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ABSTRACT

Recent advancements in artificial intelligence (AI) have
made machine learning (ML) techniques readily available for
practical applications while using a fraction of time that was
previously required. In particular, the use of deep learning (DL)
models has the potential to assist in the identification of
micrometeoroid and orbital debris (MMOD) damage. The ability
to detect MMOD damage with Al models has the potential to
improve the safety of human space flight by reducing the time
required for damage identification via automated methods. To
demonstrate this, a binary classification dataset of 226 images
was utilized to train and validate a MMOD damage detection
model using a residual network architecture. The benefits of data
augmentation were consistent and improved performance as
expected. For performance, the MMOD damage detection model
achieved 95.6% accuracy on the validation set and generalized
to an accuracy of 87.5% on a test dataset of spacecraft images
with MMOD damage. With the use of deep learning algorithms,
MMOD damage can be identified with high accuracy and
provides a new possibility to identify of hypervelocity impacts.

Keywords: Artificial Intelligence, Machine Learning, Deep
Learning, Hypervelocity Impacts, Micrometeoroid, Orbital
Debris, Pattern Recognition, Convolution Neural Network.

NOMENCLATURE

Complexity The size of the parameter space for a
model; larger parameter spaces lead to
more complex models.

Dimensionality The number of features in the dataset.

Hyperparameters ~ Parameters set before training such as
learning rate.

Overfitting Models that perform poorly on unseen

data but well on seen data.
Range of possible values that define a
particular model.

Parameter Space
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1. INTRODUCTION

The use of artificial intelligence (AI) and other machine
learning (ML) algorithms to address complex problems has seen
significant growth and garnered widespread public attention.
Language models like generative pre-trained transformers (GPT)
have made interactive Al more accessible than ever. These once
niche topics are now prevalent in both the scientific community
and the general public. The rapid advancements in these
technologies continue to open new avenues for research and
practical applications across various fields.

The Al revolution can be contributed to breakthroughs in
deep learning (DL) techniques that occurred as early as 2018,
combined with the availability of powerful computing hardware
such as graphics processing units (GPUs) and tensor processing
units (TPUs), along with advancements in data storage and
collection. These factors made training and deploying Al models
more feasible by eliminating previous barriers such as data
accessibility and training efficiency.

These leaps in technological advancement have presented
unique opportunities to those with niche data sources to train
models with capabilities once thought not feasible. For example,
the application of Al has improved the detection of breast cancer
by 20% compared to traditional detection methods, according to
Norver et al [1]. Similarly, Al has the capability to integrate into
and improve current micrometeoroid and orbital debris
(MMOD) analyses. The need to locate and characterize
spacecraft MMOD impact damage is critical not only for
categorizing the MMOD environments but also ensuring
spacecraft integrity through visual inspection. This process is
vital to ensure no damage to the spacecraft has occurred which
could lead to the loss of crew, vehicle, and/or mission [2], [3].

Traditionally, MMOD damage identification has been
completed by having a crew member manually take photographs
of the spacecraft through a spacecraft’s window using hand-held



camera or ground personnel directing externally mounted
cameras to examine the vehicle. The photographs are then
transmitted back to Earth for visual analysis. This method of
MMOD damage inspection works well and has been used on
various spacecraft, including the Space Shuttle and the
International Space Station (ISS) [3].

One of the drawbacks of the current method is the speed and
the accuracy in identifying MMOD impacts, which could be
improved. It is essential to note that the process of detecting
MMOD impacts in images can be both difficult and time
consuming. The visual appearance of an MMOD impact can
change drastically with lighting conditions, size of impact, depth
of penetrations, material types, surface waviness, fabric
coverings, camera type and lens, image distance, spacecraft
orientation, and multiple other factors. Currently, this process
involves a team of highly experienced specialists in both the
fields of image analysis and MMOD impacts. The use of
machine learning models is not new to the field of MMOD
impact protection with prior research being conducted on use of
machine learning models for ballistic limit equation (BLE)
development which are utilized in risk assessments for
spacecraft [4].

