Figure 15.3. But the same idea can be used in

other thruster configurations. Therefore, the following relations are easily ob-

tained from Figure 15.3.

Fa =





0 0 1 −1 0 0

0 0 0 0 1 −1

1 −1 0 0 0 0



 , (15.53)

and

Ta =





L2

2
L2

2
0 0 L3

2
L3

2

− L1

2
− L1

2
L3

2
L3

2
0 0

0 0 − L2

2
− L2

2
L1

2
L1

2



 . (15.54)

It is easy to check that the following matrix

G :=

[
Fa

Ta

]

(15.55)

is full row rank matrix. As a matter of fact, in engineer practice, thruster config-

uration should always be designed to be able to fully control the translation and

attitude operations. Therefore, we may make the following assumption in the rest

of the chapter:

Assumption 2 The configuration matrix G is always a full row rank matrix.

15.3 Model predictive control system design

Although it is difficult to analyze the close-loop stability for MPC control system

designs, Theorem 14.1 (see also [217, pages 117-119]) provides a nice sufficient
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Figure 15.3: Coordinate Frame.

stability criterion for the linear time-varying system. This theorem is the theoret-

ical base for us to use the MPC design for the linear time-varying system. One

of the main conditions of the theorem requires that the closed-loop system at ev-

ery fixed time satisfies Re[λ (t)] ≤ −µ . Clearly, robust pole assignment design

guarantees that this condition holds at all sampling time. For any time between

the fixed sampling time, robust pole assignment design minimizes the sensitivity

of the closed-loop poles to the parameter changes. This is another reason that

we select robust pole assignment design over LQR design. The last and the most

important reason we select robust pole assignment design is that prescribed pole

places are directly related to the closed-loop system performance. In rendezvous

and soft docking control, we do not want the relative position and relative atti-

tude response to have any oscillation crossing the horizontal line to avoid colli-

sion. Among various pole assignment algorithms, we choose the one proposed

in [260, 323] because it converges faster than other popular algorithms [195], a

critical requirement in MPC design.

We will divide the control force into two parts. The first part is used to cancel

nd(t) in (15.52). This can be achieved simply by solving the following linear
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system of equations.

[
Fa

Ta

]

u1 = Gu1 =

[
nt(t)
nr(t)

]

, (15.56)

which gives

u1 = G†
[

nt(t)
nr(t)

]

:= G†n, (15.57)

where G† is pseudo-inverse of G. In our example, equations (15.53) and (15.54)

implies G† = G−1.

The design of second part of the thruster force u2 is based on the following

linear time-varying system:

ẋ = A(t)x+Bu2, (15.58)

where x, A(t), and B are defined as in (15.52). At every sampling time t, A(t) is

evaluated based on the measurable variables. The robust pole assignment algo-

rithm of [260] is called to get the feedback matrix

u2 = K(t)x.

The feedback force fa = u1 + u2 is applied to the linear time-varying system

(15.52). The new variables are measured and the next A(t) is evaluated in the

next sampling time, and the process is repeated. To avoid the oscillation crossing

the horizontal line for relative position and relative attitude in the rendezvous

and docking process, i.e., to achieve soft docking, the closed-loop poles should

be assigned on the negative real axis, i.e., all the poles should be negative and

real.

The MPC algorithm using robust pole assignment is summarized as follows:

Algorithm 15.1

Data: µ , mc, L1, L2, L3, Jc, Jt , Fa, Ta, and B.

Initial condition: At time t0, take the measurements θ = θ0, rc, rt , q̄i,tb, q̄i,cb, ωcb
i,cb,

ωtb
i,tb, calculate d, r, q, Rcb

tb , ω , which gives x = x0.

Step 1: Update nt(rc,rt), nr(ω ,q) which gives nd(t); update A(t) using

Dt(θ̇ , θ̈ ,rc), Ct(θ̇ ), Cr(ω ,q), and T(q).

Step 2: Calculate the gain K for the linear time-varying system (15.58) using

robust pole assignment algorithm implemented as robpole (cf. Appendix C

or [260]).

Step 3: Apply the controlled thruster force fa = u1 + u2 = G†n + Kx to

(15.52).
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Step 4: Take the measurements θ , rc, rt , q̄i,tb, q̄i,cb, ωcb
i,cb, ωtb

i,tb, calculate d,

r, q, Rcb
tb , ω , which gives x. Go back to Step 1.

Remark 15.1 It is worthwhile to emphasize that B in (15.58) is a constant matrix.

This information can be used in robpole to reduce the computational burden for the

MPC control scheme.

15.4 Simulation test
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Figure 15.4: Position response for the circular orbit.

In this section, two simulation test examples are presented to support the

design idea. The simulation examples of [334, 336] and their parameters are

used. The simulation results are compared to other designs to demonstrate the

superiority of the proposed design.

The first simulation test example is borrowed from [334]. The physics

constants, such as, gravitational constant µ = 3.986004418∗ 1014m3/(kg · s2),
Earth radius 6371000 m, are taken from [280]. The rest parameters are taken

from [334]: the target spacecraft orbit is circular and the altitude is 250 km,

L1 = L2 = L3 = 2 m, the mass of the chaser is 10 kg and its inertia matrix is

Jc = diag[10, 10, 10]kg ·m2, the mass of the target is 10 kg and its inertia matrix
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Figure 15.5: Attitude response for the circular orbit.
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Figure 15.6: Required forces for the circular orbit.

is given as

Jt =





10 2.5 3.5
2.5 10 4.5
3.5 4.5 10



kg ·m2,

Fa is given in (15.53), Ta is given in (15.54). The initial condition is set as

p(0) = [10, −10, 10]Tm,

d(0) = [0, 0, 0]Tm/s,
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Figure 15.7: Position response for the elliptical orbit.
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Figure 15.8: Attitude response for the elliptical orbit.

q̄(0) = [0.3772, −0.4329, 0.6645, 0.4783]T,

ω(0) = [0, 0, 0]Trad/s.

To avoid the oscillation of relative distance and relative attitude to guarantee

the soft docking, all closed-loop eigenvalues are assigned in negative real axis.

Therefore, the proposed closed loop poles are set to

−0.0410,−0.0411,−0.0412,−0.0413,−0.0414,−0.0415,
−0.0416,−0.0417,−0.0418,−0.0419,−0.0420,−0.0421.

(15.59)
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Figure 15.9: Required forces for the elliptical orbit.

Applying the on-line Algorithm 15.1 to this problem, the simulation is per-

formed and the closed-loop responses are shown in Figures 15.4 -15.6. Figure

15.4 is the response of relative position between the chaser and the target and

Figure 15.5 is the response of relative attitude between the chaser and the target.

These figures show that the design successfully avoid the oscillation crossing the

horizontal line during the docking process and achieved the soft docking. Figure

15.6 depicts the forces in 6 thrusters used in this docking process, the maximum

forces is about 0.17 Newton, which is much smaller than the maximum forces1

used in the design of [334], which is in the range of 30 Newton.

Comparing to the simulation tests in [7,8,9,10,11,12,13,14,15], the simula-

tion using the proposed method is the only one that does not have oscillation

crossing the horizontal line in relative position and attitude responses, which is a

clear indication that the design achieves soft docking. The on-line computational

time for each call of robpole is about 0.1 second on a Dell PC with Intel Core

i5-4440 CPU @ 3.10GHz and installed memory of 12GB. Since robpole is a

Matlab code which is an interpreted code. Computational experience shows that

a compiled code can be magnitude faster than interpreted code. Therefore, the

algorithm will be fast enough in real-time application.

The second simulation test example uses the same spacecraft parameters

described in the first example but uses an elliptical orbit described in Table 1

of [336], where the semi-major axis a = 2.4616× 107 meters, the eccentricity

e = 0.73074, the specific angular momentum h = 6.762×1010m2/s, and the pe-

riod of the orbit is 38436 seconds. To show that the proposed method can achieve

1but much longer time is used than the design of [334].
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the performance of no oscillation crossing the horizontal line for the relative po-

sition and relative attitude between the target and chaser spacecraft with mea-

surement error, control error, and external effect, the simulation is performed

as follows: the x(t) applied in feedback is up to 5% deviation from calculated

true x(t). This deviation can be the result of either measurement error or con-

trol error or disturbance force. The performance of the position responses and

attitude responses in this simulation are provided in Figures 15.7 and 15.8, the

required force is given in Figure 15.9. Clearly, the performance of relative posi-

tion and relative attitude responses meets the design requirement, i.e., there is no

oscillation crossing the horizontal line. Also it has been seen that the design is

insensitive to measurement error, control error, and external disturbance effect.
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Some most advanced space missions, such as James Webb Space Telescope are

multi-body system. This chapter discusses a symbolic rigid multi-body nonlin-
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ear model for such space system using Stoneking’s implementation of Kane’s

method. This symbolic nonlinear model is linearized using Matlab symbolic

functions diff and inv because the analytic linearization is intractable via man-

ual derivation. The linearized analytic rigid model is convenient to design the

controllers using both linear quadratic regulator (LQR) and robust pole assign-

ment methods. A systematic methodology for modeling and attitude control is

proposed. The idea is to use the LQR approach as an effective first design step

that can inform the selection of real eigenvalues for the final robust pole assign-

ment. We use a concept design for LUVOIR (which will be described shortly) as

an example, but the systematic method can easily be applied to any rigid multi-

body systems, connected via rotary joints having arbitrary degrees of freedom,

arranged in tree topologies. The materials of this chapter are from [247, 321].

16.1 Introduction

The Large UV Optical Infrared Surveyor (LUVOIR) (see Figure 16.1), to be

placed to Sun-Earth L2 point, is a concept proposed for the key science goal of

characterizing a wide range of exoplanets some of which are potentially habit-

able. Although the telescope is still in the concept phase, NASA has engaged

multiple engineering disciplines to conduct preliminary design studies [65]. The

telescope is a typical multi-body dynamical system.

Multi-body dynamical systems can be found in many applications including

machine design, spacecraft dynamics, and robotics. Modern modeling techniques

for multi-body dynamics are based on d’Alembert’s principle in which dynami-

cal systems were essentially converted into static ones through the introduction

of inertial forces. In 1788, Lagrange formalized this approach by combining the

fundamental ideas of d’Alembert’s principle with explicit descriptions of virtual

work and generalized coordinates [60]. An extension of d’Alembert’s principle

valid for holonomic systems was presented in 1909 by Jourdain [102]. As many

engineering systems are nonholonomic, Kane extended d’Alembert’s principle

to this general case in 1961 [111]. Kane’s method has many applications par-

ticularly in robotics for systems of rigid bodies linked by rotational joints that

have an arbitrary number of degrees of freedom (see [34, 38, 112]). Therefore,

it is now included in a few engineering handbooks, such as [34, 225]. Although

Kane’s method has become popular, controversy exists surrounding its original-

ity and efficiency when compared with the Gibbs-Appell equations [53, 134].

Recently, Piedboeuf indicated that Kane’s equations are consistent to the Jour-

dain principle [201]. In [248], Stoneking demonstrated that Kane’s method can

be particularly useful in modeling the case of multiple rigid bodies connected via

rotary joints, e.g., space telescopes. As this was a conference paper, it was lim-

ited in both scope as well as exposure. The implementation, however, is available

as open source software [247].
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Using Kane’s method as described by Stoneking [248], Bentz and Lewis de-

rived a two-body rigid dynamics model for the LUVOIR telescope and simulated

the initial condition response of a LQR design [21]. This work was followed by

similar testing of a higher fidelity three-body rigid dynamics model in [22]. As

linked multi-body systems are widely seen in robotics and space applications,

the preliminary research of [21, 22] was extended in [321]. Though the deriva-

tion is for a three-body model, the aim is to generate further exposure within the

aerospace community of Stoneking’s implementation of Kane’s dynamics and

analysis technique that can efficiently model rigid multiple bodies, connected

via rotary joints having arbitrary degrees of freedom, arranged in tree topologies.

Although plenty of flexible system modeling methods exist (for example

[39, 144, 88]), we are particularly interested in rigid model because the rigid

model size is much smaller and its states are normally measurable. Therefore, the

rigid model is more suitable for the control system design than flexible models,

and using a rigid model for the controller design is widely used in practice. Our

ultimate goal is to design a controller for the LUVOIR telescope in compliance

with some arbitrary pointing requirement. As Kane’s multi-body dynamics are

nonlinear, and many powerful control techniques such as LQR and robust pole

assignment are based upon linear models, we have chosen to linearize the sym-

bolic model for the purpose of controller design. Two controllers are designed

based on the linearized model and their performances are compared for both

rigid and flexible models to give us some confidence that the designed controller

will work for the real system.

There are other multibody modeling methods in the literature. For example,

Li et al [137] discussed a flexible multibody spacecraft modeling which has a

center service module, supporting trusses, and a mirror module. It is assumed

that the center service module and the mirror module are rigid but the trusses

are flexible. In addition, the rigid center service module’s translational motion is

not considered, and connection of the rigid center service module and the trusses

are fixed. Therefore, their model is more specific than the one discussed in this

chapter because we do consider translational motion for all bodies and all con-

nections are not fixed. Hu et al [94] derived a more general flexible multi-body

system modeling method, which has much more states. Therefore, the model is

more suitable for validating the controller design but is not practical for controller

design.

16.2 Preliminary

This section provides important concepts and formulas in dynamics theory to be

used in this chapter and a brief discussion of Kane’s method.
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Figure 16.1: The concept of LUVOIR telescope.

