
 
17th Hypervelocity Impact Symposium 

HVIS2024 
 September 9-13, 2024, Tsukuba, Japan 

 
 

HVIS2024-045 

 1  

THE APPLICATION OF ARTIFICIAL INTELLIGENCE AND DEEP LEARNING TO VISUALLY 
IDENTIFY MICROMETEOROID AND ORBITAL DEBRIS IMPACTS 

 
 

Cameron M. Collins1,∗ Dana M. Lear2, Kenton R. Fisher3 
 

1Jacobs-JETS II, NASA Johnson Space Center, Mail Code XI5, Houston, TX 77058, USA 
2 NASA, NASA Johnson Space Center, Mail Code XI5, Houston, TX 77058, USA 
3 NASA, NASA Johnson Space Center, Mail Code XI4, Houston, TX 77058, USA 

 
ABSTRACT 

Recent advancements in artificial intelligence (AI) have 
made machine learning (ML) techniques readily available for 
practical applications while using a fraction of time that was 
previously required. In particular, the use of deep learning (DL) 
models has the potential to assist in the identification of 
micrometeoroid and orbital debris (MMOD) damage. The ability 
to detect MMOD damage with AI models has the potential to 
improve the safety of human space flight by reducing the time 
required for damage identification via automated methods. To 
demonstrate this, a binary classification dataset of 226 images 
was utilized to train and validate a MMOD damage detection 
model using a residual network architecture. The benefits of data 
augmentation were consistent and improved performance as 
expected. For performance, the MMOD damage detection model 
achieved 95.6% accuracy on the validation set and generalized 
to an accuracy of 87.5% on a test dataset of spacecraft images 
with MMOD damage. With the use of deep learning algorithms, 
MMOD damage can be identified with high accuracy and 
provides a new possibility to identify of hypervelocity impacts. 

Keywords: Artificial Intelligence, Machine Learning, Deep 
Learning, Hypervelocity Impacts, Micrometeoroid, Orbital 
Debris, Pattern Recognition, Convolution Neural Network. 

NOMENCLATURE 
Complexity The size of the parameter space for a 

model; larger parameter spaces lead to 
more complex models. 

Dimensionality The number of features in the dataset. 
Hyperparameters Parameters set before training such as 

learning rate. 
Overfitting Models that perform poorly on unseen 

data but well on seen data. 
Parameter Space Range of possible values that define a 