Thus, it was deemed imperative to test and observe whether
Al could enhance critical capabilities, such as visually
identifying micrometeoroid and orbital debris impact damage on
spacecraft from images of the spacecraft exterior. This paper
documents the initial research, training and performance
evaluation of an Al model designed to identify both actual and
laboratory tested MMOD impacts and perforations on exposed
flat surfaces. While this initial goal seems modest, training such
a model would have taken years of development with teams of
individuals just ten years ago. The long-term goal is to
continually increase the complexity and use-cases of the DL
model being trained, with the aim of expanding its capabilities
to identify MMOD impacts on all types of spacecraft surfaces.

2. THEORY, METHODS, AND APPROACH

2.1 Deep Learning Models

Artificial neural networks (ANNs) are a cornerstone of deep
learning, a subset of machine learning. The foundational
concepts of ANNs gained significant prominence in the 1980s
with the introduction of backpropagation techniques [5]. These
techniques were novel because it made the training process more
efficient and systematic by enabling the creation of fully
differentiable ANNs through innovative network architectures.
The advent of backpropagation allowed for the effective and
systematic adjustment of weights to minimize error.

Over time, the artificial neural network was improved by
machine learners, mathematicians, and statisticians. This
allowed the methodology of the approach to stabilized [6].
However, ANNs shortly fell out of favor with the adoption of
other ML methods such as support vector machines (SVMs),
boosting, and random forests. Unlike artificial neural networks,
methods like SVMs, boosting, and random forests, had smaller
parameter spaces, resulting in reduced model complexities and

easier model generalization. Benefits were further demonstrated
in cases of reduced data. Later, in the 2010s, artificial neural
networks resurfaced with major advancements in image and
video classification, in addition to speech and text modeling [7].
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FIGURE 1: Simplified visual representation of a forward feeding
artificial neural network model with three total layers, receiving an input
vector of size n.

A simple artificial neural network, such as the network in
Figure 1, will take a sample of data vectors, such as a flattened
image array, as an input in the input layer. Subsequently, the
hidden layer of the network then applies nonlinear
transformations to the linear combinations of the input layer’s
components. In this process, the hidden layer updates weights by
minimizing the backpropagated loss from the output layer to the
hidden layer with an optimization algorithm such as gradient
descent. After an artificial neural network has been trained, the
output layer is a model using the hidden layer to predict results
based on a given input. This complexity can be scaled and tuned
by changing the number of hidden layers, the size of the dataset,
the non-linear transformations utilized, and the number of hidden
nodes per layer.

While there are several types of artificial neural networks,
for the purposes of MMOD damage identification, a convolution
neural network (CNN) was the learner utilized due to its
established accuracy for image classification [7]. Specifically, a
residual network (ResNet) was chosen since it efficiently
addresses issues with gradient descent that occur in deep
forward-feeding models [8]. In particular, the ResNet18 learner
architecture was used for the model with the weights partially
trained on the ImageNet dataset [9]. A simpler CNN model was
considered but was not pursued due to computational constraints
required to search for optimal hyperparameters and model
architectures.



2.2 Dataset Description

The dataset used for all subsequent experiments had a
distribution of both spacecraft surfaces and images from
hypervelocity impact testing. All images in the dataset were
classified beforehand into two categories: “MMOD Damage”
and “No MMOD Damage”. All images were manually classified
with the “MMOD Damage” classification including
characteristics such as cratering, perforations, cracking, etc.
These categories, which are commonly referred to as labels, are
used to train and test the accuracy of the Al model. 80% of the
dataset was used for model training while the remaining 20%
was utilized as the validation set.

The dataset involved 130 images with MMOD damage and
96 images without MMOD damage, leading to a 58% and 42%
split, respectively. Each image was initially 1280 pixels by 720
pixels before resizing. As for camera angle, 74% of the images
were categorized as “Normal” to the surface, with the remaining
26% being at some other off normal angle. Camera distance
relative to image location was another identifiable feature
present in the dataset. Explicit camera distance measurements
were not available for all images located in the dataset. To
substitute the absence of quantitative measurements, qualitative
descriptions of “Close”, “Medium Distance”, and “Far” were
utilized for insight which resulted in a distribution of 32%, 44%,
and 23%, respectively after manual classification.

