
NASA/TM–20240010266

Logic Programming with Extensible
Types

Ivan Perez
KBR @ NASA Ames Research Center, Moffett Field, CA, USA

Angel Herranz
Universidad Politecnica de Madrid, Boadilla del Monte, Madrid, Spain

August 2024

NASA STI Program. . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

‚ TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

‚ TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

‚ CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

‚ CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

‚ SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

‚ TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

‚ Access the NASA STI program home page
at http://www.sti.nasa.gov

‚ E-mail your question to
help@sti.nasa.gov

‚ Phone the NASA STI Information Desk at
757-864-9658

‚ Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM–20240010266

Logic Programming with Extensible
Types

Ivan Perez
KBR @ NASA Ames Research Center, Moffett Field, CA, USA

Angel Herranz
Universidad Politecnica de Madrid, Boadilla del Monte, Madrid, Spain

National Aeronautics and
Space Administration

Ames Research Center, Moffett Field, CA 94035

August 2024

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

Abstract

Logic programming allows structuring code in terms of predicates or relations, rather
than functions. Although logic programming languages present advantages in terms
of declarativeness and conciseness, the introduction of static types has not become
part of most popular logic programming languages, increasing the difficulty of testing
and debugging of logic programming code. This paper demonstrates how to imple-
ment logic programming in Haskell, thus empowering logic programs with types,
and functional programs with relations or predicates. We do so by combining three
ideas. First, we use extensible types to generalize a type by a parameter type func-
tion. Second, we use a sum type as an argument to introduce optional variables in
extensible types. Third, we implement a unification algorithm capable of working
with any data structure, provided that certain operations are implemented for the
given type. We demonstrate our proposal via a series of increasingly complex ex-
amples inspired by educational texts in logic programming, and leverage the host
language’s features to make new notation convenient for users, showing that the
proposed approach is not just technically possible but also practical.

1

Contents

1 Introduction 3

2 Background 4

3 Logic Programming with Extensible Types 5
3.1 Predicates, Primitives and Boolean Combinators 5

3.1.1 Primitives . 5
3.1.2 Boolean Connectives . 5

3.2 Terms and Logic Variables . 6
3.3 Term Unification . 6
3.4 Existential Quantification . 7
3.5 Notation . 8

4 Polymorphism and Higher Order 9
4.1 Polymorphism and Type Safety . 9
4.2 Higher-order Logic Programming . 11

5 Cuts 12
5.1 Negation as Failure . 13

6 Examples 13
6.1 Graphs . 13

6.1.1 Vertices . 14
6.1.2 Graphs . 14
6.1.3 Paths . 14
6.1.4 Generalizing Graph Search 16

6.2 Sudoku . 16

7 Implementation 18
7.1 Types and Typeclasses . 18
7.2 Predicate Evaluation . 19
7.3 Notation and Usability . 20

8 Discussion 21
8.1 Variable Scope . 21
8.2 Variable Names and Types . 21
8.3 Negation and Unification . 22
8.4 Variable Binding and Multiple Rules 22
8.5 Defining Extensible Types . 23
8.6 Anonymous Variables . 23

9 Related Work 23

10 Future Work 25

2

1 Introduction

Definitions in functional languages are structured around functions, which are ex-
ecuted by providing the inputs and evaluating the result. For example, given the
type data Nat = Zero | Suc Nat, we can define addition as:

plus :: Nat -> Nat -> Nat

plus Zero y = y

plus (Suc x) y = Suc (plus x y)

Although, at an abstract level, functions are relations between sets, it is not usu-
ally possible to treat functions as relations in a language like Haskell. For example,
we cannot use plus to efficiently calculate the subtraction function or to gener-
ally calculate all tuples of inputs and outputs to a function that meets a certain
condition.

Contrast this limitation with how one would write an analogous function in a
logic programming language like Prolog. We could define a predicate plus as:

plus(zero, Y, Y).

plus(suc(X),Y, suc(Z)) :- plus(X,Y,Z).

In Prolog, plus(A,B,C) is true if C represents the sum of A and B. The predicate
can be used to add two numbers, subtract a number from another, or check if two
numbers add up to a given third, or obtain tuples of inputs and output for which
the relation holds:1

?- plus(suc(suc(zero)),B,suc(suc(suc(zero)))).

B = suc(zero).

?- plus(zero,zero,suc(zero)).

false.

?- plus(A,suc(zero),C).

A = zero, C = suc(zero);

A = suc(zero), C = suc(suc(zero)).

This paper describes how we can write predicates in the style of logic program-
ming in Haskell. To that end, we use extensible types, an approach to parameterize
type definitions by a type function that is applied to every element inside a type’s
definition (Perez, 2023). We show, by means of example, that the proposed ap-
proach requires very little work on the side of the programmer, can capture many
of the use cases of logic programming languages, and can be enabled by convenient
notation.

The benefit of embedding logic programming in a typed functional language
is two-fold. First, using logic programming can reduce code duplication and en-
able more declarative specifications. Second, it enables using static typing in logic
programs, a feature that has eluded most popular logic programming languages.

Specifically, the contributions of this paper are:

1We manually stop the production of solutions to the last query.

3

• We present a simple interface for logic programming that facilitates introduc-
ing logic variables in algebraic datatypes and expressing unification constraints
(Section 3).

• We show that the proposed approach is applicable to polymorphic types,
and enables leveraging the host language’s mechanisms for type inference and
higher-order to implement type-safe higher-order logic programming (Section
4).

• We extend the language with cuts, which allow users to increase performance,
provide determinism, and encode negation as failure (Section 5).

• We exemplify the benefits of our approach with additional examples that com-
bine functional constructs and logic programming (Section 6).

We discuss our implementation in Section 7 and limitations in Section 8. Section
9 details related work, and Section 10 proposes future work.

2 Background

To make this paper sufficiently self-contained, we briefly introduce extensible types
(Perez, 2023). Readers familiar with extensible types can skip to Section 3.

The extensible type design pattern is a pattern in which the definition of an
algebraic data type is parameterized by a type function that is applied to every
element of the definition. For example, given a type representing expressions in
some language:

data Expr = Const Double

| Add Expr Expr

| Neg Expr

we define the corresponding extensible type as follows:

data ExprF f = ConstF (f Double)

| AddF (f (ExprF f)) (f (ExprF f))

| NegF (f (ExprF f))

If we use the polymorphic type Identity as type function f, the resulting rep-
resentation is isomorphic to the original Expr. Other parametric types and type
functions render different results. For example, a type that pairs elements with a
tuple of Ints can be used to annotate values with the line and column where they
were found in an input file, which is useful in compilers to report error information
to the user. Applying a Maybe or Either, an extensible type makes every element
optional. That representation is also useful for parsing, to represent that a branch
of the abstract syntax tree (AST) failed to parse while recovering from the parsing
error and continuing to parse the rest of the input.

Other polymorphic types and type functions enable changing type definitions
to introduce new cases, prune branches, replace elements, etc. Type functions can

4

also be composed; when applied to ASTs, the composition of extensible types can
capture language embeddings.

The application of a specific type function to an extensible type does not de-
termine how it should be interpreted. For example, Either String can be used to
annotate failed AST branches with the reasons why values could not be parsed from
an input file, but also to replace branches in the AST by variables with the given
variable names. This idea will be used in future sections to replace portions of a
datatype with variables in predicate definitions and logic programming queries.

