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Key Points:  17 

1. The rapid urbanization of Houston expands the urban heat and pollution islands, raising 18 

exposure to high temperatures and poor air quality. 19 

2. Communities with highest social vulnerability are most impacted by the adverse effects of 20 

urban heat and pollution islands. 21 

3. The Clean Air Act's efficacy is locally diminished by Houston's urban pollution island.  22 

Abstract: During the first two decades of the twenty-first century, we analyze the expansion of 23 

urban land cover, urban heat island (UHI), and urban pollution island (UPI) in the Houston 24 

Metropolitan Area (HMA) using land cover classifications derived from Landsat and land/aerosol 25 

products from NASA's Moderate Resolution Imaging Spectroradiometer. Our approach involves 26 

both direct utilization and fusion with in situ observations for a comprehensive characterization. 27 

We also examined how social vulnerability within the HMA changed during the study period and 28 

whether the synergy of UHI, UPI, and social vulnerability enhances environmental inequalities. 29 

We found that urban land cover within the HMA increased by 1345.09 km2 and is accompanied 30 

by a 171.92 (73.93) % expansion of the daytime (nighttime) UHI. While the UPI experienced an 31 

overall reduction in particulate pollution, the magnitude of change is smaller compared to the 32 

surroundings. Further, the UPI showed localized enhancement in particulate pollution caused by 33 

increases in vehicular traffic. Our analysis found that the social vulnerability of the HMA urban 34 

regions increased during the study period. Overall, we found that the urban growth during the first 35 

two decades of the twenty-first century resulted in a synergy of UHI, UPI, and social vulnerability, 36 

causing an increase in environmental inequalities within the HMA. 37 
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Plain Language Summary: We used a combination of satellite and ground-based observations to 38 

study how urban area expansion in Houston, Texas affects urban heat, pollution, and social 39 

vulnerability. We found that in the past two decades, Houston has added to its urban land cover by 40 

almost twice the area of New York City. This resulted in warmer conditions during the daytime 41 

which persisted during the night. Although there was an overall decrease in particulate pollution, 42 

our research identified pockets of heightened traffic activity that offset these improvements. We 43 

also found social vulnerability increased during the last two decades. We find the combined effect 44 

of increased heat stress, pollution and vulnerability leads to increased environmental inequalities. 45 

Keywords: Houston, pollution, heat stress, urban heat island, urban pollution island, social 46 

vulnerability 47 

 48 
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1. Introduction 51 

The Houston Metropolitan Area (HMA), Texas, one of the top ten most populous metropolitan 52 

areas in the United States (U.S.), is ethnically and racially diverse but also faces severe racial and 53 

economic segregation (Emerson et al., 2012). Approximately 24% and 37% of HMA’s high-54 

income and low-income households, respectively, are located within corresponding 55 

neighborhoods linked to historic redlining practices (Lane et al., 2022; Nicholson, 2017). Such 56 

segregation contributes to environmental inequities, including heightened heat stress, pollution, 57 

flood risk, and reduced green space access (Bullard, 1983; Fry & Taylor, 2012; Logan et al., 2021; 58 

Waren, 2013). Prior work (Ulpiani, 2021) has found that urban regions have increased air 59 

temperature and pollution compared to rural regions, termed Urban Heat Islands (UHI) and Urban 60 

Pollution islands (UPI) respectively. Additionally, social vulnerability refers to socioeconomic 61 

factors that increase the risk of adverse health effects from environmental conditions (Mah et al., 62 

2023). Understanding synergies between the UHI, UPI, and social vulnerability are therefore 63 

important for equitable and healthy urban growth (Li et al., 2018; Logan et al., 2021; Streutker, 64 

2003; Ulpiani, 2021). Additionally, urban growth leads to the expansion of the wildland-urban 65 

interface, with emissions from prescribed burning around the HMA adding to urban pollution 66 

(Nowak and Walton, 2005). 67 

Prior studies have examined UHI and UPI associated with the HMA (Moser et al., 2017; Streutker, 68 

2002, 2003). However, the impact of the last two decades’ population and urban land cover 69 

expansion on the UHI, UPI, social vulnerability, and their interactions remain unexamined. A 70 

major hurdle is the inadequacy of sparse meteorological and air quality networks for monitoring 71 

UHI and UPI growth. This concern is heightened by the HMA’s complex spatial pollution 72 

variability, influenced by approximately 400 chemical manufacturing units, two of the US’s 73 
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biggest oil refineries, daily vehicular traffic exceeding 140 million miles a day, small urban sources 74 

such as gas stations, restaurants, dry cleaners, and construction, and episodic smoke transport from 75 

fires in Mexico, Central America, and surrounding states (O’Dell et al., 2020; Sexton et al., 2007,  76 