Example 1 Example 2 Example 3

‘Camera Distance: Close
Camera Position: Normal
Material: Aluminum
Surface Stain: Light
Surface Structure: Rigid
Shadows: None

MMOD Damage: Yes

Camera Distance: Medium
Camera Position: Normal
Material: Beta Cloth
Surface Stain: Medium
Surface Structure: Rigid
Shadows: None

MMOD Damage: Yes

Camera Distance: Far
Camera Position: Normal
Material: Nextel

Surface Stain: None
Surface Structure: Wavy
Shadows: Light

MMOD Damage: Yes

Example 4

Camera Distance: Close

Camera Position: Normal
Material: Aluminum
Surface Stain: None
Surface Structure: Rigid
Shadows: None

MMOD Damage: No

Example 5

L3

i+

Camera Distance: Close
Camera Position: Off Normal
Material: Nextel

Surface Stain: None

Surface Structure: Wavy
Shadows: None

MMOD Damage: Yes

Example 6

e delie
era Distance:
Camera Paosition: Normal
Material: Kevlar

Surface Stain: None
Surface Structure: Rigid
Shadows: None

MMOD Damage: No

FIGURE 2: Example images in the dataset are show in the figure
with characteristics described.

Examples of describable characteristics can be seen in

Figure 2. One noticeable qualitative measurement is surface stain
which is observable in example 2 in Figure 2. The more
discolored the surface appeared, the higher the category bin was
assigned to the image with “None” being labeled for images with
no surface stain and “High” being assigned to images with

significant amounts of surface discoloration. Additionally, the
dataset can be broken up further by material representation of the
inspected surface, as observed in Figure 3.

Material Distribution - Image Dataset

® Aluminum m Ablative Shielding m Beta Cloth
Nextel m Tile m Solar Array
u Kevlar o Mylar m Copper

FIGURE 3: Primary material in each image of the dataset.

A plurality of images in the dataset were aluminum surfaces
with other flight hardware materials present such as various
ceramic fabrics and thermal protective shielding (TPS). Most
images in the dataset (85%) appeared rigid with another 13%
having a “wavy” surface appearance. Other notable visual
features such as surface stain and shadowing had distributions
present in the dataset as well, which is seen in Figure 4.

Surface Stain - Image Dataset Shadowing Categorization - Image Dataset

10% 1

mlight mNone ®Medium & High ENone ®Light ®Medium

FIGURE 4: Shadowing and surface stain present in the dataset.

The dataset was representative of common spacecraft
materials and future datasets will include other complexities.
Due to computational limitations, this smaller subset of data was
utilized. A much larger dataset will be utilized for future analysis
and model training once computational resources are available.

2.3 Training and Testing Data
Since the ResNetl8 model is accessible in PyTorch,
equipped with pretrained weights from ImageNet, meaningful
results were produced with 181 training images and 45 validation
images. Previously, the limited data set would not be feasible to
train a convolution neural network model, but recent
advancements in DL algorithms, computing hardware, and data
storage have allowed image models with preexisting weights to
be finely tuned to domain-specific dataset.
Additionally, a second dataset was utilized for testing the
model and was separate from the training and validation sets.
The dataset consisted of 24 images of spacecrafts with 20 of



them including MMOD damage and the other 4 not including
MMOD damage. Images from this dataset are currently not
available in the public domain and will not be featured in this
paper due to export control regulation. However, model accuracy
against the test dataset will be included to evaluate performance.

2.4 Data Augmentation and Preprocessing

For preprocessing, all images were resized to 400 pixels on
the longest side. The resizing step ensured consistency in image
dimensions across the dataset, which is crucial for uniform input
into the model. This image sizing was found to be optimal after
extensive tuning. Additionally, reducing the dimensionality of
the images decreased the number of features the model needed
to process, resulting in improved efficiency. This not only
reduced the training time but also minimized memory usage,
facilitating faster and more resource-efficient model training.
Additionally, all whitespace present in the initial dataset was
removed as well.