16.2.1 Basic concepts and important formulas

Before we proceed, we present some basic concepts and important formulas

which can be found in [112] and will be used repeatedly in the remainder of

the chapter. Let BF = [b1,b2,b3] be a set of bases of the frame F , then a general

vector~v resolved in frame F can be written as:

~v = v1b1 + v2b2 + v3b3 = [b1,b2,b3][v1,v2,v3]
T = BFv, (16.1)

where v = [v1,v2,v3]
T. Let ~ωB/A be the angular rate of frame B relative to frame

A resolved in B. Invoking [112, (2.3.1)], for any moving vector~x resolved in B,

its derivative in frame A and frame B can be related as:

d~x

dt

∣
∣
∣
A
=

d~x

dt

∣
∣
∣
B
+~ωB/A ×~x, (16.2)

where × denotes the cross multiplication of two vectors. If~x is fixed in frame B,

then d~x
dt

∣
∣
∣
B
= 0. Therefore, we obtain (see [112, (2.1.2)]),

d~x

dt

∣
∣
∣
A
= ~ωB/A ×~x. (16.3)

The angular velocity of a rigid body B relative to a reference frame A can be

expressed in the following form involving n auxiliary references A1, . . . ,An [112,

(2.4.1)]:

~ωB/A = ~ωB/A1
+~ωA1/A2

+ · · ·+~ωAn/A. (16.4)
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The angular acceleration of a rigid body B relative to a reference frame A is

defined as the first time-derivative in A of the angular velocity of ~ωB/A as [112,

(2.5.1)]:

~αB/A =
d~ωB/A

dt
. (16.5)

If P and Q are two points fixed on a rigid body B having an angular velocity ~ωB/A

relative to a reference frame A, then the velocity of P in A, denoted as~vP/A, and

the velocity of Q in A, denoted as~vQ/A, are related to each other as [112, (2.7.1)]:

~vP/A =~vQ/A + ~ωB/A ×~r, (16.6)

where~r is the position vector from Q to P. The relationship between the acceler-

ation of P in A, denoted as~aP/A, and the acceleration of Q in A, denoted as~aQ/A,

is given as [112, (2.7.2)]:

~aP/A =~aQ/A +~ωB/A × (~ωB/A ×~r)+~αB/A ×~r. (16.7)

16.2.2 Kane’s method

We will derive the three-body rigid nonlinear model for LUVOIR telescope by us-

ing Kane’s method [248]. The notations in this section are defined in [112, 248]

and will become clear for the readers who follow the derivation to the end of

the next section. At that time, readers will see the beauty of Stoneking’s form of

Kane’s method [248]. Let {τ} be the general torque vector of the system, [J] be

the general inertia matrix of the system, {α} be the general angular accelera-

tion vector of the system, {ω} be the general angular rate vector of the system,

{h} be general angular momentum vector of the system, {f} be the general force

vector of the system, [M] be the general mass matrix of the system, {a} be the

general linear acceleration vector of the system, Ω be the partial angular veloc-

ity dyad, and V be the partial velocity dyad (Ω and V will be defined in (16.23)

and (16.33)). The Kane’s equation in matrix form can be expressed as

ΩT ({τ}− [J]{α}−{ω ×h})+VT ({f}− [M]{a}) = 0, (16.8)

where the expression in the first parentheses is Euler’s equation, and the ex-

pression in the second parentheses is Newton’s second low of motion. Therefore,

formula (16.8) appears at first glance to be trivial; however, there are some sig-

nificant merits to using Kane’s equation for multi-body models as discussed in

[248]. We will see that the following relations hold in the rest development.

{α}= Ωẋg +{αr}, (16.9a)

{a}= Vẋg +{ar}, (16.9b)
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where xg is the generalized speeds of the multi-body system, {αr} and {ar}
are items that do not include ẋg. Substituting equations (16.9a) and (16.9b) into

(16.8), and then grouping on ẋg yields Stoneking’s form of Kane’s equation
(
ΩT[J]Ω+VT[M]V

)
ẋg

= ΩT ({τ}− [J]{αr}−{ω ×h})
+VT ({f}− [M]{ar}) , (16.10)

which is the rigid multi-body system model. A similar idea was proposed and a

similar formula to (16.10) is obtained by Hu et al [94] in 2012 for flexible multi-

body system modeling. The advantages of using Kane’s method for multibody

system modeling with tree structure was discussed in [240]. In the next section,

we will provide details of using (16.10) for rigid multi-body system modeling.

16.3 Three-body rigid model for LUVOIR telescope

The LUVOIR-A telescope model is assumed to be composed of three rigid bod-

ies connected in serial by two rotary joints as illustrated in Figure 16.2.

The three bodies are the spacecraft bus, the boom (tower, or payload articu-

lation system), and the payload. Spacecraft bus includes many subsystems such

as electrical power system, propulsion, attitude control system, avionics, com-

mand and data handling, thermal management system, mechanical and struc-

ture. The boom can repoint the payload to any position on sky. The payload in-

cludes optical telescope assembly, the high definition imager, the extreme coro-

nagraph for living planetary system, and ultraviolet multi-object spectrograph

[65]. Several frames of the LUVOIR telescope will be considered. Let the space-

craft body frame be denoted as Fs = [xs,ys,zs], the inertial frame be denoted as

FI = [xI,yI,zI], the boom body frame be denoted as Fb = [xb,yb,zb], the payload

body frame be denoted as Fp = [xp,yp,zp]. The spacecraft frame may be defined

relative to the inertial frame by

FT
s =Os/IFT

I . (16.11)

where Os/I is the orientation matrix whose subscript s/I represents that the ori-

entation of Fs is relative to FI . Using standard 3−2−1 sequence of the intrinsic

Euler angle rotations by yaw angle ψ , pitch angle θ , and roll angle φ , the orien-

tation matrix Os/I can be expressed as

Os/I =





1 0 0

0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)









cos(θ ) 0 − sin(θ )
0 1 0

sin(θ ) 0 cos(θ )









cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1



 .

(16.12)

Since orientation matrix Os/I is an orthogonal matrix, we have

OI/s =OT
s/I
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Let the boom gimbal angle be γ and the payload gimbal angle be λ . The

boom body frame to spacecraft body frame orientation matrix can be expressed

as

Ob/s =





cos(γ) 0 − sin(γ)
0 1 0

sin(γ) 0 cos(γ)



 . (16.13)

The payload body frame to boom body frame orientation matrix can be expressed

as

Op/b =





cos(λ ) 0 − sin(λ )
0 1 0

sin(λ ) 0 cos(λ )



 . (16.14)

The payload body frame to spacecraft body frame orientation matrix can be ex-

pressed as

Op/s =





cos(γ +λ ) 0 − sin(γ +λ )
0 1 0

sin(γ +λ ) 0 cos(γ +λ )



 . (16.15)

Figure 16.2: The description of the three bodies of LUVOIR telescope.

Let the angular velocity of the boom relative to the inertial frame be denoted

as ~ωb/I. We will use similar notations in the remainder of this chapter, for ex-

ample, ~ωb/s, ~ωp/b, and ~ωs/I . Let Γ1 = [0,1,0]T and Γ2 = [0,1,0]T, σ1 = γ̇ and

σ2 = λ̇ be the generalized speeds of the rotary joints of G1 and G2. Then the



320 � Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Ap-
proach

angular rate of the rotary joint G1 represented in the boom frame and the angular

rate of the rotary joint G2 resolved in the payload frame can be written as 1

~ωb/s =~Γ1σ1, ~ωp/b =~Γ2σ2. (16.16)

Using these notations and (16.4) (as consistent with [112, (2.4.1)]), we have

~ωb/I = ~ωb/s +~ωs/I =~Γ1σ1 +~ωs/I. (16.17)

Let BI be the bases of inertial frame, Bs be the bases of the spacecraft frame, Bb

be the bases of the boom frame, Bp be the bases of the payload frame. Then, we

may write (16.17) as

Bbωb/I = BbΓ1σ1 +Bsωs/I. (16.18)

By premultiplying BT
b , we may clear the base dyads and obtain

ωb/I = Γ1σ1 +Ob/sωs/I. (16.19)

Similarly,

~ωp/I = ~ωp/b+~ωb/s +~ωs/I =~Γ2σ2 +~Γ1σ1 +~ωs/I. (16.20)

We may write (16.20) as

Bpωp/I = Bpωp/b+Bbωb/s+Bsωs/I

= BpΓ2σ2 +BbΓ1σ1 +Bsωs/I, (16.21)

and we may clear the base dyads by pre-multiplying BT
p and obtain

ωp/I = Γ2σ2 +Op/bΓ1σ1 +Op/sωs/I. (16.22)

Combining (16.19) and (16.22) yields the general angular rate vector





ωs/I

ωb/I

ωp/I



=





I3 031 031 033

Ob/s Γ1 031 033

Op/s Op/bΓ1 Γ2 033





︸ ︷︷ ︸

Ω







ωs/I

σ1

σ2

vs/I






, (16.23)

where I3 is the three-dimensional identity matrix, 031 is the 3×1 all zero matrix,

033 is the 3×3 all zero matrix, vs/I is the velocity vector of the center of mass of

the spacecraft relative to the inertial frame, and Ω is the partial angular velocity

dyad.

Now, we consider the linear velocity of the center of the mass for the boom

1For LUVOIR-B where the connection between payload and boom has two degrees of freedom, the

following equations may be replaced by (24) in [248], but the rest derivation remains essentially the same.
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and the linear velocity of the center of the mass for the payload. First, we in-

troduce a notation. For any vector a = [a1,a2,a3]
T, let a skew symmetric matrix

related to a be defined as

a× =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 . (16.24)

The cross product of two vectors a×b can be written as a multiplication of the

matrix a× and the vector b, i.e., a×b. Let ~vs/I be the velocity of the center of

mass of the spacecraft in the inertial frame,~vb/I be the velocity of the center of

mass of the boom in the inertial frame,~vG1/I be the velocity of G1 in the inertial

frame (see Figure 16.2),~rG1/s be the position vector from the center of mass of

the spacecraft to the joint G1, ~rG1/b be the position vector from the center of

mass of the boom to the joint G1,~vp/I be the velocity of the center of mass for

the payload in the inertial frame,~vG2/I be the velocity of G2 in the inertial frame,

~rG2/p be the position vector from the center of mass of the payload to the joint

G2,~rG2/b be the position vector from the center of mass of the boom to the joint

G2. Note that all these~v and~r vectors are in the inertial frame (see Figure 16.2).

Since G1 is a point on both the spacecraft and the boom, from (16.6) (see [112,

(2.7.1)]), we have

~vG1/I =~vs/I + ~ωs/I ×~rG1/s, (16.25a)

~vG1/I =~vb/I +~ωb/I ×~rG1/b. (16.25b)

Substituting (16.25a) into (16.25b) and invoking (16.17) yield

~vb/I = ~vs/I +~ωs/I ×~rG1/s −~ωb/I ×~rG1/b

= ~vs/I +~ωs/I ×~rG1/s − (~ωb/s +~ωs/I)×~rG1/b

(16.26)

We may represent each vector in an appropriate basis and write (16.26) as

BIvb/I = BIvs/I +Bsωs/I ×BIrG1/s

−(BbΓ1σ1 +Bsωs/I)×BIrG1/b (16.27)

Using the notations that rG1/s|I = BIrG1/s (where rG1/s|I means that the vector

rG1/s is expressed in the inertial frame) and rG1/b|I = BIrG1/b, we may clear the

base dyads by pre-multiplying BT
I and obtain

vb/I = vs/I − rG1/s|I ×OI/sωs/I + rG1/b|I ×OI/bΓ1σ1

+rG1/b|I ×OI/sωs/I

= vs/I|I +
[
rG1/b|×I − rG1/s|×I

]
OI/s

︸ ︷︷ ︸

V21∈R3×3

ωs/I
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+rG1/b|×I OI/bΓ1
︸ ︷︷ ︸

v22∈R3×1

σ1. (16.28)

Applying the same idea to the joint G2 and invoking (16.6) (see [112, (2.7.1)]),

we have

~vG2/I =~vb/I +~ωb/I ×~rG2/b, (16.29a)

~vG2/I =~vp/I +~ωp/I ×~rG2/p. (16.29b)

Substituting (16.29a) into (16.29b) and invoking (16.20) yield

~vp/I = ~vb/I +~ωb/I ×~rG2/b −~ωp/I ×~rG2/p

= ~vb/I +(~ωb/s+ ~ωs/I)×~rG2/b

−(~ωp/b+ ~ωb/s +~ωs/I)×~rG2/p

= ~vb/I −~ωp/b×~rG2/p+~ωb/s × (~rG2/b−~rG2/p)

+~ωs/I × (~rG2/b−~rG2/p). (16.30)

We may represent each vector in an appropriate basis and write (16.30) as

BIvp/I = BIvb/I −BpΓ2σ2 ×BIrG2/p

+BbΓ1σ1 × (BIrG2/b−BIrG2/p)

+Bsωs/I × (BIrG2/b −BIrG2/p) (16.31)

Using the notations that rG2/b|I = BIrG2/b and rG2/p|I = BIrG2/p, and invoking

(16.28), we may clear the base dyads by pre-multiplying BT
I in (16.31) and obtain

vp/I = vb/I + rG2/p|I ×OI/pΓ2σ2 +(rG2/p|I − rG2/b|I)×OI/bΓ1σ1

+(rG2/p|I − rG2/b|I)×OI/sωs/I

= vs/I +V21ωs/I +v22σ1 + rG2/p|I ×OI/pΓ2σ2

+(rG2/p|I − rG2/b|I)×OI/bΓ1σ1 +(rG2/p|I − rG2/b|I)×OI/sωs/I

= vs/I +
[
rG1/b|×I − rG1/s|×I + rG2/p|×I − rG2/b|×I

]
OI/s

︸ ︷︷ ︸

V31∈R3×3

(ωs/I)

+
[
rG1/b|×I + rG2/p|×I − rG2/b|×I

]
OI/bΓ1

︸ ︷︷ ︸

v32∈R3×1

σ1 + rG2/p|×I OI/pΓ2
︸ ︷︷ ︸

v33∈R3×1

σ2.

(16.32)

Combining (16.28) and (16.32) yields





vs/I

vb/I

vp/I



=





033 031 031 I3

V21 v22 031 I3

V31 v32 v33 I3





︸ ︷︷ ︸

V







ωs/I

σ1

σ2

vs/I






, (16.33)
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where V is the partial velocity dyad. In the sequel, we show that Ω, defined in

(16.23), and V, defined in (16.33), are the same ones defined in the differen-

tial equations (16.9) which will be used to obtain the multi-body system model

(16.10). Let ~αs/I be the angular acceleration of the center of the mass of the

spacecraft relative to the inertial frame, ~αb/I be the angular acceleration of the

center of the mass of the boom relative to the inertial frame, and ~αp/I be the

angular acceleration of the center of the mass of the payload relative to the iner-

tial frame, respectively. Taking the derivative for (16.17) and invoking (16.2), we

have

~αb/I =
d~ωb/I

dt
=

d(~ωb/s+~ωs/I)

dt

=
d~ωb/s

dt
+

d~ωs/I

dt

= ~Γ1σ̇1 +~ωb/I ×~Γ1σ1 +~αs/I. (16.34)

Representing each vector in an appropriate base yields

Bbαb/I = BbΓ1σ̇1 +Bbωb/I ×BbΓ1σ1 +Bsαs/I. (16.35)

Pre-multiplying BT
b on both sides of (16.35) clears the base dyads and yields

αb/I = Γ1σ̇1 +ωb/I ×Γ1σ1 +Ob/sαs/I

= Γ1σ̇1 +Ob/sαs/I +αr
b/I, (16.36)

where

αr
b/I = ωb/I ×Γ1σ1, ωb/I =Ob/sωs/I. (16.37)

Taking the derivative for (16.20) and invoking (16.2) yields

~αp/I =
d~ωp/I

dt
=

d(~ωp/b+~ωb/s+ ~ωs/I)

dt

=
d~ωp/b

dt
+

d~ωb/s

dt
+

d~ωs/I

dt

= ~Γ2σ̇2 +~ωp/I ×~Γ2σ2 +~Γ1σ̇1

+~ωb/I ×~Γ1σ1 +~αs/I.

(16.38)

Representing each vector in an appropriate base yields

Bpαp/I = BpΓ2σ̇2 +Bpωp/I ×Γ2σ2 +BbΓ1σ̇1

+Bbωb/I ×Γ1σ1 +Bsαs/I. (16.39)

Pre-multiplying BT
p on both sides of (16.39) clears the base dyads and yields

αp/I = Γ2σ̇2 +ωp/I ×Γ2σ2 +Op/bΓ1σ̇1
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+Op/bωb/I ×Γ1σ1 +Op/sαs/I

= Γ2σ̇2 +Op/bΓ1σ̇1 +Op/sαs/I +αr
p/I. (16.40)

where

αr
p/I = ωp/I ×Γ2σ2 +Op/bωb/I ×Γ1σ1

= ωp/I ×Γ2σ2 +Op/bαr
b/I, ωp/I =Op/bωb/I.