particular model. 
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1. INTRODUCTION 
 The use of artificial intelligence (AI) and other machine 
learning (ML) algorithms to address complex problems has seen 
significant growth and garnered widespread public attention. 
Language models like generative pre-trained transformers (GPT) 
have made interactive AI more accessible than ever. These once 
niche topics are now prevalent in both the scientific community 
and the general public. The rapid advancements in these 
technologies continue to open new avenues for research and 
practical applications across various fields. 
 The AI revolution can be contributed to breakthroughs in 
deep learning (DL) techniques that occurred as early as 2018, 
combined with the availability of powerful computing hardware 
such as graphics processing units (GPUs) and tensor processing 
units (TPUs), along with advancements in data storage and 
collection. These factors made training and deploying AI models 
more feasible by eliminating previous barriers such as data 
accessibility and training efficiency.  
 These leaps in technological advancement have presented 
unique opportunities to those with niche data sources to train 
models with capabilities once thought not feasible. For example, 
the application of AI has improved the detection of breast cancer 
by 20% compared to traditional detection methods, according to 
Norver et al [1]. Similarly, AI has the capability to integrate into 
and improve current micrometeoroid and orbital debris 
(MMOD) analyses. The need to locate and characterize 
spacecraft MMOD impact damage is critical not only for 
categorizing the MMOD environments but also ensuring 
spacecraft integrity through visual inspection. This process is 
vital to ensure no damage to the spacecraft has occurred which 
could lead to the loss of crew, vehicle, and/or mission [2], [3].  
 Traditionally, MMOD damage identification has been 
completed by having a crew member manually take photographs 
of the spacecraft through a spacecraft’s window using hand-held 
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camera or ground personnel directing externally mounted 
cameras to examine the vehicle. The photographs are then 
transmitted back to Earth for visual analysis. This method of 
MMOD damage inspection works well and has been used on 
various spacecraft, including the Space Shuttle and the 
International Space Station (ISS) [3].  
 One of the drawbacks of the current method is the speed and 
the accuracy in identifying MMOD impacts, which could be 
improved. It is essential to note that the process of detecting 
MMOD impacts in images can be both difficult and time 
consuming. The visual appearance of an MMOD impact can 
change drastically with lighting conditions, size of impact, depth 
of penetrations, material types, surface waviness, fabric 
coverings, camera type and lens, image distance, spacecraft 
orientation, and multiple other factors. Currently, this process 
involves a team of highly experienced specialists in both the 
fields of image analysis and MMOD impacts. The use of 
machine learning models is not new to the field of MMOD 
impact protection with prior research being conducted on use of 
machine learning models for ballistic limit equation (BLE) 
development which are utilized in risk assessments for 
spacecraft [4].  
 Thus, it was deemed imperative to test and observe whether 
AI could enhance critical capabilities, such as visually 
identifying micrometeoroid and orbital debris impact damage on 
spacecraft from images of the spacecraft exterior. This paper 
documents the initial research, training and performance 
evaluation of an AI model designed to identify both actual and 
laboratory tested MMOD impacts and perforations on exposed 
flat surfaces. While this initial goal seems modest, training such 
a model would have taken years of development with teams of 
individuals just ten years ago. The long-term goal is to 
continually increase the complexity and use-cases of the DL 
model being trained, with the aim of expanding its capabilities 
to identify MMOD impacts on all types of spacecraft surfaces. 
 
2. THEORY, METHODS, AND APPROACH 
 
2.1 Deep Learning Models 

Artificial neural networks (ANNs) are a cornerstone of deep 
learning, a subset of machine learning. The foundational 
concepts of ANNs gained significant prominence in the 1980s 
with the introduction of backpropagation techniques [5]. These 
techniques were novel because it made the training process more 
efficient and systematic by enabling the creation of fully 
differentiable ANNs through innovative network architectures. 
The advent of backpropagation allowed for the effective and 
systematic adjustment of weights to minimize error. 

 Over time, the artificial neural network was improved by 
machine learners, mathematicians, and statisticians. This 
allowed the methodology of the approach to stabilized [6]. 
However, ANNs shortly fell out of favor with the adoption of 
other ML methods such as support vector machines (SVMs), 
boosting, and random forests. Unlike artificial neural networks, 
methods like SVMs, boosting, and random forests, had smaller 
parameter spaces, resulting in reduced model complexities and 

easier model generalization. Benefits were further demonstrated 
in cases of reduced data. Later, in the 2010s, artificial neural 
networks resurfaced with major advancements in image and 
video classification, in addition to speech and text modeling [7]. 
 

 
FIGURE 1: Simplified visual representation of a forward feeding 

artificial neural network model with three total layers, receiving an input 
vector of size n. 

 
A simple artificial neural network, such as the network in 

Figure 1, will take a sample of data vectors, such as a flattened 
image array, as an input in the input layer. Subsequently, the 
hidden layer of the network then applies nonlinear 
transformations to the linear combinations of the input layer’s 
components. In this process, the hidden layer updates weights by 
minimizing the backpropagated loss from the output layer to the 
hidden layer with an optimization algorithm such as gradient 
descent. After an artificial neural network has been trained, the 
output layer is a model using the hidden layer to predict results 
based on a given input. This complexity can be scaled and tuned 
by changing the number of hidden layers, the size of the dataset, 
the non-linear transformations utilized, and the number of hidden 
nodes per layer. 