To increase the size and variability of the dataset, data
augmentation was utilized to enhance generalization and reduce
both underfitting and overfitting. Augmentations were randomly
applied to each image during model training. This includes
geometric transformations such as rotations, scaling, flipping,
and cropping. Color augmentations such as brightness
adjustments were utilized, in addition to other techniques such
as shearing, perspective transformations, and noise injection.

The motivation behind the random application of these
techniques on the dataset is to be representative of an ideal
natural distribution of sampled data. This is due to the fact that
not all images are taken at the same angle, aspect ratio, or size.
Thus, data augmentation involves distorting the image in natural
ways where the image is still recognizable so that human
recognition remains unaffected [6]. An example of this can be
seen in Figure 5.

With Data Augmentation

NO MMOD Damage MMOD Damage MMOD Damage

——

Without Data Augmentation

NO MMOD Damage NO MMOD Damage MMOD Damage

FIGURE 5: The visual difference data augmentation causes on
the dataset.

For the model developed in this paper, data augmentation
techniques had a 100% chance of being applied to each piece of
data in the dataset, but the combination of techniques applied
was randomly chosen. This approach expands the training set
while reducing the likelihood of overfitting by utilizing data
transformations. Lastly, the original dataset remains intact with
augmentation only being performed when the data is sampled
from the dataset.

2.5 Software and Coding

The MMOD impact identification model was built in Python
version 3.9.19 using both the open source PyTorch library and
the FastAl library [9], [10]. The FastAl library acts as a wrapper
for the PyTorch library by increasing the ease of use through the
application of data augmentation techniques and the
visualization of results using built-in functions. An example
batch of training images can be seen in Figure 6, after data
augmentation have been applied to the sampled data.

MMOD Damage NO MMOD Damage

e
T e

MMOD Damage NO MMOD Damage

FIGURE 6: TFour training images with random data
augmentation applied and the proper classification of each image
located above the image.

Afterward, the data set is loaded in a data loaders object
which is used for training and hyperparameter optimization. The
main hyperparameter of significance to this study is the
maximum learning rate. The learning rate determines how much
the weights can update between epochs. An optimal learning rate
will train the model quickly and effectively. To determine this,
the model and dataset are used to interpret the best learning rate.
This is done by utilizing a very small learning rate and gradually
increasing the learning rate. While this happens, the model is
trained for increasing learning rate values. During this process,
it records the loss at each learning rate which can then be
interpreted.
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FIGURE 7: Loss vs Learning Rate for the MMOD damage
detection model.

The plot in Figure 7, shows a loss that remains high in the
beginning, indicating the model is updating weights minimally
between epochs. As the learning rate increases, loss begins to
decrease slightly before decreasing rapidly which signals that the
learning rate value is enabling the model to meaningfully update
weights between epochs. The orange marker signals where the
loss is minimum with respect to learning rate. The loss then
begins to increase at the largest learning rate values indicating
that the model weights are updated aggressively between epochs,
leading to model instability.

Each marker in Figure 7 represents different strategies for
selecting a learning rate with each strategy having its advantages
and tradeoffs. One marker to note on the plot is the valley marker
which takes the steepest slope roughly 2/3 through the longest
valley [10]. The minimum marker is denoted at the smallest
calculated loss. Selecting the minimum point as the maximum
learning rate would be the most stable, but it is also where the
gradient of the loss function is not changing which leads to
weights not being updated effectively. Instead, choosing the
valley learning rate was a more reasonable choice for this
problem as it was found to reduce the convergence time without
affecting model stability. Valley was chosen to train all models.
By implementing the following methods and knowledge listed
above, an efficient AI model is trainable.

3. RESULTS AND DISCUSSION

3.1 Training and Validation Results

To illustrate the benefits of the data augmentation
techniques applied in the previous section, two identical
ResNet18 models were trained on the same dataset with the same
random seed. The only difference being is that one model had
randomly applied data augmentation techniques when sampling
the training data while the other did not. Additionally, both
learning rates were chosen with the same methodology. All
parameters presented in the following are unitless.