(16.41)

Denote α1 = σ̇1, α2 = σ̇2, and

ẋg = [ω̇s/I, σ̇1, σ̇2, v̇s/I]
T. (16.42)

Combining (16.36) and (16.40) yields the general angular acceleration vector

{α} :=





αs/I

αb/I

αp/I





=





I3 031 031 033

Ob/s Γ1 031 033

Op/s Op/bΓ1 Γ2 033





︸ ︷︷ ︸

Ω







ω̇s/I

σ̇1

σ̇2

v̇s/I







︸ ︷︷ ︸

ẋg

+





031

αr
b/I

αr
p/I





︸ ︷︷ ︸

{αr}

= Ωẋg +{αr}, (16.43)

which is equivalent to (16.9a). We also showed that Ω defined in (16.23) is the

same as the one defined in (16.43) or in (16.9a). Next, we derive equation (16.9b).

Let~as/I be the acceleration of the center of the mass of the spacecraft relative to

the inertial frame,~ab/I be the acceleration of the center of the mass of the boom

relative to the inertial frame,~ap/I be the acceleration of the center of the mass of

the payload relative to the inertial frame,~aG1/I be the acceleration of the joint G1

relative to the inertial frame, and~aG2/I be the acceleration of the joint G2 relative

to the inertial frame, respectively. Since G1 is a point on both the spacecraft and

the boom, applying (16.7) to the joint G1, we have

~aG1/I =~as/I +~ωs/I × (~ωs/I ×~rG1/s)+~αs/I ×~rG1/s, (16.44a)

~aG1/I =~ab/I +~ωb/I × (~ωb/I ×~rG1/b)+~αb/I ×~rG1/b. (16.44b)

Substituting (16.44a) into (16.44b) yields

~ab/I = ~as/I +~ωs/I × (~ωs/I ×~rG1/s)+~αs/I ×~rG1/s

−~ωb/I × (~ωb/I ×~rG1/b)−~αb/I ×~rG1/b. (16.45)

Representing each vector in an appropriate base and invoking (16.35) yields

BIab/I
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= BIas/I +Bsωs/I × (Bsωs/I ×BIrG1/s)

+Bsαs/I ×BIrG1/s

−Bbωb/I × (Bbωb/I ×BIrG1/b)

−Bbαb/I ×BIrG1/b

= BIas/I +Bsωs/I × (Bsωs/I ×BIrG1/s)

+Bsαs/I ×BIrG1/s

−Bbωb/I × (Bbωb/I ×BIrG1/b)

−(BbΓ1σ̇1 +Bbωb/I ×Γ1σ1 +Bsαs/I)×BIrG1/b.

(16.46)

Pre-multiplying BT
I on both sides of (16.46) clears the base dyads and yields

ab/I

= as/I +OI/sωs/I × (ωs/I × rG1/s|I)
+OI/sαs/I × rG1/s|I
−OI/bωb/I × (ωb/I × rG1/b|I)
−(OI/bΓ1σ̇1 +OI/bωb/I ×Γ1σ1 +OI/sαs/I)× rG1/b|I

= as/I +(rG1/b|I − rG1/s|I)×OI/s
︸ ︷︷ ︸

V21∈R3×3

αs/I

+rG1/b|I ×OI/bΓ1
︸ ︷︷ ︸

v22∈R3×1

σ̇1 +ar
b/I, (16.47)

where

ar
b/I = OI/sωI/s × (ωs/I × rG1/s|I)

−OI/bωb/I × (ωb/I × rG1/b|I)
+rG1/b|I × (OI/bωb/I ×Γ1σ1)

= OI/sω
×
I/s
(ω×

s/I
rG1/s|I)−OI/bω×

b/I
(ω×

b/I
rG1/b|I)

+rG1/b|×I OI/bαr
b/I. (16.48)

Applying (16.7) to the joint G2, we have

~aG2/I =~ab/I + ~ωb/I × (~ωb/I ×~rG2/b)+~αb/I ×~rG2/b, (16.49a)

~aG2/I =~ap/I +~ωp/I × (~ωp/I ×~rG2/p)+~αp/I ×~rG2/p. (16.49b)

Substituting (16.49a) into (16.49b) yields

~ap/I = ~ab/I +~ωb/I × (~ωb/I ×~rG2/b)+~αb/I ×~rG2/b

−~ωp/I × (~ωp/I ×~rG2/p)−~αp/I ×~rG2/p. (16.50)
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Representing each vector in an appropriate base yields

BIap/I = BIab/I +Bbωb/I × (Bbωb/I ×BIrG2/b)

+Bbαb/I ×BIrG2/b

−Bpωp/I × (Bpωp/I ×BIrG2/p)

−Bpαp/I ×BIrG2/p. (16.51)

Pre-multiplying BT
I on both sides of (16.51) to clear the base dyads, and substi-

tuting (16.36), (16.40), and (16.47) into the formula yields

ap/I = ab/I +OI/bωb/I × (ωb/I × rG2/b|I)+OI/bαb/I × rG2/b|I
−OI/pωp/I × (ωp/I × rG2/p|I)−OI/pαp/I × rG2/p|I

= as/I +(rG1/b|I − rG1/s|I)×OI/sαs/I + rG1/b|I ×OI/bΓ1σ̇1 +ar
b/I

+OI/bωb/I × (ωb/I × rG2/b|I)+OI/b(Γ1σ̇1 +Ob/sαs/I +αr
b/I)× rG2/b|I

−OI/pωp/I × (ωp/I × rG2/p|I)
−OI/p(Γ2σ̇2 +Op/bΓ1σ̇1 +Op/sαs/I +αr

p/I)× rG2/p|I
= as/I +(rG1/b|I − rG1/s|I + rG2/p|I − rG2/b|I)×OI/s

︸ ︷︷ ︸

V31∈R3×3

αs/I

+(rG1/b|I + rG2/p|I − rG2/b|I)×OI/bΓ1
︸ ︷︷ ︸

v32∈R3×1

σ̇1

+rG2/p|I ×OI/pΓ2
︸ ︷︷ ︸

v33∈R3×1

σ̇2 +ar
p/I, (16.52)

where

ar
p/I = ar

b/I − rG2/b|I ×OI/bαr
b/I

+rG2/p|I ×OI/pαr
p/I

+OI/bωb/I × (ωb/I × rG2/b|I)
−OI/pωp/I × (ωp/I × rG2/p|I). (16.53)

Combining (16.47) and (16.52) yields the general linear acceleration vector

{a} :=





as/I

ab/I

ap/I





=





033 031 031 I3

V21 v22 031 I3

V31 v32 v33 I3





︸ ︷︷ ︸

V







˙ωs/I

σ̇1

σ̇2

v̇s/I







︸ ︷︷ ︸

ẋg

+





031

ar
b/I

ar
p/I





︸ ︷︷ ︸

{ar}
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:= Vẋg +{ar}, (16.54)

which is (16.9b). We also showed that V defined in (16.54) is the same as the one

defined in (16.33) or in (16.9b).

Model (16.10) is a very general multi-body rigid system model. For a three-

body rigid system like LUVOIR, assume that the 3× 3 inertia matrices for the

spacecraft, the boom, and the payload are given as Js, Jb, and Jp, then the general

inertia matrix is

[J] =





Js 033 033

033 Jb 033

033 033 Jp



 . (16.55)

Assume that the masses of the spacecraft, the boom, and the payload are given

as ms, mb, and mp, then the general mass matrix is

[M] =





msI3 033 033

033 mbI3 033

033 033 mpI3



 . (16.56)

Assume there are no external forces acting on the rigid bodies, then we have

{f}= 0. Assume that the control torques u on the spacecraft, the boom, and the

payload are τs, τb, and τp, i.e.,

u = [τT
s , τT

b , τT
p ]

T, (16.57)

then, the general torque vector is

{τ} =





τs − τb

τb − τp

τp



 . (16.58)

Finally, we can express {ω ×h} in terms of the angular rates ωs/I, ωb/s, and ωp/b

of the spacecraft, the boom, and the payload as follows:

{ω ×h}=





ωs/I ×Jsωs/I

ωb/s×Jbωb/s

ωp/b×Jpωp/b



 . (16.59)

Let

L =
(
ΩT[J]Ω+VT[M]V

)
, (16.60)

r1 = ΩT ({τ}− [J]{αr}−{ω ×h}) , (16.61)

and

r2 = VT ({f}− [M]{ar}) . (16.62)

Substituting (16.55), (16.56), (16.58), (16.59), (16.60), (16.62), and the general

force vector {f}= 0 into (16.10), we have the three-body rigid system model:

Lẋg = r1 + r2, (16.63)
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or

ẋg = L−1(r1 + r2). (16.64)

Equation (16.64) looks very simple, but it is a nonlinear system because L,

r1 and r2 have nonlinear components of the state and control variables. We need

a linear system model so that we can apply LQR or robust pole assignment de-

signs. First, we must rescope the model for the purpose of pure attitude control.

We take our generalized speeds xg, discard the vs/I component which decouples

from the attitude states, and add the spacecraft’s Euler angles φ , θ , and ψ in

order to define our state vector x = [φ ,θ ,ψ,γ,λ ,ωs/I,σ1,σ2]
T. The kinematical

differential equations associated with these Euler angles in the reference inertial

frame are given as [113, Page 429, Space-three 1-2-3]:





φ̇
θ̇
ψ̇



=





〈
ωs/I, [1, sin(φ) tan(θ), cos(φ) tan(θ)]T

〉

〈
ωs/I, [0, cos(φ), − sin(φ)]T

〉

〈
ωs/I, [0, sin(φ) secθ , cos(φ) secθ ]T

〉



 ,

where 〈a,b〉 denotes the inner product of two vectors of a and b. Therefore, the

revised state space nonlinear system is given as:

ẋ :=















φ̇
θ̇
ψ̇
γ̇

λ̇
ω̇s/I

σ̇1

σ̇2















=















〈
ωs/I, [1, sin(φ) tan(θ), cos(φ) tan(θ)]T

〉

〈
ωs/I, [0, cos(φ), − sin(φ)]T

〉

〈
ωs/I, [0, sin(φ) secθ , cos(φ) secθ ]T

〉

σ1

σ2

[I3, 035] (L
−1(r1 + r2))

[0, 0, 0, 1, 0, 0, 0, 0] (L−1(r1 + r2))
[0, 0, 0, 0, 1, 0, 0, 0] (L−1(r1 + r2))















. (16.65)

Remark 16.1 The procedure of the 3-body modeling can easily be applied to

any multibody system with tree structure, and the modeled system has the structure

described in [248]. It is also worthwhile to note that the final state space model dis-

carded some states in xg and added some states into x, therefore, the dimensions

of xg and x are different. Finally, (16.65) involves an analytic inverse matrix L−1

(its computation will be discussed in the next section), and is slightly different from

Stoneking’s implementation (16.10).

16.4 Linearization and controller design

To use popular controller design methods, we need to have a linearized rigid

dynamics model.
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16.4.1 Linearization

Now, we linearize the nonlinear system (16.65) about a desired new equilib-

rium state (when this equilibrium state is attained, u = 0) so that we will

have a symbolic linear system. Assume that this equilibrium state is at xd =
[φd , θd , ψd, γd , λd, 0, 0, 0, 0, 0]T and the control torques are zeros, i.e., u = 0.

Therefore,

ẋ =
∂ f(x,u)

∂ x

∣
∣
∣
∣
∣ x = xd

u = 0

(x−xd)+
∂ f(x,u)

∂ u

∣
∣
∣
∣
∣ x = xd

u = 0

u. (16.66)

where φd = π/2, and θd = ψd = γd = λd = 0.

Remark 16.2 In this case, the target equilibrium state is a 90o rotation of the

spacecraft in roll axis from the current state. Our simulation in the next section will

show that the designed controller works in such a large rotational maneuver. In the

next section, we will discuss a method to obtain the analytic formula for (16.66).

16.4.2 Symbolic inverse for linearization

Clearly, it will be very tedious, if it is not impossible, to find the analytic par-

tial derivatives for (16.66), which involves the calculation of the analytic partial

derivatives of L−1. Bentz and Lewis suggested in [21] using Matlab symbolic

function ‘diff’ and the symbolic inverse function ‘inv’ for matrix L. For this

8× 8 matrix L, even using Matlab symbolic inverse, the computation is still too

complex to handle. Fortunately, we are only interested in the first five states in

(16.64), (see (16.42)), which are the last five states in (16.65), We can use the

method proposed in [22]. Let

L =

[
L1 L2

LT
2 L3

]

, p = r1 + r2 =

[
p1

p2

]

, ẋg =

[
ẋg,1

ẋg,2

]

,

then, we have [
L1 L2

LT
2 L3

][
ẋg,1

ẋg,2

]

=

[
p1

p2

]

. (16.67)

Solving the second equation of (16.67) for ẋg,2 gives

ẋg,2 = L−1
3 (p2 −LT

2 ẋg,1). (16.68)

Substituting (16.68) into the first equation of (16.67) gives

ẋg,1 =
(
L1 −L2L−1

3 LT
2

)−1 (
p1 −L2L−1

3 p2

)
, (16.69)
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which involves symbolic inverses of a 3 × 3 matrix L−1
3 and a 5 × 5 matrix

(
L1 −L2L−1

3 LT
2

)−1
.

16.4.3 Representation of vectors in inertial frame

All constants in the multi-body model are provided by mechanical engineers ac-

cording to the spacecraft designs. Some constants in the multi-body model are

independent to the frames, such as mass of spacecraft, mass of payload, etc., but

some constants are dependent to the frames. Most likely, the distance vectors in

a rigid body are given in that rigid body frame, but we need to represent these

distance vectors in the inertial frame in the model (16.69) as discussed in the

previous section.