In the rest of the text, we refer to types that are parameterized in this manner
simply as extensible types. Other approaches to parameterize a type by a type
function used in its definition are further discussed in Section 9.

3 Logic Programming with Extensible Types

This section introduces primitives to define and combine predicates, and ways to
capture relations between values of algebraic datatypes. We first introduce basic
types and a few simple primitives and connectives. We later show how to introduce
logic variables in types, to replace portions of values with logic variables, and how
to express relations involving types with variables.

3.1 Predicates, Primitives and Boolean Combinators

The elementary type in our proposal is a Predicate, which denotes a logic predicate.
We keep the type abstract for now and discuss implementation details later.

To interact with predicates, we provide the function
repl :: Predicate -> IO () that, when applied to a Predicate, produces pos-
sible solutions one by one, similar to how one interacts with the REPL of a logic
programming language. If any constraints on variables apply for the predicate to
hold, repl prints the constraints. Otherwise, the function only prints “true.” or
“false.”. Note that, when using the REPL to illustrate examples in the paper, we
often align the queries for readability.

3.1.1 Primitives

We provide succeed :: Predicate, which holds without additional constraints,
and its counterpart, fail :: Predicate.

Example We evaluate predicates a session as follows:

> repl fail

false.

3.1.2 Boolean Connectives

Our counterparts to the boolean connectives and and or, which we denote (@@) and
(@|), allow users to combine predicates:

5

(@@) :: Predicate -> Predicate -> Predicate

(@|) :: Predicate -> Predicate -> Predicate

Example The following queries show how we can use the boolean connectives to
combine succeed and fail. The results should be straightforward:

> repl (succeed @@ fail)

false.

> repl (succeed @@ (fail @| succeed))

true.

3.2 Terms and Logic Variables

To introduce logic variables in values, we are going to apply a type function to
extensible types. We introduce a custom sum type Term, which can represent a
logic variable with a name, or an actual value of a given type:2

data Term a = Var String | Compound a

When Term is applied to an extensible type, every element inside the latter can
potentially be replaced with a logic variable, allowing us to describe values in which
some portions are concrete and some portions are not.

Example Given the usual encoding of Peano numbers using a data type defined as
data Nat = Zero | Suc Nat, the equivalent extensible type in Haskell would be:

data NatF f = ZeroF | SucF (f (NatF f))

We can use NatF Term to represent a natural number where part of the definition
is substituted by a variable. To make the complete number replaceable with a
variable, we enclose the type inside an additional Term:

type NatTerm = Term (NatF Term)

Examples of values of type NatTerm include Var "y", representing a natural
number denoted by the variable "y", Compound (SucF (Var "x")), representing
the successor of "x", and Compound (SucF (Compound ZeroF)), representing 1. In
Prolog, such terms could be encoded as suc(zero), suc(X), and Y, respectively.

3.3 Term Unification

We have designed a domain-specific language to write predicates on types for which
we can perform term unification and variable substitution. To unify two terms, we
provide (=:=) :: Term a -> Term a -> Predicate.3

2In logic programming, a term can be a variable, or a compound term composed of an identifier
and its arguments, which are also terms.

3The function is not fully polymorphic; there are constraints applicable to the parameter a,
which we detail in Section 7.

6

Example We can define the successor predicate as:4

isSuc :: NatTerm -> NatTerm -> Predicate

isSuc x y = Compound (SucF x) =:= y

We can now query this predicate in a session, for example, to check if it holds
for two ground values:5

> repl $ isSuc

(Compound (SucF (Compound ZeroF)))

(Compound (SucF (Compound

(SucF (Compound ZeroF)))))

true.

> repl $ isSuc (Compound (SucF (Compound ZeroF)))

(Compound (SucF (Compound ZeroF)))

false.

The real power of our approach is that we can now use variables to provide one
value and “obtain” the other:

> repl $ isSuc

(Compound (SucF (Compound ZeroF))) (Var "x")

x = Compound (SucF

(Compound (SucF (Compound ZeroF)))).

> repl $ isSuc (Var "x")

(Compound (SucF (Compound ZeroF)))

x = Compound ZeroF.

The repl function prints the answer substitutions.

3.4 Existential Quantification

To introduce free variables in the body of predicates, akin to introducing free vari-
ables in the antecedent in predicate definitions in logic programming languages, we
define exists:

exists :: (Term a -> Predicate) -> Predicate

When the function exists is applied to an argument predicate, it ensures that
the variable provided to the given predicate is free.

Example Using all the definitions provided so far, we can implement the predicate
leq (i.e., less than or equal to) to compare two natural numbers, x and y. The
first rule of the comparison is that, if the first number x is zero, then leq x y must
necessarily hold as there is no smaller number, that is, x =:= Compound ZeroF. The

4Compare with the Prolog program is_suc(X,Y) :- suc(X) = Y.
5We use ground to refer to terms that do not contain variables. The word ground also has

meaning when discussing data types and generic programming, but we use the word exclusively
with the former meaning.

7

second rule is that, if both elements are successors of other elements, respectively
x’ and y’, then the predicate holds if it holds for x’ and y’:

exists $ \x’ -> exists $ \y’ ->

x =:= Compound (SucF x’)

@@ y =:= Compound (SucF y’)

@@ leq x’ y’

Combining both rules we obtain:

leq :: NatTerm -> NatTerm -> Predicate

leq x y = x =:= Compound ZeroF

@| (exists $ \x’ -> exists $ \y’ ->

x =:= Compound (SucF x’)

@@ y =:= Compound (SucF y’)

@@ leq x’ y’)

Moving the introduction of free variables to the top of the definition helps group
all rules together, which can sometimes aid readability:

leq :: NatTerm -> NatTerm -> Predicate

leq x y = exists $ \x’ -> exists $ \y’ ->

x =:= Compound ZeroF

@| x =:= Compound (SucF x’)

@@ y =:= Compound (SucF y’)

@@ leq x’ y’

As illustrated above, predicates can be recursive.

3.5 Notation

The principles of our proposal are applicable to languages with higher-kinded poly-
morphism. However, Haskell’s ability to overload notation and define operators can
make logic programming more convenient.

Specifically, Haskell allows us to define new operators and adjust their asso-
ciativities and priorities. In our case, (@@) binds more strongly than (@|), and
(=:=) binds more strongly than either of them. We define synonyms C and V that
match, respectively, Compound and Var, and pattern synonyms Zero = C ZeroF

and Suc x y = C (SucF x y). Using these facilities, leq can now be defined more
succinctly as follows:

leq :: NatTerm -> NatTerm -> Predicate

leq x y = exists $ \x’ -> exists $ \y’ ->

x =:= Zero

@| x =:= Suc x’ @@ y =:= Suc y’ @@ leq x’ y’

To help the reader understanding our approach, we refrain from relying too
heavily on syntactic sugar during this exposition. Our implementation provides
aids to make using logic programming more convenient, such as the ability to use
strings to mean Var applied to such strings, and to use numbers to refer to ground
NatTerms. This is further detailed in Section 7.

