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 29 
Abstract 30 

Droughts pose serious threats to the agricultural sector, especially in rainfed-dominated 31 
agricultural regions like those in Argentina's Humid Pampas. This region was recently 32 
impacted by slow-evolving and long-lasting droughts as well as by flash droughts, resulting in 33 
losses reaching thousands of millions of US dollars. Improvements of drought early warning 34 
systems are essential, particularly given the projected increase in drought frequency and 35 
severity over southern South America. The spatial and temporal relationship between 36 
precipitation deficits, soil moisture and vegetation health anomalies are crucial for better 37 
understanding and representation of the agricultural droughts and their impacts. In this context, 38 
the Combined Drought Indicator (CDI) considers the causal and time-lagged relationship of 39 
these three variables. The study's objective is twofold: 1) Analyze the time-lagged response 40 
between precipitation deficits, soil moisture and satellite fAPAR anomalies; and 2) Evaluate 41 
the CDI's capability to characterize the severity of drought events on the Humid Pampas against 42 
agricultural yield estimations and simulations, as well as agricultural emergency declarations. 43 
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The correlation among the variables shows strong spatial variability. The highest Pearson 44 
correlation values (r > 0.42) are observed over parts of the Humid Pampas for time lags of 0, 45 
10, and 20 days between the variables. Although the CDI has limitations, such as its coarse 46 
spatial resolution and monthly temporal resolution of precipitation data, it effectively tracks 47 
the progression of major drought events in the region. The CDI’s performance aligns well with 48 
estimations and simulations of soy and maize yields, as well as official declarations of 49 
agricultural emergencies. Insights from this study also provide a basis for discussing potential 50 
improvements to the CDI. This study highlights the global and regional significance of 51 
evaluating and enhancing the CDI for effective drought monitoring, emphasizing the role of 52 
collaborative efforts for future advancements in drought early warning systems. 53 
 54 
Keywords: Combined Drought Indicator, drought propagation, crop yields, impacts. 55 

