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1. Abstract  
Asheville, North Carolina experiences the urban heat island effect, where temperatures in the city are higher 
than in surrounding rural areas. This effect intensifies with increased urbanization and less vegetative cover. 
Asheville’s urban heat island was exacerbated by population increases and tree cover decline, escalating the 
need for heat mitigation. We partnered with the City of Asheville’s Sustainability Department and Asheville 
GreenWorks whose actions prioritize sustainable city planning and equitable climate resilience. Using NASA 
Earth observations and ancillary datasets we spatially mapped urban heat, heat vulnerability, and cooling and 
adaptive capacity from 2019-2023. To map urban heat, we used Landsat 8 and 9 Operational Land Imager 
and Thermal Infrared Sensor for land surface temperature and albedo data and the ECOsystem Spaceborne 
Thermal Radiometer Experiment on Space Station for evapotranspiration data. We assessed heat vulnerability 
using the urban heat data and the Centers for Disease Control and Prevention’s Social Vulnerability Index. 
To evaluate cooling and adaptive capacity we used the InVEST Urban Cooling Model, integrating our heat 
vulnerability analysis with land use and cover data from Sentinel-1 Synthetic Aperture Radar and Sentinel-2 
Multispectral Instrument. Our results revealed distinct spatial patterns of urban heat, heat vulnerability, and 
cooling and adaptive capacity in Asheville with downtown as the focal hotspot and an outward decreasing 
radial pattern. These findings highlight targeted need for interventions to reduce heat impacts, address 
environmental injustices, and enhance climate resilience. Our project provided research to local organizations 
that can be used for heat mitigation in the greater Asheville area. 

 

Key Terms 
albedo, Earth observations, evapotranspiration, heat mitigation, heat vulnerability, land surface temperature 
(LST), urban heat island (UHI) 
 

2. Introduction 
2.1 Background Information 
Urban heat islands (UHIs) are urbanized areas that experience higher temperatures than adjacent rural areas 
(Environmental Protection Agency, n.d.). Variation between urban and rural land surface temperatures (LST) 
is caused by three factors: minimal vegetation, anthropogenic activities, and urban design (Nuruzzaman, 2015; 
Stache et al., 2022). Evapotranspiration from vegetation and soil reduces temperatures; therefore, 
temperatures rise in cities with inadequate vegetation (Qiu et al., 2013). Heat increases in urban areas due to 
anthropogenic activities including transport, industry, and air conditioning (Tong et al., 2021). City design 
augments heat by blocking wind flow and trapping reemitted insolation (Phelan et al., 2015). These factors 
create UHIs that experience 0.5°C to 4°C higher daytime temperatures compared to surrounding rural areas 
(EPA, n.d.). 
 
UHIs result in copious environmental, health, and economic consequences. Environmentally, temperatures 
rise, water quality and quantity decline, and air pollution increases (Phelan et al., 2015), threatening human 
health by escalating heat stress, heat-related illnesses, and morbidity (Tong et al., 2021). Although these 
adverse effects occur ubiquitously across UHIs, severity is uneven. Hotspots are areas where severe LST is 
compounded by low albedo and the lack of evapotranspiration (Tong et al., 2021).   
 
Socially vulnerable populations are significantly more likely to live in hotspots; these are heat-vulnerable 
communities (Mitchell & Chakraborty, 2015; Tong et al., 2021). Historical discriminatory government and 
urban planning practices, including redlining, led to the spatial correlation between social vulnerability and 
heat resulting in neighborhoods lacking vegetation or heat-resistant infrastructure (Swope et al., 2022). In 
UHI hot spots, heat-vulnerable communities have high heat exposure, limited capacity to adapt to high 
temperatures, and notable heat-related health risks caused by socioeconomic and demographic factors (Reid 
et al., 2009; Bao et al., 2015; Shahmohamadia et al., 2015).  
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2.2 Study Area and Period 
Located in western North Carolina, Asheville has an area of 117.2 km (Figure 1) and a population of 95,056 as 
of 2023 (U.S. Census Bureau, n.d.). Asheville’s population has increased over 40% in the last 35 years and tree 
cover has declined by an estimated 6.4% since 2008, indicating a loss in Asheville’s cooling ability (U.S. 
Census Bureau, n.d.; The City of Asheville, 2019). Increased population, reduced tree cover, infrastructure 
expansion, and rising temperatures have increased stress on vulnerable communities, making Asheville an apt 
study area. 

 

 
Figure 1. Map of Asheville, North Carolina 

 
2.3 Project Partners & Objectives 
We partnered with Asheville GreenWorks (GreenWorks) and the City of Asheville (CoA) Sustainability 
Department to carry out the project. GreenWorks is committed to building equitable climate resiliency in 
Asheville through planting trees and other initiatives (Asheville GreenWorks, 2022). On July 24, 2023, the 
projected hottest day of 2023, GreenWorks mapped the UHI effect across Buncombe County, NC 
neighborhoods supported by National Oceanic and Atmospheric Administration (NOAA) to identify 
neighborhoods most in need of tree planting.  
 