8

4 Polymorphism and Higher Order

The ability to write predicates using the approach described so far extends also
to polymorphic types. Let us demonstrate with the types of polymorphic lists,
frequently used both in logic programs and in functional programs. To extend a
standard list type definition with an extra type function, we define:

data ListF f a = NilF | ConsF (f a) (f (ListF f a))

We can make it possible for any portion of a list, be it an individual element or
the tail of the list, to be a variable by apply the Term type function:

type ListTerm a = Term (ListF Term a)

Example We can combine ListTerm with NatF to represent lists of natural num-
bers:

type NatListTerm = ListTerm (NatF Term)

The following term encodes the list [0, 1, 2]:

l1 :: NatListTerm

l1 = C $ ConsF (C ZeroF)

$ C $ ConsF (C (SucF (C ZeroF)))

$ C $ ConsF (C (SucF (C (SucF (C ZeroF))))) Nil

The following term encodes the list that starts with a 1, and whose tail is rep-
resented by a variable "tl":

l2 :: NatListTerm

l2 = C (ConsF (C (Suc (C Zero))) (V "tl"))

Notation Like before, we introduce two pattern synonyms to simplify writing
terms of type ListTerm: Cons x y = C (ConsF x y) and Nil = C NilF. Using
all pattern synonyms we have defined so far, the list l1 in the previous example
could also be defined as:

l1 :: NatListTerm

l1 = Cons Zero $ Cons (Suc Zero)

$ Cons (Suc (Suc Zero)) Nil

Our implementation allows us to write expressions like [0, "x"] to mean a list
with two elements, where the first is zero and the second is the variable "x". To help
the reader gain intuition about how our approach works, we delay notation aids to
Section 7.

4.1 Polymorphism and Type Safety

Using extensible types does not prevent the host programming language from per-
forming type checking, including for types whose non-extensible variants were al-
ready polymorphic. If we try to use a term with the wrong type in the definition of

9

a predicate or in a unification constraint, the type checker will be able to indicate
it just like it would with any other type error.

Example Take the following predicate that checks whether an element is the head
of a list (we avoid calling the function head to avoid name clashes):

isHead :: ListTerm a -> Term a -> Predicate

isHead x y = exists $ \v -> x =:= Cons y v

If we try to call isHead with a second argument of the wrong type, GHC’s type
checker will warn us:

> repl $ isHead l1 ((Var "x") :: Term Bool)

<interactive>:9:19: error:

Couldn’t match type ’Bool’ with ’NatF Term’

Expected type: Term (NatF Term)

Actual type: Term Bool

This level of safety is especially important in order to write correct code that
involves free variables. Relying on a host language with strong, static types means
that the type checker can ensure that we are using variables in type-consistent ways.

Example We can check if a value is a member of a list by checking against the
head or recursing into the tail. We do not have a case for the empty list: in that
case, the predicate will fail because no rule will apply.

member :: Term a -> List a -> Predicate

member x xs =

(exists $ \tl -> xs =:= Cons x tl)

@| (exists $ \hd -> exists $ \tl ->

xs =:= Cons hd tl @@ member x tl)

The free variable hd in the second rule has type Term a, and tl has type List a.
The compiler is able to deduce this automatically because both are used as argu-
ments to Cons and the resulting term unified with xs, whose type is known. If, for
example, we introduce a condition xs =:= hd, or member tl tl, the compiler will
be able to tell that we are using variables in inconsistent ways.

As expected, the type checker can infer the types of terms if we apply operations
to them. For example, if we apply a predicate on NatTerm to the elements of the
list, the type checker infers that all elements are naturals.

Example Let us demonstrate by implementing a predicate that checks whether
all elements in a list are sorted. The predicate holds trivially for lists of zero or one
elements; if there are more, we check the first two and recurse into the tail of the
list: To compare elements, we use leq :: NatTerm -> NatTerm -> Predicate:

sorted v = v =:= Nil

@| (exists $ \e1 -> v =:= Cons e1 Nil)

10

@| (exists $ \e1 ->

exists $ \e2 ->

exists $ \ts ->

v =:= Cons e1 (Cons e2 ts)

@@ leq e1 e2

@@ sorted (Cons e2 ts))

GHC correctly infers that v has type Term (ListF Term (NatF Term)).

4.2 Higher-order Logic Programming

Haskell’s support for first-class functions immediately empowers our proposal for
logic programming with higher-order. For logic programs, this means that we can
pass predicates as arguments to other predicates.

Example Let us illustrate with a generalized version of sorted that takes a com-
parison predicate as argument:

sortedWith :: (Term a -> Term a -> Predicate)

-> ListTerm a

-> Predicate

sortedWith compare v = v =:= Nil

@| (exists $ \x -> v =:= Cons x Nil)

@| (exists $ \x1 -> exists $ \x2 ->

exists $ \xs ->

v =:= Cons x1 (Cons x2 xs)

@@ compare x1 x2

@@ sortedWith compare (Cons x2 xs))

Because Haskell is strongly and statically typed, it provides a level of type safety
that goes beyond what languages like Prolog offer, since they cannot assure that the
types match without additional, hand-coded runtime checks. In general, calling a
Prolog predicate with arguments of the wrong types will return false, just as if the
predicate did not hold for those inputs (because it does not!), making this kind of
type error hard to identify. We further expand on this idea in Section 7.

We can use the same approach to generalize standard functions and turn them
into predicates, such as the Haskell list function map that applies a transformation
to each element in a list.

Example The following program defines a predicate analogous to the Prelude

function map:

mapP :: (Term a -> Term b -> Predicate)

-> ListTerm a -> ListTerm b -> Predicate

mapP f l1 l2 =

l1 =:= Nil @@ l2 =:= Nil

@| (exists $ \l10 -> exists $ \l1s ->

exists $ \l20 -> exists $ \l2s ->

11

l1 =:= Cons l10 l1s

@@ l2 =:= Cons l20 l2s

@@ f l10 l20

@@ mapP f l1s l2s)

Let us demonstrate the use of mapP. Given a predicate isSuc, which pairs each
number with its successor, we can use is to add 1 to every element of a list:

listPlusOne :: ListTerm (NatF Term)

-> ListTerm (NatF Term)

-> Predicate

listPlusOne = mapP isSuc

Like before, Haskell’s type checker ensures that the predicate that we pass to
mapP has type Term (NatF Term) -> Term (NatF Term) -> Predicate, remov-
ing the possibility of type errors at runtime.

5 Cuts

Cuts are used in logic programming to limit the application of backtracking to search
for alternative solutions. Consider the following (incorrect) implementation of the
remainder algorithm:

remainder :: NatTerm -> NatTerm -> NatTerm

-> Predicate

remainder n q r =

lt n q @@ n =:= r

@| exists $ \diff ->

plus q diff n @@ remainder diff q r

This definition will never work if q is zero, since the first rule will fail, and the
execution of the second rule will lead the program into an infinite loop. We could
try to protect ourselves from such cases by introducing an additional case that fails
if q is zero (q =:= Zero @@ fail). However, if we try to invoke this predicate with
Zero as second argument, the evaluation will still try to backtrack, fail to show that
n is smaller than q, and recurse using the third rule.