 56 

1. Introduction 57 

Droughts can impact the agricultural sector, causing major socio-economic repercussions over 58 
different regions around the globe (e.g. Kim et al. 2019). As one of the climate disasters with 59 
the most extensive global impact, droughts have affected around 1.4 billion between 2000 and 60 
2020 (Donatti et al. 2024). These impacts can be exacerbated when the agricultural activities 61 
are carried out under rainfed conditions, as in the Humid Pampas of Argentina. This region has 62 
been recently affected by both slow evolving and long lasting droughts (2008-2009, 2011-2012 63 
and 2020-2023, Naumann et al. 2021, 2023), as well as by fast developing droughts commonly 64 
referred to as flash droughts (Otkin et al. 2018). The combined 2008-2009 and 2011-2012 65 
events generated losses of nearly USD 8000 M related to just the soybean production (Thomasz 66 
et al. 2019). The 2017-2018 flash drought that took place during the austral summer also caused 67 
considerable economic impacts of nearly USD 1500 M, related to maize and soybean yield 68 
reductions (Kucheruk et al. 2024; GAR, 2021). Several institutions and organizations, such as 69 
the SISSA project of the Centro Regional del Clima para el sur de América del Sur (CRC-70 
SAS), as part of the World Meteorological Organization region III, the European and Global 71 
Drought Observatory (EDO/GDO) of the European Commission, and the United States 72 
Drought Monitor (USDM, Svoboda et al. 2002) seek to reduce vulnerability to droughts by 73 
improving early warning systems. This goal acquires even more relevance for Argentina, as an 74 
increase in the frequency and severity of droughts under warming climate projected scenarios 75 
is expected in the region (e.g. Spinoni et al. 2020; GAR, 2021). 76 
 77 
The characteristics and impacts of droughts depend on multiple factors, such as climate 78 
variability, vegetation types, and human activities (e.g., GAR, 2021; Hendrawan et al. 2022; 79 
Rossi et al. 2023; Thi et al. 2023). Therefore, the importance of properly characterizing the 80 
different temporal scales and regional features of droughts, requires the use of several indices 81 
and indicators as mentioned in WMO and GWP (2016). Cammalleri et al. (2021) discuss three 82 
main approaches for drought monitoring systems based on: 1) Several indices (e.g. 83 
Standardized Precipitation Index SPI, Mckee et al. 1993, Standardized Precipitation 84 
Evapotranspiration, SPEI, Vicente-Serrano et al. 2010) as in the Drought Information System 85 
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for South America (SISSA, for its Spanish acronyms); 2) Single indices that are a combination 86 
of several indices (e.g. Soil Moisture Agricultural Drought Index SMADI, Sánchez et al. 2016); 87 
3) Hybrid or composite indicators/indices. This last approach is used, for example by the 88 
USDM and by the EDO/GDO systems. In particular, the USDM uses several indices based on 89 
stream flow, precipitation and soil moisture (Svoboda et al. 2002) from observational data and 90 
land surface models, that are then blended together assigning different weights to each index 91 
depending on the temporal scale of interest, as each index is meant to represent different 92 
drought types (e.g. meteorological, agricultural). Then, based on the spatial superposition of 93 
the different indices a drought category is assigned depending on the estimated severity. The 94 
EDO and GDO systems, instead, use the Combined Drought Indicator (CDI), developed by 95 
Sepulcre-Canto et al. (2012) and updated by Cammalleri et al. (2021).  96 
 97 
The CDI uses a nested approach, considering the causal temporal relationship between 98 
precipitation deficits and subsequent negative anomalies in soil moisture and vegetation. In 99 
other words, this relationship is based on the fact that a precipitation shortage will lead to an 100 
eventual soil moisture deficit, which in turn could affect water availability for vegetation. As 101 
such, it seeks to represent the propagation of the water deficit signal across the terrestrial branch 102 
of the hydrological cycle and its potential impacts on vegetation and crop production/health, 103 
focusing on agricultural droughts. Sepulcre-Canto et al. (2012) analyzed the different temporal 104 
responses between the 3-month accumulated SPI (SPI-3), soil moisture simulations and 105 
fraction of Absorbed Photosynthetically Active Radiation (fAPAR) anomalies. The best 106 
agreement, over 12 meteorological stations across Europe, was found with lags of 10 and 20 107 
days (1 and 2 dekads) between these variables. The authors concluded that this first version of 108 
CDI was able to represent the major drought events, identifying areas under agricultural 109 
drought which were coherent with observed yield reductions and emergency declarations. 110 
Cammalleri et al. (2021) proposed a new version of the CDI (v2). The authors focused on 111 
improving the temporal consistency of the CDI over Europe, throughout the evolution of long 112 
lasting drought events, by decreasing the cases showing temporal shiftings between categories 113 
from drought to no-drought conditions. In this regard, the CDI-v2 demonstrated a superior 114 
performance compared to its predecessor by effectively capturing the spatiotemporal 115 
manifestation of droughts and their resulting impacts on yield reductions. Additionally, a more 116 
coherent sequence of the category stages was observed, representing an improvement over the 117 
previous version of CDI. 118 
 119 
The representativeness of the variables within the CDI over southern South America and the 120 
Humid Pampas, and the drought signal propagation through the terrestrial branch of the 121 
hydrological cycle are key aspects to better understanding the different time response between 122 
precipitation deficits, soil moisture and vegetation health anomalies. In this sense, a recent 123 
study by Rossi et al. (2023) highlighted that, depending on the varying characteristics of 124 
climate, vegetation, and other factors across three Brazilian biomes, the temporal drought 125 
propagation signal can vary significantly. 126 
Assessing the direct and indirect impacts of drought poses great challenges, differing from 127 
other meteorological hazards (e.g. floods) due to its multifaceted temporal and spatial scales, 128 
as well as its cross-sectoral and cascading effects (GAR, 2021). This study focuses solely on 129 
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the direct impact of drought on the agricultural sector, examining crop yields and agricultural 130 
emergency declarations, consistent with the approach in Sepulcre-Canto et al. (2012). 131 
Furthermore, a complementary method for estimating agricultural drought impacts involves 132 
leveraging crop models to simulate yields in specific locations. Simulating the crop phenology 133 
cycle under various soil and climate conditions offers the key advantage of isolating and 134 
assessing the climatic impact on yield variations, thereby eliminating other adverse effects on 135 
crops, such as pests. However, it is essential to consider local management practices and soil 136 
characteristics to enhance model representativity. In this sense, Aramburu Merlos et al. (2015) 137 
utilizing the DSSAT model with local soil information and farming practices, documented a 138 
good representation of corn and soybean yield simulations in the Humid Pampas region. 139 
Therefore, these datasets can be used as a reference to evaluate the performance of drought 140 
indices, as drought severity should be negatively correlated with crop yield anomalies in 141 
regions affected by droughts in predominantly rainfed agricultural regions (e.g. GAR, 2021; 142 
Kim et al. 2019).  143 
 144 
The objective of this study is twofold: 1) Analyze the lagged relationship between precipitation 145 
deficits, soil moisture and satellite-based fAPAR anomalies over southern South America and 146 
the Humid Pampas region, to detect similarities and differences with the regions where the CDI 147 
was originally developed; and 2) Evaluate the CDI (version 2, Cammalleri et al. 2021) 148 
operational configuration performance in characterizing the severity and evolution of drought 149 
events on the Humid Pampas in terms of crop yield estimations and simulations, and 150 
agricultural emergency declarations. 151 