The City of Asheville (CoA) is committed to implementing sustainable practices and city design, focusing on 
supporting vulnerable communities (The City of Asheville, 2020). To go about this, the CoA instigated its 
Climate Justice Initiative (The City of Asheville, n.d.). As part of this initiative, the CoA collaborated with 
Black, Indigenous, and People of Color (BIPOC) community leaders created the Climate Justice Index and 
the Asheville Climate Justice Map (The City of Asheville, n.d.-a), which includes data collected by the 2019 
NASA DEVELOP Asheville Urban Development I team (AUD1). The CoA is also building an Urban Forest 
Master Plan, including heat mitigation strategies for climate resilience, such as strategic tree planting (The City 
of Asheville Urban Forestry Commission, 2023). 
 
The AUD1 project mapped Asheville’s LST change between 1984 and 2018, tree cover, and two 
socioeconomic factors influencing social vulnerability (Gray et al., 2019). We expanded upon the AUD1 
project, mapping urban heat to support cooling initiatives in Asheville from 2019 to 2023. Our objectives 
were to investigate the impacts of UHIs based on environmental and social vulnerability data. We determined 
the feasibility of using remote sensing to identify areas for potential heat mitigation. We produced an urban 
heat map to analyze hot spots utilizing LST, evapotranspiration, and albedo data from Earth observations. 
Since the AUD1 team mapped tree cover, we used evapotranspiration to indirectly indicate vegetation, 
expanding the research scope (Moss et al., 2019). We also evaluated the spatial correlation between hot spots 
and social vulnerability by combining the Centers for Disease Control and Prevention (CDC) social 
vulnerability index (SVI) with the urban heat map, creating a heat vulnerability map (Center for Disease 
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Control, n.d.). Finally, we applied the InVEST Urban City Cooling Model to the heat vulnerability map to 
produce a UHI mitigation and adaptation measures map (Stanford University, n.d.). These maps informed the 
heat mitigation efforts of the CoA and GreenWorks. Potential heat mitigation efforts include tree planting 
and alternative cooling methods such as cooling pavements and green and white roofs (Phelan et al., 2015; 
Knight et al 2021). The heat vulnerability map amended the Asheville Climate Justice Index and updated the 
Asheville Climate Justice Map with the most current data, up to 2023. 
 
3. Methodology 
3.1 Data Acquisition  
Table 1 
Satellite Platforms and Sensors Used for Data Acquisition and their Parameters and Use 

Platform and Sensors Parameter(s) Use 

Landsat 8 

Operational Land Imager (OLI) and 
Thermal Infrared Sensor (TIRS) 

Land Surface Temperature and  

Albedo 

We used Landsat 8 imagery to 
measure LST and albedo for the 
warm months (May 1st to 
September 30th) over the study 
period 2019-2023. 

Landsat 9 

Operational Land Imager 2 (OLI-2) 
and Thermal Infrared Sensor 2 
(TIRS-2) 

Land Surface Temperature and  

Albedo 

 

We used Landsat 9 imagery to 
measure LST and albedo for the 
warm months (May 1st to 
September 30th) of 2022 and 
2023. 

ISS   
ECOsystem Spaceborne Thermal 
Radiometer Experiment on Space 
Station (ECOSTRESS)   

 

Evapotranspiration Level 3 data was used to create a 
median composite of 
evapotranspiration for the warm 
months (May 1st to September 
30th) from 2019 to 2022. 

Sentinel-1 

Synthetic Aperture Radar at C-band 
frequencies (C-SAR) 

Land Use Land Cover We used Sentinel-1 data through 
the ESA WorldCover Land Use 
Land Cover 2021 product. 

Sentinel-2 

Multispectral Instrument (MSI) 

Land Use Land Cover We used Sentinel-2 data through 
the ESA WorldCover Land Use 
Land Cover 2021 product. 

 
3.1.1 Land Surface Temperature and Albedo Data Sources  
Our team acquired Landsat 8 (Level 2, Collection 2, Tier 1) and Landsat 9 (Level 2, Collection 2, Tier 1) data 
to calculate land surface temperature and albedo data in Google Earth Engine (GEE) (U.S. Geological 
Survey, 2020). Landsat 8 and 9 satellites carry the Operational Land Imager (OLI and OLI-2, respectively) 
and Thermal Infrared Sensor (TIRS and TIRS-2, respectively) instruments. We utilized Landsat 8 imagery to 
measure LST and albedo over the study period 2019- 2023, incorporating Landsat 9 for 2022 and 2023, to 
include data following its deployment in 2021. For optimal analysis of the Asheville UHI, our team filtered 
both collections to include data for only the warm months: May 1st to September 30th. Both Landsat 8 and 9 
have a grid spacing of 30x30m, making them suitable sources for detailed LST and albedo data (Table 1). It is 
important to note that the intrinsic spatial resolution of TIRS and TIRS-2 sensors is only 100x100m. The 
TIRS and TIRS-2 products are actually “oversampled” and gridded at 30x30m to make them easily 
compatible with OLI and OLI-2 observations. 
 