While there are several types of artificial neural networks, 
for the purposes of MMOD damage identification, a convolution 
neural network (CNN) was the learner utilized due to its 
established accuracy for image classification [7]. Specifically, a 
residual network (ResNet) was chosen since it efficiently 
addresses issues with gradient descent that occur in deep 
forward-feeding models [8]. In particular, the ResNet18 learner 
architecture was used for the model with the weights partially 
trained on the ImageNet dataset [9]. A simpler CNN model was 
considered but was not pursued due to computational constraints 
required to search for optimal hyperparameters and model 
architectures.  
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2.2 Dataset Description 
The dataset used for all subsequent experiments had a 

distribution of both spacecraft surfaces and images from 
hypervelocity impact testing. All images in the dataset were 
classified beforehand into two categories: “MMOD Damage” 
and “No MMOD Damage”. All images were manually classified 
with the “MMOD Damage” classification including 
characteristics such as cratering, perforations, cracking, etc. 
These categories, which are commonly referred to as labels, are 
used to train and test the accuracy of the AI model. 80% of the 
dataset was used for model training while the remaining 20% 
was utilized as the validation set.  

The dataset involved 130 images with MMOD damage and 
96 images without MMOD damage, leading to a 58% and 42% 
split, respectively. Each image was initially 1280 pixels by 720 
pixels before resizing. As for camera angle, 74% of the images 
were categorized as “Normal” to the surface, with the remaining 
26% being at some other off normal angle. Camera distance 
relative to image location was another identifiable feature 
present in the dataset. Explicit camera distance measurements 
were not available for all images located in the dataset. To 
substitute the absence of quantitative measurements, qualitative 
descriptions of “Close”, “Medium Distance”, and “Far” were 
utilized for insight which resulted in a distribution of 32%, 44%, 
and 23%, respectively after manual classification. 

 

  
FIGURE 2: Example images in the dataset are show in the figure 

with characteristics described. 
 
Examples of describable characteristics can be seen in 

Figure 2. One noticeable qualitative measurement is surface stain 
which is observable in example 2 in Figure 2. The more 
discolored the surface appeared, the higher the category bin was 
assigned to the image with “None” being labeled for images with 
no surface stain and “High” being assigned to images with 

significant amounts of surface discoloration. Additionally, the 
dataset can be broken up further by material representation of the 
inspected surface, as observed in Figure 3. 
 

 
FIGURE 3: Primary material in each image of the dataset. 
 
A plurality of images in the dataset were aluminum surfaces 

with other flight hardware materials present such as various 
ceramic fabrics and thermal protective shielding (TPS). Most 
images in the dataset (85%) appeared rigid with another 13% 
having a “wavy” surface appearance. Other notable visual 
features such as surface stain and shadowing had distributions 
present in the dataset as well, which is seen in Figure 4. 
 

 
FIGURE 4: Shadowing and surface stain present in the dataset. 

 
The dataset was representative of common spacecraft 

materials and future datasets will include other complexities. 
Due to computational limitations, this smaller subset of data was 
utilized. A much larger dataset will be utilized for future analysis 
and model training once computational resources are available. 
 
2.3 Training and Testing Data 

Since the ResNet18 model is accessible in PyTorch, 
equipped with pretrained weights from ImageNet, meaningful 
results were produced with 181 training images and 45 validation 
images. Previously, the limited data set would not be feasible to 
train a convolution neural network model, but recent 
advancements in DL algorithms, computing hardware, and data 
storage have allowed image models with preexisting weights to 
be finely tuned to domain-specific dataset. 

 Additionally, a second dataset was utilized for testing the 
model and was separate from the training and validation sets. 
The dataset consisted of 24 images of spacecrafts with 20 of 
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them including MMOD damage and the other 4 not including 
MMOD damage. Images from this dataset are currently not 
available in the public domain and will not be featured in this 
paper due to export control regulation. However, model accuracy 
against the test dataset will be included to evaluate performance.  
 
2.4 Data Augmentation and Preprocessing 

For preprocessing, all images were resized to 400 pixels on 
the longest side. The resizing step ensured consistency in image 
dimensions across the dataset, which is crucial for uniform input 
into the model. This image sizing was found to be optimal after 
extensive tuning. Additionally, reducing the dimensionality of 
the images decreased the number of features the model needed 
to process, resulting in improved efficiency. This not only 
reduced the training time but also minimized memory usage, 
facilitating faster and more resource-efficient model training. 
Additionally, all whitespace present in the initial dataset was 
removed as well. 