2015). Notably, pollution sensors on Google Street View cars in the HMA reveal fine-scale 77 

maxima of air pollution undetected by traditional air quality monitoring networks (Miller et al., 78 

2020). 79 

Implications of Miller et al. (2020) are quite substantial, as the United Nations (2022) projects that 80 

by 2050, 87% of the American populations and 68% of the world population will live in urbanized 81 

locations. This study thus addresses the above mentioned limitations by utilizing the National 82 

Aeronautical Space Administration (NASA) Terra and Aqua Earth-observing platforms’ aerosol 83 

and land temperature products are combined with situ observations and socioeconomic datasets to 84 

quantify the UHI and UPI (specifically particulate pollution) growth over the HMA This study 85 

aims to: 1) characterize urban growth that has occurred over the HMA during the last two decades, 86 

2) characterize associated growth of the UHI and UPI, and 3) analyze how the combined effects 87 

of the UHI and UPI contribute to environmental inequalities in the region.88 
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2. Study Area 89 

 90 

 91 

 92 

 93 

 94 

 95 

 96 
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 99 

 100 

 101 

 102 

 103 

The U.S. census designated area of Houston -The Woodlands-Sugarland Metropolitan Area 104 

(HMA) is situated in southeastern Texas along the Gulf of Mexico (GoM). It includes Harris 105 

County, containing the city of Houston, and the surrounding counties—Galveston, Chambers, 106 

Liberty, Montgomery, Waller, Austin, Fort Bend, and Brazoria. The HMA approximately occupies 107 

24,459 km2, surpassing the size of New Jersey. Houston, the fourth most populous U.S. city, had 108 

a city-limits population of nearly 2.3 million and a metropolitan area population of 6.5 million as 109 

of 2021 (United Nations, 2022; U.S. Census Bureau, 2022). 110 

3. Data and Methodology 111 

a) 

b) 

Figure 1. (a) The spatial extent of the study area for this paper, with the red box in the inset (b) showing 

the location of the study area within the state of Texas.  
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The datasets and analysis methodology used in this study are described in sections 3.1-3.3 and 112 

3.4-3.6. 113 

3.1. Satellite Observations 114 

To quantify multi-decadal urban land cover growth in the HMA, we utilize the National Land 115 

Cover Database (NLCD) land cover classification for the contiguous U.S. (CONUS). Derived from 116 

Landsat satellite observations at 30m spatial resolution, (C. Homer et al., 2015; C. Homer et al., 117 

2007; C. Homer et al., 2012) NLCD is available at two to three-year intervals from 2001-2021. 118 

NLCD classifies locations on a 30m CONUS grid into one of thirty-four land cover classes, with 119 

high-density, medium-density, low-density, and open-space urban classes relevant to this study. 120 

Our analysis uses the 2001 and 2019 NLCD datasets to examine and quantify multi-decadal 121 

changes in spatial patterns and the extent of urban land cover. 122 

We analyze alterations in Land Surface Temperature (LST), vegetation cover, and atmospheric 123 

aerosol loading using land and aerosol products derived from the Moderate Resolution Imaging 124 

Spectroradiometer (MODIS) sensor on NASA's Terra and Aqua platforms. Both satellites follow 125 

sun-synchronous orbits, passing over the HMA daily at around 10:30 AM and 1:30 PM local time. 126 

For consistency and data availability throughout the first two decades (Aqua operations 127 

commenced midway through 2002) and to minimize cloud contamination, we only utilized land 128 

products from Terra. The eight-day composite day and night LST (MOD11A2) at 1 km spatial 129 

resolution with retrieval errors of 2.0 ± 0.5 K (Wan, 2014) is used to investigate UHI changes. 130 

Changes in urban greenness were examined using the 16-day composite Normalized Difference 131 

Vegetation Index (NDVI) product at 250m spatial resolution (MOD13Q1). NDVI is calculated as 132 

the ratio of the difference between near-infrared and red reflectance channels normalized by the 133 

sum of reflectance values of the same channels. With values ranging from -1 to 1, NDVI signifies 134 
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extremes of bare ground (zero green vegetation cover) and full coverage by green vegetation at a 135 

given location (Didan et al., 2015). 136 

The Aerosol Optical Depth (AOD) product utilized is a daily 0.55 µm Terra and Aqua composite 137 

with 1 km spatial resolution, (MCD19A2). The AOD is calculated using the multi-angle 138 

implementation of the atmospheric correction (MAIAC) algorithm (Lyapustin & Wang, 2018) and 139 

reflects the total aerosol mass within the atmospheric column over a specific location. To ensure 140 

data consistency and avoid potential anomalies from Aqua observations available only beginning 141 

in mid-2002, the AOD analysis focuses solely on data from 2003 to 2020. 142 

All of the satellite data were accessed and analyzed using Google Earth Engine (GEE). Note that 143 