3.1.2 Evapotranspiration Data Sources 

Our team retrieved ECOSTRESS (Hook & Fisher, 2019) evapotranspiration data (PT-JPL Daily L3 Global 
70m) from the Land Processes Distributed Active Archive Center through the Application for Extracting and 
Exploring Analysis Ready Samples (AppEEARS) (AppEEARS Team, 2024). ECOSTRESS is equipped with 
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the Prototype Hyperspectral Infrared Imager Thermal Infrared Radiometer (PHyTIR) sensor. The level three 
data was available up to February of 2023, so a median composite was created for the warm months from 
2019 to 2022. Analyzing Asheville’s spatial (rather than temporal) evapotranspiration trends was a project 
goal, therefore missing 2023 data was not a hindrance (Table 1).  

 
3.1.3 Social Vulnerability Data Source 
We obtained data on social vulnerability through the CDC and the Agency for Toxic Substances and Disease 
Registry (ATSDR) SVI, utilizing the latest available U.S. Census Bureau data from 2022 (Center for Disease 
Control and Prevention, n.d.). We used the CDC/ASTDR SVI because the CoA used this index in the 
existing Climate Justice Map, and it is a standard national measure of social vulnerability. The SVI includes 
four main themes: socioeconomic status, household characteristics, racial and ethnic minority status, and 
housing type and transportation (Center for Disease Control and Prevention, n.d.). Each component 
encompasses variables to comprehensively delineate populations' vulnerable demographic composition, 
measured as a percentage, at the census tract scale (Center for Disease Control and Prevention, n.d.). First, 
socioeconomic status encompasses demographic data on the percentage of individuals below 150% poverty, 
unemployed, burdened with housing costs, with no high school diploma, and/or no health insurance. Second, 
household characteristics include those aged 65 and older, aged 17 & younger, a civilian with a disability, 
single-parent households, and/or with English language proficiency. Third, racial and ethnic minority status 
encompasses individuals who are Hispanic or Latino (of any race), Black and African American, American 
Indian & Alaska Native, Asian, Native Hawaiian and other Pacific Islander, two or more races, and/or other 
races. The fourth component, housing type and transportation encompasses the percentage of the population 
residing in multi-unit structures, mobile homes, in crowding, with no vehicle, and/or living in group quarters.  
 
3.1.4 Land Use and Cover Data Sources 
We obtained land use and cover (LULC) data from the European Space Agency (ESA) WorldCover project, 
containing modified Copernicus Sentinel-1 and Sentinel-2 data (from the year 2021) processed by the ESA 
WorldCover consortium (Zanaga, et al., 2021). The LULC data was at 10x10m resolution and included six 
land cover classes for our defined study area: tree cover, grassland, cropland, built-up, sparse vegetation, and 
permanent water bodies (ordered from most to least prevalent). The canopy cover data was provided by the 
City of Asheville’s Sustainability Department (City of Asheville, 2018). The canopy cover data was for the 
years 2008- 2018 (Table 1).   
 
3.2 Data Processing 
3.2.1 Land Surface Temperature Data Processing 
We processed the LST data, utilizing the UHEAT Urban Development PUP Spring 2022 team’s Land 
Surface Temperature Heat Script from the Urban Heat Island Toolkit in the NASA DEVELOP Google 
Earth Engine 5.3.3 (GEE) repository as a template (Agrawal, et al., 2022). First, as per the script, the 
parameter limits for temperature were set from 10-40°C, which edited the LST data display. This range was 
chosen because median summer temperatures in Western NC do not fall below 10°C or rise above 40°C. We 
used median instead of maximum values to more accurately represent the typical condition of warm month 
temperatures. Median values are also less susceptible to the impact of outliers than mean values. Second, we 
spatially defined the study area by setting the coordinates and geometry for Asheville, NC (35.3951493 - 
35.6786576°N, 82.4262664 - 82.6766268°W). Calling eight image collections, six from Landsat 8 covering 
2019-2023 and two from Landsat 9 for 2022 and 2023, established the Landsat surface temperature 
collection. These eight image collections were merged into one layer. We then used image pre-processing 
functions to convert the data from Kelvin to Celsius, applied a mask to remove cloudy pixels, and applied the 
mosaic-by-date function. The mosaic function created a single image from the image series captured over the 
defined period from 2019-2023. Adding a temperature palette allowed for LST visualization. Then, the date 
mosaic was set to visualize pixels representing the median LST value for each 30x30m area. The result was a 
visualization in GEE of the greater Asheville area showing median LST from 2019 to 2023 using graduated 
color symbology. The LST code visualization was exported into Google Drive as a TIFF file.   
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From the TIFF file, raster band ST_B10, was uploaded into ArcGIS Pro 3.1.2 for further processing. The 
following tools were used to create an attribute table and, ultimately, a vector from the raster. The raster’s 
float numbers were converted to integers as a preliminary step to create an attribute table. To do this, we used 
the Raster Calculator tool to multiply the raster by 100,000 and applied the Int tool to convert the raster data 
into integers. For reference, the Int tool drops the numbers after the decimal point so multiplying those 
values by 100,000 helps maintain their precision. Then, to create the new attribute table, we used the Build 
Raster Attribute Table tool. At this point, the raster could be converted to a vector. We used the Raster to 
Polygon tool, without selecting the Simplify Polygons setting, to convert the raster dataset into a vector or 
polygon dataset. Using a vector dataset allows for easier data analysis with other vector datasets such as data 
from the U.S. Census. After creating the LST vector dataset, the values that were converted to integers were 
reconverted to floats by transcribing them into a new field with a double type, or float type, naming it Celsius, 
and dividing it by 100,000. Finally, we employed the Spatial Join tool between the LST vector dataset, and the 
census block groups to calculate the mean LST value per Census Block Group.  The result was a choropleth 
map of Asheville displaying census block groups’ mean LST value for 2019- 2023.   
 