Let rG1/s|s = a1xs+a2ys+a3zs be the position vector from the center of mass

of the spacecraft pointing to the joint G1 represented in the spacecraft frame,

rG1/b|b = b1xb+b2yb+b3zb be the position vector from the center of mass of the

boom pointing to the joint G1 represented in the boom frame, rG2/b|b = c1xb +
c2yb + c3zb be the position vector from the center of mass of the boom pointing

to the joint G2 represented in the boom frame, and rG2/p|p = d1xp +d2yp +d3zp

be the position vector from the center of mass of the payload pointing to the joint

G2 represented in the payload frame. Denote rG1/s|I be the the position vector

from the center of mass of the spacecraft pointing to the joint G1 represented in

the inertial frame, rG1/b|I be the the position vector from the center of mass of

the boom pointing to the joint G1 represented in the inertial frame, rG2/b|I be the

the position vector from the center of mass of the boom pointing to the joint G2

represented in the inertial frame, and rG2/p|I be the the position vector from the

center of mass of the payload pointing to the joint G2 represented in the inertial

frame, then using (16.12), (16.13), (16.13), (16.14), and (16.15), we have

rG1/s|I = OI/srG1/s|s =OI/s[a1,a2,a3]
T

= OT
s/I[a1,a2,a3]

T, (16.70a)

rG1/b|I = OI/b[b1,b2,b3]
T =OT

b/I[b1,b2,b3]
T

=
(
Ob/sOs/I

)T
[b1,b2,b3]

T, (16.70b)

rG2/b|I = OI/b[c1,c2,c3]
T =OT

b/I[c1,c2,c3]
T

=
(
Ob/sOs/I

)T
[c1,c2,c3]

T, (16.70c)

rG2/p|I = OI/p[d1,d2,d3]
T =OT

p/I[d1,d2,d3]
T

=
(
Op/sOs/I

)T
[d1,d2,d3]

T, (16.70d)

rG1/p|I = rG2/p|I − rG2/b|I + rG1/b|I , (16.70e)

rs/b|I = rG1/b|I − rG1/s|I , (16.70f)

rs/p|I = rG1/p|I − rG1/s|I . (16.70g)
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Using the definition of (16.24), we can write

rs/b|×I =





0 −rs/b3
rs/b2

rs/b
3

0 −rs/b
1

−rs/b
2

rs/b
1

0



 , (16.71)

rs/p|×I =





0 −rs/p
3

rs/p
2

rs/p
3

0 −rs/p
1

−rs/p2
rs/p1

0



 , (16.72)

and similarly, we can define rG1/b|×I , rG1/p|×I , and rG2/p|×I .

Using the parameters of the LUVOIR telescope, we use a Matlab code (which

is provided in [22]) to generate the rigid linearized time invariant model

ẋ = Ax+Bu (16.73)

with A and B given as follows:

A =



















0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



















,

B = 10−5


















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.027838 0.000983 0.011040 −0.001203 −0.000149

0.000983 0.337771 0.007301 −0.473521 0.142849

0.011040 0.007301 0.082504 −0.009908 0.002876

−0.001203 −0.473521 −0.009908 0.835383 −0.391328

−0.000149 0.142849 0.002876 −0.391328 0.331638


















.

Remark 16.3 The correctness of the rigid linearized model is indirectly validated

when the controller designed by this rigid model stabilizes a separately developed

flexible telescope model.
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16.4.4 LQR and robust pole assignment designs

Using the linearized model obtained from Stoneking’s form of Kane’s method,

we consider two well-known state-space controller design methods: LQR and

robust pole assignment. For the linearized control system, the LQR design is

to find an optimal feedback gain matrix KLQR to minimize the following cost

function [135]:

J =
1

2

∫ ∞

0

(xTQx+uTRu)dt (16.74)

under the state space system constraint ẋ = Ax+Bu with A and B being given

in the previous section; while the robust pole assignment design is to find an

optimal feedback gain matrix Krpa such that (a) the close-loop eigenvalues of

(A−BKrpa) are in the desired locations for the rigid model, and (b) the sensi-

tivity to the modeling uncertainty (because of using less accurate rigid model in

controller design) of the close-loop eigenvalues of (A−BKrpa) is minimized

[301, 260]. Let Λ = diag(λ1, . . . ,λn) and X = [x1,x2, . . . ,xn] be the closed-

loop diagonal eigenvalue matrix and the corresponding eigenvector matrix of

(A−BKrpa), the object of the robust pole assignment design is to solve the fol-

lowing optimization problem [301, 260]:

min
1

2
det(XHX)

s.t. (A−BKrpa)X = XΛ (16.75)

xH
i xi = 1, i = 1, . . . ,n,

where the superscript H is used for complex-conjugate transpose, it reduces to

a transpose if all elements of Λ are real. A very efficient algorithm is developed

to solve this problem in [260]. A Matlab code that implements the algorithm

of [260] is available on the website of [320]. For more details on robust pole

assignment design discussed in this chapter, the readers are referred to [115,

260]. A concise description of the robust pole assignment is available in [318,

Appendix C].

The LQR design has been widely used in aerospace applications because it

is considered a good choice when energy consumption is a major consideration.

Pole assignment design is not as popular as the LQR design in this case because

it is not clear whether the design will consume more energy than the LQR design.

However, users have noticed that robust pole assignment design [260] normally

generates a small feedback gain matrix which is a good sign of efficient use of

energy. There are two other merits associated with the robust pole assignment

approach. First, the performance of the closed-loop system is robust to modeling

errors. This is important because the high fidelity model of LUVOIR used in test-

ing will include flexible modes that are ignored during control system design due

to modeling complexity. Second, robust pole assignment can predict approxima-

tions of closed-loop system performance characteristics such as settling time,
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oscillation frequency, etc., by assigning the closed-loop poles in desired areas

[56]. For example, to avoid the oscillations for a second order system, all poles

should be assigned to be real according to [56, Chapter 5]. For higher order sys-

tems, the performance is determined by dominate poles which are closer to the

imaginary axis, therefore, the dominate poles should be assigned to be real. LQR

cannot do this. Our strategy is to use LQR approach as an effective first design

step that informs the selection of the real eigenvalues for robust pole assignment

such that these poles are close to the real parts of the closed-loop eigenvalues of

LQR.

16.4.5 Simulation testing on rigid model
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0.2

0.4

0.6
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0 2000 4000 6000 8000 10000
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Figure 16.3: LQR and robust pole assignment design comparison for rigid model:

(a) x1 initial state response (b) x2 initial state response.
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Figure 16.4: LQR and robust pole assignment design comparison for rigid model:

(a) x3 initial state response (b) x4 initial state response.
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Figure 16.5: LQR and robust pole assignment design comparison for rigid model:

(a) x5 initial state response (b) x6 initial state response.

We calculated state feedback gain matrices for both LQR and robust pole

assignment designs. Then, we compared the system performances by analyzing

initial state responses and energy consumption. The Q and R matrices we used

in LQR design are exactly the same as the ones used in [22]. The target of robust

pole assignment is to have a similar settling time to the LQR design but with

fewer oscillations—this is of particular importance to space telescopes with pre-

cision pointing requirements. This can be achieved by choosing the prescribed

closed-loop eigenvalues of the robust pole assignment design to have similar real

parts to that of the LQR design, i.e., placing all closed-loop eigenvalues on the

real axis of the complex plane.

For LQR design, the Q and R matrices are selected exactly the same as the

ones in [22]:

Q =

[
1000I8 082

028 2000I2

]

, R = I5. (16.76)

For robust pole assignment design, the prescribed close-loop eigenvalues are se-
lected as

(−0.0141,−0.0135,−0.0059,−0.0058,−0.0037,−0.0036,−0.0029,−0.0028,−0.00265,−0.00262)

which are close to the real parts of the eigenvalues of (A−BKLQR). The feed-

back gain matrices of the LQR and the robust pole assignment are obtained by a

Matlab functions lqr and robpole respectively.

KLQR = 10
4













0.0031 0.0000 0.0000 −0.0000 0.0000 1.5433 0.0030 −0.1319 0.0045 0.0053

−0.0000 0.0000 0.0031 −0.0000 0.0000 0.0030 1.2432 −0.0113 0.7782 0.4049

0.0000 −0.0031 0.0000 −0.0000 0.0000 −0.1319 −0.0113 0.8907 0.0019 0.0000

0.0000 −0.0000 0.0000 0.0031 −0.0000 0.0045 0.7782 0.0019 0.9157 0.5169

−0.0000 0.0000 −0.0000 0.0000 0.0031 0.0053 0.4049 0.0000 0.5169 0.8071













Krpa = 10
4













−0.0088 −0.0013 0.0067 −0.0000 −0.0025 −3.8298 1.8600 0.5231 0.0202 −0.6649

0.0052 0.0005 −0.0112 −0.0025 −0.0042 1.4826 −4.5333 −0.0981 −1.8008 −2.2176

0.0013 0.0022 −0.0010 −0.0002 0.0008 0.5224 −0.2667 −1.1273 −0.0748 0.2379

0.0040 0.0004 −0.0089 −0.0023 −0.0044 1.1578 −3.6498 −0.0756 −1.6557 −2.2215

0.0023 0.0001 −0.0056 −0.0015 −0.0045 0.6759 −2.3400 −0.0008 −1.1043 −2.1248












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We demonstrated that the controllers stabilize both the rigid linearized time in-

variant model and the flexible LUVOIR telescope model via simulation using

Matlab and Simulink.

16.4.5.1 Oscillation comparison of the two designs

Figures 16.3− 16.7 compare the three-body rigid linearized model initial state

responses of the LUVOIR telescope for LQR and robust pole assignment de-

signs. It is clear that the initial state responses of robust pole assignment design

have fewer oscillations in general for all 10 states (indicating more stable point-

ing). If we amplify the figures, for the LQR design, the oscillation still can be

seen after 5000 seconds, but robust pole assignment initial state responses do not

have this kind of long term oscillations. This meets our expectation as discussed

earlier. Since both controller designs are based on rigid model, when the con-

trollers are applied to the rigid model, we don’t see the jitter that will be seen

when the controllers are applied to flexible model. Figure 16.8 depicts the long

term oscillation effects of x9 and x10. The osculations will adversely affect the

telescope pointing because disturbances can occur at any time for many different

reasons.

16.4.5.2 Energy consumption comparison of the two designs

Using the least energy consumption to achieve the desired performance is always

an important design consideration in space missions. Therefore, we compare the

energy consumption of the two designs. For both LQR and robust pole assign-

ment designs, the energy consumption can be measured by

∫ ∞

0

‖u(t)‖dt, (16.77)

where ‖ · ‖ denotes the Euclidean norm. Using formula (16.77), we get
∫ 10000

0
‖uLQR‖dt = 1.45506e+ 05 and

∫ 10000

0
‖urpa‖dt = 1.28432e+ 05, which

shows that robust pole assignment consumes noticeably less energy.

16.4.6 Simulation testing on the flexible model

The LUVOIR flexible model has 20 modes on the spacecraft, 9 on the boom,

and 100 on the payload [22], the system has about 260 states and most of these

states are not measurable. To have an attainable design and a seamless imple-

mentation, we designed the controllers based on the coarse rigid model. Since

the rigid model approximates the flexible model, we need to validate the de-

signs by using the simulation for the high fidelity flexible model and examining

the performances. Modeling a flexible mechanical system has been discussed in

[168] and a Simulink implementation for the LUVOIR telescope was described

in [22, 40]. As mentioned in the introduction section, if LQR and/or robust pole
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Figure 16.6: LQR and robust pole assignment design comparison for rigid model:

(a) x7 initial state response (b) x8 initial state response.
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Figure 16.7: LQR and robust pole assignment design comparison for rigid model:

(a) x9 initial state response (b) x10 initial state response.
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Figure 16.8: LQR and robust pole assignment design comparison for rigid model:

(a) x9 initial state response (b) x10 initial state response.

assignment designs stabilize the rigid model but cannot stabilize the high fidelity

flexible model, then, redesigns are necessary. As a matter of fact, the feedback
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Figure 16.9: LQR and robust pole assignment design comparison for flexible model:

(a) Roll angle initial state response (b) Pitch angle initial state response.
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Figure 16.10: LQR and robust pole assignment design comparison for flexible

model: (a) Yaw angle initial state response (b) Roll angular rate initial state re-

sponse.
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Figure 16.11: LQR and robust pole assignment design comparison for flexible

model: (a) Pitch angular rate initial state response (b) Yaw angular rate initial state

response.
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Figure 16.12: LQR and robust pole assignment design comparison for flexible

model: (a) Pitch augular rate initial state response (b) Yaw angular rate initial state

response.
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Figure 16.13: LQR and robust pole assignment design comparison for flexible

model: (a) Gimbal 1 torque initial state response (b) Gimbal 2 torque initial state

response.

gain matrices given in the previous section are the ones of the final design which

are obtained after a few iterations.

For the designs given in the previous section, the total energy consumption

is 1.5448e+ 03 for the LQR design and is 1.2683e+ 03 for the robust pole as-

signment design. Again, the energy consumption for the robust pole assignment

design is slightly less than the one for the LQR design.

The performances of these two designs are compared and displayed in Fig-

ures 16.9-16.13. The LQR design settles the spacecraft faster than the robust pole

assignment design, which is good. It can also be seen, from Figures 16.13, that

torques requested for LQR design have oscillations at about 0.45 Hz, which is not

good because not only does it consume more energy, but it may also introduce

jitters to the telescope. Figures in 16.12 (a) and (b) are the amplified pitch and

yaw angular rate of the spacecraft body, which shows the 0.45 HZ oscillations

after 200 minutes.
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We summarize the systematic space telescope design methodology in the fol-

lowing procedure:

1. Develop a rigid symbolic nonlinear multibody model using Stoneking’s

form of Kane’s equation (16.10).

2. Take symbolic inverse for Kane’s model to obtain the symbolic nonlinear

state space model ẋg = fg(x,u).

3. Determine spacecraft kinematical differential equations associated with

the spacecraft Euler angle using the method provided in [113].

4. Determine rotary angular dynamics.

5. Extract relavent states from the symbolic nonlinear state space model

ẋg = fg(x,u).

6. Combine states obtained in Steps 3, 4, and 5 to form a rigid nonlinear

symbolic state space model ẋ = f(x,u).

7. Symbolically linearize the nonlinear system about the desired equilibium

point to get a symbolic rigid linear system model.

8. Using the spacecraft parameters to populate the symbolic model to get

the spacecraft specific rigid linear system model.

9. Design a LQR controller which stabilizes both the rigid linear system

model and the flexible system model (developed separately from the rigid

linear system model).

10. Design a robust pole assignment controller, whose desired closed-loop

poles are all real and the value of the real poles are close to the real

part of the closed loop poles of LQR design, such that the robust pole

assignment design stabilizes both the rigid linear system model and the

flexible system model.

16.5 A brief summary

In this chapter, we presented a modeling method for multi-body system using

Kane’s method. A rigid model for LUVOIR telescope is established as a result.

LQR and robust pole assignment methods are used to design the controllers us-

ing the linearized rigid model. Simulation test of the closed loop system using

both rigid and flexible models are performed. The test result based on the rigid

linearized time invariant model shows that robust pole assignment has better per-

formance in terms of energy consumption and pointing accuracy (measured by
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the low frequency oscillation around the equilibrium point). For the test on the

flexible Simulink model (which was developed by Roger Chen [40]), LQR de-

sign has a shorter (better) settling time but the gimbal commands have oscilla-

tions at about 0.45 Hz which may cause the jitters problem and affect the image

quality of the telescope; while robust pole assignment design has a similar gimbal

command oscillation problem at the beginning, it attenuates fast to zero. Overall,

we recommend the robust pole assignment technique for this application with the

caveat that the LQR approach is effective as a method of jump-starting the robust

pole assignment design. That is, the LQR approach allows the designer to make

an initial pass in which setting time and other performance characteristics are

tuned through the traditional cost function weight matrices. This provides a set

of desired real eigenvalue components that can be targeted through robust pole

assignment in order to refine the performance, e.g., in order to improve damping.
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In this Appendix, we present the first order optimality conditions for the general

constrained optimization problems. These conditions are applicable to linear op-

timization problem which has linear objective function and linear constraints,

convex quadratic optimization problem which has a convex quadratic objec-

tive function and linear constraints, and general nonlinear optimization prob-

lem which has general nonlinear objective function and nonlinear constraints.