To prevent such cases, we introduce the functions scope and (@!), which help
control backtracking or the evaluation of alternatives. Inspired by the notion of cuts
in Prolog, we refer to (@!) as our own cut operator. We can re-write remainder

using the cut operator, and scope to limit the rules affected by the cut:

remainder :: NatTerm -> NatTerm -> NatTerm

-> Predicate

remainder n q r =

scope $ q =:= Zero @! fail

@| lt n q @@ n =:= r

@| (exists $ \diff ->

plus q diff n @@ remainder diff q r)

12

Callers to remainder will be unaware that the predicate uses cuts internally in
its implementation.

5.1 Negation as Failure

Cuts can be used to implement a form of negation, with:

neg :: Predicate -> Predicate

neg p = scope $ p @! fail @| succeed

Example It is frequently useful to state that two terms cannot unify, for which
we define an operator (=/=) as:

(=/=) :: Term a -> Term a -> Predicate

(=/=) x y = neg (x =:= y)

Similarly, we can implement a predicate that holds only if a given term is not a
member of a given list:

notMember :: Term a -> List a -> Predicate

notMember x xs = neg (member x xs)

This kind of negation, called negation as failure, is a weak form of negation. If
either of the arguments of (=/=) is still a variable at the time when the unification
algorithm tries to evaluate whether the predicate holds, the unification x =:= y will
hold, making its negation fail. This makes some implementations by negation not
work without additional aids. For example, one cannot use notMember as defined
above to find possible values of a variable that are not members of a list. Instead, it
is necessary to ground the term first. To this end, we provide the predicate isGround
which, for any type for which ground terms have a finite representation, holds only
if the given argument contains no variables.

6 Examples

We further exemplify our proposal with two examples: path search in graphs, and
solving Sudoku puzzles.

6.1 Graphs

Let us imagine that we have a graph, and want to determine if there is a path between
two vertices. In this example we shall represent a specific graph with a limited
number of vertices. Our goal is not to provide a generic library for path searching
using logic programming, but simply to encode how a graph can be represented and
queried. For the rest of the section, we will use the graph depicted in Fig. 1 as an
example.

13

A B

C D E

Figure 1: A directed graph with five vertices.

6.1.1 Vertices

We can represent the graph vertices by means of a specific enum type:

data Vertex = VertexA | VertexB | VertexC

| VertexD | VertexE

The extensible type counterpart is defined as:6

data VertexF (f :: * -> *)

= VertexAF | VertexBF | VertexCF | VertexDF

| VertexEF

We also define the type synonym VertexTerm = Term (VertexF Term), and the
pattern synonyms VertexA = C VertexAF, VertexB = C VertexBF, and so on.

6.1.2 Graphs

To express the edges of the graph, we can use a dedicated predicate, which we shall
call edge. For the sake of the example, let us define a predicate that encodes the
graph depicted in Fig. 1.

edge :: VertexTerm -> VertexTerm -> Predicate

edge v1 v2 = v1 =:= VertexA @@ v2 =:= VertexB

@| v1 =:= VertexA @@ v2 =:= VertexC

@| v1 =:= VertexB @@ v2 =:= VertexD

@| v1 =:= VertexC @@ v2 =:= VertexD

@| v1 =:= VertexD @@ v2 =:= VertexE

6.1.3 Paths

As stated, we want to check if two vertices are connected in the graph. More
specifically, we want to know the possible paths between two vertices. To represent
paths, we use a list of vertices, that is:

type PathTerm = ListTerm (VertexF Term)

Now we can define the path predicate as follows:

6For enums, the extensible type is simply a polymorphic type that takes, and ignores, the higher-
kinded type function argument. It is equally possible to simply use Vertex instead of VertexF Term,
which would make for simpler code. In this case, we use the latter for the sake of regularity.

14

path :: VertexTerm -> VertexTerm -> PathTerm

-> Predicate

path start end path = exists $ \revPath ->

traverseP start end [start] revPath

@@ reverseL revPath path

where traverseP is a predicate that holds if there is a path to go from a start vertex
to an end vertex, without going through any vertex that has already been visited.
The header of the function is:

traverseP :: VertexTerm -> VertexTerm

-> PathTerm -> PathTerm -> Predicate

traverseP start end visited path =

If the path is formed by the end vertex followed by the visited vertices in reverse
order, and there is a path from the current vertex start to end, the predicate holds:

path =:= Cons end visited @@ edge start end

The second rule uses negation: if there is a next step that is not the end vertex,
has not been visited, and there is a path from it to the end vertex, the predicate
holds:

@| (exists $ \next ->

edge start next

@@ next =/= end

@@ notMember next visited

@@ traverseP next end (Cons next visited)

path)

We can query this predicate in a terminal with repl:

> repl $ path VertexC VertexE "path"

path = c : d : e : [].

> repl $ path VertexA VertexE "path"

path = a : b : d : e : [] ;

path = a : c : d : e : [].

We can check that it does not find impossible paths:

> repl $ path VertexE VertexA "path"

false.

We can use more complicated queries, such as asking for any way to get to the
vertex E, obtaining:

> repl $ path (V "start") VertexE (V "path")

start = d, path = d : e : [] ;

start = a, path = a : b : d : e : [] ;

start = a, path = a : c : d : e : [] ;

start = b, path = b : d : e : [] ;

start = c, path = c : d : e : [].

15

6.1.4 Generalizing Graph Search

The example above hard-codes the graph in the code, but we may want to use the
same ideas with multiple graphs. We can parameterize edge by a list of edges:

edge :: [(VertexF Term, VertexF Term)]

-> VertexF Term -> VertexF Term

-> Predicate

edge xs v1 v2 = foldr f fail xs

where

f p (v1’, v2’) = p @| v1 =:= v1’ @@ v2 =:= v2’

The predicates path and traverseP would have to be parameterized by the graph
edges in the same way.

Note that nothing in the definition of edge that forces the inputs to be vertices
and lists of vertices. If we remove the type signature, the compiler would infer
that the function is well defined for any Foldable carrying pairs of elements of
some Term, respectively with the second and third argument. This highlights that
one can leverage the full power of Haskell when specifying predicates and writing
functions that generate logic programs (i.e., meta-programming), including function
composition, traversals, etc.

6.2 Sudoku

Finally, let us demonstrate how to implement a Sudoku solver. The purpose of this
example is not to implement the most efficient Sudoku solver, but to demonstrate
the simplicity and expressiveness of our approach. For that reason, we limit the size
of the Sudoku to 4x4 puzzles, divided in 2x2 regions or blocks. This example also
illustrates how it is possible to combine extensible and non-extensible types, which
can sometimes be necessary or just more convenient.

First, we define an enum to represent digits. The extensible type variant is
defined as follows:

data DF (f :: * -> *) = D1F | D2F | D3F | D4F

We introduce pattern synonyms P1 = C D1F, P2 = C D2F, etc. and the type syn-
onym PTerm = Term (DF Term). We use the encoding of lists described earlier to
represent grids as Term (ListF Term (DF Term)).