GEE is a global cloud-computing platform that provides access to satellite imagery and derived 144 

products acquired over the last fifty years (Gorelick et al., 2017). 145 

3.2. Surface Meteorological and Air Quality Observations 146 

We analyzed surface temperature, humidity, and particulate pollution trends in the HMA using 147 

in situ meteorological and air quality observations. Ten meteorological sites- four in the Houston 148 

city limits, three in the suburbs, and three on the outskirts- were also used for statistical regression 149 

modeling to develop high-resolution spatial patterns of monthly maximum air temperature. Data 150 

were obtained from NOAA's National Centers for Environmental Information (NCEI), with the 151 

station details in Table S5, ensuring consistency in station locations. 152 

For particulate air quality, PM2.5 concentrations from six EPA monitoring stations within the 153 

HMA were used. PM2.5 refers to inhalable particulates with a diameter of less than 2.5 µm, posing 154 

the greatest health risk. 155 

3.3. Social Vulnerability Index 156 
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Social vulnerability, encompassing socioeconomic and demographic factors affecting community 157 

resilience to external stresses, (Flanagan et al., 2020; Mah et al., 2023) can be quantified through 158 

a social vulnerability index (SVI). The CDC's SVI dataset, derived from U.S. Census Bureau’s 159 

census tract data, incorporates various factors such as socioeconomic status, household 160 

composition, disability, minority status, housing, and transportation attributes (Flanagan et al., 161 

2020). The overall SVI ranking used here represents the nationwide percentile ranking of social 162 

vulnerability for a census tract. An SVI value of 1 indicates that all other census tracts have equal 163 

or lower social vulnerability, while a value of 0 means none have equal or lower social 164 

vulnerability compared to the considered census tract. This study employs SVI to assess the 165 

societal impacts of the UHI and UPI in terms of environmental inequalities. 166 

3.4. Satellite Data Analysis of Urban Growth, LST, NDVI and AOD  167 

We analyzed NLCD LULC classifications for 2001 and 2019, quantifying transitions between 168 

high, medium, low-density, and open-space urban classes. Urban land cover masks for both years 169 

were used to calculate statistics for LST, NDVI, AOD, SVI, maximum air temperature, and PM2.5 170 

separately in urban and non-urban regions. To study the influence of urban growth, a mask 171 

identifying changes in urban extent between 2001 and 2019 was derived. 172 

To assess changes in LST, NDVI, and AOD, we generated decadal average spatial maps for 173 

2000-2009 and 2010-2019. This involved the computation of monthly averages of each variable 174 

(𝜌̅𝑚(𝜆, 𝜙)) for each pixel across the HMA domain: 175 

𝜌̅𝑚(𝜆, 𝜙) =
∑ 𝜌(𝑥𝑦,𝑖)𝑁
𝑖=1

𝑁
 (2) 176 

where 𝜌(𝜆, 𝜙, 𝑖) is the gridded satellite-derived value of the variable at a given latitude (𝑥) and 177 

longitude (𝑦), where  𝑖 is a specific instance of observation/retrieval, and 𝑁 the total number of 178 

instances.  Subscript m refers to the monthly mean of the variable. The variable average (𝜌̅𝑑(𝜆, 𝜙)) 179 
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for the first and second decades, where d refers to the decadal mean, is then computed by averaging 180 

the monthly averages for the periods of 2000-2009 and 2010-2019, except for AOD. For the first 181 

decade, the AOD average is computed using 2003-2009 data to account for the unavailability of 182 

Aqua observations before mid-2002. Note that we utilized decadal average spatial maps, as only 183 

persistent features will be retained in long-term averages, thereby increasing the confidence in 184 

change analysis.  185 

To quantify temporal changes in urban regions, we spatially averaged decadal mean maps of day 186 

and night LST, NDVI, and AOD over census tracts in the HMA region with more than 50% urban 187 

land cover (referred to as urban census tracts). Urban census tracts for the 2000-2009 period were 188 

defined using 2000 census tracts and 2001 NLCD classifications, while those for the 2010-2019 189 

period used 2020 census tracts and 2019 NLCD classifications. Trend analysis for the 2000-2019 190 

period is conducted using time series created from spatial averages of monthly mean LST, NDVI, 191 

and AOD maps for urban census tracts. The 2020 census tracts and 2019 NLCD classification 192 

were used for this computation to ensure a consistent average for meaningful trend analysis. The 193 

seasonal Mann-Kendall test determined statistically significant monotonic trends, and the Thiel-194 