To increase the size and variability of the dataset, data 
augmentation was utilized to enhance generalization and reduce 
both underfitting and overfitting. Augmentations were randomly 
applied to each image during model training. This includes 
geometric transformations such as rotations, scaling, flipping, 
and cropping. Color augmentations such as brightness 
adjustments were utilized, in addition to other techniques such 
as shearing, perspective transformations, and noise injection.  

The motivation behind the random application of these 
techniques on the dataset is to be representative of an ideal 
natural distribution of sampled data. This is due to the fact that 
not all images are taken at the same angle, aspect ratio, or size. 
Thus, data augmentation involves distorting the image in natural 
ways where the image is still recognizable so that human 
recognition remains unaffected [6]. An example of this can be 
seen in Figure 5. 

 

 
FIGURE 5: The visual difference data augmentation causes on 

the dataset. 
 

For the model developed in this paper, data augmentation 
techniques had a 100% chance of being applied to each piece of 
data in the dataset, but the combination of techniques applied 
was randomly chosen. This approach expands the training set 
while reducing the likelihood of overfitting by utilizing data 
transformations. Lastly, the original dataset remains intact with 
augmentation only being performed when the data is sampled 
from the dataset. 

 
2.5 Software and Coding 

The MMOD impact identification model was built in Python 
version 3.9.19 using both the open source PyTorch library and 
the FastAI library [9], [10]. The FastAI library acts as a wrapper 
for the PyTorch library by increasing the ease of use through the 
application of data augmentation techniques and the 
visualization of results using built-in functions. An example 
batch of training images can be seen in Figure 6, after data 
augmentation have been applied to the sampled data.  

 

 
FIGURE 6: Four training images with random data 

augmentation applied and the proper classification of each image 
located above the image. 

 
Afterward, the data set is loaded in a data loaders object 

which is used for training and hyperparameter optimization. The 
main hyperparameter of significance to this study is the 
maximum learning rate. The learning rate determines how much 
the weights can update between epochs. An optimal learning rate 
will train the model quickly and effectively. To determine this, 
the model and dataset are used to interpret the best learning rate. 
This is done by utilizing a very small learning rate and gradually 
increasing the learning rate. While this happens, the model is 
trained for increasing learning rate values. During this process, 
it records the loss at each learning rate which can then be 
interpreted.  
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FIGURE 7: Loss vs Learning Rate for the MMOD damage 

detection model.  
 
The plot in Figure 7, shows a loss that remains high in the 

beginning, indicating the model is updating weights minimally 
between epochs. As the learning rate increases, loss begins to 
decrease slightly before decreasing rapidly which signals that the 
learning rate value is enabling the model to meaningfully update 
weights between epochs. The orange marker signals where the 
loss is minimum with respect to learning rate. The loss then 
begins to increase at the largest learning rate values indicating 
that the model weights are updated aggressively between epochs, 
leading to model instability.  

Each marker in Figure 7 represents different strategies for 
selecting a learning rate with each strategy having its advantages 
and tradeoffs. One marker to note on the plot is the valley marker 
which takes the steepest slope roughly 2/3 through the longest 
valley [10]. The minimum marker is denoted at the smallest 
calculated loss. Selecting the minimum point as the maximum 
learning rate would be the most stable, but it is also where the 
gradient of the loss function is not changing which leads to 
weights not being updated effectively. Instead, choosing the 
valley learning rate was a more reasonable choice for this 
problem as it was found to reduce the convergence time without 
affecting model stability. Valley was chosen to train all models. 
By implementing the following methods and knowledge listed 
above, an efficient AI model is trainable. 

 
3. RESULTS AND DISCUSSION 
 
3.1 Training and Validation Results 

To illustrate the benefits of the data augmentation 
techniques applied in the previous section, two identical 
ResNet18 models were trained on the same dataset with the same 
random seed. The only difference being is that one model had 
randomly applied data augmentation techniques when sampling 
the training data while the other did not. Additionally, both 
learning rates were chosen with the same methodology. All 
parameters presented in the following are unitless.  

