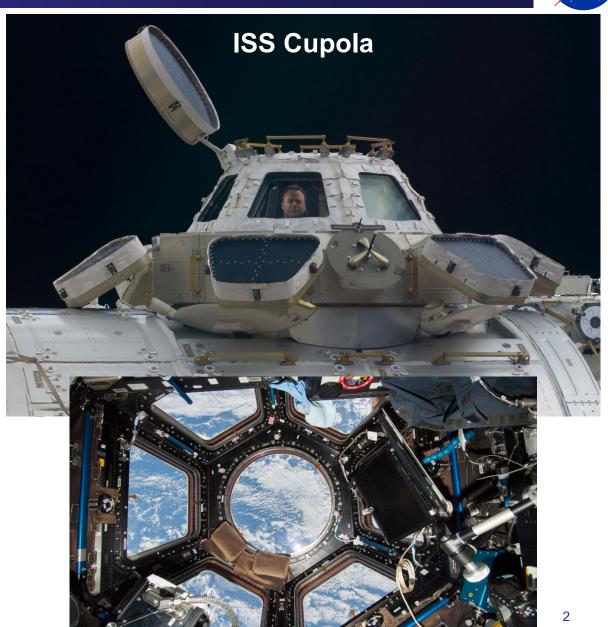

TFAWS Passive Thermal Paper Session

2024

GRC

SPACECRAFT WINDOW DESIGN FROM A THERMAL PERSPECTIVE

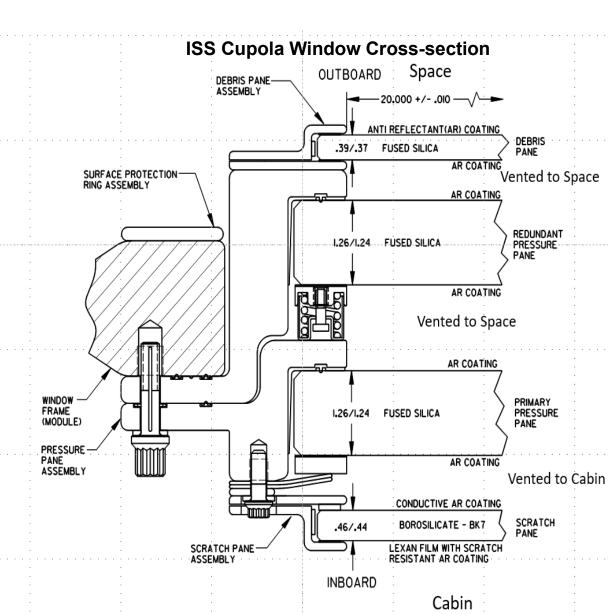
Presented By Cheyn L. Worn


Thermal & Fluids Analysis Workshop TFAWS 2024 August 26-30, 2024 NASA Glenn Research Center Cleveland, OH

Introduction

- Windows have been integral to every crewed NASA spacecraft
 - ISS Cupola
 - Pics to the right
 - Largest windows flown to date!
 - Navigation and photography for Shuttle, Apollo, Orion
- Thermal Considerations
 - Integration with Structure and Materials
 - Panes transmit thermal radiation in/out
 - Thermal protection system
 - Condensation control
 - Modeling and testing are necessary but tricky given nature of materials

Structure



A window is an assembly

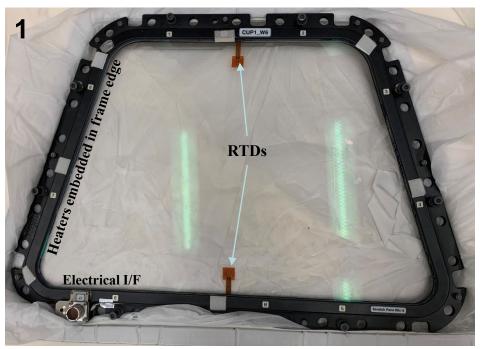
- Provides through-the-wall viewing
- Consists of frames, retainers, seals, cushionsaka "Window Stack" (ISS).
- Filler between panes (vented? fill gas?)
- Panes should never be subject to structural s

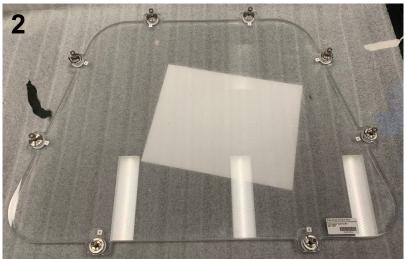
Pane Functions and Duties

- Outer Panes
 - Prevent damage to inner panes
 - Withstand small impacts from debris and mete re-entry
 - ISS outermost "debris pane" is removeable/rep
- Inner "Pressure" Panes
 - Pressure-vessel boundary, contains atmosphe
 - Shuttle double paned with dry, inert fill gas for
 - ISS innermost "scratch pane" is removeable/re condensate)