Sen slope quantified the trend (Kendall, 1948; Mann, 1945; Sen, 1968; Thiel, 1950). Note that for 195 

the processing of LST for computing decadal averages and time series, the methodology of Hu 196 

and Brunsell (2013) was applied to minimize cloud contamination in our results. 197 

3.5. Analysis of Surface Meteorological and Air Pollution Observations 198 

To link satellite analysis of LST with near-surface air temperature and particulate pollution, we 199 

performed a time series analysis of monthly averaged values for daily maximum air temperature 200 

and PM2.5 concentrations. The time series was examined for monotonic trends using the Mann-201 

Kendall seasonal test, and the trends were quantified using the Sen slope. 202 



Blackford et al. 2024  11 
 

 

We employed statistical regression modeling to fuse surface observations with satellite data, 203 

creating high-resolution estimates of monthly average maximum air temperature. Multiple linear 204 

regression models were developed for monthly average maximum air temperature (Tmam), using 205 

the following predictors chosen based on prior research (de Souza et al., 2022; Yuvaraj, 2020): 206 

monthly average satellite-derived LST and season (expressed categorically as DJF-1, MAM-2, 207 

JJA-3, SON-4). Regression modeling utilized monthly averaged maximum temperature from ten 208 

meteorological stations, paired with corresponding monthly averaged daytime LST. The model 209 

was trained on 80% of the data and tested on the remaining 20%. The Tmam model was then applied 210 

to generate high-resolution maps of decadal seasonal average maximum air temperatures for the 211 

first and second decades and analyze the impact of urban growth. 212 

We utilized high spatial resolution maps of surface PM2.5 derived from a data fusion approach. 213 

Instead of developing models, we employed the surface PM2.5 dataset of Van Donkelaar et al. 214 

(2021), which integrates MAIAC AOD, other NASA aerosol products, surface observations, and 215 

chemical transport model outputs. This validated dataset offers monthly average PM2.5 maps 216 

(PMavg), enabling the estimation of changes in PM2.5 concentrations due to urban growth. 217 

3.6. Social Vulnerability Analysis 218 

We compared SVI spatial patterns between 2000 and 2020 to assess how urban growth affects 219 

the social vulnerability of the HMA. Census tracts were grouped into four categories based on SVI 220 

values (0.0-0.25, 0.25-0.50, 0.50-0.75, and 0.75-1.0). For each group, decadal average LST, NDVI, 221 

AOD, maximum air temperature, and surface PM2.5 were computed to evaluate the combined 222 

effects of UHI, UPI, and social vulnerability. 223 
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4. Results 224 

4.1. Multi-Decadal LULC Change Impacts in 225 

The Houston Metropolitan Area 226 

Between 2001 and 2019, the HMA witnessed 227 

a substantial 1345 km2 (22.6%) increase in urban 228 

land cover (Figure 2, Table 1), equivalent to 229 

adding two times the entire urban area of New 230 

York City. This growth primarily resulted from 231 

converting agricultural and woodland classes to 232 

urban and built-up land cover. Medium density 233 

urban land cover showed the highest growth in 234 

both area and percentage, followed by high-235 

density urban land cover, while the open space 236 

urban category exhibited the least growth. The 237 

spatial pattern of urban growth expanded in all 238 

directions, with higher growth in the northern, 239 

northwestern, and southwestern directions. The 240 

HMA consistently experienced positive urban 241 

growth, with annual percent increases ranging 242 

from 1.8% to 5.1% between 2001 and 2019, 243 

reflecting a steady yet occasionally accelerated 244 

urbanization trend.  245 

Figure 2. 2001 (a) and 2019 (b) NLCD LULC across the HMA, and the 

new urbanization footprint (in red) from 2001-2019 (c). Reds in a) and b) 

indicate urbanized classifications, where DLI, DMI, and DHI are low, 

medium, and high intensity urban respectively. The complete list of 

abbreviation meanings can be found in the supplemental information file. 