For context, an epoch refers to a complete cycle through the
training set, updating the weights of the model after each batch.

The training loss measures how well the model is performing on
the training dataset by comparing the classification predictions
the model makes against the true labels of the dataset. The
validation loss is the performance against the validation set.
Additionally, datasets can be either balanced or unbalanced. The
difference between a balanced and unbalanced dataset is class
representation. Balanced datasets will have close to equal class
representation of each label while unbalanced datasets will have
disproportionate representation of one label over an another.

Number of Incorrect Predictions

Error Rate = (1)

Total Number of Predictions

Number of Correct Predictions
Accuracy = — (2)
Total Number of Predictions

Common classification metrics to evaluate model
performance include values such as error rate (1), accuracy (2),
and F1 score. The F1 score is analogous to accuracy for
unbalanced datasets. Acceptable thresholds for both F1 score and
accuracy are typically above 0.7 with models above 0.9 typically
deemed exceptional.

TABLE 1: Results and information regarding the trained MMOD
impact identification model with no data augmentation.

Enoch Training | Validation | Error Accurac F1
p Loss Loss Rate Y | Score
0 1.195 0.909 0.356 0.644 0.704

1 1.060 0.555 0.244 0.756 0.766
2 0.939 0.349 0.178 0.822 0.789
3 0.844 0.322 0.156 0.844 0.800

8 0.351 0.229 0.067 0.933 0.923

Table 1 showcases effective training of the model, but the
model is still underfitted since the training loss is much higher
than the validation loss after eight epochs.

TABLE 2: Results and information regarding the trained MMOD
impact identification model with data augmentation.

Epoch Training | Validation | Error Accura F1
poc Loss Loss Rate COUraCY 1 geore
0 1.379 1.020 0.467 0.533 0.588

1 1.039 0.688 0.356 0.644 0.579
2 0.790 0.360 0.133 0.867 0.824
3 0.603 0.267 0.156 0.844 0.788

8 0.162 0.090 0.044 0.956 0.947

Table 2 also exhibits some underfitting behavior as observed
in Table 1, but it is also showcasing the benefits previously
mentioned about data augmentation. Additionally, the accuracy
and F1 score was higher for the model trained with data



augmentation. The learning curves for both models can be seen
in Figure 8 and 9.
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FIGURE 8: Learning curve for MMOD damage detection Al
with no data augmentation.
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FIGURE 9: Learning curve for MMOD damage detection Al
with data augmentation.

The results in Figure 8 and 9, graphically show the change
in model performance as the number of epochs increases.
Noticeably, both the training and validation loss for the model
with data augmentation techniques applied converged to a lower
value than the model without data augmentation techniques. The
dataset utilized to train the following models was orders of
magnitude smaller than most traditional datasets, and yet, a error
rate of 4.4% was achieved when data augmentation was utilized.
This lends credibility to the original point that DL. models can be
trained off very limited datasets using partial trained weights to
initialize the learner.

When examining a batch of learner classification prediction
examples from the data augmentation model against the
validation data in Figure 10, it can be observed that the model
accurately classified MMOD damage at various distances while
handling different MMOD damage characteristics and materials.
Figure 10 also shows one of the validation images that was
labeled incorrectly by the model.

NO MMOD Damage
NO MMOD Damage

MMOD Damage
MMOD Damage

MMOD Damage
MMOD Damage

NO MMOD Damage
NO MMOD Damage

-

NO MMOD Damage
MMOD Damage

NO MMOD Damage
NO MMOD Damage

FIGURE 10: The topmost label above each image is the actual
label while the bottom most label is the model prediction.

Additionally, another performance insight can be obtained
by observing images where the trained model displayed the least
confidence or confidently postured incorrect predictions on the
validation dataset. This is useful since low probability correct
predictions are viewed as areas of improvement for the model.

Prediction/Actual/Loss/Probability

MMOD Damage /NO MMOD Damage / 1.20 /0.70 |MMOD Damage/NO MMOD Damage / 1.19 / 0.70

NO MMOD Damage /NO MMOD Damage / 0.54 / 0.58] MMOD Damage /MMOD Damage / 0.48 / 0.62

FIGURE 11: The worst predictions by performance made by the
model with data augmentation against the validation set.