3.2.2 Albedo Data Processing 
Utilizing the GEE script from 3.2.1 as a template, we modified the script to process albedo data, rather than 
LST. As done to process the LST data, we defined our study area as Asheville, NC and called in 8 image 
collection datasets from Landsat 8 and 9. We then calculated albedo using OLI bands 1 (Coastal/Aerosol), 3 
(Green), 4 (Red), 5 (Near Infrared), and 7 (Short Wave Infrared (SWIR) – 2) with the following equation 
(Equation 1; Yale University, n.d.). Each variable represents the associated band. For example, 0.130 x b3 
means 0.130 times the value of band 3 for that pixel.  

 

𝐴𝑙𝑏𝑒𝑑𝑜  =  
0.356  ∗  𝑏1  +  0.130  ∗  𝑏2  +  0.073  ∗  𝑏4  +  0.085  ∗  𝑏5  +  0.072  ∗  𝑏7  − 0.0018

0.356  +  0.130  +  0.373  +  0.085  +  0.072
 

          (1) 
 

We used the merge function to aggregate the albedo data image collections into one layer. Using the mosaic 
by date function, we generated a list of unique dates and merged and separated each unique date into image 
sets. We removed all unrelated bands from the image to reduce processing time. The albedo code 
visualization was exported into Google Drive as a TIFF file.   
 
The TIFF file was imported into ArcGIS Pro 3.1.2 for further processing. We used the Raster Calculator tool 
to convert the data into integers with minimal decimals. Using the Int tool, we truncated the integers, to 
exclude negligible data. Next, we used the Raster to Polygon tool, without selecting the Simplify Polygons 
setting, to convert the raster dataset into a vector or polygon dataset. We then spatially joined the spatial 
census block data, using mean as the merge rule for the relevant values. The result was a choropleth map of 
Asheville displaying the albedo values of each census block group for 2019 – 2023.  
 
3.2.3 Evapotranspiration Data Processing 
ECOSTRESS level 3 data lacks geographic data in its raw h5 file form, so to use it, we either had to run a 
swath to grid Python script, provided by the LP DAAC Data User Resources, or make an ‘Extract Area 
Sample’ request through AppEEARS (AppEEARS Team, 2024). Both options were tested and evaluated, and 
we found that AppEEARS was the more efficient and error-proof process. We uploaded the study area 
vector file for the data request, entered the date range of May 1st to September 30th, and selected the “Is Date 
Recurring” box and entered the year range of 2019- 2022. We selected the ECO3ETPTJPL 001, 70m, ISS-
dependent, (2018-07-09 to Present) product, and the EVAPOTRANSPIRATION_PT_JPL_ETdaily layer.   
  
Once the data was sent from AppEEARS, all the layers were imported into ArcGIS Pro. We combined all the 
Daily ET raster layers into one raster using the Mosaic to New Raster tool. We used the mean operator since 
the median was not available. The mosaic was then turned into a polygon using the raster to polygon tool to 
ensure the polygons were not simplified and then clipped to our study area. Next, we spatially joined the 
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polygons to the census block spatial data, using mean as the merge rule for the relevant values. The result was 
a choropleth map of Asheville displaying census block groups’ evapotranspiration values for 2019 - 2022. 
 
3.2.4 Social Vulnerability Data Processing 
The social vulnerability data from the U.S. Census American Community Survey (ACS) was processed at the 
census tract scale by the CDC/ATSDR to create the SVI (Center for Disease Control and Prevention, n.d.). 
To do this, the CDC processed and summed each of the four themes to calculate their overall percentile 
rankings per census tract (Center for Disease Control and Prevention, n.d.). The themes’ values were then 
summed and classified using a scale ranging from zero to one to create an SVI ranking (“RPL_THEMES”) 
for each census tract (Center for Disease Control and Prevention, n.d.). We isolated the final census tract SVI 
ranking (“RPL_THEMES”) from the CDC/ASTDR SVI CSV file. Then, to spatially rescale the data to be 
analogous with the other data sets (LST, albedo, and evapotranspiration), all census blocks within a census 
tract were assigned the tract-level SVI value.   
 