a

) 

b

) 

c

) 
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Figure 3 shows decadal averages of daytime and nighttime LST as well as AOD. Spatial patterns 246 

of daytime and nighttime LST align with urban land cover growth in Figures 2c and 3a-d, 247 

exhibiting higher values over urban areas. Decadal-averaged daytime LST for urban majority 248 

census tracks surpassed non-urban tracts during both 2000-2009 and 2010-2019 (Table S3). The 249 

contrast in decadal average daytime (nighttime) LST between urban and non-urban tracts increased 250 

from ~4.2 (1.8) K to 4.5 (1.9) K between the two decades. Urban tracks' decadal-averaged daytime 251 

(nighttime) LST increased by ~0.86 (0.40) K from 2000-2009 to 2010-2019, with a mean 252 

difference of ~0.30 (~0.13). We used the decadal average daytime LST for urban census tracts 253 

during the 2000-2009 period as a threshold (~303 K) to define the urban LST footprint. Using this 254 

threshold, the daytime urban LST footprint expanded from 527 km2 (2000-2009) to 1,433 km2 255 

(2010-2019). Figure 4 reveals the spatial difference in decadal average AOD and daytime and 256 

nighttime LST between the 2010-2019 and 2000-2009 periods. Both the day and night LST 257 

difference patterns align with the pattern of differences in urban land cover between the two 258 

decades (Figure 2c), although less pronounced in the case of nighttime LST. Decadal average 259 

analysis of NDVI and AOD also reveals differences in mean values between urban and non-urban 260 

regions (Table S3). Decadal average NDVI for non-urban census tracts remains stable between 261 

2000-2009 and 2010-2019, but urban census tracts show a decrease of ~0.006. The spatial pattern 262 

of NDVI changes shows maximum differences (Figure S3) in areas of urban land cover growth 263 

(Figure 2c). Decadal average AOD also show higher mean values over urban census tracts 264 

compared to non-urban tracts in both decades. However, the decrease in mean decadal AOD 265 

between the two decades is less for urban census tracts than for non-urban tracts. While a mean 266 

difference in AOD of -0.004 is found in the newly urbanized regions, the spatial pattern of decadal 267 

average AOD do show small, localized increases in pockets over such areas (Figure 4c). 268 
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Figure 3. Decadal-averaged spatial distributions of MODIS-derived monthly mean Daytime LST (a, b), Nighttime LST (c, d), and AOD (e, f). The 

2000-2009 decade is displayed in the top row,and the 2010-2019 decade is displayed in the bottom row. Note that AOD data begins in 2002, while 

LST Day and Night both extend back to 2000. 

Mean Monthly 

AOD 

2002-2009 

a) 

b) 

c) 

d) 

e) 

f) Mean Monthly 

AOD 

2010-2019 
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 Utilizing the seasonal Mann-Kendall test, 269 

we assessed statistically significant 270 

monotonic trends in time series of monthly 271 

mean daytime and nighttime LST, NDVI, 272 

and AOD spatially averaged for urban 273 

census tracts (Figure S2). For the 2000-2009 274 

period, statistically significant monotonic 275 

trends were observed only for NDVI and 276 

nighttime LST when analyzed separately for 277 

each decade (Table S4). However, when 278 

considering the entire multi-decadal period, 279 

all variables displayed statistically 280 

significant monotonic trends. Daytime and 281 

nighttime LST exhibited increasing trends, 282 

with the magnitude of Sen slope indicating a 283 

higher daytime trend compared to nighttime. 284 

In contrast, both NDVI and AOD showed 285 

decreasing trends over the multi-decadal 286 

study period. 287 

 288 

 289 

Figure 4. a) Daytime LST, b) Nighttime LST, and c) AOD 2010s decadal 

average minus 2000s decadal average over the HMA. 

a) 

b) 

c) 
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4.2. Impact of Urbanization on Daytime Patterns of Near-Surface Air Temperature and 290 

PM2.5  291 

We used in situ observations to assess if trends in satellite-derived LST and AOD correspond to 292 

changes in near-surface air temperature and PM2.5 concentrations (Table S6, Figure S4). 293 

Therefore, we examined time series trends of maximum and minimum air temperatures and 294 

average PM2.5 concentration observations and how they vary spatially. 295 

We found that most stations exhibited statistically significant, monotonically increasing trends 296 

in maximum and minimum surface air temperature (Table S6). Minimum temperature trends 297 

generally exceeded maximum temperature trends, with higher values observed in regions of urban 298 

growth. Urban stations also showed greater trends, with maximum temperature trends higher by 299 

~0.013 K year-1 and minimum temperature trends higher by ~0.040 K year-1. The Galveston 300 

(KGLS) and Hooks Memorial Airport (KDWH) localities, coinciding with observed urban growth, 301 

displayed the largest trends in maximum and minimum temperatures, respectively. Houston Lobby 302 

