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Random vs Systematic Uncertainty
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• Random Uncertainty (sx)
• Scatter of the results

• Repeatability

• Estimated via replicate data 
points

• Systematic Uncertainty (bx)
• Bias

• Standard offset

• From instrumentation, 
installation effects, and 
regression fitting
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MUA Vision at GRC
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MUA Tools at GRC
Measurement ANalysis Tool for Uncertainty in Systems (MANTUS)

• A modular approach at modeling measurement systems.

• Each block represents a single piece of instrumentation in the signal measurement 
channel.

• The scope of the tool is to model and analyze a single, representative 
measurement channel such as one transducer or thermocouple connected to a 
data system.
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Monte Carlo Process
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Applied MUA, 8x6 Example
• Identify variables of interest

• For 8x6, primarily calibrated Mach and temperature conditions in test section

• Identify uncertainty sources

• Generate elemental uncertainty estimates for sources. (MAnTUS)

• Use MATLAB to employ the Monte Carlo Method (MCM) to propagate elemental 
uncertainty estimates through the data reduction sequences.

• Simulate tens of thousands of synthetic realizations of the sequence of 
characterization and customer tests

• Static pressure characterization

• Total pressure characterization

• Total temperature characterization

• Facility baseline

6



7



Uncertainty Estimates
• Original 8x6 uncertainty analysis (2016) gave us the drill-down to the source of 

greatest uncertainty in Mach number: the static pressure characterization 
model

• Reducing this allows for most significant reduction to Mach number 
uncertainty
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Static and Total Pressure Characterization 
• Original regression models were generalized over entire facility range.

• Noticed that repeatability at each set point condition was tight, but the group of replicates 
was offset from the generalized curve. This indicated a systematic bias was introduced by 
the regression model.

• MUA team worked with characterization team on a method to reduce this uncertainty 
source.

• Each flexwall setting was treated as a unique test section configuration.
• Static and total pressure models were generated for each configuration.
• Chose to “over-speed” and “under-speed” the transonic test section using balance 

chamber pressure at each flexwall setting.
• 3 replicates acquired at each nominal supersonic setting 
• Small correction factors generated for nominal supersonic settings from the 3 

replicates to locally shift/correct the cal curve
• Used when facility conditions are sufficiently “dialed in”
• A regression model was also generated to bridge the gaps between flexwall settings to 

ensure continuity of data being displayed and characterize off-nominal conditions
9



Updated Approach, cont’d
Despite what look like very small deltas, since the y-axis is a 
ratio these can expand out to significant biases in static 
pressure (and Mach) based on the fit vs. repeats
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Minicurve with local correction
Minicurve without local correction
Full-range regression model

Static Pressure Curve (Mach 2.0)

β1

β2

β1 ≈ 0.006 psi
(ΔM ≈ 0.0012)

β2 ≈ 0.03 psi
(ΔM ≈ 0.0042)



Total Temperature Calibration
• Transonic Array TC’s are now Type E special limit of error “home-run” length 

wires to Kaye Ice-points

• Split calibration curve by flow regime, as well

• Modified form of curve fit:
• TTTS = TTBM*f(PSBAL/PTBM)

• Chose to adopt the local supersonic calibration curve method used with static and total 
pressure curves
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Example of MUA Improving Data Quality
• 8x6 SWT uncertainty estimates 

• Using What-If scenarios and working together with other disciplines

• Areas for improvement were identified and actions were taken

• Special-limit-of-error Type E (EEE) wire replaced both reference temperature and Transonic 
Array thermocouples

• Improved regression models used for test section values of interest
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Applied MUA, CE-12 Example
• Customer interested in very low speed probe calibration

• Current facility uncertainty levels don’t meet requirements

• Investigate possible methods for lowering uncertainty to meet 
requirements
• Improve instrumentation

• Generate elemental uncertainty estimates for higher accuracy sources. 
(MAnTUS)

• Change pressure measurement methods and data reduction associated with 
those methods

• Use MATLAB to employ MCM to propagate elemental uncertainty 
estimates through possible changes to data reduction sequences
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CE-12 Free Jet Facility
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Changes to pressure measurements and data 
reduction 
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• Look at the Data Reduction Equation 
(DRE) for Mach Number
• Measure 𝑃𝑇 and 𝑃𝑆 
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Changes to pressure measurements and data 
reduction 
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Investigated Instrumentation Changes

Measurement Instrument Uncertainty 
Estimate [PSI]

𝑃𝑇 (Current)
27 PSIA 
Mensor

1.21 × 10−3

𝑃𝑆  (Current)
27 PSIA 
Mensor

1.21 × 10−3

𝑃Δ 
±1 PSID 
Mensor

8.94 × 10−5

𝑃Δ ±10” H2O 
Mensor

3.23 × 10−5
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• Change Static Pressure measurements 
into Differential Pressure measurements

• Use MAnTUS to estimate new elemental 
uncertainties

• Use MATLAB to employ MCM to 
propagate new elemental uncertainty 
estimates through changes to data 
reduction sequences



Uncertainty Results
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• Using uncertainty tools 

• Areas for improvement we identified
• Changes in pressure measurement methods

• Elementary estimates for potential new instrumentation

• Updated uncertainty estimates helped improve data quality for customer



Questions?
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Backups
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8x6 Test Section
•Test section porosity 
configuration of interest is 
14-ft 5.8% porosity (TSCFG 1)
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8x6 SWT Characterization Hardware
4-inch Cone Cylinder is primary static pressure calibration tool

8-, 12-, 16-, and 20-inch cone cylinders 

used for blockage studies
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8x6 SWT Characterization Hardware
Transonic Array used for total pressure and temperature calibration
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MUA at GRC Continued
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2019 characterization test unique test section 
scenarios
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Static Pressure Characterization, Updated
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Flexwall Mach = 1.1

Flexwall Mach = 2.0

Local Correction Factor

Local Cal Curve

SUPERSONIC



Total Pressure Calibration
•Chose to adopt local supersonic calibration curve method used with static pressure curves

•Split the total pressure calibration curve by flow regime, as well

•Small correction factors were determined but their values were insignificant and left out of the 
calibration routine
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Total Pressure Calibration (Cont.)
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Local Cal Curve
@ flexwall Mach 1.6

Flexwall Mach = 1.1

Flexwall Mach = 2.0

SUBSONICSUPERSONIC

Not shown:
- Supersonic total 

pressure cal curve 
made from only 
“nominal” Mach 
number data 



Uncertainty results for PT,ts (generalized curve fit model)
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Comparison of uncertainty in PT,ts
(generalized, local, and local + correction curve fit models)
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UPC, local curve fit model

UPC, local + correction curve fit model



Total Temperature Calibration (Cont.)

32

Supersonic Subsonic

Supersonic

Flexwall Mach = 1.1

Flexwall Mach = 2.0

Local Cal Curve
@ flexwall Mach 1.7



Uncertainty results for TT,ts (generalized curve fit model)
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Comparison of uncertainty in TT,ts
(generalized, local, and local + correction curve fit models)
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UPC, local curve fit model

UPC, local + correction curve fit model



Uncertainty results for Mts (generalized curve fit model)
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Comparison of uncertainty in Mts
(generalized, local, and local + correction curve fit models)
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UPC, local curve fit model

UPC, local + correction curve fit model



CE-12 Free Jet Facility
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Potential Changes to Decrease 
Uncertainty
• Change in how free stream static pressure is measured

• From absolute measurement (PS is measured separately)

• To differential pressure using Plenum Total Pressure as the reference

• New instrumentation 
• Use test case scenarios to estimate changes to uncertainties when 

using different instrumentation 
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Results Continued
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