Although the first order optimality conditions for the general constrained opti-

mization problems are necessary conditions, these conditions are necessary and

sufficient conditions for both linear optimization problem and convex quadratic

optimization problem which are considered extensively in this book.
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A.1 Problem introduction

Consider the general optimization problem:

minx∈Rn f (x)
subject to ci(x) = 0, i ∈ E

ci(x)≥ 0, i ∈ I

where f is the objective function and ci are the constraint functions; these func-

tions are all smooth, real-valued on a subset of Rn, and E and I are two finite

sets of indices for equality constraints and inequality constraints respectively.

The feasible set Ω is defined as the set of all points x that satisfy all the con-

straints; i.e.,

Ω = {x|ci(x) = 0, i ∈ E ; ci(x)≥ 0, i ∈ I.} (A.1)

So that one can rewrite (A.1) as

min
Ω

f (x). (A.2)

A vector x∗ is a local solution of the problem (A.1) if x∗ ∈ Ω and there is a

neighborhood N of x∗ such that f (x) ≥ f (x∗) for x ∈ N ∩Ω. A vector x∗ is a

strict local solution of the problem (A.1) if x∗ ∈Ω and there is a neighborhoodN
of x∗ such that f (x)> f (x∗) for x ∈ N ∩Ω with x 6= x∗. A vector x∗ is a global

solution of the problem (A.1) if x∗ ∈ Ω such that f (x)≥ f (x∗). A vector x∗ is a

strict global solution of the problem (A.1) if x∗ ∈ Ω such that f (x)> f (x∗) for

x ∈ Ω with x 6= x∗.

A.2 Karush-Kuhn-Tucker conditions

To state the first order optimality conditions, we introduce the Lagrangian func-

tion for the constrained optimization problem (A.1) which is defined as

L(x,λ ) = f (x)−
∑

i∈E∪I
λici(x). (A.3)

The active set at any feasible x is the union of the set E and the indices of the

active inequality constraints given by

A(x) = E ∪{i ∈ I|ci(x) = 0}. (A.4)

The first order optimality conditions are directly related to the linearly indepen-

dent constraint qualification (LICQ) which is defined as follows:

Definition A.1 Given the point x∗ and the active set A(x∗) defined by (A.4), the
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linear independent constraint qualification is said to be held if the set of active con-

straint gradients {∇ici(x
∗), i ∈ A(x∗)} is linearly independent.

Note that if this condition holds, none of the active constraint gradients can

be zero. Now we are ready to state the first-order necessary conditions.

Theorem A.1

Suppose that x∗ is a local solution of (A.1) and that the LICQ holds at x∗. Then,

there is a Lagrange multiplier vector λ∗
, with components λ i, i ∈ E ∪I such that the

following conditions are satisfied at (x∗,λ∗)

∇xL(x∗,λ∗) = 0, (A.5a)

ci(x
∗) = 0, ∀i ∈ E , (A.5b)

ci(x
∗)≥ 0, ∀i ∈ I, (A.5c)

λ∗
i ≥ 0, ∀i ∈ I, (A.5d)

λ∗
i ci(x

∗) = 0, , ∀i ∈ E ∪I. (A.5e)

The proof of Theorem A.1 is very technical, therefore, is omitted. Readers

who are interested in the proof are referred to [185]. The conditions of (A.5)

are widely known as the Karush-Kuhn-Tucker conditions or KKT conditions

for short. The KKT conditions were first proved by Karush in his master thesis

in 1939 [114] and rediscovered by Kuhn and Tucker in 1951 [123]. A special

solution is important and deserve its own definition:

Definition A.2 Given a local solution x∗ of (A.1) and a vector λ∗
satisfying (A.5),

we say that the solution is strict complementary if exactly one of λ∗
i and ci(x

∗) is

zero for each index i ∈ I. In other words, λ∗
i > 0 for each i ∈ I ∩A(x∗).
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This appendix provides a brief review of optimal control with focus on discrete-

time linear system. The reasons behind the choice of the materials are (a) most

compute controlled systems are based on the discrete-time system, (b) the non-

linear systems are normally reduced to linear systems so that the complexity is

manageable in system design, and (c) we include the minimum materials in the

appendices that will be necessary to understand the main body of the book.

B.1 General discrete-time optimal control problem

Let the nonlinear system be described by the general discrete-time dynamical

equations:

xk+1 = fk(xk,uk) (B.1)

where xk ∈ Rn is the state of the system, u ∈ Rm is the control input, and the

initial condition is x0. The subscript k indicates that in general the system and its

model can be time-varying. Let the cost function of the system be given as:

J = φ(N,xN)+

N−1∑

k=0

Lk(xk,uk), (B.2)
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where k ∈ [0,N] is the time interval on a discrete scale with a fixed sample step, φ
is the cost of the final state deviation from zero, and Lk(xk,uk) is the cost of state

and control input at each intermediate time k ∈ [0,N − 1]. The optimal control

problem is to find an optimal solution u∗
k on the interval [0,N−1] that minimizes

the cost function (B.2) along the trajectory x∗
k defined by (B.1).

It is worthwhile to note that the discrete-time optimal control problem is a

nonlinear constrained optimization problem with its constraint defined by (B.1).

This problem is a special case discussed in Appendix A (with only equality con-

straints (B.1) and objective function of (B.2)) and the solution should satisfy the

KKT conditions. Thus, let λ k ∈ Rn be the Lagrange multiplier vector, and we

define an augmented cost function by

J′ = φ(N,xN)+

N−1∑

k=0

[

Lk(xk,uk)+λ T
k+1 (fk(xk,uk)−xk+1)

]

. (B.3)

Let the Hamiltonian function be

Hk(xk,uk) = Lk(xk,uk)+λ
T
k+1fk(xk,uk), (B.4)

then, by rearranging the terms in (B.3), we have

J′ = φ(N,xN)+λ T
NxN +H0(x0,u0)+

N−1∑

k=1

[

Hk(xk,uk)−λ T
k xk

]

. (B.5)

The first order necessary optimal conditions are

∂ J′

∂ λ k+1

= 0 ⇒ xk+1 = fk(xk,uk) (B.6a)

∂ J′

∂ xk

= 0 ⇒ λ k =
∂ Hk

∂ xk

=

(
∂ fk

∂ xk

)T

λ k+1 +
∂ Lk

∂ xk

(B.6b)

0 =
∂ Hk

∂ uk

=

(
∂ fk

∂ uk

)T

λ k+1 +
∂ Lk

∂ uk

(B.6c)

0 =
∂ H0

∂ x0

dx0 (B.6d)

0 =

(
∂ φ

∂ xN

−λ N

)T

dxN (B.6e)

Since in our problem, x0 is given, dx0 is zero, the equation (B.6d) can be omitted.

If xN is fixed, then we can omit (B.6e). But if xN is a free state, then

λ N =
∂ φ

∂ xN

(B.7)

is a valid equation. In summary, solving the nonlinear system of equations (B.6)

will find the optimal control input u∗
k .
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B.2 Solution of discrete-time LQR control problem

In theory, the solution of (B.6) provides the the solution of the general discrete-

time optimal control problem. But it is in general very difficult to find the solu-

tion of (B.6). In engineering practice, engineers normally reduces the nonlinear

system to a linearized system, design the control system for the linear system,

and then verify the design actually works for the nonlinear system. Therefore,

the solution of discrete-time linear quadratic optimal control problem has been

extensively studied. In this case, the system dynamics is reduced to

xk+1 = Akxk +Bkuk (B.8)

with the initial condition x0. The cost function of the system is reduced to:

J =
1

2
xT

NQNxN +
1

2

N−1∑

k=0

(
xT

k Qkxk +uT
k Rkuk

)
, (B.9)

where Qk and Rk are positive semi-definite. This problem is referred to as the

Linear Quadratic Regulator (LQR) problem. This is a convex quadratic opti-

mization problem discussed in Appendix A. Its Hamiltonian function is given

as:

Hk(xk,uk) =
1

2

(
xT

k Qkxk +uT
k Rkuk

)
+λ

T
k+1 (Akxk +Bkuk) . (B.10)

The first order necessary optimal conditions (B.6) are then reduced to

xk+1 =
∂ Hk

∂ λ k+1

= Akxk +Bkuk (B.11a)

λ k =
∂ Hk

∂ xk

= Qkxk +AT
k λ k+1 (B.11b)

0 =
∂ Hk

∂ uk

= Rkuk +BT
k λ k+1 (B.11c)

0 = QNxN −λ N (B.11d)

with x0 being given. If xN is known, we can find the optimal solution by (a)

using (B.11d) to get λ N , (b) using (B.11c) to get uN−1 = −R−1
N−1BT

N−1λ N , (c)

using (B.11a) to get xN−1, and (d) using (B.11b) to get λ N−1. Repeating Steps

(b), (c), and (d), we should find x0 as expected. The main problem is that we

don’t know xN at the very beginning if xN is a fee variable. From (B.11c), we

have

uk =−R−1
k BT

k λ k+1. (B.12)

A very important assumption in the so-called sweep method [33] is about the

relation between λ k and xk which is given as follows:

λ k = Pkxk, (B.13)
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where Pk ∈ Rn×n is a matrix to be determined. Substituting this relation into

(B.11a) yields

xk+1 = Axk −BkR−1
k BT

k Pk+1xk+1. (B.14)

Solving for xk+1 gives

xk+1 = (I+BkR−1
k BT

k Pk+1)
−1Akxk. (B.15)

Now substituting (B.13) into (B.11b) yields

Pkxk = Qkxk +AT
k Pk+1xk+1. (B.16)

Substituting (B.15) into (B.16) yields

Pkxk = Qkxk +AT
k Pk+1(I+BkR−1

k BT
k Pk+1)

−1Akxk. (B.17)

Since this equation holds for all possible xk, we must have the following Riccati

matrix equation:

Pk = Qk +AT
k Pk+1(I+BkR−1

k BT
k Pk+1)

−1Ak. (B.18)

Using the Woodbury identity [200], the Riccati matrix equation can be written as

follows:

Pk = Qk +AT
k

[
Pk+1 −Pk+1Bk(Rk +BT

k Pk+1Bk)
−1BT

k Pk+1

]
Ak. (B.19)

From (B.11d), we have λ N = QNxN ; therefore,

PN = QN . (B.20)

Substituting backward in equation (B.19), we can calculate the solution of the

discrete Riccati equation. From (B.12), we have

uk = −R−1
k BT

k λ k+1

= −R−1
k BT

k Pk+1(Akxk +Bkuk)

= −(Rk +BT
k Pk+1Bk)

−1BT
k Pk+1Akxk. (B.21)

Finally, using (B.8), we can obtain the entire state response trajectory.

B.3 LQR control for discrete-time LTI system

In this section, we consider a more specific problem: the linear quadratic regula-

tor control for discrete-time linear time-invariant system. There are several rea-

sons that we pay special attention to this problem. First, for linear time-varying

system, the Riccati equation solution needs a lot of storage space, especially

when N is large. Second, many engineer system can be approximately modeled
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by linear time-invariant system. For computer-controlled system, the model is

in discrete-time. The LQR control for discrete-time LTI system is described as

follows:

xk+1 = Axk +Buk (B.22)

where A and B are constant matrices and the initial condition x0 is given. The

cost function of the system is given as:

J = lim
N→∞

[

1

2
xT

NQxN +
1

2

N−1∑

k=0

(
xT

k Qxk +uT
k Ruk

)

]

, (B.23)

where Q and R are constant matrices. A key idea to solve this problem is to

consider a linear system of equations involving both the state variable xk and

the co-state variable λ k. Combining the relation of (B.11) and (B.12) gives the

following (see also [269]):

[
xk+1

λ k

]

=

[
A −BR−1BT

Q AT

][
xk

λ k+1

]

. (B.24)

If A is invertible, then

xk = A−1xk+1 +A−1BR−1BTλ k+1. (B.25)

This allows us to have a different expression of (B.24)

[
xk

λ k

]

=

[
A−1 A−1BR−1BT

QA−1 AT +QA−1BR−1BT

][
xk+1

λ k+1

]

:= H

[
xk+1

λ k+1

]

.

(B.26)

It is straightforward to verify that

H−1 =

[
A+BR−1BTA−TQ −BR−1BTA−T

−A−TQ A−T

]

. (B.27)

Similar to the assumption for the linear time-varying system, we make a very

important assumption as follows:

λ k = Pxk, (B.28)

where P ∈ Rn×n is a constant matrix. We expect that the matrix P is the solution

of the Riccati equation (B.19) with Ak = A, Bk = B, Qk = Q, and Rk = R as

k →∞, i.e.,

P = Q+AT
[
P−PB(R+BTPB)−1BTP

]
A. (B.29)

To find P satisfying (B.28), first we show that there is a matrix W such that

W−1HW = D, (B.30)
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where D is a diagonal matrix. Moreover, if µ is an eigenvalue of D, then 1
µ is also

an eigenvalue of D with the same multiplicity. Let [fT,gT]T be the eigenvector

corresponding to the eigenvalue of µ . Then,

[
A−1 A−1BR−1BT

QA−1 AT +QA−1BR−1BT

][
f

g

]

= µ

[
f

g

]

. (B.31)

This can be rearranged as

[
(A+BR−1BTA−TQ)T −(A−TQ)T

−(BR−1BTA−T)T A−1

][
g

−f

]

= µ

[
g

−f

]

. (B.32)

Since Q and R are symmetric, the last equation is equivalent to

H−T

[
g

−f

]

= µ

[
g

−f

]

,

i.e., µ is an eigenvalue of H−T; therefore, µ is an eigenvalue of H−1. This proves

that 1
µ is also an eigenvalue of H and there is an invertible matrix W and a diag-

onal matrix D such that (B.30) holds. Now, we consider [wT
k ,z

T
k ]

T which satisfies

the following relation

[
xk

λ k

]

= W

[
wk

zk

]

=

[
W11 W12

W21 W22

][
wk

zk

]

. (B.33)

Combining (B.26), (B.30), and (B.33), and using the fact that both µ and 1
µ are

eigenvalues of H, we have

[
wk

zk

]

= D

[
wk+1

zk+1

]

:=

[
M 0

0 M−1

][
wk+1

zk+1

]

, (B.34)

where M is a diagonal matrix and all diagonal elements are outside the unit circle.