Int'l Airport (KHOU), within the urban core with minimal land cover changes, exhibited lower 303 

Sen slope estimates. 304 

All three PM2.5 monitoring stations that reported at least ten years of continuous data (EPA 305 

stations 482010058, 482011039, and 482011035, where 48201 is the code for Harris County, 306 

Texas; Figure 1) exhibited statistically significant decreasing trends, indicating a general reduction 307 

in particulate pollution. Station 0058, surrounded by the least impervious surface, showed the 308 

lowest trend magnitude, while station 1035, within the highest impervious surface, displayed the 309 

highest trend. The spatial pattern of these trends reflects an overall reduction in particulate 310 

pollution influenced by Clean Air Act regulations, which has been shown in prior studies 311 

(Environmental Protection Agency, 2019). However, localized urban pollution sources weaken the 312 
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effectiveness of these regulations, and this effectiveness also varies based on the degree of 313 

urbanization. This limited analysis, in line with spatial patterns in decadal average AOD (Figure 314 

3e, f; Figure 4c), underscores the necessity for a more extensive surface PM2.5 network for broader 315 

validation. 316 

We employed a multiple linear regression model for monthly average maximum air temperature 317 

(Tmam) to infer high-resolution spatial patterns. The constructed Tmam model (Table S7) yielded an 318 

R2 value of 0.844 and an RMSE of 1.62 K, demonstrating performance comparable to or better 319 

than similar models in prior studies. (de Souza et al., 2022; Yuvaraj, 2020) Utilizing the Tmam 320 

model, we generated monthly maps of average maximum temperature for the HMA region. These 321 

maps were then used to compute decadal average seasonal and annual maximum temperature maps 322 

for both the 2000-2009 and 2010-2019 decades (Figure 5). 323 

Spatial maps of maximum temperature reveal contrasts between urban regions and their 324 

surroundings, intensifying during the second decade. The difference in decadal average maximum 325 

temperature between the two decades (Figure 5) highlights a robust warming signal along the ring 326 

of new urbanization from 2001-2019 (Figure 2c), aligning with earlier time series trend analysis. 327 

Although decadal differences can exceed 2K in specific locations, the mean difference in decadal 328 

average maximum temperature for urban regions is approximately ~0.25 K. This enhanced 329 

warming signal associated with urbanization is present throughout all seasons (Figure S6), with 330 

the most notable contrast occurring during the spring season. 331 

We conducted a similar analysis using downscaled surface PM2.5, combining in situ 332 

observations with satellite datasets. Despite the absence of a notable trend in AOD (Table S3;S4), 333 

in-situ sensors indicated some decreasing trends in PM2.5 (Figure S5). While the downscaled 334 

analysis was expected to mirror the trends observed by in-situ sensors, our findings reveal 335 
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contrasting implications. Firstly, decadal average patterns of downscaled PM2.5 show higher 336 

values over urban regions compared to the surroundings. Mean PM2.5 concentrations in urban 337 

locations exceeded the primary standards set by the EPA (12 µgm-3) in the first decade but not in 338 

the second decade. Differences in decadal average surface PM2.5 indicate the least change in 339 

concentrations along the ring of new urbanization throughout the study period (Figure 2c; 5f). 340 

Notably, the decadal difference in PM2.5 falls below -3 µgm-3 at certain locations, but the mean 341 

decadal difference is -2.34 µgm-3. Secondly, this discrepancy between AOD and PM2.5 trends 342 

suggests that column-total AOD, which includes contributions from atmospheric transport, has 343 

different controlling factors compared to in-situ observations. Thus, PM2.5 trends may be more 344 

reflective of the ongoing urbanization process as they include less transport from other regions. 345 
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Figure 5. Decadal-averaged spatial distributions of predicted Tmax (a, b), produced from multi-variate ordinary least squares linear regression and 

reported in K, and surface PM2.5 (d, e). Decadal differences of Tmax (c) and PM2.5 (f) are also displayed.   

a) 

d) 

b) 

e) 

c) 

f) 
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4.3. Socioeconomic Impacts of Rapid Urbanization  346 