A Sudoku is correct if no numbers repeat in any individual row, column, or
block. For example, if we assign the variables v11 to the top left element of the
grid, v12 to the one to its right, and so on, then the constraints that would apply
to that element would be that:

v11 =/= v12 @@ v11 =/= v13 @@ v11 =/= v14

@@ v11 =/= v21 @@ v11 =/= v31 @@ v11 =/= v41

@@ v11 =/= v12 @@ v11 =/= v21 @@ v11 =/= v22

We can generalize those constraints for all elements of the grid as follows:

solved :: Term (ListF Term (DF Term)) -> Predicate

solved ls = exist 16 $ \rs ->

16

v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

Figure 2: 4x4 Sudoku highlighting the cells whose values cannot coincide with the one in
position p1, 1q

ls =:= listOf rs

@@ allP isGround rs

@@ (allP different $
[row rs n | n <- [0..3]]

++ [column rs n | n <- [0..3]]

++ [block rs n1 n2 | n1 <- [0..1]

, n2 <- [0..1]])

Our code uses four additional auxiliary functions:

• exist :: Int -> ([Term a] -> Predicate) -> Predicate is a variant of
exists that generates multiple variables of the same type (i.e., type [Term a]

for any a).

• listOf :: [Term a] -> ListF Term a turns a Haskell list into an extensible
list.

• allP :: (Term a -> Predicate) -> [Term a] -> Predicate succeeds if the
given predicate holds for every element of a list.

• different :: [Term a] -> Predicate holds if every element of a list is dif-
ferent from every other element. The function uses (=/=) to compare elements,
we require that elements be bound to ground terms before comparing them,
as explained earlier in this section.

• The functions row, column and block take a flattened 4x4 matrix and produce
the elements in a specific row, column or 2x2 block, respectively.

We can use this predicate to both check existing complete Sudoku grids, as well
as to search for solutions to incomplete grids. The time it takes to run depends on
the number of clues or filled positions in the puzzle, going from milliseconds in the
case of complete or almost complete grids to 1-2 seconds in the case of grids with
few clues (when compiled). As an example, given the following list, which encodes
the grid in Fig. 3.a:

17

1 2 ”r1c3” 4

3 ”r2c2” 1 ”r2c4”

”r3c1””r3c2” 2 1

2 1 4 ”r4c4”

(a) 4x4 Sudoku with several unsolved positions.

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

(b) Solved 4x4 Sudoku.

Figure 3: Unsolved and solved Sudoku puzzles.

ex :: Term (ListF Term (DF Term))

ex = [P1, P2, V "r1c3", P4

, P3, V "r2c2", P1, V "r2c4"

, V "r3c1", V "r3c2", P2, P1

, P2, P1, P4, V "r4c4"]

our predicate resolves the values of the variables as follows (Fig. 2.b depicts the
solution):

> repl $ solved ex

r1c3 = 3, r2c2 = 4, r2c4 = 2, r3c1 = 4, r3c2 = 3, r4c4 = 3.

7 Implementation

We have implemented the ideas in this paper in Haskell, including types representing
Terms and Predicates; predicate building functions and combinators; classes that
define the operations that types must support for unification to be used on them;
a unification algorithm; several execution functions to evaluate predicates. Overall,
our implementation only needs 350 lines of code, without considering spaces or
comments.

7.1 Types and Typeclasses

We define three key types: a polymorphic type Term, described in Section 3, and
a polymorphic type Tree, representing a tree of constraints, and a type synonym
Predicate, which represents a predicate.

To perform unification for terms of arbitrary types, we require that three oper-
ations be supported on them:

• The ability to unify two terms of that type. This requires determining if the
constructors of both values are the same and call our unification recursively
for the arguments to the constructor. We provide a definition of unification
for Term.

18

• The ability to check if a variable is used in a term. This function takes a
variable name and returns a boolean, and does not generally need to have any
logic, but merely call our own occurs check function on all arguments to the
type constructor.

• The ability to substitute a variable by a term inside another term. Again, we
provide a function that performs substitution for values of type Term a (for
some a), so users only need to call our function recursively on all arguments
of their constructors.

We capture these operations via three type classes: UnifyLocal, Occurs, and
Substitute. To shorten type signatures, we defined a type class Logic as a short-
hand for types that are instances of all three classes.

7.2 Predicate Evaluation

To evaluate predicates, we provide several functions:

• eval :: Predicate -> IO () pretty prints all solutions to a predicate (if
any).

• repl :: Predicate -> IO () tries to mimic the interface of a standard Pro-
log REPL by printing solutions one by one, letting users control the production
of solutions with the keys space and enter.

• isSatisfiable :: Predicate -> Bool determines if a Predicate admits
any solutions.

• valueOf :: Logic a =>Term a -> Predicate -> Maybe (Term a)

provides a value for a given variable under which a Predicate may hold.
It is a requirement that the argument Term be a variable.

• findAll :: Logic a =>Term a -> Predicate -> [Term a] provides all val-
ues for a given variable under which a Predicate may hold. It is a requirement
that the argument Term be a variable.

The functions eval and repl make it easier to evaluate predicates from GHCi,
while the other three make it easier to interact with these facilities from Haskell
code.

Predicates represent constraints using a tree-like structure. At any point in the
tree, we can find a leaf, or a branch with a unification constraint followed by several
possibilities. Concatenation of predicates with (@@) (i.e., and) simply appends one
tree at the end of all the leaves of the other tree. Combining predicates with (@|)

creates a new branch that unifies trivially, followed by the two possible solutions,
arguments to (@|).

To evaluate solution, we traverse the solution tree to 1) replace unification con-
straints with more specific constraints on the subterms, and 2) substitute variables
with their expected values in other terms.

19

When new branches are introduced, our datatype also expects the current state
used to generate fresh variable names, and returns a new value for such state. This
mechanism makes solution generation lazier, as our original implementation, which
leveraged a state monad, did not work well for recursive predicates.

A final step flattens the solution tree, turning it into a list of lists of unification
constraints that have been processed. The functions eval and repl traverse the
list, eliminating trivial constraints that clutter the output.

7.3 Notation and Usability

To make our DSL more convenient, we have implemented facilities to make the
notation succinct and familiar, and reduce how much code users must write.

We have implemented generic programming (Magalhães et al., 2010) aids to
generate instances of the classes that our unification algorithm requires to operate
on algebraic data types. For example, for NatF, users only need to declare:

deriving instance Eq (NatF Term)

instance UnifyLocal (NatF Term)

instance Occurs (NatF Term)

instance Substitute (NatF Term)

instance Logic (NatF Term)

Users can define their own Show functions if they prefer to print values in a more
concise manner than Haskell’s default. For example, to show natural numbers we
define a custom Show instance such that ground terms are printed as actual numbers
(e.g., 1, 2), and other numbers are printed as the addition of a number and a variable
(e.g., 1 + x, 55 + z). We implement similar instances for ListF, so that values are
printed in a familiar notation (e.g., 1 : x : 5 : xs).

To make working with such instances easier, we also implement instances to over-
load numbers, strings and lists. For example, providing 1 when a Term (NatF Term)

is expected denotes C (SucF (C ZeroF)). We overload strings such that providing
a literal string where a Term is expected means the V (or Var) with such string as
argument. This renders very concise expressions:

> plus 1 "x" 5

x = 4

Finally, we overload list syntax so that it is possible to provide lists elements
using Haskell’s standard notation for lists. For example, the following is fully sup-
ported:

> isTail [1, 2, 3] [2, 3]

true.