Repeatedly using (B.34), we have

[
wk

zk

]

=

[
MN−k 0

0 M−(N−k)

][
wN

zN

]

, (B.35)

Since we want to let N → ∞ for the steady-state solution to the infinite time

problem, and M is not stable, we rewrite (B.35) as

[
wN

zk

]

=

[
M−(N−k) 0

0 M−(N−k)

][
wk

zN

]

, (B.36)

Now we consider the relations between xk and λ k to determine P. From (B.33),

we have

λ N = W21wN +W22zN = PxN = P(W11wN +W12zN). (B.37)
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Solving zN in terms of wN yields

zN =−(W22 −PW12)
−1(W21 −PW11)wN := TwN . (B.38)

From (B.36) and (B.38), we have

zk = M−(N−k)zN = M−(N−k)TwN = M−(N−k)TM−(N−k)wk := Tkwk. (B.39)

Using (B.33) again,

λ k = W21wk +W22zk = Pxk = P(W11wk +W12zk). (B.40)

Substituting (B.39) into (B.40) yields

(W21 +W22Tk)wk = P(W11 +W12Tk)wk. (B.41)

Since this must hold for all wk, we have

P = (W21 +W22Tk)(W11 +W12Tk)
−1. (B.42)

As N →∞, we have

P = W21W−1
11 . (B.43)

Now we prove that P is the solution of the Riccati equation (B.29). Note that

H =

[
A−1 A−1BR−1BT

QA−1 AT +QA−1BR−1BT

]

=

[
A 0

−Q I

]−1 [
I BR−1BT

0 AT

]

:= E−1F. (B.44)

From (B.30) and (B.34), we have

HW = WD

⇐⇒ FW = EWD

⇐⇒
[

I BR−1BT

0 AT

][
W11

W21

]

=

[
A 0

−Q I

][
W11M

W21M

]

. (B.45)

The first row of (B.45) gives

W11 +BR−1BTW21 = AW11M

⇐⇒ A = W11M−1W−1
11 +BR−1BTW21M−1W−1

11 (B.46)

⇐⇒ A =
[
W11 +BR−1BTW21

]
M−1W−1

11 . (B.47)

The second row of (B.45) gives

ATW21 =−QW11M+W21M

⇐⇒ Q = W21W−1
11 −ATW21M−1W−1

11 . (B.48)
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Denote G = BTPB. Substituting (B.43), (B.46), (B.47), and (B.48) into (B.29)

yields

−P+AT
[
P−PB(R+BTPB)−1BTP

]
A+Q

= −W21W−1
11 +ATW21W−1

11

(
W11M−1W−1

11 +BR−1BTW21M−1W−1
11

)

−ATPB(R+BTPB)−1BTPA+W21W−1
11 −ATW21M−1W−1

11

= ATW21W−1
11 BR−1BTW21M−1W−1

11 −ATPB(R+BTPB)−1BTPA

= ATPB
[
R−1BTW21M−1W−1

11 − (R+BTPB)−1BTPA
]

= ATPB
[
R−1BTW21 − (R+G)−1BTW21W−1

11

(
W11 +BR−1BTW21

)]

M−1W−1
11

= ATPB
[
R−1 − (R+G)−1 − (R+G)−1GR−1

]
BTW21M−1W−1

11

= ATPB(R+G)−1
[
(R+G)R−1 − I−GR−1

]
BTW21M−1W−1

11

= 0 (since (R+G)R−1 − I−GR−1 = 0). (B.49)

This proves that P =W21W−1
11 is indeed the solution of the discrete Riccati equa-

tion.

The optimal feedback is given by

uk =−(R+BTPB)−1BTPAxk =−Kxk. (B.50)
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This appendix provides a brief review of robust pole assignment with focus on

continuous-time linear system. The reasons behind the choice of the materials are

(a) most existing literatures discuss continuous-time linear system, (b) extension

to the discrete-time system is straightforward, and (c) we include the minimum

materials in the appendices that will be necessary to understand the main body of

the book. In this appendix, we will consider the following linear time-invariant

system:

ẋ = Ax+Bu, (C.1)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m. We assume that (A,B) is con-

trollable, and rank(B) = m > 1. Under this assumption, the pole assignment de-

sign is not unique. Therefore, we can use the extra degrees of freedom to achieve

more desired features than the required performance. One of the important de-

sired features is system robustness to the modeling error. A design with this fea-

ture is called the robust pole assignment, which can be defined as follows:

Robust pole assignment: For system given in (C.1) with (A,B) controllable

and rank(B)> 1, and a given set of desired close-loop poles {λ1, . . . ,λn}, robust

pole assignment design is to find a feedback control u =−Kx = Fx such that the

closed-loop poles are as much insensitive to the system parameter perturbation

as possible.

353
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C.1 Eigenvalue sensitivity to the perturbation

For square matrices, a variety of robustness measures have been proposed to

measure the robustness of their eigen-structure. When all the eigenvalues are

simple, the first order sensitivity of each individual λi to uncertainty is given by

the eigenvalue condition number [288]

ci :=
‖yi‖2‖xi‖2

|yT
i xi|

(C.2)

where yi and xi are the left and right eigenvectors associated with λi; ci is the

Frobenius norm of the gradient of λi(X) with respect to X under the (natural)

trace inner product. We use

c∞ := max
i

ci (C.3)

to denote the worst-case eigenvalue condition number. For the case where X

is non-defective but has repeated eigenvalues, see [251] for a definition of the

corresponding condition numbers.

The Bauer-Fike theorem [77] established that c∞ is upper-bounded by the

spectral condition number of the matrix of eigenvectors

κ2(X) := ‖X‖2‖X−1‖2 (C.4)

and hence this is often used as a robustness measure. The Frobenius condition

number of X is given by

κ f ro(X) := ‖X‖ f ro‖X−1‖ f ro (C.5)

Since κ2(X) ≤ κ f ro(X), the Frobenius condition number provides a more con-

servative bound on the eigenvalue sensitivity than κ2(X), but enjoys the virtue of

being differentiable, and hence is often used as a robustness measure.

Minimizing the measures c∞, κ2(X) and κ f ro(X) corresponds to superior

robustness, with perfect robustness being achieved only when the eigenvector

matrix is unitary, i.e. when M is normal.

Another robustness measure was proposed in [300] which is given as follows:

|det(X)| :=
√

det(XX∗), (C.6)

where all columns of X are unit length and X∗ is the complex conjugate of X.

This robustness measure is the volume of the box spanned by unit length column

vectors of X and is clearly a good measure of orthogonality, and hence it may be

used as the robustness measure. Again, the perfect robustness being achieved for

this metric is only when the eigenvector matrix is unitary.

Let σi, i = 1,2, . . . ,n be the singular values of X with σ1 the largest singular

value and σn the smallest singular values. It is well known that

κ2(X) = σ1/σn. (C.7)
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Because

σ 2
1 ≤

n∑

i=1

σ 2
i = trace(XTX) = n, (C.8)

we have σ1 ≤
√

n, i.e., σ1 is bounded above. On the other hand, if σn → 0, then

κ2 →∞. Therefore, σn is the dominant factor of κ2(X). The rest of this section

is to estimate the low bound of σn. First, we introduce a Lemma [100].

Lemma C.1

Suppose that the real coefficient polynomial f (x) = anxn +an−1xn−1 + . . .+a1x+a0

with an > 0 and an−k being the first negative coefficient, and B is the greatest value

among all the absolute values of the negative coefficients. Then

N = 1+
k
√

B/an (C.9)

is a upper bound of positive root of f (x).

Proof C.1 Assume that

x > 1+
k
√

B/an. (C.10)

Since an−1,an−2, . . . ,an−k+1 ≥ 0, and an−k,an−k−1, . . . ,a0 ≥−B, we have

f (x) = anxn + an−1xn−1 + . . .+ a1x+ a0

≥ anxn −B(xn−k + xn−k−1 + . . .+ x+ 1)

= anxn −B
xn−k+1 − 1

x− 1

> anxn −B
xn−k+1

x− 1

=
xn−k+1

x− 1

[

anxk−1(x− 1)−B
]

>
xn−k+1

x− 1

[

an(x− 1)k −B
]

. (C.11)

For any x satisfying (C.10), it must have f (x) > 0. Therefore, a upper bound of

positive solution of f (x) = 0 is given by (C.9).

Theorem C.1

Suppose that X is a matrix composed of standardized eigenvectors and generalized

eigenvectors of matrix A. Denote ∆ = det(XTX). Then, we have

σ2
n ≥ 1

1+ 1
∆

(
n

n−1

)n−1
. (C.12)
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Proof C.2 Let λi, i = 1, . . . ,n be the eigenvalues of XTX, note that λi = σ2
i , we

have a matrix Y such that

(XTX)Y = Ydiag(σ2
1 , . . . ,σ

2
n ), (C.13)

moreover (C.8) and the following relation

n∏

i=1

σ2
i =

n∏

i=1

λi(X
TX) = det(XTX) = ∆. (C.14)

hold. Denote the sets

K1 = {σi|σi satisfy (C.13),(C.8),(C.14)},

K2 = {σi|σi satisfy (C.8),(C.14)}.
We have minσi∈K1

σ2
n ≥ minσi∈K2

σ2
n . The lower bound is established based on

minσi∈K2
σ2

n . The Lagrangian for this minimization problem is given by

L = σ2
n +β0

(
n∏

i=1

σ2
i −∆

)

+β1

(
n∑

i=1

σ2
i − n

)

.

Therefore, we have

∂L

∂σi

= 2β0

n∏

j 6=i

σ2
j σi + 2β1σi = 0, i 6= n, (C.15a)

∂L

∂σn

= 2σn + 2β0

∏

j 6=n

σ2
j σn + 2β1σn = 0, (C.15b)

∂L

∂β0

=
n∏

i=1

σ2
i −∆ = 0, (C.15c)

∂L

∂β1

=

n∑

i=1

σ2
i − n = 0, (C.15d)

and

∂L

∂σn

− ∂L

∂σi

= 2σn + 2β0

∏

j 6=i,n

σ2
j

(
σnσ2

i −σ2
n σi

)
+ 2β1(σn −σi)

= 2σn + 2



β0

∏

j 6=i,n

σ2
j σnσi −β1



(σi −σn) = 0. (C.16)

Since det(XTX) 6= 0, we have σn 6= 0, which means

σi 6= σn, ∀i 6= n. (C.17)
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Since

∂L

∂σi
− ∂L

∂σ j
=



2β0




∏

k 6=i, j

σ2
k σ jσi



− 2β1



 (σ j −σi) = 0,

we have either one or both of the following relations hold.

σ j = σi, i 6= j, ∀i, j 6= n, (C.18a)

β1/β0 =
∏

k 6=i, j

σ2
k σ jσi, ∀i, j,k 6= n, i 6= j 6= k. (C.18b)

By symmetry, the second relation is equivalent to the first one. Substituting (C.17)

and (C.18a) into (C.15c) and (C.15d) and denoting λ = λi, i 6= n, we have

λ (n−1)λn = ∆, (n− 1)λ +λn = n (C.19a)

f (λn) = (n−λn)
(n−1)λn −∆(n− 1)(n−1) = 0. (C.19b)

Since λn is positive and is a solution of (C.19b), λn must be greater than or equal

to the smallest positive root of (C.19b). It is hard to get the analytic solution of the

smallest positive root. But we can estimate the lower bound of the smallest positive

root. Considering φ(λn) = λ n
n f ( 1

λn
), if α is an arbitrary positive root of f (λn), then

1
α is a positive root of φ(λn). If N is an upper bound of the positive roots of φ(λn),

then 1
N

is a lower bound of the positive roots of f (λn). Note that

φ(λn) = λ n
n

[

1

λn

(

n− 1

λn

)n−1

−∆(n− 1)(n−1)

]

= (nλn − 1)n−1 −∆(n− 1)n−1λ n
n

= ∆(n− 1)n−1λ n
n − nn−1λ n−1

n + nn−2(n− 1)λ n−1
n + . . .+(−1)n−1 = 0.

(C.20)

According to the Lemma, we have

N = 1+
1

∆

(
n

n− 1

)(n−1)

. (C.21)

Therefore, the smallest positive solution λ∗
n of f (λn) satisfies

λ∗
n ≥ 1

1+ 1
∆

(
n

n−1

)(n−1)
. (C.22)

This finishes the proof.

Unlike κ2(X), which depends on the largest and the smallest singular values

(C.7), |det(X)| =∏n

i=1 σi depends on all singular values of X, which may be a
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better robustness measure than κ2(X). Because the merits of c∞ and |det(X)|,
these two robustness measures were used in [195] to compare different robust

pole assignment algorithms. To make the range of |det(X)| similar to other ro-

bustness metrics, [195] introduces

Γ(X) := 1− log(|det(X)|) (C.23)

as an equivalent alternative to the maximization measure |det(X)|. The use of

Γ(X) is preferred for consistency with c∞ in that smaller values correspond to

superior robustness. Since computation of log(|det(X)|) is not numerically reli-

able in Matlab, an equivalent alternative is proposed as follows:

Γ(X) = 1−
n∑

i

log(σi). (C.24)

C.2 Robust pole assignment algorithms

In the rest of this appendix, we will discuss two algorithms because of their

speed. The speed is very important as we will use these algorithms in Model

Predictive Control (MPC) which involves extensive on-line computations.

The first algorithm is an efficient algorithm proposed in [260] which is an

extension of [115] and probably the most efficient among all robust pole assign-

ment algorithms. A critical observation is based on the following two theorems

given in [115].

Theorem C.2

Given Λ = diag{λ1,λ2, . . . ,λn}, the prescribed closed-loop eigenvalues, and X, a

non-singular matrix composed of closed-loop eigenvectors, then there exists F, a

solution to

(A+BF)X = XΛ (C.25)

if and only if

UT
1 (AX−XΛ) = 0, (C.26)

where

B = [U0 U1 ]

[
Z

0

]

(C.27)

with U := [U0 U1 ] orthogonal and Z nonsingular. Then F is given by

F := Z−1 UT
0 (XΛX−1 −A) (C.28)

Proof C.3 The assumption that B is full rank implies the existence of decomposi-

tion (C.27). From (C.25), F must satisfy

BF = XΛX−1 −A (C.29)
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and pre-multiplying UT gives the following equations

ZF = UT
0 (XΛX−1 −A), (C.30a)

0 = UT
1 (XΛX−1 −A). (C.30b)

Since X and Z are invertible, equations (C.30) implies (C.26) and (C.28).

Also, the columns xi, i = 1, . . . ,n, of X must satisfy the following constraint.

Theorem C.3

The eigenvector xi of A+BF corresponding to the assigned eigenvalue λi ∈ L must

belong to the space

Si := ker(UT
1 (A−λiI)). (C.31)

Proof C.4 From (C.26), we have UT
1 (A − λiI)xi = 0, for ∀i. This proves the

theorem.

The main idea of the algorithm is to select X = [x1, . . . ,xn] nonsingular such

that xi ∈ Si and ‖xi‖2 = 1 , i = 1, . . . ,n, such that |det(X)| is maximized. For

some X, if det(X) is minimized, let X̂ be a matrix that is equal to X except the

sign of one column is changed, then, detX̂ is maximized. Therefore, the robust

pole assignment problem is reduced to solve the following optimization problem:

max det(X) s.t. xi ∈ Si, ‖xi‖= 1, i = 1, . . . ,n, det(X) 6= 0. (C.32)

Once the optimal X is obtained, the feedback matrix is given by (C.28). First, Si

can be obtained by the following steps:

Algorithm C.1

Step 1: Using a QR decomposition of B, we can get U0, U1, and Z as given

in (C.27).