The processed census block SVI data was uploaded into ArcGIS Pro. We used the Spatial Join tool to join 
the census block groups to the SVI data. The join operation was one-to-one, so all target features were kept, 
with the intersect match option, and a mean merge rule. This step transcribed the CDC SVI data into the 
Asheville census block groups. The result was a choropleth map of Asheville displaying SVI at the census 
block scale.  
  
3.2.5 Heat Vulnerability Data Processing 
We used the min-max normalization method to process the datasets to create the urban heat and heat 
vulnerability indices. In this standardization method, the minimum value transforms to zero, and the 
maximum value transforms to one. All other values transform into a decimal between zero and one (the 
minimum and maximum values). This process is delineated in the min-max normalization equation (Equation 
2): 
 

𝑣𝑎𝑙𝑢𝑒  −  𝑚𝑖𝑛

𝑚𝑎𝑥  −  𝑚𝑖𝑛
 

           (2) 
 
To create the urban heat index, we first processed the raw raster data by calculating the mean value for the 
pixels within each census block group vector for LST, albedo, and evapotranspiration. Then, we standardized 
the LST, albedo, and evapotranspiration datasets using the min-max normalization formula (Equation 2). We 
weighed the data, to emphasize the impact of LST (heat exposure). Adaptive capacity is measured by albedo 
and evapotranspiration, which are indirect effectuating factors of urban heat. Therefore, these factors have 
less influence on hot spot formation than LST. To accurately represent the relative influences of urban heat, 
we used the following equation adapted from Weber et al. (2015) and the AUD1 team (Equation 3) to weigh 
the data.  In the urban heat equation, heat exposure was measured by LST, and adaptive capacity was 
measured by adding albedo and evapotranspiration.   
 

𝑢𝑟𝑏𝑎𝑛 ℎ𝑒𝑎𝑡  =  ℎ𝑒𝑎𝑡 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒  ∙  (1 − 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) 
         (3) 

 
With the standardized, weighted urban heat values at the census block group level, we created the urban heat 
map. We then imported the data into ArcGIS Pro. We processed it using the same methodology for the LST, 
albedo, and evapotranspiration datasets but tailored some processing steps for the urban heat index 
specifications.  The result was an urban heat map for Asheville, NC with data from 2019 – 2023.   
 
To create the heat vulnerability index, we combined the urban heat and SVI indices. In accordance with the 
weighting of the urban heat equation (Equation 3), adaptive capacity was given less weight.  This process is 
delineated in the following equation (Equation 4). In the heat vulnerability equation, heat exposure was 



   
 

7 

 

measured by LST, social vulnerability was measured by the SVI, and adaptive capacity was measured by 
albedo and evapotranspiration.   
 

     ℎ𝑒𝑎𝑡 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦  =  ℎ𝑒𝑎𝑡 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒  ∙  𝑠𝑜𝑐𝑖𝑎𝑙 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦  ∙  (1 − 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) 
            

                                    (4) 
 

With the heat vulnerability scores for Asheville’s census block groups, we created the heat vulnerability map. 
We imported the heat vulnerability index data into ArcGIS Pro and processed it using the same data 
processing methodology for the urban heat map. The result was a heat vulnerability map for Asheville, NC 
for data from 2019 - 2023. This map combined the variables of heat exposure (LST), social vulnerability 
(demographic and socioeconomic composition of communities), and adaptive capacity (albedo and 
evapotranspiration).  
 
3.3 Data Analysis 
To evaluate the cooling and adaptive capacity of the CoA, we used the InVEST Urban Cooling Model 
(Stanford University, n.d.). To get an output from the model of cooling capacity, we input our study area 
shapefile, our user-made biophysical characteristics CSV file, and evapotranspiration, albedo, and LULC 
raster datasets from ESA WorldCover and the CoA. As per the model’s requirement to use a spatial 
projection with linear units, we used the WGS 84 Web Mercator.   
 
The user-made biophysical characteristics table had four required columns, which were used to identify the 
land use code (“lucode”), designate which land uses are green areas (“green_area”), designate average albedo 
for that land use (“albedo”), and designate average canopy cover for that land use (“shade”). The final 
column (“kc”), used to measure expected evapotranspiration for each land use, was edited to convert all 
values to one because we had high-resolution evapotranspiration. We qualitatively assessed land cover classes 
to determine whether they were primarily vegetation or could contain vegetation. LULC classes of Tree 
Cover, Grassland, Copland, and Sparse Vegetation were assigned as green areas, while Built-up and 
Permanent Water Bodies were not. Albedo was calculated using Zonal Statistics as a Table tool in ArcGIS 
Pro, and the average albedo value for each land cover class was recorded. Average shade was calculated using 
the Summarize Within tool using ArcGIS Pro, and the average shade value for each land cover class was 
recorded. 
 