Finally, we assessed changes in social vulnerability within the HMA over the multi-decadal 347 

study period and investigated how interactions between heat, pollution, and social vulnerabilities 348 

contribute to environmental inequalities. Census tracts were categorized based on SVI percentile 349 

rankings: 0.0-0.25 (least socially vulnerable), 0.25-0.50, 0.50-0.75, and 0.75-1.0 (most socially 350 

vulnerable). The spatial distribution of the SVI revealed a significant increase in social 351 

vulnerability within the urban regions of the HMA in the last two decades (Figure 6). The largest 352 

driver of this change in the main urban core of the HMA was found to be socioeconomic status, 353 

followed closely by household characteristics. The most socially vulnerable urban census tracts in 354 

the HMA increased by 629 tracts during this period. 355 

Spatial patterns of decadal average day and nighttime LST, AOD, maximum surface air 356 

temperature, and surface PM2.5 concentrations reveal census tracts with the highest SVI are 357 

situated in areas where populations are most susceptible to heat and pollution exposure (Figures 358 

Figure 6. 2000 (a) and 2020 (b) Census tracts across the HMA, symbolized by SVI percentile ranking 

(0-1). 

a) b) 
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3, 5). The mean of decadal average day and nighttime LST, AOD, maximum air temperature, and 359 

PM2.5 indicates higher values for the most vulnerable census tracts during both decades (Table 360 

1). 361 

The change in LST and surface air temperature between the two decades is most significant for 362 

the least socially vulnerable census tracts, possibly due to increased urbanization in suburban 363 

regions of Houston (Figure 2c). Although NDVI also shows the highest decrease for the least 364 

vulnerable census tracts, the mean decadal average NDVI is lowest for census tracts with the most 365 

social vulnerability, suggesting reduced access to green spaces in these areas. Mean decadal 366 

averages of both AOD and surface PM2.5 indicate a decrease in particulate matter air quality 367 

across all census tract categories. However, the decrease between the two decades is least for the 368 

most socially vulnerable census tracts and higher for census tracts with the least social 369 

vulnerability. Although this analysis was conducted for specific SVI bins across the entire HMA, 370 

focusing on a newly urbanized census tract to another with identical vulnerability but no 371 

urbanization, the newly urbanized tract experiences the most significant increase in heat stress. 372 

Table 1. Mean values of selected MODIS variables as well as surface Tmax and PM2.5 across 373 

the HMA urban census tracts, isolated by SVI bins.  374 

MEAN 2000-2009 (2010-2019) 2010s-2000s Difference 

SVI Bin LST Day 
LST 

Night 
NDVI AOD Tmax PM2.5 

LST 

Day 

LST 

Night 
NDVI AOD Tmax PM2.5 

0.0-0.25 
300.48 

(300.97) 

289.83 

(289.94) 

0.49 

 (0.49) 

0.15  

(0.14) 

304.71 

(304.99) 

11.39 

(9.02) 
1.023 0.456 -0.021 -0.011 0.407 -2.323 

0.25-0.50 
300.12 

(300.78) 

289.40 

(289.80) 

0.52 

(0.50) 

0.14 

(0.14) 

304.37 

(304.66) 

11.03 

(8.72) 
0.816 0.404 -0.018 -0.005 0.341 -2.306 

0.50-0.75 
300.39 

(300.92) 

289.73 

(289.84) 

0.49 

(0.49) 

0.15 

(0.14) 

304.61 

(304.74) 

11.25 

(8.73) 
0.750 0.370 -0.016 -0.010 0.318 -2.298 

0.75-1.0 
300.84 

(301.83) 

289.84 

(290.28) 

0.46 

(0.45) 

0.15 

(0.15) 

304.83 

(305.41) 

11.30 

(9.36) 
0.837 0.344 -0.019 -0.002 0.327 -2.236 
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5. Uncertainty and Limitations  375 

The following methodological limitations need to be considered in the interpretation of the study 376 

findings. In addition to errors inherent in the retrieval of MODIS land and aerosol products, 377 

retrieval is only valid under cloud-free conditions. While long-term averaging mitigates the impact 378 

of retrieval errors, cloud cover modulates the number of valid retrievals at any given geographical 379 

location. Thus, the number of retrievals used to construct decadal averages varies at each 380 

geographical location.  Further, spatial variability of cloud cover itself can be affected by urban 381 

growth (Theeuwes et al., 2019; Vo et al., 2023), thereby impacting computed statistics of the 382 

variables utilized in the study (and thus spatial patterns in decadal averages and trend analysis). 383 