Figure 11 exhibits a couple of patterns the trained model
struggled with. For instance, the MMOD impact identification
model misclassified the two top aluminum plates with non-clean
surfaces or other discolorations. The model classified these as
MMOD damage, yet it is discernable via human recognition that
the image does not display MMOD damage. One prediction on
why this occurred is that the model lacks sufficient training data
with images that have surface imperfections but no MMOD
damage.

3.2 Spacecraft Test Data Results

The dataset with 24 images of spacecraft surfaces was
utilized as a standalone set of data for testing. The MMOD
damage detection model that was trained with the data
augmentation techniques was tested on this dataset to see its
performance. Once a model has been trained, the architecture of
the model is frozen, and no further epochs are required to test the
model.

TABLE 3: Test dataset results for trained MMOD impact
identification model with data augmentation.

Validation Loss | Error Rate | Accuracy F1 Score
0.273 0.125 0.875 0.666

Table 3 showcases that the model still has room for
improvement, given the accuracy and F1 score. Particularly, the
F1 score is below 70% which is a common model threshold that
differentiates acceptable performance from unacceptable
performance. The accuracy being above 70% is less significant
since the test dataset is unbalanced. Model capability could be
supplemented once a larger model is trained or more flight
hardware imagery is included in the dataset.
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FIGURE 12: Confusion matrix for MMOD damage detection Al
with data augmentation.

MMOD Damage

A confusion matrix is a common way to visualize the
performance of a model against a test dataset. The main diagonal
of the confusion matrix are all the correct classifications with all
adjacent cells showing incorrect predictions. Insights such as
model bias and precision can viewed as well. Figure 12 shows
how the model classified much of the test dataset correctly but
did misclassify images with MMOD damage and no MMOD
damage. Expanding the training dataset to include more
spacecraft data is expected to enhance performance. The test
dataset provided to model could be manually classified to a
higher accuracy, but with future improvements, the model is
expected to reach acceptable classification rates at the benefit of
reduced labor hours. Specific metrics such as time metrics will
be included in future research.

3.3 Discussion and Future Research

Given a limited dataset of images showing MMOD damage
and non-damage, the model achieved a high prediction accuracy
against the validation set. Future efforts will focus on training
with a larger dataset, which is expected to further improve the
model generalization on unseen data. Additionally, there are
other residual network models with additional layers to the
neural network that can further increase the accuracy of
predictions at the expense of other parameters such as training
time.

Future research should explore the utilization of more
advance hardware to minimize the need for reducing the size of
images. The utilization of advanced hardware has both reduced
training times and increased model accuracy as possible
outcomes. Moreover, this becomes more paramount as the
training dataset size continues to increase.

Furthermore, increasing the complexity of the images
captured to assess MMOD damage is an important area of
exploration as well. Spacecraft surfaces can include rivets, solar
panels, guidance and navigation equipment, among other
components, all of which must be considered when identifying
MMOD damage. For the purposes of data collection, there is also
different types of MMOD damage that can be categorized into
additional distinct labels, instead of the initial binary that was set
forth in this paper.

Finally, the use of DL models to investigate the process of
predictive debris cloud formation due to hypervelocity impacts
may lead to data mining of new relationships in MMOD shield
performance, parameters, and types [11]. These new
relationships have yet to be discovered, similar to how the DL
model presented in this paper was able to learn features that
allowed it to distinguish images between the two categorizations
provided.

4. CONCLUSION

The renaissance of ANNs and the broader study of DL have
unlocked new possibilities of model creation, image analysis and
classification in addition to generative Al. Limited data can be
utilized to train advance models with high levels of accuracy
with minimal tuning while unlocking new possibilities of
predictive modeling and data analysis. The weaker model



performance on the spacecraft test dataset which was expected
and gives opportunity for improvement for possible future
research. The use of machine learning techniques increasing
areas of interest that may expand to other areas of research such
as predictive debris cloud generation and MMOD shield design
improvements.
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