For context, an epoch refers to a complete cycle through the 
training set, updating the weights of the model after each batch. 

The training loss measures how well the model is performing on 
the training dataset by comparing the classification predictions 
the model makes against the true labels of the dataset. The 
validation loss is the performance against the validation set. 
Additionally, datasets can be either balanced or unbalanced. The 
difference between a balanced and unbalanced dataset is class 
representation. Balanced datasets will have close to equal class 
representation of each label while unbalanced datasets will have 
disproportionate representation of one label over an another. 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

    (1) 
 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

     (2) 
 

Common classification metrics to evaluate model 
performance include values such as error rate (1), accuracy (2), 
and F1 score. The F1 score is analogous to accuracy for 
unbalanced datasets. Acceptable thresholds for both F1 score and 
accuracy are typically above 0.7 with models above 0.9 typically 
deemed exceptional. 

 
TABLE 1: Results and information regarding the trained MMOD 

impact identification model with no data augmentation. 
 

Epoch Training 
Loss 

Validation 
Loss 

Error 
Rate Accuracy F1 

Score 
0 1.195 0.909 0.356 0.644 0.704 
1 1.060 0.555 0.244 0.756 0.766 
2 0.939 0.349 0.178 0.822 0.789 
3 0.844 0.322 0.156 0.844 0.800 

… … … … … … 
8 0.351 0.229 0.067 0.933 0.923 
 
Table 1 showcases effective training of the model, but the 

model is still underfitted since the training loss is much higher 
than the validation loss after eight epochs. 

 
TABLE 2: Results and information regarding the trained MMOD 

impact identification model with data augmentation. 
 

Epoch Training 
Loss 

Validation 
Loss 

Error 
Rate Accuracy F1 

Score 
0 1.379 1.020 0.467 0.533 0.588 
1 1.039 0.688 0.356 0.644 0.579 
2 0.790 0.360 0.133 0.867 0.824 
3 0.603 0.267 0.156 0.844 0.788 

… … … … … … 
8 0.162 0.090 0.044 0.956 0.947 

 
Table 2 also exhibits some underfitting behavior as observed 

in Table 1, but it is also showcasing the benefits previously 
mentioned about data augmentation. Additionally, the accuracy 
and F1 score was higher for the model trained with data 
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augmentation. The learning curves for both models can be seen 
in Figure 8 and 9. 

 

 
FIGURE 8: Learning curve for MMOD damage detection AI 

with no data augmentation.  
 

 
FIGURE 9: Learning curve for MMOD damage detection AI 

with data augmentation.  
  
The results in Figure 8 and 9, graphically show the change 

in model performance as the number of epochs increases. 
Noticeably, both the training and validation loss for the model 
with data augmentation techniques applied converged to a lower 
value than the model without data augmentation techniques. The 
dataset utilized to train the following models was orders of 
magnitude smaller than most traditional datasets, and yet, a error 
rate of 4.4% was achieved when data augmentation was utilized. 
This lends credibility to the original point that DL models can be 
trained off very limited datasets using partial trained weights to 
initialize the learner. 

When examining a batch of learner classification prediction 
examples from the data augmentation model against the 
validation data in Figure 10, it can be observed that the model 
accurately classified MMOD damage at various distances while 
handling different MMOD damage characteristics and materials. 
Figure 10 also shows one of the validation images that was 
labeled incorrectly by the model. 

 

 
FIGURE 10: The topmost label above each image is the actual 

label while the bottom most label is the model prediction. 
 
Additionally, another performance insight can be obtained 

by observing images where the trained model displayed the least 
confidence or confidently postured incorrect predictions on the 
validation dataset. This is useful since low probability correct 
predictions are viewed as areas of improvement for the model. 