2. Data and Methodology 152 

2.1 Study region 153 

This study focuses on two spatial domains: the first one corresponds to the CRC-SAS region, 154 
i.e. the area in South America south of 10°S (see Fig. 1); the second one, a subset of the first, 155 
corresponding to the Argentinian Humid Pampas (65°W 56°W and 42°S 22°S). The latter 156 
region is one of the major global breadbaskets (GAR, 2021).  157 

2.2 Data 158 

The dataset used for the CDI-v2 (hereafter CDI) computation is based on the operational 159 
Copernicus Global Drought Observatory (GDO, 160 
https://edo.jrc.ec.europa.eu/gdo/php/index.php?id=2001) data. Precipitation, soil moisture 161 
datasets and vegetation index are summarized in Table S1 and briefly described below. The 162 
Global Precipitation Climatology Centre (GPCC, Schamm et al. 2014) dataset is a combination 163 
of gauge station and satellite estimations, and it is used in GDO to construct the monthly SPI 164 
over different accumulation periods (e.g. SPI-1 and SPI-3). The GPCC monthly precipitation 165 
was validated over Argentina (e.g. Spennemann et al. 2015) and showed a good representation 166 
compared to ground station observations from the Argentinean National Weather Service 167 
(SMN, for its Spanish acronym). 168 
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The soil moisture ensemble product, used in the operational CDI, is based on the Triple 169 
Collocation (TP) methodology (Gruber et al. 2016; Kim et al. 2023). The TP approach uses 170 
three independent soil moisture anomaly sources, as described in Cammalleri et al. (2017), to 171 
estimate the average relative error of each one of them compared to the unknown truth. Then a 172 
weighted average is computed, with weights for each pixel that are assigned proportionally to 173 
the inverse of the local relative errors. The three independent data are anomalies of: 1) Satellite 174 
Land Surface Temperature (LST) from MODIS (Wan et al. 2002), 2) Microwave satellite 175 
surface soil moisture (0-5 cm) combined active/passive estimations from ESA-CCI (Gruber et 176 
al. 2019, Dorigo et al. 2017), and 3) LISFLOOD (De Roo et al. 2000) root zone soil moisture 177 
simulations. The anomalies for each product are calculated for each 10 day period, using a 30 178 
day moving window, using a common climatological period (2001-2017). Subsequently, the 179 
three product anomalies are merged through the TP methodology as mentioned above. Both, 180 
LISFLOOD simulations and ESA-CCI estimations were evaluated over the Humid Pampas 181 
against in situ soil moisture observations, showing to be able to accurately represent the 182 
observed dry and wet events (Spennemann et al. 2020). .  183 

The fAPAR anomalies from MODIS are used as a vegetation biomass indicator. They are 184 
calculated for each 10 day period, after removing the corresponding 10 day mean value and 185 
dividing by the standard deviation (i.e. standardized anomalies), based on the 2001-2021 186 
period. This index has shown to be reliable for detecting droughts and their impacts on 187 
vegetation (e.g. Gobron et al. 2005; Cammalleri et al. 2021; Peng et al. 2019).  188 

In order to generate the operational CDI, the soil moisture and fAPAR datasets were spatially 189 
resampled, with a bilinear method, to a common and coarser resolution of 1°x1° corresponding 190 
to the GPCC spatial grid. In this study the period analyzed spans from 2001 to 2022. 191 

2.3 Combined Drought Indicator 192 

The CDI consists of 6 categories: WATCH, WARNING, ALERT, TEMPORARY SOIL 193 
MOISTURE RECOVERY, TEMPORARY VEGETATION (fAPAR) RECOVERY and FULL 194 
RECOVERY. As shown in Table 1, the WATCH category represents a precipitation deficit 195 
and corresponds to a SPI-3≤-1 or SPI-1≤-2; the WARNING category corresponds to a WATCH 196 
category + SM anomaly≤-1; meanwhile, the ALERT category implies a SPI-3≤-1 or SPI-1≤-2 197 
and fAPAR anomalies≤-1. 198 

 199 

 200 

 201 
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CDI category No Drought WATCH 
WARNIN

G ALERT 

SPI SPI-1 > -1 and SPI-3 > -1 
SPI-1 < -1 and 
or SPI-3 < -1 

SPI-1 < -1 
and or SPI-

3 < -1 

SPI-1 < -1 
and or SPI-3 

< -1 

SM Anom  > -1 > -1 ≤ -1 
≤ -1 or  > 

-1 
fAPAR Anom  > -1 > -1 > -1 ≤ -1 

Table 1. The CDI (v2) threshold combination of SPI-1 and SPI-3, soil moisture (SM) and 202 
fAPAR anomalies that define the drought categories. 203 