Step 2: Using QR decompositions for every prescribed closed-loop pole λi

(UT
1 (A−λiI))

T = [V0i Vi ]

[
Y

0

]

The m columns of Vi is the orthonormal base of Si.

Starting from the initial point X0 = [x0
i , . . . ,x

0
n] with x0

i ∈ Vi, the main trick of

the algorithm is to select one or at most two xi at a time to increase the robustness
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measurement det(X) so that every iteration becomes extremely efficient. This

strategy is based on several useful theorems [260, 323]. The first one is a method

of updating one column of X at a time.

Let x j ∈ S j and ‖x j‖2 = 1 for ∀ j ∈ {1, . . . ,n}. Let i be any index in

{1, . . . ,n} such that xi is a real eigenvector corresponding to a real eigenvalue,

X(ξ ) = [x1, . . . ,xi−1,ξ ,xi+1, . . . ,xn], and X− = [x1, . . . ,xi−1,xi+1, . . . ,xn]. Let

ui(X−) be the unit length vector orthogonal to X− such that the inner product

of 〈ui(X−),xi〉> 0. Then, we can replace xi by ξ , a new eigenvector of λi, such

that det(X(ξ )) is maximized. This is an optimization problem, its mathematical

formula and the corresponding solution is given as the following theorem (see

also [301]).

Theorem C.4

Let xi ∈ Si be a real eigenvector corresponding to a prescribed real closed-loop pole

λi. Consider the following optimization problem:

maxdet(X(ξ )) s.t. ‖ξ‖= 1, ξ ∈ Si, (C.33)

we have

det(X(ξ )) = 〈ξ ,ui(X−)〉
√

det(XT
−X−), (C.34)

the optimization problem (C.33) is reduced to

max〈ξ ,ui(X−)〉 s.t. ‖ξ‖= 1, ξ ∈ Si. (C.35)

The optimal solution of (C.35) is given by

ξ =
ViV

T
i ui(X−)

‖VT
i ui(X−)‖

. (C.36)

Proof C.5 : Let P be the permutation matrix such that

XP = [ξ ,X−], (C.37)

and let Q ∈ Rn×(n−1) and R ∈ R(n−1)×(n−1) be any two matrices such that QTQ = I

and

X− = QR. (C.38)

Using (C.37) and (C.38), we obtain

(det(X))2 = det(XTX)

= det(PTXTXP) = det([ξ ,X−]T[ξ ,X−])

= det

([

ξ Tξ ξ T
X−

XT
−ξ XT

−X−

])
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= (ξ
T

ξ − ξ
T

X−(XT
−X−)−1XT

−ξ )det(XT
−X−)

= (ξ
T

ξ − ξ
T

QR(RTR)−1RTQTξ )det(XT
−X−)

= (ξ Tξ − ξ T
QQTξ )det(XT

−X−). (C.39)

Now note that [Q,ui(X−)] is an orthogonal matrix so that

QQT +ui(X−)ui(X−)
T = I.

Thus

(det(X))2 = ξ T
ui(X−)ui(X−)Tξ det(XT

−X−)

= 〈ξ ,ui(X−)〉2 det(XT
−X−). (C.40)

Note that 〈ξ ,ui(X−)〉 and det(X) have the same sign since (i) they are both linear in

ξ , (ii) in view of (C.40) they vanish simultaneously and (iii) they are both positive at

ξ = xi. The first claim follows. To prove the second part, notice that ξ ∈ Si implies

ξ = Viz for some z. Since ‖ξ‖ = 1, it is easy to see that maximizing zTVT
i ui(X−)

with ‖ξ‖= 1 is given by (C.36).

If all prescribed closed-loop poles are real, then by cyclically updating the

eigenvector one by one, we will continuously improve the robustness measure

of det(X). This is the strategy proposed by [115]. Computation involved in The-

orem C.4, given X, is inexpensive. The main task, computation of ui(X−), can

be effected by means of a QR factorization of X−. Kautsky et al. note that the

QR factorization to be carried out at iteration k > 0 can be obtained by a rank-

one update of that computed at iteration k− 1, requiring only O(n2) operations;

and that the subsequent projection on ξ that yields the ith column of the new X

requires O(nm) operations, for a total of O(n2)+O(mn) operations per iteration.

Although optimizing one eigenvector at a time makes the problem simple and

computationally attractive, there are two reasons to consider optimizing more

eigenvectors at a time if we can still maintain the low cost in each iteration. First,

we may achieve better convergence rate because more eigenvectors are optimized

at each iteration. Second, the method proposed above cannot be directly applied

to problems which have prescribed complex conjugate eigenvalues, i.e., have

complex conjugate eigenvectors. We now consider a updating method for two

eigenvectors at a time.

For simplicity of exposition, suppose that n is even, say n = 2p. Given X =
[x1, . . . ,xn], let

X= = [x1, · · · ,x2i−2,x2i+1, · · · ,xn],

and

X(ξ ,η) = [x1, . . . ,x2i−2,ξ ,η ,x2i+1, . . . ,xn].

Let Ui(X=) ∈ Rn×n, i = 1, . . . , p, be defined by

Ui(X=) = (uvT −vuT)
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where u, v ∈ Rn form an orthonormal basis for the orthogonal complement of

the set

{x1, . . . ,x2(i−1),x2i+1, . . . ,xn},
and satisfy the inequality

〈x2i−1,u〉〈x2i,v〉 ≥ 〈x2i−1,v〉〈x2i,u〉 (C.41)

(note that the latter can be achieved by proper choice of the orientation of u and

v). It is readily checked that Ui(X=) is thus uniquely determined (although u and

v are not) and is continuous as a function of X.

Theorem C.5

Let x2i−1 ∈ S2i−1 and x2i ∈ S2i be two real eigenvectors corresponding to two pre-

scribed real closed-loop poles λ2i−1 and λ2i. Consider the following optimization

problem:

maxdet(X(ξ ,η)) s.t. ‖ξ‖= 1, ξ ∈ S2i−1, ‖η‖= 1, η ∈ S2i, (C.42)

we have

det(X) = 〈ξ ,Ui(X=)η〉
√

det(XT
=X=), (C.43)

the optimization problem (C.42) is reduced to

maximize 〈ξ ,Ui(X=)η〉 s.t. ‖ξ‖= 1, ξ ∈ S2i−1, ‖η‖= 1, η ∈ S2i.
(C.44)

Proof C.6 Let P be a permutation matrix such that

XP = [ξ ,η ,X=], (C.45)

and let Q ∈ Rn×(n−2) and R ∈ R(n−2)×(n−2) be any two matrices such that QTQ = I

and

X= = QR. (C.46)

Using (C.45) and (C.46) we have

(det(X))2 = det(XTX)

= det(PTXTXP) = det([ξ ,η ,X=]
T[ξ ,η ,X=])

= det





[

ξ T

ηT

]

[ξ ,η ]

[

ξ T

ηT

]

X=

XT
= [ξ ,η ] XT

=X=





= det

([

ξ T

ηT

]

[ξ ,η ]−
[

ξ T

ηT

]

X=(X
T
=X=)

−1XT
= [ξ ,η ]

)

det(XT
=X=)
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= det

([

ξ T

ηT

]

[ξ ,η ]−
[

ξ T

ηT

]

QR(RTR)−1RTQT [ξ ,η ]

)

det(XT
=X=)

= det

([

ξ T

ηT

]

[ξ ,η ]−
[

ξ T

ηT

]

QQT [ξ ,η ]

)

det(XT
=X=) (C.47)

Now, Ui(X=) = (uvT − vuT) with {u,v} an orthonormal basis for the null space of

XT
= satisfying (C.41). Thus [Q,u,v] is orthogonal, therefore

QQT +
[

u v
]
[

uT

vT

]

= I,

and

(det(X))2 = det

([

ξ
T

ηT

]

[u,v]

[
uT

vT

]

[ξ ,η ]

)

det(XT
=X=)

=

(

det

([

ξ T

ηT

]

[u,v]

))2

det(XT
=X=)

= (〈ξ ,u〉〈η ,v〉− 〈ξ ,v〉〈η ,u〉)2
det(XT

=X=). (C.48)

Next,

sgn(det(X)) = sgn(〈ξ ,u〉〈η ,v〉− 〈ξ ,v〉〈η ,u〉),
since (i) the arguments in both sides are quadratic in ξ ,η , (ii) in view of (C.48) they

vanish simultaneously and (iii) in view of (C.41) and since det(X)> 0 they are both

positive at ξ = x2i−1, and η = x2i. Thus

det(X) = (〈ξ ,u〉〈η ,v〉− 〈ξ ,v〉〈η ,u〉)
√

det(XT
=X=)

= 〈ξ ,Ui(X=)η〉
√

det(XT
=X=). (C.49)

The claim follows.

Since ξ ∈ S2i−1 and η ∈ S2i, noticing that V2i−1 and V2i are the bases of

S2i−1 and S2i, we can reduce the problem a little further.

Proposition C.1

The optimization (C.44) is equivalent to the following optimization problem:

maximize 〈µ ,VT
2i−1Ui(X=)V2iν〉 s.t. ‖µ‖= 1, ‖ν‖= 1. (C.50)

Noticing that Ui(X=) is a rank 2 matrix, we can solve the optimization prob-

lem (C.50) very efficiently.

Theorem C.6

Let X = [x1, . . . ,xn] ∈ X, let i ∈ {1, . . . , p}, let σ1 ≥ σ2 be the top two singular values
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of VT
2i−1Ui(X=)V2i, and for j = 1,2, let µ j, ν j ∈ Rm form a left-right singular vector

pair associated with σ j with the property that 〈µ1,µ2〉 = 0 and 〈ν1,ν2〉 = 0. Then

for i = 1, . . . , p, the optimal update defined by (C.44) or (C.50) is given by:

X = [x1, . . . ,x2i−2,ξ ,η ,x2i+1, . . . ,xn],

where

[
ξ
η

]

=
√

2ζ/‖ζ‖ and

(i) if σ1 > σ2, then, ζ is the orthogonal projection of

[
x2i−1

x2i

]

on the span of
{[

V2i−1µ1

V2iν1

]}

, i.e.,

ζ =

[
V2i−1µ1

V2iν1

][
V2i−1µ1

V2iν1

]T[
x2i−1

x2i

]

= (〈x2i−1, V2i−1µ1〉+ 〈x2i, V2iν1〉)
[

V2i−1µ1

V2iν1

]

(C.51)

(ii) if σ1 = σ2, then, ζ is the orthogonal projection of

[
x2i−1

x2i

]

on the span of
{[

V2i−1µ1

V2iν1

]

,

[
V2i−1µ2

V2iν2

]}

, i.e.,

ζ =

[
V2i−1 0

0 V2i

][
µ1 µ2

ν1 ν2

][
µ1 µ2

ν1 ν2

]T [
V2i−1 0

0 V2i

]T[
x2i−1

x2i

]

.

(C.52)

Proof C.7 The proof is straightforward by using (C.50) and therefore omitted.

Consider now the case where the set of desired poles includes a number of

complex conjugate pairs. Let λ1, . . . ,λn be the eigenvalues to be assigned. For the

sake of simplicity of exposition, again assume that n is even. Moreover assume

that {λ1, . . . ,λn}∩R = {λ1, . . . ,λ2p}, i.e., λ1, . . . ,λ2p are real and λ2p+1, . . . ,λn

are complex; let c be the number of complex pairs, i.e., c = n/2− p, and assume

that λ2i = λ 2i−1, i= p+1, . . . , p+c. Clearly, candidate sets of eigenvectors of the

closed loop matrix A+BF must include c complex conjugate pairs. Moreover,

as in the real case, they must satisfy additional conditions. The next theorem

extends Theorem C.3.

Theorem C.7

Let X = [x1, . . . ,xn], nonsingular, and Λ = diag(λ1, . . . ,λn) be two complex n× n

matrices such that (i) for j = 1, . . . ,2p, λ j ∈ R and x j ∈ Rn, and (ii) for i = p+

1, . . . , p+ c, λ2i = λ 2i−1 and x2i = x2i−1. Then
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(i) XΛX−1 is real, and

(ii) (A+BF)X = XΛ for some real matrix F if and only if x j ∈ S j, j = 1, . . . ,n.

Proof C.8 Let P ∈ Rn×n be the permutation matrix that exchanges columns 2i−1

and 2i, i = p+1, . . . , p+c, of the matrix it post-multiplies. Thus, X =XP, Λ = PΛP,

and P−1 = P. Then

XΛX−1 = XPΛPX
−1

= XPΛ(XP)−1 = XΛX−1,

proving the first claim. Now suppose that for some real matrix F, (A+BF)X = XΛ.

Then

AX−XΛ =−BFX

implying that

(A−λ jI)x j ∈ RC(B), j = 1, . . . ,n, (C.53)

where RC(B) = {By : y ∈ Cm}, i.e., x j ∈ S j for j = 1, . . . ,n. Finally, suppose that

(C.53) holds, i.e., for some y j ∈ Cm, j = 1, . . . ,n,

(A−λ jI)x j = By j.

Thus

AX−XΛ = BY,

with Y := [y1, . . . ,yn] ∈ Cm×n, i.e.,

A−XΛX−1 = BYX−1.

The left hand side is a real matrix. Thus

BYX−1 =Re(BYX−1) = BRe(YX−1).

The last claim then follows by setting F =Re(YX−1).

In view of this result, we will focus on a modification of problem (C.32) given

by

max det(X) s.t. xi ∈ Si, ‖xi‖= 1, i = 1, . . . ,n;

x2i−1 = x2i, i = p+1, . . . , p+ c;

xi ∈ Rn, i = 1, . . . ,2p; det(X) 6= 0. (C.54)

Since we consider only the case of updating a pair of complex conjugate

eigenvectors, we can reduce the problem quite a bit and solve the reduced prob-

lem efficiently. Let

Ũi(X=) = uuT −uuT,
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where u = uR + juI is such that
√

2uR,
√

2uI ∈ Rn form an orthonormal basis for

the orthogonal complement of the set

{x1, . . . ,x2p}∪{Re(x2 j),Im(x2 j), j = p+1, . . . , p+ c, j 6= i},

and satisfy the inequality

〈Re(x2i),uR〉〈Im(x2i),uI〉 ≥ 〈Re(x2i),uI〉〈Im(x2i),uR〉. (C.55)

Again, it is readily checked that Ũi(X=) is thus uniquely determined and is con-

tinuous as a function of X=.

Lemma C.2

Let i ∈ {p+ 1, . . . , p+ c}, and let u = uR + juI be such that
√

2uR,
√

2uI ∈ Rn form

an orthonormal basis for the orthogonal complement of the set

{x1, . . . ,x2p}∪{Re(x2 j),Im(x2 j), j = p+ 1, . . . , p+ c, j 6= i}.

Then {u,u} is an orthonormal basis for the null space of [x1, · · · ,x2i−2,x2i+1, · · · ,xn]
∗.