Using Haskell’s support to overload syntax, it is possible to combine lists of
ground terms with variables. For example, for lists of natural numbers, [1, "x"]

is the same as Cons (Suc Zero) (Cons (V "x") Nil). In our implementation,
we also use the notation hd :< tl to mean the term Cons hd tl, where hd is an
element term hd and tl is a list term.

20

The ability to provide such a convenient syntax is possible thanks to Haskell’s
abilities to overload standard syntax. Overall, we make use of 14 language extensions
to make the proposed approach more accessible. The same mechanisms may not be
available in other languages that otherwise support higher-kinded polymorphism or
dynamically replacing a value by a sum type, meaning that logic programming will
still be possible, but the notation may be more cumbersome.

8 Discussion

Our work shows how to introduce typed logic programming in a functional language
operating on arbitrary types. Converting Prolog programs into Haskell has been a
relatively straightforward exercise, although there are some considerations, which
we discuss below.

8.1 Variable Scope

The scope of variables in our solution is, by default, global. A variable with a fixed
name being used inside a function will be considered to be the same as a variable
with the same name (and type) used elsewhere.

Consider the following Prolog example:

p(X) :- q(3).

q(X) :- X is 3.

Predicate p(X) holds for any value of X, because the variable is universally quan-
tified locally in the definition of p. In contrast, if we write the Haskell predicate:

member x l = l =:= Cons x (V "tail")

@| l =:= Cons (V "head") (V "tail")

@@ member x (V "tail")

the function member will only hold if x is the first member of the list. All instan-
tiations of V "head" refer globally to the same term, and so do all instantiations of
V "tail". Because the latter is not possible for finite lists, member will only hold if
the first equation holds.

To work around this limitation, the function exists creates free variables. While
this works around the issue, it does introduce a small degree of complexity in the
way that logic programming can be used.

8.2 Variable Names and Types

The constructor V for Terms produces terms of any type, but two mentions of the
same variable name in the same scope have different types. In our current solution,
a variable is uniquely identified by its name and its type. Hence, using the same
variable name in multiple places may lead to unexpected results. For example, in
the following code, GHC does not know that both “x”’s refer to the same list:

> repl $ V "x" =:= Cons 1 (Nil :: ListF Term Int)

@@ V "x" =:= (Nil :: ListF Term (NatF Term))

21

An alternative manifestation of the same problem is that the compiler may
consider a variable’s type ambiguous even if the same name is used elsewhere. For
example, in the following query, the compiler does not understand that both V "x"

refer to the same element:

> repl $ isLength 1 (V "x")

@@ member (1 :: NatTerm) (V "x")

The second "x" must be a list of natural numbers because it is used as argument to
member and the type of the first argument is given, but the first variable (V "x")

may be a list of any numeric type.
A workaround this problem is to introduce a Haskell variable x = V "x", and

then use that variable instead. In general, adding the types to variables helps the
type checker even in cases when it would seem obvious to the reader that the types
are not ambiguous.

8.3 Negation and Unification

In this paper we introduced an operator (=/=), which is the negation of (=:=), and
fails if the two terms unify. More specifically, that predicate will fail if, at the time
when the unification algorithm tries to unify the two terms, they can unify. This
means that, for example, if one of them is a variable, then the unification will always
succeed, and so (=/=) will always fail. This makes writing some predicates either
not possible with our current implementation, or not convenient.

Note that his problem is known in logic programming. The Prolog predicate
\=/2, sometimes written as \==/2, behaves in the same way as our (=/=). Some
implementations of Prolog introduce a separate function dif/2 that delays evalua-
tion and carries with it a constraint. We consider that future work.

8.4 Variable Binding and Multiple Rules

Prolog predicates are normally defined by multiple rules, where the head of the rule
can pattern match on the arguments, and the scope of variables is only that rule.
Pattern matching in Prolog only indicates that a given input can unify with the
given pattern, but it says nothing about whether the call to that predicate passed
a free or ground term in that position.

In contrast, Haskell pattern matching checks the current value of an input, not
whether unification is possible. For that reason, we have to capture variables without
applying pattern matching, and use (=:=) in definitions to split the inputs into their
component parts.

It is also worth noting that languages like Prolog specify multiple rules in sepa-
rate definitions, while we have had to specify multiple rules within each definition.

Some extensions in the Haskell compiler GHC could make this process easier on
the user, although, at the time of writing, we were not able to use such extensions
to make pattern matching more convenient or more similar to Haskell or Prolog
pattern matching. Making such a process convenient may require the development
of new GHC extensions.

22

8.5 Defining Extensible Types

As currently proposed, users have to write an extensible type counterpart of the
types they want to work with, and turn the values of the latter type into Terms,
and ground terms back into values of the original, non-extensible type. Although
we have tried to simplify that process with generic programming aids, there is some
overhead to using our solution. The use of a library like barbies (Barbies, [n. d.]),
or some form of template meta-programming, could help generate the extensible
type that matches a given algebraic datatype. We consider that future work.

8.6 Anonymous Variables

Prolog allows the user of an underscore in place of a term, to indicate that the
value in place should unify, but not capture it. For example, one can define a unary
predicate p that holds for any value, or use anonymous variables in the right hand
side of a rule, or in a query.

p(_).

r(X) :- q(_,X).

This is equivalent to introducing a free variable for each place where an under-
score is used.

Our implementation supports the first kind of underscore simply because Haskell’s
wildcard pattern (also an underscore), works in the same way. Users of our imple-
mentation can, for example, define:

p :: NatTerm -> Predicate

p _ = succeed

Supporting the second kind of anonymous variable remains as future work.

9 Related Work

Functional-Logic Programming Languages The creation of languages that
integrate logic and functional programming using theoretical frameworks and ef-
ficient implementations has been subject to prior study (Bellia and Levi, 1986;
DeGroot and Lindstrom, 1986). Languages in this category include Babel (Moreno-
Navarro and Rodŕıguez-Artalejo, 1988), K-LEAF (Giovannetti et al., 1991), ALF
(Hanus, 1991), Curry (Hanus et al., 1995), and Escher (Lloyd, 1999), which sup-
port a functional style, and Gödel (Hill and Lloyd, 1994), Mercury (Somogyi et al.,
1996), and λProlog (Nadathur and Miller, 1986), which embrace a logic program-
ming style. Curry, in particular, is strongly inspired by Haskell but incorporates
logical variables and uses narrowing as operational semantics to compute the value
of expressions with free variables (Hanus, 2013). Instead of creating a new lan-
guage, our work shows how an existing functional language can be empowered with
logic programming capabilities, without additional compiler extensions and without
calling an external logic programming engine.

23

“Functions” in Logic Programming Languages Prolog includes limited higher-
order capabilities like call/N and apply/3 (Naish, 1996). The Prolog implemen-
tation Ciao (Hermenegildo et al., 2012) allows, via its metaprogramming libraries,
using predicates in a functional style, treating the last argument as the result of
the function. In our case, functions and higher-order come built-in with the host
language and are immediately exploitable by programmers. Furthermore, because
we rely on a statically typed language, our approach provides a level of static safety.
Prolog has previously been extended with static types (Barbosa et al., 2022; Mycroft
and O’Keefe, 1984; Schrijvers et al., 2008), but these extensions are not integrated
in the most widely used Prolog systems.