The InVEST model processed the data using the following equation (Equation 5; Stanford University, n.d.). 
The result was a raster, with values ranging from zero to one. Low values represent low cooling capacity, or 
the lack of cooling measures, meaning low albedo, low evapotranspiration, and low canopy cover or shade. 
High values represent high cooling capacity.  

 

𝐶𝐶𝑖   =  0.6  ⋅  𝑠ℎ𝑎𝑑𝑒  +  0.2  ⋅  𝑎𝑙𝑏𝑒𝑑𝑜  +  0.2  ⋅  𝐸𝑇𝐼    
(5) 

 
To create our adaptive capacity map, we input the heat vulnerability index into the InVEST model with the 
cooling capacity data. We did this by running an Attribute Join in ArcGIS Pro between the two layers, and 
then selecting bivariate colors in symbology. A custom pallet was made for the four-by-four legend, with 
extremes taken from the associated layer pallets. The result was a bivariate map combining the heat 
vulnerability index and the InVEST cooling capacity output. 
 
 
 
 
 

4. Results & Discussion 
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4.1 Analysis of Results 
4.1.1 Urban Heat Island Hot Spot Analysis 
The urban heat map (Figure 2) displays heat exposure in the CoA and the three contributing factors: LST 
(Figure 2A), albedo (Figure 2B), and evapotranspiration (Figure 2C). LST was highest in downtown Asheville 
and decreased radially outward from the city center (Figure 2A). However, West and South Asheville were 
inconsistent with this pattern, having moderately high LST which we attribute to the higher population 
densities and urban build-up in these areas. Northeast Asheville had the lowest LST, due to greater vegetation 
cover in this area (Figure 2A; Gray et al., 2019). Albedo was highest in the city center in downtown Asheville 
(Figure 2B). This was followed by South Asheville in Arden and at the Asheville Regional Airport (Figures 2B 
and A1). The remainder of the city had low albedo, with the peripheral areas having the lowest albedo (Figure 
2B). This is consistent with the amount of vegetative cover, as vegetation can have low albedo rates (Gray et 
al., 2019). Albedo is a complex variable that does not always correlate with urban heat. Evapotranspiration 
was highest in the census block groups near or adjacent to the edge of the CoA’s boundaries and lowest in 
the inner city (Figure 2C). Arden and the airport area were incongruent with this pattern, having moderate 
evapotranspiration levels, due to urban buildup and lack of vegetation in these areas (Gray et al., 2019). The 
city center in and around downtown Asheville had the lowest evapotranspiration levels, consistent with the 
dense urban landscape. The radial pattern of evapotranspiration demonstrates the correlation between 
evapotranspiration and vegetation: the more vegetation, the more evapotranspiration, and vice versa.   
 

 
Figure 2. Land Surface Temperature (A), Albedo (B), and Evapotranspiration (C) Maps of Asheville, NC 

 
The data shows that there is a distinct relationship between these three variables. Generally, where there was 
low LST, albedo was also low, and evapotranspiration was high. Vegetation typically has a relatively low 
albedo and results in high evapotranspiration, indicating the important role vegetation plays in reducing LST. 
This cooling effect is evident in the periphery of each map (Figures 2A, B and C), where a greater proportion 
of the land cover is more densely vegetated with trees (Gray et al., 2019). Alternatively, in the city center, 
where unnatural landcovers dominate the landscape and tree cover is sparse, LST is high, albedo is moderate, 
and evapotranspiration is low.   
 
These three map layers were combined to create the urban heat map (Figure 3). The urban heat map shows 
that the city center was the CoA’s most severe hot spot, closely followed by the areas directly surrounding 
downtown, and the area south of Shiloh and north of Arden (Figures 3 and A1). Overall, urban heat 
manifested in a pattern whereby urban heat decreased with distance from the city center (Figure 3). Areas with 
the highest urban heat had high LST compounded by low albedo and low evapotranspiration, and vice versa 
(Figure 3). The area south of Shiloh and to the north of Arden was an exception to this spatial pattern, with 
relatively high urban heat levels despite its distance from the city center, however, this is consistent with the 
level of urban buildup in this area (Figures 3 and A1).  
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Figure 3. Urban Heat Map of Asheville, NC 

 
4.1.2 Social Vulnerability Analysis 
The social vulnerability map (Figure 4) shows the relative vulnerability of Asheville communities based on the 
CDC/ASTDR SVI. The most socially vulnerable neighborhoods were downtown, Emma, and in South 
Asheville to the east of Shiloh and in Biltmore Park (Figures 4 and A1). Broadly, the communities of West 
and South Asheville were moderately vulnerable (Figures 4). The stretch of West Asheville extending south 
towards Bent Creek displays the lowest social vulnerability, however, there are few citizens residing in this 
area, as it is an industrial sector, resulting in little to no SVI data (Figures 4 and A1). Altogether, the region of 
North Asheville has the lowest social vulnerability. Morningside/West Asheville Estates have low social 
vulnerability, making it an outlier to the wider adjacent communities (Figures 4 and A1).   
 