Given these limitations of the study, future work may include relatively high-resolution numerical 384 

model experiments incorporating scenarios of realistic LULC changes over the multidecadal 385 

period.  386 

6. Discussion and Conclusions 387 

Our analysis shows that the HMA, one of the largest metropolitan areas in the United States, has 388 

experienced rapid urbanization over the past two decades, adding ~1345 km2 of developed land 389 

cover, which is nearly twice as large as the area of New York City. This urban growth is 390 

accompanied by both UHI and UPI growth as well as heightened social vulnerability. We found 391 

that both the day and nighttime UHI LST footprint also expanded with urban growth and the 392 

decadal average values showed increases even within regions that were urbanized before the study 393 

period, with corresponding increases in UHI as reflected by increases in maximum and minimum 394 

air temperatures (Tables 1, S3).  395 

While the UPI associated with the HMA experienced an overall reduction in particulate 396 

pollution, the magnitude of the decrease is less when compared to rural areas. Over the urban areas, 397 
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decadal changes in AOD and surface PM2.5 both show higher spatial variability compared to the 398 

rural surrounding areas, and exhibit a more homogenous and drastic reduction during the second 399 

decade of the study. While our analysis shows that the Clean Air Act of 1990, with subsequent 400 

evaluations having occurred most recently in 2012, resulted in an overall decrease in particulate 401 

pollution within the UPI. However, the increased volume of vehicular traffic (Figure S7) and other 402 

sources associated with urban growth appear to locally counteract the overall reduction of 403 

emissions from individual sources. These findings align with similar studies (Lim et al., 2020; 404 

Miller et al., 2020; Southerland et al., 2022), specifically Miller et al. (2020), which found local 405 

pockets of air pollution within the HMA that are not detected by existing sparse-density air quality 406 

networks. Our finding that the co-occurrence of such features with localized maxima of urban heat 407 

and social vulnerability highlights the necessity for advanced data fusion methodologies that 408 

incorporate satellite data, numerical modeling, and low-cost sensor inputs for urban heat and 409 

gaseous pollution mapping (Pochwała et al., 2020; Sulzer et al., 2022). 410 

We find synergies arising from population growth, heightened social vulnerability, UHI 411 

expansion, and localized PM2.5 increases within the UPI exacerbate environmental inequalities in 412 

the HMA, with implications amid climate change concerns. A recent study links approximately 413 

700 yearly deaths to nationwide heat stress (Vaidyanathan et al., 2004), and since Anderson & Bell 414 

(2011) report ~2.5% mortality risk rises per 1ºF (~0.55 ºC) heatwave intensity, heat stress-induced 415 

deaths may increase as heatwaves are projected to occur more frequently (Meehl & Tebaldi, 2004; 416 

Perkins et al., 2012.  417 

Our regression analysis indicates that urban growth may amplify heatwave events in the HMA 418 

by an additional 0.55 ºC, elevating risks. Combined exposure to heat stress and particulate 419 

pollution can result in a 250% mortality risk increase from individual effects (Analitis et al., 2018; 420 



Blackford et al. 2024  24 
 

 24 

X. Hu et al., 2022; Stafoggia et al., 2023). Our analysis reveals urban growth contributes to 421 

localized particulate pollution. Numerous studies highlight higher risks for socially vulnerable 422 

populations from heat stress and particulate pollution (Khatana et al., 2022; O’Lenick et al., 2019). 423 

Thus, our findings of increased local social vulnerability with urban growth, alongside heightened 424 

heat stress and pollution, are concerning, especially with the projected increase in heatwave events, 425 

as was observed in the summer of 2023. 426 

The United Nations (2022) projection that 87% of all Americans and 68% of the world population 427 

will live in urban areas by 2050 provides the perspective for considering the local and broader 428 

implications of our study. Further, the EPA Integrated Climate and Land Use Scenarios (ICLUS) 429 

dataset suggests that the urban land cover within the HMA will continue expanding during the 430 

upcoming decades. Unless steps are taken to mitigate the UHI and UPI effects, their footprints will 431 

likely grow also. Therefore, if the observed relationships between urban social vulnerability, heat 432 

stress, and air quality continue, environmental inequalities will be exacerbated.  433 

Our finding that environmental inequalities are worsened by the combined effects of urban heat 434 

islands (UHI), urban pollution islands (UPI), and social vulnerability is supported by prior studies 435 

(Junmei Tang Liping Di & Zhou, 2017; Y. Li et al., 2020; Nair et al., 2023; Sabrin et al., 2020) 436 

and is relevant to other U.S. cities and megacities worldwide. We also found that HMA did not 437 

experience increase in green spaces that mitigate UHI (Figure S3c), highlighting the need of 438 

adopting such UHI mitigation strategies. 439 

Our study demonstrates the utility of data fusion, incorporating satellite observations for high-440 

resolution mapping of the UHI and UPI to identify environmental inequalities and associated 441 

human health risks. This data fusion approach can help in the formulation of policies for mitigation 442 

and can easily be applied to other cities experiencing comparable urban growth.  443 
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