 204 

This definition, which is the same introduced by Sepulcre-Canto et al. (2012), was expanded 205 
in Cammalleri et al. (2021) to account for the CDI category in the previous time step in order 206 
to determine how the drought conditions are evolving (e.g. recovering to non-drought 207 
conditions). In addition, to improve the temporal consistency of the drought assessment, 208 
temporary classes are added to handle short periods during which an indicator falls below the 209 
given drought threshold. For instance, the TEMPORARY SOIL MOISTURE RECOVERY 210 
category is defined when soil moisture anomalies are between 0 and -1 and with a previous 211 
CDI under a drought category (e.g. WATCH or WARNING). The TEMPORARY 212 
VEGETATION RECOVERY is defined similarly as the TEMPORARY SOIL MOISTURE 213 
RECOVERY. Meanwhile FULL RECOVERY category corresponds to the condition over all 214 
variables/indices being above the -1 threshold. A complete description of the different 215 
combinations between the variables/indices and the previous CDI category can be found in 216 
Figure 1 of Cammalleri et al. (2021) and the related text. To give an example on how the CDI 217 
corresponding to the 3rd dekad of February 2009 is composed, in its operational configuration, 218 
Figure 1 shows the spatial distribution of SPI-1 (January, 2009) and SPI-3 (November-January, 219 
2008-2009), soil moisture and fAPAR anomalies for the 2nd (second) and 3rd (third) 10 day-220 
period of February 2009 respectively, and previous CDI category (2nd dekad of February). It 221 
follows from Figure 1, that in the region of eastern Argentina and Uruguay the red values 222 
correspond to the ALERT category, which is related to SPI-3 and fAPAR anomalies below -1. 223 
In this example, it is clear how the drought signal already moved from a precipitation deficit to 224 
below normal soil moisture and vegetation stress conditions. In addition, the 14 meteorological 225 
stations where crop simulation were performed (see section 2.3) are also shown  in Figure 1.  226 
To complement Figure 1, Figure S1 shows the temporal evolution of the different variables and 227 
the resulting CDI category for the 2008-2009 drought event at Rio Cuarto station in central 228 
Argentina, illustrating how the CDI works. 229 
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 230 

Figure 1. Regions of interest and location of the 14 meteorological stations are shown in the upper 231 
panel, the second row shows the SPI-3 for January 2009 and the SPI-1 for January 2009, the third row 232 
shows the soil moisture anomaly (SM) for the 1st dekad of February and the fAPAR anomalies for the 233 
2nd dekad of February, the fourth row shows the CDI for the 2nd dekad of February and the CDI for 234 
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the 3rd dekad of February 2009. All variables are shown below -1 threshold, except for SPI-1 which is 235 
below -2, and were interpolated to the 1°x1° GPCC precipitation spatial resolution.  236 

The CDI is designed to reproduce the cascading effect of drought from precipitation to soil 237 
moisture and vegetation, exploiting regularly updated soil moisture and fAPAR data with 238 
dekad (10 day interval) frequency, and monthly SPI-3 and SPI-1. In order to evaluate the delay 239 
in response in dekadal soil moisture and fAPAR anomalies to monthly SPIs, a simultaneous 240 
and lagged Pearson correlation was carried out as in Sepulcre-Canto et al. (2012): SPI of a 241 
specific month is compared with the anomalies of soil moisture and fAPAR of the 2nd and 3rd 242 
dekad of that month (lags -1d and 0 respectively) and with the 1st, 2nd and 3rd dekads of the 243 
following month (lags +1d, +2d and +3d respectively). This was performed for the austral 244 
warm months (September-March, from 2001 to mid-2022). Only warm months were analyzed 245 
since the fAPAR better represents the crop phenology during this period (Sepulcre-Canto et al. 246 
2012) and summer crop yields are used in the subsequent evaluations. The time period under 247 
analysis (2001-2022) is restricted by the satellite data availability. 248 