Logic Programming Embeddings Prior attempts at embedding logic program-
ming in functional languages by Spivey and Seres (1999), Claessen and Ljunglöf
(2001), Solanki (2012) and Elliott and Pfenning (1991) require adapting the types
by hand to use them in logical predicates. Work by Kosarev and Boulytchev (2016)
to embed relations in O’Caml require introducing explicit calls to projections to
go from terms to functional values, and injections to go from functional values to
terms. In contrast, our approach is applicable to arbitrary algebraic data types, and
we provide generic programming aids to facilitate operating with them, significantly
simplifying the process and broadening the applicability of our proposal. The appli-
cation of a systematic extension pattern, rather than hand-coded extensions, leads
to more regular and predictable ways to add variables to any algebraic data type.

Another difference between these embeddings and our work is in how predi-
cate evaluation is implemented. Prior embeddings use an interpreter based on an
evaluation monad (Claessen and Ljunglöf, 2001; Schrijvers et al., 2009; Solanki,
2012; Spivey and Seres, 1999), make predicates data streams and explicitly intro-
duce a backtracking lazy stream monad in an otherwise strict setting (Kosarev and
Boulytchev, 2016), or use continuation passing style and exceptions to evaluate logic
programs more efficiently (Elliott and Pfenning, 1991). In contrast, we use an inter-
nal representation of predicates as a tree of unification constraints, parameterized
by a counter that can be used to generate free variables. Our encoding provides a
more fine-grained control of the counter than what we could obtain by directly using
a (lazy) state monad, which introduced an additional degree of laziness that was
crucial to generate solutions efficiently. The tree is later traversed to perform unifi-
cation, rendering a simplified tree, which is flattened to a list to explore the solutions
and present them to users in the REPL. Another difference in implementation be-
tween miniKanren (Kosarev and Boulytchev, 2016) and our work is that the former
uses a type-unsound internal representation encapsulated behind a type-safe API.
Our approach maintains type safety by avoiding the use of unsafe language features
for implementing unification, and term unification can only be applied to terms of
the same type.

These embeddings also differ from our work in terms of expressiveness: for ex-
ample, we only support equality constraints, and implement a limited form of dise-
quality using a (weak) form of negation via cuts, whereas miniKanren and the work
of Schrijvers et al. (2009) support both equality and disequality.

24

Higher-kinded Type Parametrizations Our proposed solution uses a specific
technique to parameterize types with higher kinds. Alternative techniques have
been proposed, and are being used in compilers and other tools. Najd and Jones
(2017) proposed extending trees by adding a parameter f to every branch of an
algebraic data type’s definition. Najd’s approach does not apply the parameter f

to elements inside the type, and uses type families to customize the behavior for
each constructor. The work of Najd et al. also allows introducing Term-like wrappers
around all elements of the abstract data type. Nevertheless, we find extensible types
to be straightforward due to the minimal work required to let any part of a datatype
be replaced with a variable by merely applying Term to the extensible type.

A number of existing tools and libraries generate extensible types and faciliates
working with them. BNFC (Forsberg and Ranta, 2004) uses an approach similar
to extensible types to generate, from a given grammar, an Abstract Syntax Tree
that is parameterized over an argument f. The library barbies (Barbies, [n. d.])
implements a collection of generic mechanisms to work with types parameterized
by a functor applied everywhere in a type definition, akin to extensible types. The
libraries Barbies-th (Barbies-th, [n. d.]) or Higgledy (Higgledy, [n. d.]) could help
generate higher-kinded variants of type definitions in Haskell. We have yet to inves-
tigate how our solution could leverage the support for extensible types provided by
the aforementioned libraries and tools.

10 Future Work

This paper has shown how to embed logic programming in a statically typed func-
tional programming language. To that end, we used extensible types to replace
any portion of an algebraic datatype with variables, and provided a mechanism to
express unification constraints between values with variables. We further extended
the language with boolean connectives, and ways to introduce free variables. We
showed by example that we can leverage the host language’s type inference and
higher-order to make code reusable without sacrificing type safety. We closed our
discussion with an overview of our implementation, a discussion of limitations, and
an evaluation of the differences with other approaches.

The examples presented in this paper show how to evaluate predicates in a
REPL. In future work, we will show how to use the logic programming facilities
described in this paper to write functional programs.

The same approach proposed in this paper could be used to represent other kinds
of constraints. This would allow us to implement constraint-logic programming in
Haskell. Explicitly introduction disequality constraints in our language would over-
come the limitations of our current implementation of disequality using “negation
as failure” (akin to Prolog’s).

We are currently exploring how the language provided in this paper could be
used to generate values more optimally in property-based testing, since constraints
could be carried with types, rather than inefficiently generating values and then
filtering based on constraints (thus discarding many values).

In this paper we have not discussed benchmarking our unification algorithm

25

against an existing implementation, as it is a topic that deserves careful and detailed
evaluation. We plan to conduct thorough benchmarks against known implementa-
tions, and to use them to identify bottlenecks that we could address.

Our experiments indicate that the semantics of the predicate evaluation functions
we have implemented coincides with that of Prolog. In future work, we would like
to carry out a more detailed and formal evaluation to compare our inference engine
with Prolog’s.

References

Barbies [n. d.]. Barbies. https://hackage.haskell.org/package/barbies.

Barbies-th [n. d.]. barbies-th. https://hackage.haskell.org/package/

barbies-th.

João Barbosa, Mário Florido, and Vı́tor Santos Costa. 2022. Data Type Inference
for Logic Programming. In Logic-Based Program Synthesis and Transformation,
Emanuele De Angelis and Wim Vanhoof (Eds.). Springer International Publishing,
Cham, 16–37.

Marco Bellia and Giorgio Levi. 1986. The relation between logic and functional
languages: a survey. The Journal of Logic Programming 3, 3 (1986), 217–236.
https://doi.org/10.1016/0743-1066(86)90014-2

Koen Claessen and Peter Ljunglöf. 2001. Typed Logical Variables in Haskell. In
2000 ACM SIGPLAN Haskell Workshop (Satellite Event of PLI 2000). https:

//doi.org/10.1016/S1571-0661(05)80544-4

Doug DeGroot and Gary Lindstrom (Eds.). 1986. Logic Programming: Functions,
Relations, and Equations. Prentice-Hall.

Conal Elliott and Frank Pfenning. 1991. A semi-functional implementation of a
higher-order logic programming language. Topics in Advanced Language Imple-
mentation (1991), 289–325.

Markus Forsberg and Aarne Ranta. 2004. BNF converter. In Proceedings of the 2004
ACM SIGPLAN workshop on Haskell. 94–95.

Elio Giovannetti, Giorgio Levi, Corrado Moiso, and Catuscia Palamidessi. 1991.
Kernel-LEAF: A logic plus functional language. J. Comput. System Sci. 42, 2
(1991), 139–185. https://doi.org/10.1016/0022-0000(91)90009-T

Michael Hanus. 1991. The ALF system: An efficient implementation of a functional
logic language. In Processing Declarative Knowledge, Harold Boley and Michael M.
Richter (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 414–416.

M. Hanus. 2013. Functional Logic Programming: From Theory to Curry. In Pro-
gramming Logics - Essays in Memory of Harald Ganzinger. Springer LNCS 7797,
123–168.