4.1.3 Heat Vulnerability Analysis 
The heat vulnerability map (Figure 5) combines the urban heat and social vulnerability indices, to display 
heat-vulnerable areas in Asheville, NC. The area with the highest heat vulnerability was the city center and 
surrounding downtown Asheville (Figures 5 and A1). The areas with the lowest heat vulnerability were 
generally located towards or adjacent to the CoA’s periphery. One area inconsistent with this radial pattern 
was the census block group south of Shiloh and north of Arden, which had relatively high heat vulnerability, 
influenced by high urban heat and moderate social vulnerability (Figures 5 and A1). Overall, there was a 
pronounced pattern of decreasing heat vulnerability further away from downtown.   
 

                        
Figure 4. Social Vulnerability Map of Asheville, NC            Figure 5. Heat Vulnerability Map of Asheville, NC 
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4.1.4 Cooling Capacity Analysis 
The urban heat mitigation and adaptation map displays the present cooling capacity (the ability to mitigate or 
adapt to high urban heat) of census block groups (Figure 6). Canopy cover, evapotranspiration rates, and 
albedo all contribute to adaptation and mitigation capacity in this model. Broadly, North and East Asheville 
have the greatest cooling capacity (Figures 6 and. A1). The Oak Forest neighborhood in South Asheville 
stands out due to its relatively high capacity to mitigate and adapt to heat compared to surrounding census 
block groups (Figures 6 and. A1). West Asheville has a moderately high cooling capacity. The area with the 
lowest cooling capacity was downtown Asheville. (Figures 6 and. A1). This is followed by areas surrounding 
the downtown, such as the South Slope, the River Arts District, North Downtown, and those in the southern 
extent of the city, such as Arden and the airport area (Figures 6 and. A1). Generally, the areas in the CoA with 
dense canopy cover and less urban build-up or sprawl had higher cooling capacity.  
 
The adaptive capacity map combines the output from the InVEST Urban Cooling Model (Figure 6) with the 
heat vulnerability index output (Figure 5). The downtown area (encompassing downtown, North downtown, 
and the South Slope) and Oak Forest in South Asheville had the highest heat vulnerability and the lowest 
cooling capacity, indicating that this area is the most in need of urban heat mitigation efforts (Figure 7 and 
A1). Factors contributing to the low cooling capacity and high heat vulnerability were a relative lack of trees 
and vegetation, high urban heat, and high social vulnerability. Alternatively, areas with high cooling capacity 
and low heat vulnerability, such as North Asheville (including Beaverdam and Grove Park/Sunset), East 
Asheville, and most of southern West Asheville, are not priority areas for cooling measures (Figure 7 and A1). 
Factors contributing to the high cooling capacity and low heat vulnerability were relatively more vegetation 
and canopy cover, lower urban heat, and lower social vulnerability.  
 

                      
     Figure 6. Urban Heat Mitigation and Adaption Map                    Figure 7. Cooling Capacity Map 

 
 
4.2 Errors & Uncertainties  
One limitation of the methodology of our study was the scale used for our analysis. Census block groups 
aggregate the data into larger spatial areas, obscuring variability within block groups. Depiction of the data at 
a more granular level, such as at the census block scale could highlight UHIs and other spatial patterns of 
heat vulnerability more accurately than block groups.  
 
There were also limitations and possible points of uncertainty in our LST, albedo, and evapotranspiration 
methodologies. First, LST differs from ambient air temperature. LST is the temperature of the surface, while 
the air temperature is above the surface and what people typically feel. LST is generally hotter than the air 
temperature, making Asheville appear hotter on our maps than what people experience. Despite this, we used 
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LST as an indicator of urban heat because satellite remote sensors provide more spatial resolution than 
weather stations (Li et al., 2023).  
 
Additionally, the relationship between albedo and LST is complex, creating a point of uncertainty in our 
study. In general, low albedo is correlated with increased LST, however, other environmental factors can 
modify how albedo is absorbed or reflected. Vegetation has relatively low albedo, absorbing more heat than 
reflective surfaces such as buildings, however, plants convert the absorbed energy into latent heat, which does 
not increase the environmental temperature. Furthermore, plants also reduce temperature through 
evapotranspiration and absorption of carbon dioxide. In contrast, while highly built-up areas in downtown 
Asheville have relatively high albedo, the proportion of absorbed insolation is instead converted to 
conventional heat, leading to pronounced increases in temperature (Nuruzzaman, 2015; Stache et al., 2022). 
We used mean evapotranspiration calculations, rather than median, as done with our other variables. In more 
extensive studies, we would create a tool to calculate the median value for consistency with the LST and 
albedo data. Finally, the evapotranspiration product we used did not have data available for 2023.  
 
Our social vulnerability methodology had limitations. We used the CDC/ASTDR SVI because this index is 
the national standard for evaluating social vulnerability due to its large scope and data reliability. However, the 
demographic and socioeconomic variables measured in the SVI are not heat-specific (Center for Disease 
Control and Prevention, n.d.). It does not include specific contributing elements to heat vulnerability such as 
access to reliable home air-conditioning or air-conditioned spaces, home cooling energy burden, or specific 
health factors that make an individual more prone to heat-related health effects (Center for Disease Control 
and Prevention, n.d.). At the time of this study, there were no standardized, reliable heat vulnerability indices.   
 