 249 

2.3 Crop estimations and simulations, and agricultural emergency declarations 250 

Yearly corn and soybean yield estimations from the Secretaría de Agricultura, Ganadería y 251 
Pesca (SAGyP, 2022) over the 2001/02-2021/22 summer crop campaigns were used. The crop 252 
yield estimates correspond to a department spatial scale (second level administrative divisions), 253 
which include each of the 14 locations shown in Figure 1 and listed in Table S2. In addition, 254 
the widely-used DSSAT v4.5 model suite (Hoogenboom et al. 2010) was employed to simulate 255 
corn and soybean yields based on meteorological observations, crop characteristics, and soil 256 
properties. Daily values of meteorological parameters, such as solar radiation, minimum and 257 
maximum temperatures, and precipitation from Argentina's National Weather Service (SMN 258 
by its Spanish acronym) were used to perform the simulations. Soil data were retrieved from 259 
the Soil Atlas of Argentina, produced by the National Institute of Agricultural Research (INTA 260 
by its Spanish acronym). Dominant soils were selected for each location, and their physical and 261 
chemical properties were used. The predominant soils in the study area are deep mollisols with 262 
high physical and chemical fertility. Simulations were initiated with three varying soil moisture 263 
contents (20%, 50% and 100% of the field capacity), and it was assumed that biotic factors 264 
such as pests or weeds were controlled by the farmer. Consequently, yield variations are 265 
attributed solely to climate variability in each growing season. Management practices were 266 
agreed upon with experts for each simulated location, and crop coefficients were calibrated and 267 
validated using field experiments in Argentina based on previous studies (Aramburu Merlos et 268 
al 2015; Monzon et al. 2012;  Mercau et al. 2007) and personal communications with members 269 
of the Regional Agricultural Experimentation Consortium  (CREA, https://www.crea.org.ar). 270 
In summary, each simulation consists of an ensemble between 90 to 200 members for maize 271 
and soybean yields, based on 3 different soil moisture initial conditions, varying number of 272 
sowing dates according to the location, and 3 typical soils for each location. 273 
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Crop yields were complemented by agricultural emergency declarations data from the SAGyP, 274 
which also corresponds to the department spatial scale. The agricultural emergency 275 
declarations are the primary governmental response to droughts and other natural hazards 276 
affecting the agricultural sector, and they are issued by the National System for the Prevention 277 
and Mitigation of Agricultural Emergencies and Disasters to specific regions and timeframes 278 
(GAR, 2021).  279 

It is important to specify the difference in the spatial scale of crop estimations and simulations, 280 
as the DSSAT simulations represent a specific idealized location whereas the SAGyP estimates 281 
correspond to a spatial area that ranges from 2,253 km2 to 18,394 km2 over the 14 departments.  282 

  283 

3. Results 284 

To determine the simultaneous and lagged linear relationship between the monthly SPI-1 and 285 
SPI-3, dekadal soil moisture and fAPAR anomalies, the Pearson correlation was calculated. 286 
The correlation coefficients were calculated for different time lags for the warm months as 287 
considered in this study (September to March), and are shown in Figure 2. The findings affirm 288 
the anticipated positive correlation among SPI, soil moisture, and fAPAR anomalies. However, 289 
the strength of this relationship varies by region and is influenced by the temporal lag between 290 
these variables. The highest and positive values were observed in Central Argentina (i.e. Humid 291 
Pampas), Uruguay, and the Northeastern part of the La Plata Basin located in Brazil. In 292 
particular, SPI-1 and soil moisture anomalies showed the highest positive correlations at lag of 293 
+1 dekad (i.e. SPI-1 of month M, soil moisture from month M+1 and 1st dekad; more detail in 294 
Table S3), with a spatial median of r=0.46, encompassing the whole domain. For the -1d and 295 
0 lags, the SPI-3 relationship with soil moisture (i.e. SPI-3 of month M, soil moisture from 296 
month M and 2nd and 3rd dekad) shows higher values compared to SPI-1- soil moisture.  But, 297 
for lag +1d, +2d, and +3d, both SPI showed similar correlation values with soil moisture. Over 298 
the Humid Pampas, the correlation between SPI-3 and fAPAR was positive and higher than the 299 
correlation between SPI-1-fAPAR, specifically for the first two time lags (-1d and 0 lag). For 300 
lags +2d and +3d, both SPI accumulations showed high positive correlation values with 301 
fAPAR. The correlations between soil moisture and fAPAR showed the highest positive values 302 
for lag +2d, particularly in central and central-north Argentina, including the Humid Pampas 303 
region with a median value of r=0.28. It is worth noting that over the Humid Pampas there was 304 
an overall good agreement, except for SPI-1 and fAPAR (lag -1d and 0), between the different 305 
variables and time lags with significant correlation values above r=0.40.  306 
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 307 

Figure 2. Pearson correlations between the different variables and temporal lags represented by 308 
dekads (d, i.e. +1d=10 day period). Black contour represents the r=0.40 value and points with no 309 

significant correlation values were masked out (p<0.05). Warm months September to March for 2001-310 
mid 2022 period. Sample size for correlations with SPI was n=150, and between soil moisture and 311 

fAPAR was n=450. The median spatial correlation is shown in the lower right corner of each panel, 312 
where the bold represents the highest correlation for each column. 313 