Pane Materials

Pics of ISS Scratch Panes to right


- FLOWN! old glass style with scratches, RTD's, heaters, electrical I/F, InSn coating {green}
- New acrylic pane


Pane Core Material

- Brittle Materials Glass Ceramics Silica, Aluminosilicate, Borosilicate
 - NASA Usage Shuttle windshields, Orion's outermost panes, all panes in Apollo, ISS cupola
 - Good: Best optics, compatibility, and thermal protection
 - Bad: Brittle no non-destructible means of determining actual strength, no radiation shielding, heavy compared to ductile materials
- Ductile Materials Plastics Acrylics and Polycarbonates
 - NASA Usage Orion's innermost panes, Shuttle payload bay windows
 - Good: Cheaper to manufacture, better structural properties and lighter than glass; optics are decent
 - Bad: no established industry material property data, can be sensitive to environmental factors (radiation, atomic oxygen, UV) causing degradation such as yellowing, sometimes flammable, and has the potential for creep.

Pane Coatings

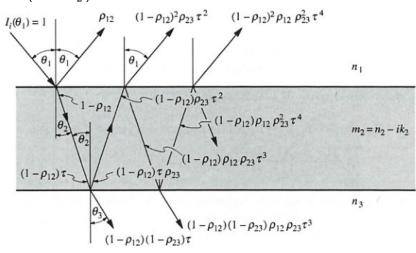
- Thin barrier on pane core material surface, improves windowpane performance in
 - Optics, Durability, Crew Safety, Pane Compatibility
- Examples:
 - Light-filtering (Anti-Reflective, Polarizing, UV reducing), Anti-scratch, and even Heating
- How coatings are applied:
 - Plastic: vapor deposition, chemical coating, or other surface treatment processes
 - Glass: a very thin sheet of plastic vacuum sealed onto the pane material
- Not the end-all be-all though must consider the system as a whole
 - Compatibility issues, manufacturers' secrets, UV degradation, complicate analysis and testing
 - Orbiter had a red reflector (RR) coating found to detrimentally affect the strength of the glass, causing a late design change that placed it on the internal side of the cabin

Thermal Functions and Issues

- Part of assembly
 - Holistically consider thermal contraction and response to hot/cold in all materials
 - Touch temperature considerations.
- Transmit thermal radiation in visible and near-infrared ranges by design
 - Into the Spacecraft from the sun, planetary bodies, or other vehicles.
 - From the Spacecraft heat leak to space during cold operations, can cause condensation
 - Condensation forms on a surface if its temperature is lower than the dewpoint of the air around it.
 - Air revitalization/heating/cooling systems and local heaters are main responsive controls.
 - Some solutions to problems caused by the above
 - Pane coatings, soft goods like curtains, shades, exterior window covers
 - Design-wise, ensure ARS can handle peak moisture generating activities (namely exercise), heaters can keep surface warm enough; that sufficient airflow in cabin/near surface mockups and CFD also help characterize how air flows around the surface.
- Thermal Protection System for entry vehicles
 - Consider material response, ablation
 - Traditionally glass is used for the outermost pane for this
 - Some ductile materials might be able to withstand the extreme aeroheating shuttle Columbia's acrylic "B" Hatch Window survived the event.

Thermal Modeling and Testing

Windows must be included in thermal models to predict temperatures


- Historically thermal models of transparent materials not accurately corelated (±10% accuracy); correlation is elusive.
- Increased modeling complexity due to transparency, thickness, and coatings
- Recommendations
 - Need high fidelity, transparent solids (not surfaces)
 - Be careful about light leakage around materials that touch but are not "sealed" per se.
 - Use slab methods: refractive index, thickness, and extinction coefficient of the pane material allow for computing absorptivity, transmissivity, and reflectivity. (α+τ+ρ=1):

$$R_{Slab} = \rho \left[1 + \frac{(1-\rho)^2 \tau^2}{1-\rho^2 \tau^2} \right], T_{Slab} = \frac{(1-\rho)^2 \tau}{1-\rho^2 \tau^2}, A_{Slab} = \frac{(1-\rho)(1-\tau)}{1-\rho \tau}; \tau = \exp\left(\frac{-\kappa_2 d}{\cos \theta_2}\right) = \exp\left(\frac{-4\pi k_2 d}{\lambda \cos \theta_2}\right)$$

- Typical thermal properties
 - Thermal conductivity is mid for glass and low for plastic.
 - · Heat capacity tends to be high for glass but low for plastics.
 - Caveat: consult the material's manufacturer, especially for ductile materials.