Our data processing method of data exclusion based on cloud cover limited our analysis. Depending on their 
height and structure, clouds can either cool or warm LST by reflecting isolation or trapping heat, impacting 
LST (Tselioudis, 2017). Therefore, our LST results may be slightly imprecise due to the exclusion of cloudy- 
day measurements. However, the margin of error is minimal since clouds can both warm and cool LST, 
preventing significant bias in one direction. 
 
The time and aspect that the Landsat satellites pass over Asheville, NC affect the measurements recorded. 
The Landsat satellites pass over at roughly 11 am EST, so temperatures are not yet at the daily maximum as 
they are during the mid-afternoon (U.S. Geological Survey, 2020). Additionally, aspect can impact LST. In the 
morning when the satellite LST measurements are taken, the eastern side of the mountains is hotter than the 
western side, as this side was exposed to the sun for a longer duration.   
 
Our calculations and analysis also had limitations. The min-max normalization we used to standardize our 
data does not process outliers well, which could have skewed the data. We did not conduct statistical analyses, 
which, if conducted, would have made our evaluation of the correlation between variables (e.g. our heat 
vulnerability analysis between hot spots and socially vulnerable areas) more robust. Furthermore, there were 
possible errors from our data processing. For instance, there were three census block groups with abnormally 
high albedo, possibly indicating errors that arose from the data processing, potentially from the cloud 
masking. 
 
4.3 Feasibility & Partner Implementation  
It was feasible to use NASA Earth observations to identify neighborhoods in the CoA most in need of heat 
mitigation strategies. Our project produced maps and data layers that will be helpful for our partners’ 
decision-making processes forward. Our end products will add essential information to the CoA’s preexisting 
Climate Justice Index and Climate Justice Map, providing the CoA with data for targeted urban heat 
intervention and climate resilience planning. If needed, our partners could further our methodology by 
rescaling the maps to a more granular block level to reveal more detail about UHI hot spots and by adding 
additional layers to the map package, such as heat-specific health data, and a CoA- specific LULC layer.  
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5. Conclusions 
Our analysis revealed the spatial interaction between urban heat, heat vulnerability, and cooling capacity in 
Asheville, NC. Asheville’s urban heat island effect is characterized by a radial pattern of decreasing urban heat 
from downtown to more rural areas, driven by the correlation between high LST and dense urban 
development with minimal vegetation and evapotranspiration. Socially vulnerable communities are 
disproportionately located in urban heat hotspots, indicating environmental injustices. Implementing cooling 
measures, such as urban greening and adding green or high albedo roofs in hotspots based on the urban 
landscape, can mitigate urban heat effects. For instance, green roofs could be considered in areas like 
downtown Asheville where additional tree planting is not possible, and the existing albedo is high. Our 
project emphasizes the need for targeted interventions to reduce heat impacts, address environmental 
injustices, and enhance urban climate resilience. These data will update Asheville’s Climate Justice Map and 
inform the City of Asheville and Asheville GreenWorks’ future heat mitigation strategies, including strategic 
tree planting, installation of cooling pavements, and green or white roofs. 
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7. Glossary 
Albedo – the degree to which a surface absorbs or reflects insolation (incoming solar radiation). 
Earth observations – Temporal and spatial information about Earth’s physical, chemical, and biological 
systems, collected by satellites and sensors. 
ECOSTRESS – ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station is an Earth 
observation program recording evaporation and transpiration, evapotranspiration. 
Evapotranspiration – the combined process of transpiration from vegetation, the process of evaporation 
from leaf pores, and soil evaporation. 
Insolation – Incoming short-wave solar radiation to Earth’s surface. 
InVEST Urban Cooling Model – “calculates an index of heat mitigation based on shade, 
evapotranspiration, and albedo, as well as distance from cooling islands (e.g. parks)” (Stanford University, 
n.d.). 
Landsat – NASA and USGS satellite program that uses electromagnetic sensors to record reflected 
insolation from Earth’s surface, creating Earth observations. 
Land surface temperature (LST) – the temperature of land surfaces, such as bare ground, vegetation, and 
unnatural human-made land covers – differs from air temperature. 
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Redlining – Redlining regarding housing practices refers to discrimination by denying services, such as the 
denial of loans or investments for residents of certain communities, based on the race or ethnicity of 
residents. 
Remote sensing – the process of using electromagnetic sensors to actively or passively detect and record 
energy that is reflected or emitted from Earth’s surface. 
Urban heat island (UHI) effect – the phenomenon whereby urbanized areas or cities experience higher 
temperatures than adjacent rural areas. 
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9. Appendices 
 

Appendix A: Map of Asheville, NC Districts and Neighborhoods  

 
Figure A1. Map of Asheville, NC districts and neighborhoods referenced within this report 
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