  314 

The same approach described earlier was adopted to calculate correlations across the 14 315 
selected locations within the Humid Pampas (see Figure 1 and Table S2). Table S3 shows the 316 
median, maximum and minimum correlation of the 14 sites. Notably, the median correlation 317 
between SPI-3 and soil moisture anomalies surpasses the correlations depicted in Figure 2, 318 
indicating also variations in the time lags that maximize the relationship between these 319 
variables. SPI-3 and soil moisture exhibited the highest median value (r=0.64) at lag 0, closely 320 
followed by lag -1d, lag +1d, and lag +2d, which based on a bootstrap test and a 95% 321 
confidence interval (95CI, see supplementary section) do not showed significant differences. 322 
The highest correlation was shown at lag +1d (r=0.72), while among the minimum correlation 323 
values, lag 0 exhibits the highest value over the 14 sites. Similarly, the median correlation 324 
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between soil moisture and fAPAR anomalies peaks at lag 0 and +1d (r=0.54), with no 325 
significant differences for lag -1d and lag +2d (95CI). The correlation between SPI-3 and 326 
fAPAR showed the highest correlation at lag +2d. It is interesting to note that all time lags 327 
showed correlation values that are not significantly different (95CI). The maximum correlation 328 
for SPI-1 and soil moisture anomalies was observed for lag +1d with similar values for lag 0 329 
and +2d (95CI). Lag +1d also coincides with both the highest maximum and highest minimum 330 
correlation values. Regarding SPI-1 and fAPAR anomalies, the highest correlation occurred at 331 
lag +2d, showing no statistical differences compared to lag +1d and lag +3d, with the maximum 332 
and highest minimum for the same lag +2d. A significant difference arose in the correlations 333 
between SPI-1 and SPI-3 with fAPAR, particularly at time lags of -1d and 0. Specifically, when 334 
comparing the correlations r(SPI-1, fAPAR)=-0.01 and r(SPI-3, fAPAR)=0.33 for lag-1d. In 335 
summary, the highest median correlations were observed between SPI-3 and soil moisture 336 
anomalies, while the lowest were found for the first temporal lags of SPI-1 and SPI-3 with 337 
fAPAR anomalies.  338 

Figure 3 illustrates the temporal evolution of different drought categories in CDI across the 14 339 
sites. The configuration used for CDI is derived from its operational formulation shown in 340 
Table S4. The bottom panel is accompanied by emergency declarations from SAGyP for each 341 
of the departments containing the 14 sites. This figure allows for a qualitative analysis, 342 
comparing the more severe CDI categories with agricultural emergency declarations. In 343 
general, there was a good agreement between periods marked by WARNING and ALERT 344 
categories and the periods coinciding with emergency declarations (e.g. 2008-2009). The 345 
temporal evolution of CDI reveals certain years when severe drought events (characterized by 346 
a higher number of ALERT categories) affected only northern sites within the Pampas domain 347 
(2011, 2012, and 2013) while in other years, droughts affected mostly southern sites (2006 and 348 
2007). Noteworthy is the 2008-2009 event, well represented by the high number of ALERT 349 
categories per dekad coinciding with emergency declarations across all sites. In some fast-350 
evolving events (e.g. 2017-2018), the natural and expected progression of the drought classes 351 
was not observed over some sites, as the event reached directly the WARNING or even ALERT 352 
class. The 2017-2018 event also showed a significant percentage of sites reporting agricultural 353 
emergencies (64%). 354 
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 355 

Figure 3. Heat map of the CDI (version 2) drought categories (WATCH, WARNING and ALERT) 356 
temporal evolution over the 14 locations (ordered from north to south) for the 2001-2022 period 357 
(upper panel). Heat map of periods where agricultural emergencies were issued (SAGyP, lower 358 

panel). The rectangles denote the 2008-2009 and 2017-2018 drought events. 359 
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To further analyze the impacts on agricultural yields, complementing the analysis of 360 
agricultural emergency declarations, Figure 4 displays standardized anomalies for 361 
departmental corn and soybean yield estimates, alongside point-based simulations for each site. 362 
The simulations are represented by the ensemble median for each site. In general, there was a 363 
good agreement between WARNING and ALERT categories in CDI and negative anomalies 364 
in corn and soybean yields in different sites. This pattern is evident not just during the 2008-365 
2009 and 2017-2018 events, where a clear alignment is observed between drought categories 366 
and the estimated negative yield anomalies, but also across most northern stations (Pilar, 367 
Marcos Juárez, Río Cuarto, and Laboulaye) during 2011, 2012, and 2014. Notably, Pilar issued 368 
an agricultural emergency declaration for a portion of this period (2011-2012), further 369 
corroborating the CDI’s effective performance. 370 