Testing more complex than typical spacecraft structure

- Uniqueness of each assembly
- Panes trust your manufacturer but verify
- Physically measuring pane material temperature is difficult
 - Thermocouples/RTD's due to typically low thermal conductivity
 - Thermography
 - Difficult due to reflective/transmissive nature of material
 - Can erroneously measure either environment or backing material
 - A strategically placed piece of black electrical tape may help

Reflectivity and transmissivity of a thick, semitransparent sheet. From Modest's Radiative Heat Transfer.

Conclusion

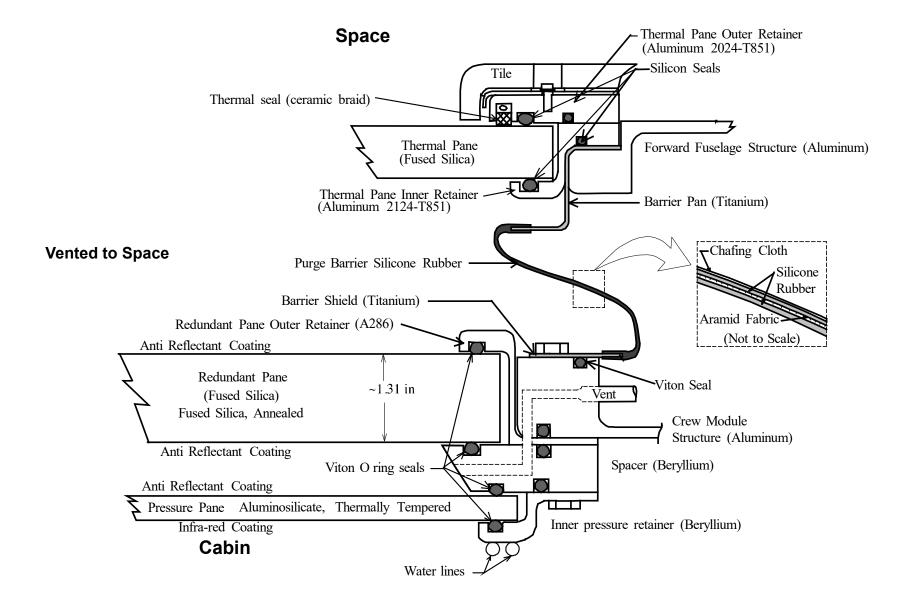
- Windows are important assemblies
 - Frames / retainers, seals, cushions, vents, bolts, several panes with coatings
 - Panes transmit thermal radiation in visible and near-infrared ranges by design
- Pane materials come with structural & thermal design challenges
 - Issues include:

Compatibility and environmental factors, optics, mass, stress and fragility, heat leak & condensation generation, properly modeling heat transfer and optics, availability of thermal properties, accurately measuring temperatures.

- There are ways to overcome some challenges
 - Size, testing, coatings, several panes/filler materials, imbedded heaters, coverings, shades, etc.
 - Lots of room for improvement in the future!

Sources

- APOLLO EXPERIENCE REPORT SPACECRAFT STRUCTURAL WINDOWS, O.E. Pigg & S.P. Weiss, NASA TN D-7439, 1973
- 2. Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems, NASA Document JSC 66320, Baseline December 2011
- 3. Engineering of Windows for the International Space Station, L.R. Estes & K.S. Edelstein
- 4. Radiative Heat Transfer 2nd Edition, Modest.
- 5. Introduction to Heat Transfer 5th edition, Incropera et al.
- 6. Analysis of the Purge, Vent, and Drain Subsystem, McDonnell Douglas Astronautics Co., NASA NTRS no. 19900001653, November 1987
- 7. Space Shuttle Orbiter Windshield System Design and Test Final Report, NASA NTRS 19730007152, November 1972
- 8. Historical Window Designs, L. Estes and H. Bradley (JSC-ES2), September 2015


With extra thanks to:

- JSC-ES2 Windows Structural SME's and Window Lab Hannah Bradley, Lynda Estes, Mykale Holland
- JSC ES3 Fellow Thermal Windows Team Members Sydney Taylor, Abby Zinecker

Shuttle Windshield Cross-Section