 

 
FIGURE 11: The worst predictions by performance made by the 

model with data augmentation against the validation set. 
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Figure 11 exhibits a couple of patterns the trained model 
struggled with. For instance, the MMOD impact identification 
model misclassified the two top aluminum plates with non-clean 
surfaces or other discolorations. The model classified these as 
MMOD damage, yet it is discernable via human recognition that 
the image does not display MMOD damage. One prediction on 
why this occurred is that the model lacks sufficient training data 
with images that have surface imperfections but no MMOD 
damage.  

 
3.2 Spacecraft Test Data Results 

The dataset with 24 images of spacecraft surfaces was 
utilized as a standalone set of data for testing. The MMOD 
damage detection model that was trained with the data 
augmentation techniques was tested on this dataset to see its 
performance. Once a model has been trained, the architecture of 
the model is frozen, and no further epochs are required to test the 
model.  

 
TABLE 3: Test dataset results for trained MMOD impact 

identification model with data augmentation. 
 

Validation Loss Error Rate Accuracy F1 Score 
0.273 0.125 0.875 0.666 

  
Table 3 showcases that the model still has room for 

improvement, given the accuracy and F1 score. Particularly, the 
F1 score is below 70% which is a common model threshold that 
differentiates acceptable performance from unacceptable 
performance. The accuracy being above 70% is less significant 
since the test dataset is unbalanced. Model capability could be 
supplemented once a larger model is trained or more flight 
hardware imagery is included in the dataset. 

 

 
FIGURE 12: Confusion matrix for MMOD damage detection AI 

with data augmentation.  

A confusion matrix is a common way to visualize the 
performance of a model against a test dataset. The main diagonal 
of the confusion matrix are all the correct classifications with all 
adjacent cells showing incorrect predictions. Insights such as 
model bias and precision can viewed as well. Figure 12 shows 
how the model classified much of the test dataset correctly but 
did misclassify images with MMOD damage and no MMOD 
damage. Expanding the training dataset to include more 
spacecraft data is expected to enhance performance. The test 
dataset provided to model could be manually classified to a 
higher accuracy, but with future improvements, the model is 
expected to reach acceptable classification rates at the benefit of 
reduced labor hours. Specific metrics such as time metrics will 
be included in future research. 

 
3.3 Discussion and Future Research 

Given a limited dataset of images showing MMOD damage 
and non-damage, the model achieved a high prediction accuracy 
against the validation set. Future efforts will focus on training 
with a larger dataset, which is expected to further improve the 
model generalization on unseen data. Additionally, there are 
other residual network models with additional layers to the 
neural network that can further increase the accuracy of 
predictions at the expense of other parameters such as training 
time. 

Future research should explore the utilization of more 
advance hardware to minimize the need for reducing the size of 
images. The utilization of advanced hardware has both reduced 
training times and increased model accuracy as possible 
outcomes. Moreover, this becomes more paramount as the 
training dataset size continues to increase. 

Furthermore, increasing the complexity of the images 
captured to assess MMOD damage is an important area of 
exploration as well. Spacecraft surfaces can include rivets, solar 
panels, guidance and navigation equipment, among other 
components, all of which must be considered when identifying 
MMOD damage. For the purposes of data collection, there is also 
different types of MMOD damage that can be categorized into 
additional distinct labels, instead of the initial binary that was set 
forth in this paper. 

Finally, the use of DL models to investigate the process of 
predictive debris cloud formation due to hypervelocity impacts 
may lead to data mining of new relationships in MMOD shield 
performance, parameters, and types [11]. These new 
relationships have yet to be discovered, similar to how the DL 
model presented in this paper was able to learn features that 
allowed it to distinguish images between the two categorizations 
provided. 

 

4. CONCLUSION 
The renaissance of ANNs and the broader study of DL have 

unlocked new possibilities of model creation, image analysis and 
classification in addition to generative AI. Limited data can be 
utilized to train advance models with high levels of accuracy 
with minimal tuning while unlocking new possibilities of 
predictive modeling and data analysis. The weaker model 
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performance on the spacecraft test dataset which was expected 
and gives opportunity for improvement for possible future 
research. The use of machine learning techniques increasing 
areas of interest that may expand to other areas of research such 
as predictive debris cloud generation and MMOD shield design 
improvements. 
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