A reasonable agreement was observed between yield anomaly estimations and simulations. For 371 
instance, in Río Cuarto, both datasets indicated soybean negative anomalies less than -2 during 372 
the 2017-2018 event, while for corn, there was concurrence, albeit with simulations showing 373 
greater deviations from the mean than yield estimations. Río Cuarto stands out due to having 374 
the highest median harvested area for both corn and soybean among the analyzed sites (refer 375 
to Table S2). In most cases, both the 2008-2009 and 2017-2018 events exhibit higher absolute 376 
negative anomalies in corn and soybean simulations compared to estimations. A comparison 377 
of ensemble crop simulations and estimations for corn and soybean is provided for 3 locations 378 
(see Figure S1). In general, the yield simulations show a positive bias for both summer crops. 379 
However, during drought events, they both consistently depict lower yield values, exhibiting a 380 
median Spearman correlation of r=0.57 for soybeans and r=0.52 for corn across the 14 381 
locations. When analyzing these correlation values, it must be taken into account that the 382 
median of the ensemble simulations was used for each location, along with the different spatial 383 
scales associated with each crop yield dataset. 384 

In summary, there is an overall good consistent pattern observed between periods with a higher 385 
number of dekads in CDI's WARNING and ALERT categories, periods with agricultural 386 
emergency declarations, and the estimated and simulated yield anomalies of soybean and corn. 387 



14 
 

 388 

Figure 4. Heatmap plots of corn and soybean yield standardized anomaly estimations (a) and b) 389 
respectively) and corn and soybean standardized anomaly simulations (c) and d) respectively) for the 390 
14 locations (ordered from north to south) over 2001-2022. The rectangles denote the 2008-2009 and 391 

2017-2018 drought events.  392 

 393 

To quantitatively assess CDI performance, the relationship between the cumulative frequency 394 
of CDI drought categories (WATCH+WARNING+ALERT) and annual yield anomalies was 395 
evaluated using the ranked Tau correlations over the entire 2001-2022 period and for each site. 396 
The median of these correlations was then calculated for the 14 sites. To identify periods of 397 
high sensitivity, the correlation between CDI drought categories and crop yields were analyzed 398 
in 2 cases outlined in Table 2: 1) considering the entire crop growth cycle and 2) focusing only 399 
on the critical growth months for each crop. This analysis encompassed both yield estimations 400 
and ensemble simulations of corn and soybean anomalies.  401 
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A stronger negative correlation was observed, indicating a higher number of dekads under 402 
drought category associated with reduced yield values, when considering only the critical 403 
growth months for both crops against the CDI drought categories. This behavior is consistent 404 
for both soybean and corn yield estimations and simulations. Notably, during the critical 405 
period, the median correlation is higher for soybean (r=-0.46) compared to corn (r=-0.40) yield 406 
estimates. Conversely, for yield simulations, the same correlation value (r=-0.50) was obtained 407 
for both crops during the critical growth period. Additionally, it is important to highlight that 408 
median correlations are relatively stronger in simulations compared to estimations. 409 
Furthermore, the variability among sites based on the data range is more pronounced for both 410 
corn and soybean estimations and simulation across the entire phenological cycle compared to 411 
the critical growth period. 412 

Table 2. Median, maximum and minimum Tau correlations, over the 14 location sites, between corn 413 
and soybean yield estimations/simulations and the frequency /sum of dekads under CDI categories of 414 
WATCH, WARNING and ALERT. The complete crop campaign (September-March) and the critical 415 

growth periods for both summer crops were considered over the 2001-2022 period. 416 

 417 

Both 2008-2009 and 2017-2018 drought events that affected the Humid Pampas, exhibit 418 
remarkably different characteristics in severity, temporal evolution, and intensification rate, 419 
however, all had significant impact on agricultural yield. Therefore, the spatial and temporal 420 
evolution of these two events based on CDI were analyzed in the following sections. 421 

2008-2009 drought event  422 

The 2008-2009 drought persisted over a prolonged period, exhibiting a gradual onset, ranking 423 
among the most severe droughts with respect to spatial extension and severity between 1970 424 
and 2010. It impacted nearly 50% of Argentina’s population and nearly 30% of cropland, 425 
experiencing moderate drought conditions (Naumann et al. 2019). Initially linked to an intense 426 
La Niña event, which later persisted as a moderate La Niña event accompanied by inter-427 
decadal, decadal and intraseasonal variability modes that collectively favored the lack of 428 
rainfall over the region (Fossa Riglos et al. under review).  429 

Figure 5 illustrates the temporal and spatial evolution of the event based on CDI. It can be 430 
observed how the event begins first in the north of the Argentine Humid Pampas (Figure 5a), 431 
followed by a considerable spatial expansion in the next 2 and 4 months (Figure 5b and c), 432 