The following theorem is critical to provide an efficient method to update two

complex conjugate eigenvectors.

Theorem C.8

Let X= [x1, . . . ,xn]∈Cn×n with x1, . . . ,x2p ∈Rn, and x2i−1 = x2i, i= p+1, . . . , p+c

be such that det(X) 6= 0, let η ∈ Cn, let i ∈ {p+ 1, . . . , p+ c}, and let

X(η) = [x1, · · · ,x2i−2,η ,η ,x2i+1, · · · ,xn] (C.56)

and

X= = [x1, · · · ,x2i−2,x2i+1, · · · ,xn].

Then X∗
=X= is nonsingular, and

|det(X)|= |〈η , Ũi(X=)η〉|
√

det(X∗
=X=). (C.57)

Proof C.9 Let P be the permutation matrix such that

XP = (η ,η ,X=), (C.58)

and let Q ∈ Cn×(n−2) and R ∈ C(n−2)×(n−2) be any two matrices such that Q∗Q = I

and

X= = QR. (C.59)
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Using (C.58) and (C.59) we have

|det(X)|2 = det(X∗X)

= det(PTX∗XP) = det((η ,η ,X=)
∗(η ,η ,X=))

= det





[
η∗

η∗

]

[η ,η ]

[
η∗

η∗

]

X=

X∗
= [η ,η ] X∗

=X=





= det

([
η∗

η∗

]

[η ,η ]−
[

η∗

η∗

]

X=(X
∗
=X=)

−1X∗
= [η ,η ]

)

det(X∗
=X=)

= det

([
η∗

η∗

]

[η ,η ]−
[

η∗

η∗

]

QR(R∗R)−1R∗Q∗ [η ,η ]

)

det(X∗
=X=)

= det

([
η∗

η∗

]

[η ,η ]−
[

η∗

η∗

]

QQ∗ [η ,η ]

)

det(X∗
=X=). (C.60)

Since by Lemma C.2, {u,u} is an orthonormal basis for the null space of X∗
=, thus

[Q,u,u] is unitary, therefore QQ∗+
[

u,u
]
[

u∗

u∗

]

= I and

|det(X)|2 = det

([
η∗

η∗

]

[u,u]

[
u∗

u∗

]

[η ,η ]

)

det(X∗
=X=)

=

∣
∣
∣
∣
det

([
u∗

u∗

]

[η ,η ]

)∣
∣
∣
∣

2

det(X∗
=X=)

=

∣
∣
∣
∣
det

[[
uT

uT

]

[η ,η ]

]∣
∣
∣
∣

2

det(X∗
=X=)

=
∣
∣
(
(uTη)(uTη)− (uTη)(uTη

)∣
∣
2

det(X∗
=X=)

=
∣
∣〈η ,(uuT −uuT)η〉

∣
∣
2

det(X∗
=X=).

The claim follows by taking the square root on the both sides.

This theorem suggests that: when updating a pair of complex conjugate

eigenvectors x̄2i and x2i, we can reduce the problem (C.54) to the following prob-

lem:

max det(X(η)) s.t. η ∈ S2i−1, η ∈ S2i, ‖η‖= 1, ‖η‖= 1. (C.61)

Theorem C.9

Let X = [x1, . . . ,xn]∈ X, let i ∈ {p+1, . . . , p+c}, let σ1 and σ2, with σ1 ≥ σ2, be the

two nonzero singular values of V∗
2iŨi(X=)V2i, and let µℓ, ℓ= 1,2, denote unit-length

singular vectors1 associated with σℓ with the property that 〈µ1, µ2〉 = 0. Then for

1In fact, since V∗

2iŨi(X)V2i is Hermitian, left and right singular vectors have the same direction (but

opposite orientation when the corresponding eigenvalue is negative).
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i = p+ 1, . . . , p+ c, the optimal update defined by (C.61) is given by

X = [x1, . . . ,x2i−2,η ,η ,x2i+1, . . . ,xn],

where η = ζ/‖ζ‖ and

(i) if σ1 > σ2, ζ is the orthogonal projection of x2i on the span V2iµ1, i.e.,

ζ = V2iµ1µ∗
1 V∗

2ix2i, (C.62)

(ii) if σ1 = σ2, ζ is the orthogonal projection of x2i on the span {V2iµ1,V2iµ2},

i.e.,

ζ = V2i[µ1, µ2][µ1, µ2]
∗V∗

2ix2i. (C.63)

Proof C.10 The proof is straightforward and therefore omitted.

Thus, for a given X = [x1, . . . ,xn], the updated X can be computed as follows:

Algorithm C.2 (Update one real eigenvector)

For i ∈ (1, . . . ,n, i.e., one real eigenvector,

Step (1). Compute an orthonormal basis {u(X−)} ⊂ Rn for the orthogonal com-

plement of

{x1, . . . ,xi−1,xi+1, . . . ,xn}.

Step (2). Compute ξ as per (C.36) to obtain the updated X.

Algorithm C.3 (Update two real eigenvectors)

For i = 1, . . . , p, i.e., two real eigenvectors,

Step (1). Compute an orthonormal basis {u,v} ⊂ Rn for the orthogonal comple-

ment of

{x1, . . . ,x2i−2,x2i+1, . . . ,xn}.

Step (2). Evaluate a1 = VT
2i−1u, a2 = VT

2i−1v, b1 = VT
2iv, and b2 = VT

2iu.

Step (3). Compute a singular value decomposition of

[a1, a2][b1, −b2]
T (= VT

2i−1Ui(X=)V2i).

(If the nonzero singular values are distinct, the singular vectors correspond-

ing to the second singular value need not be computed.)

Step (4). Compute (ξ ,η) as per Theorem C.6 to obtain the updated X.
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Algorithm C.4 (Update a pair of complex conjugate eigenvectors)

For i = p+ 1, . . . , p+ c, i.e., a pair of complex conjugate eigenvectors,

Step (1). Compute an orthonormal basis {
√

2uR,
√

2uI} ⊂ Rn for the orthogonal

complement of

{x1, . . . ,x2p}∪{Re(x2 j),Im(x2 j), j = p+ 1, . . . , p+ c, j 6= i},

Step (2). Evaluate a1 = V∗
2i(

√
2u), and a2 = V∗

2i(
√

2u), where u = uR + juI .

Step (3). Compute a singular value decomposition of

[a1, a2][a1, −a2]
∗ (= 2V∗

2iŨ i(X=)V2i).

(If the nonzero singular values are distinct, the singular vector corresponding

to the second singular value need not be computed.)

Step (4). Compute η as per Theorem C.9 to obtain the updated X.

These three algorithms are important components of several algorithms pro-

posed in [260]. When the matrix X is convergent, then, the state feedback matrix

F can be computed by equation (C.28). We present a simplified algorithm to de-

scribe the procedure. Suppose a problem has 2p+ 1 real and 2c complex pairs

of eigenvalues, and the complex conjugate eigenvalues are placed in front of real

ones.

Algorithm C.5 (Overall algorithm)

Step 0. p, c, n = 2p+ 2c+ 1, the desired closed-loop eigvenvalues λ1, . . . ,λn, and

initial X0 (this may be generated by the program).

Step 1. Use Algorithm C.1 to obtain U0, U1, Z, and Vi.

Step 2. For k = 1,2, . . .

2-a For the c pairs of complex eigenvalues , call Algorithm C.4, end.

2-b For the p pairs of real eigenvalues, call Algorithm C.3, end.

2-c For the last real eigenvalue, call Algorithm C.2, end.

2-d If ‖Xk −Xk−1‖ ≤ ε , exit the ”for” loop; otherwise, continue.

Step 3. Use (C.28) to compute the feedback matrix F.

For Algorithms C.3 and C.4, the bulk of the computation takes place in Step

(1). Note that no attention is paid to satisfying (C.41) and (C.55). It is readily
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checked that the only effect of enforcing these inequalities is to possibly change

the orientation of some columns of X.

Several efficient algorithms are proposed in [260] based on the theory de-

scribed in this section. These algorithms are proved to be globally convergent.

Many details on efficient implementation are discussed in [260, 302]. A Mat-

lab implementation for one of the algorithms is available in MathWorks’ file

exchange website:

https://www.mathworks.com/matlabcentral/fileexchange/53969-robpole

C.3 Misrikhanov and Ryabchenko Algorithm

Strictly speaking, Misrikhanov and Ryabchenko Algorithm [172] is not designed

for robust pole assignment but simply a pole assignment algorithm. But this de-

sign is likely related to the minimum gain pole assignment design. One of the

main merits of this design is that the algorithm is probably the fastest one among

all pole assignment algorithms in the author’s opinion. This feature is important

for Model Predictive Control (MPC) which requires on-line computation for pole

assignment gain matrix.

For a set of prescribed closed-loop poles, assuming that the system (A,B) is

controllable, Misrikhanov and Ryabchenko proposed a slightly different decom-

position of (C.25) given as follows:

A+BF = XΛX−1, (C.64)

where Λ is a block diagonal matrix. In Λ, for each ith real closed-loop pole λi, the

corresponding diagonal cell block is 1× 1; for each pair of complex conjugate

closed-loop poles, the corresponding diagonal cell block is 2×2 of the form:
[

Re(λi) Im(λi)
−Im(λi) Re(λi)

]

. (C.65)

Let B⊥T

= null(BT) be an orthonormal matrix satisfying conditions:

B⊥B = 0(n−m)×m, (C.66a)

B⊥B⊥T

= In−m. (C.66b)

Let B+ = (BTB)−1BT be the Moore-Penrose pseudo-inverse of B matrix. The

following lemma is important in Misrikhanov and Ryabchenko Algorithm.

Lemma C.3

Let X∈Rm×(n−m), Y∈Rm×m, and F=XB⊥+YB+−B+A. Then, A+BF is similar

to the following matrix:
[

B⊥AB⊥T

B⊥AB

X Y

]

. (C.67)
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Proof C.11 The proof here is due to Tits [259]. Consider the invertible matrix

T =

[
B⊥

B+

]

.

It is easy to verify that the inverse of T is given by

T−1 =
[

B⊥T
,B
]

because
[

B⊥T
,B
][

B⊥

B+

]

= In,

and [
B⊥

B+

][

B⊥T
,B
]

=

[
In−m 0

0 Im

]

.

Therefore, the following relations hold.

FB⊥T
= XB⊥B⊥T

+YB+B⊥T −B+AB⊥T
= X−B+AB⊥T

, (C.68a)

FB = XB⊥B+YB+B−B+AB = Y−B+AB. (C.68b)

In view of (C.68) and (C.66), one can write the similar transformation as follows:

T(A+BF)T−1

=

[
B⊥

B+

]

(A+BF)
[

B⊥T
,B
]

=

[

B⊥(A+BF)B⊥T
B⊥(A+BF)B

B+(A+BF)B⊥T
B+(A+BF)B

]

=

[

B⊥AB⊥T
B⊥AB

B+AB⊥T
+FB⊥T

B+AB+FB

]

=

[

B⊥AB⊥T
B⊥AB

X Y

]

. (C.69)

This proves the lemma.

Taking X = 0 and Y = Φ, we have the following:

Lemma C.4

Let F = ΦB+−B+A. Then, A+BF is similar to the following matrix:

[

B⊥AB⊥T

B⊥AB

0 Φ

]

. (C.70)
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Therefore, if B⊥AB⊥T

is asymptotically stable, then A+BF is asymptotically stable.

Moreover, eig(A+BF) = eig(B⊥AB⊥T
)∪ eig(Φ).

Lemma C.4 is the fundamental idea of Misrikhanov and Ryabchenko Algo-

rithm. Let

Level 0: A0 = A B0 = B,

Level 1: A1 = B⊥
0 A0B⊥T

0 B1 = B⊥
0 A0B0,

. . . . . .

Level k: Ak = B⊥
k−1Ak−1B⊥T

k−1 Bk = B⊥
k−1Ak−1Bk−1,

. . . . . .

Level L: AL = B⊥
L−1AL−1B⊥T

L−1 BL = B⊥
L−1AL−1BL−1,

(C.71)

where L = ceil(n/m)− 1. The technical base of Misrikhanov and Ryabchenko

Algorithm is the following theorem.

Theorem C.10

Let linear system (A,B) is fully controllable and the matrix F ∈ Rm×r satisfies

F = F0 = Φ0B−
0 −B−

0 A B−
0 = B+

0 −F1B⊥
0 ,

F1 = Φ1B−
1 −B−

1 A1 B−
1 = B+

1 −F2B⊥
0 ,

. . . . . .
Fk = ΦkB−

k −B−
k Ak+1 B−

k = B+
k −Fk+1B⊥

k ,
. . . . . .

FL = B+
L (ΦL −AL).

(C.72)

Then

eig(A+BF) = ∪L+1
i=1 eig(Φi−1). (C.73)

The proof of this theorem is omitted. Interested readers are referred to [172].

The Misrikhanov and Ryabchenko algorithm is given as follows:

Algorithm C.6

Step 0: Select Φk ∈ Rm×m, k = 0, . . . ,L− 1, and ΦL ∈ RL×L, all diagonal matrices,

satisfying (C.73). Let A0 = A, B0 = B, and FL = 0. Calculate B+
0 .

Step 1: For k = 1, . . . ,L− 1, calculate

B⊥
k−1, Ak = B⊥

k−1Ak−1B⊥T

k−1, Bk = B⊥
k−1Ak−1Bk−1, B+

k . (C.74)

Step 2: For k = L−1, . . . ,0, calculate B−
k = B+

k −Fk+1B⊥
k and Fk = ΦkB−

k −B−
k Ak.

Step 3: Set F = F0.
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The easiest way to select Φk is to have block diagonal Φk such that (C.73)

holds. A more complicated but attractive way is to select Φk = XΛXT such that

‖Fk‖2
f = ‖ΦkB

−
k −B−

k Ak‖2
f is minimized, where X is an orthogonal matrix with

XTX = I, and Λ is a real block diagonal matrix with 1× 1 blocks for real poles

and 2× 2 blocks for complex poles. Clearly minimizing ‖Fk‖2
f is a minimum

gain pole assignment design [194].

Sine X is an orthogonal matrix, this problem is equivalent to

min ‖ΛXTB−
k −XTB−

k Ak‖2
f (C.75a)

s.t. XTX = I. (C.75b)

or

min Tr[(B−
k )TXΛTΛXB−

k − (B−
k )TXΛTXTB−

k Ak −AT
k (B

−
k )TXΛXTB−

k ]
(C.76a)

s.t. XTX = I (C.76b)

where Tr[·] is the trace of the matrix. The optimization problem can be effi-

ciently solved using a conjugate gradient method on Riemannian manifold [2].

The Matlab code is available in

http://www.mathworks.com/matlabcentral/fileexchange/47591-unit-opt-zip.

Handreds randowly generated problems are tested with starting point X0 =
I, and the optimization solutions stay in X∗ = I. Therefore, Misrikhanov and

Ryabchenko Algorithm is likely a minimum gain pole assignment. Hence, there

is no need to solve (C.76) in Step 2, selecting diagonal Φk is good enough.
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