26

https://hackage.haskell.org/package/barbies
https://hackage.haskell.org/package/barbies-th
https://hackage.haskell.org/package/barbies-th
https://doi.org/10.1016/0743-1066(86)90014-2
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1016/0022-0000(91)90009-T

M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. 1995. Curry: A Truly Functional
Logic Language. In Proc. ILPS’95 Workshop on Visions for the Future of Logic
Programming. 95–107.

M. V. Hermenegildo, F. Bueno, M. Carro, P. López-Garćıa, E. Mera, J. F. Morales,
and G. Puebla. 2012. An overview of Ciao and its design philosophy. Theory and
Practice of Logic Programming 12, 1–2 (2012), 219–252. https://doi.org/10.

1017/S1471068411000457

Higgledy [n. d.]. Higgledy. https://hackage.haskell.org/package/higgledy.

P. Hill and J.W. Lloyd. 1994. The Gödel Programming Language. MIT Press.
https://books.google.es/books?id=AYYWhZxwmw4C

Dmitry Kosarev and Dmitry Boulytchev. 2016. Typed Embedding of a Relational
Language in OCaml. In Proceedings ML Family Workshop / OCaml Users and
Developers workshops, ML/OCAML 2016, Nara, Japan, September 22-23, 2016
(EPTCS, Vol. 285), Kenichi Asai and Mark R. Shinwell (Eds.). 1–22. https:

//doi.org/10.4204/EPTCS.285.1

John W Lloyd. 1999. Programming in an integrated functional and logic language.
Journal of Functional and Logic Programming 3, 1-49 (1999), 68–69.

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. 2010. A
generic deriving mechanism for Haskell. In Proceedings of the Third ACM Haskell
Symposium on Haskell (Baltimore, Maryland, USA) (Haskell ’10). Association
for Computing Machinery, New York, NY, USA, 37–48. https://doi.org/10.

1145/1863523.1863529

Juan José Moreno-Navarro and Mario Rodŕıguez-Artalejo. 1988. BABEL: A Func-
tional and Logic Programming Language based on Constructor Discipline and
Narrowing. In International Conference on Algebraic and Logic Programming.
https://api.semanticscholar.org/CorpusID:38448321

Alan Mycroft and Richard A. O’Keefe. 1984. A polymorphic type system for pro-
log. Artificial Intelligence 23, 3 (1984), 295–307. https://doi.org/10.1016/

0004-3702(84)90017-1

Gopalan Nadathur and Dale A. Miller. 1986. Higher-order logic programming.
In Third International Conference on Logic Programming, Ehud Shapiro (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 448–462.

Lee Naish. 1996. Higher-order logic programming in Prolog. In Proc. Workshop on
Multi-Paradigm Logic Programming, JICSLP, Vol. 96. 1–23.

Shayan Najd and Simon Peyton Jones. 2017. Trees that grow. Journal of Universal
Computer Science 21, 1 (2017), 42–62.

Ivan Perez. 2023. Types that Change: The Extensible Type Design Pattern. In
Proceedings of the 1st ACM SIGPLAN International Workshop on Functional

27

https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1017/S1471068411000457
https://hackage.haskell.org/package/higgledy
https://books.google.es/books?id=AYYWhZxwmw4C
https://doi.org/10.4204/EPTCS.285.1
https://doi.org/10.4204/EPTCS.285.1
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/1863523.1863529
https://api.semanticscholar.org/CorpusID:38448321
https://doi.org/10.1016/0004-3702(84)90017-1
https://doi.org/10.1016/0004-3702(84)90017-1

Software Architecture (Seattle, WA, USA) (FUNARCH 2023). Association for
Computing Machinery, New York, NY, USA, 49–62. https://doi.org/10.

1145/3609025.3609475

Tom Schrijvers, Vı́tor Santos Costa, Jan Wielemaker, and Bart Demoen. 2008.
Towards Typed Prolog. In Proceedings of the 24th International Conference on
Logic Programming (Udine, Italy) (ICLP ’08). Springer-Verlag, Berlin, Heidel-
berg, 693–697. https://doi.org/10.1007/978-3-540-89982-2_59

Tom Schrijvers, Peter Stuckey, and Philip Wadler. 2009. Monadic constraint pro-
gramming. Journal of Functional Programming 19, 6 (2009), 663–697. https:

//doi.org/10.1017/S0956796809990086

Mehul Chandrakant Solanki. 2012. Embedding Programming Languages: Prolog in
Haskell. Master’s thesis. University of Northern British Columbia.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. 1996. The execution
algorithm of mercury, an efficient purely declarative logic programming language.
The Journal of Logic Programming 29, 1 (1996), 17–64. https://doi.org/

10.1016/S0743-1066(96)00068-4 High-Performance Implementations of Logic
Programming Systems.

J Michael Spivey and Silvija Seres. 1999. Embedding prolog in haskell. In Proceedings
of Haskell, Vol. 99. 1999–28.

28

https://doi.org/10.1145/3609025.3609475
https://doi.org/10.1145/3609025.3609475
https://doi.org/10.1007/978-3-540-89982-2_59
https://doi.org/10.1017/S0956796809990086
https://doi.org/10.1017/S0956796809990086
https://doi.org/10.1016/S0743-1066(96)00068-4
https://doi.org/10.1016/S0743-1066(96)00068-4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-08-2024

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Logic Programming with Extensible Types

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

Ivan Perez, Angel Herranz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Ames Research Center, Moffett Field, CA 94035
8. PERFORMING ORGANIZATION

REPORT NUMBER

L–XXXXX

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–20240010266

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 59
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

Logic programming allows structuring code in terms of predicates or relations, rather than functions. Although logic programming languages present advantages in terms of declarativeness and

conciseness, the introduction of static types has not become part of most popular logic programming languages, increasing the difficulty of testing and debugging of logic programming code.

This paper demonstrates how to implement logic programming in Haskell, thus empowering logic programs with types, and functional programs with relations or predicates. We do so by

combining three ideas. First, we use extensible types to generalize a type by a parameter type function. Second, we use a sum type as an argument to introduce optional variables in extensible

types. Third, we implement a unification algorithm capable of working with any data structure, provided that certain operations are implemented for the given type. We demonstrate our proposal

via a series of increasingly complex examples inspired by educational texts in logic programming, and leverage the host language’s features to make new notation convenient for users, showing

that the proposed approach is not just technically possible but also practical.

15. SUBJECT TERMS

logic programming, functional programming, domain-specific languages, type-level programming

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

36

19a. NAME OF RESPONSIBLE PERSON

STI Information Desk (help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

	Introduction
	Background
	Logic Programming with Extensible Types
	Predicates, Primitives and Boolean Combinators
	Primitives
	Boolean Connectives

	Terms and Logic Variables
	Term Unification
	Existential Quantification
	Notation

	Polymorphism and Higher Order
	Polymorphism and Type Safety
	Higher-order Logic Programming

	Cuts
	Negation as Failure

	Examples
	Graphs
	Vertices
	Graphs
	Paths
	Generalizing Graph Search

	Sudoku

	Implementation
	Types and Typeclasses
	Predicate Evaluation
	Notation and Usability

	Discussion
	Variable Scope
	Variable Names and Types
	Negation and Unification
	Variable Binding and Multiple Rules
	Defining Extensible Types
	Anonymous Variables

	Related Work
	Future Work