    Yield estimations Yield simulations 
Crop Period Median  Max Min Median Max Min 

Corn 
2001/02 to 
2021/22 -0.30 -0.61 -0.06 -0.36 -0.61 -0.14 

Corn Dec to Feb -0.40 -0.66 -0.13 -0.50 -0.55 -0.20 

Soybean 
2001/02 to 
2021/22 -0.28 -0.49 -0.18 -0.29 -0.61 -0.05 

Soybean Dec to Mar -0.46 -0.60 -0.29 -0.50 -0.60 -0.23 
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encompassing 13%, 23%, and 36% of the area, respectively, based on the total number of pixels 433 
in the domain. In December 2008 (Figure 5e) the maximum spatial extension under all 3 434 
drought categories was observed, mainly linked to an increase in the grid cells in ALERT (22%) 435 
in the northeast of the domain, located in Brazil. By February 2009 (Figure 5f), coinciding with 436 
the critical growth periods of corn and soybean, most of the Humid Pampas were affected by 437 
drought conditions, showing also a high spatial percentage for grid cells in ALERT drought 438 
category (17%).  439 

Subsequent months continued to exhibit constant ALERT conditions for the region. 440 
Particularly noteworthy is the consistent high ALERT percentage (17%), once again observed 441 
during the critical growth period of summer crops in December 2009 (Figure 5k). The drought 442 
severity, based on the CDI, is consistent with the agricultural emergency declarations issued 443 
across all locations (refer to Figure 3). 444 
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 445 

Figure 5. CDI evolution during the 2008-2009 drought event. Panels show the CDI category 446 
evolution, with a time interval of 2 months. The central panel represents the % of pixels under each 447 

drought category based on the total amount of pixels of the domain. Shaded blue represents the 448 
critical growth period for corn and soybean together (December-February and December-March 449 

respectively). 450 
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 2017-2018 drought event  451 

In contrast to the 2008-2009 drought event, the 2017-2018 event developed as a flash drought 452 
(Kucheruck et al. 2024) across various sites in the Argentine Humid Pampas. This event was 453 
linked to a weak La Niña event and intraseasonal modes of atmospheric variability, leading to 454 
record lows in precipitation levels coupled with elevated temperatures, including heat waves, 455 
during early 2018 in the Humid Pampas (GAR, 2021).  456 

In Figure 6, the evolution of the CDI is shown, similarly to Figure 5, but in this case with 457 
monthly intervals. Early evidence on the emergence of drought conditions can be observed in 458 
northern Argentina (Figure 6a), with a rapid intensification of the drought conditions reaching 459 
the WARNING class in January 2018 (Figure 6b). Concurrently, WATCH categories start 460 
appearing in the southern part of the Humid Pampas domain. By February 2018 (Figure 6c), 461 
some WATCH areas escalate to WARNING conditions, with a worsening in terms of the 462 
surface area under WARNING (7%) conditions during March (Figure 6d).  The drought 463 
severity peaks in April and May 2018 (Figure 6e and 6f), impacting vegetation over 10% of 464 
the total area according to CDI.  465 

In June 2018 signs of recovery can be observed, with a full cessation of drought conditions by 466 
July of the same year (Figure 6g and 6h, respectively). It is important to note that while the 467 
percentage of area affected by drought categories was lower than in the 2008-2009 event, the 468 
2017-2018 event predominantly affected the Argentine Humid Pampas, specifically during the 469 
latter part of the critical growth period of both analyzed crops. This intense, albeit relatively 470 
short, event highlights the importance of the timing of the drought, and the high impact that 471 
can be associated with events occurring during the critical growth periods of corn and soybean 472 
crops. This observation is consistent with the number of locations (9 of 14) that issued 473 
agricultural emergency declarations. 474 

 475 
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476 
Figure 6. CDI evolution during the 2017-2018 event. Panels show the CDI  category evolution with a 477 

time interval of 1 month. The central panel represents the % of pixels under each drought category. 478 
Shaded blue represents the critical growth period for corn and soybean together (December-February 479 

and December-March respectively). 480 

  481 

4. Discussion and Conclusions 482 

Based on the results of this study, encompassing both southern South America and 14 locations 483 
of the Argentine Humid Pampas, it can be confirmed that the correlations between SPI, soil 484 
moisture and fAPAR vary at different temporal lags. In general, within the Humid Pampas, the 485 
highest agreement was found at temporal lags ranging from 0 to 20 days (0 to +2d) between 486 
the precipitation deficit and soil moisture anomalies, lags of 0 to 20 days between soil moisture 487 
and fAPAR anomalies, and a lag of 10 to 30 days (+1d to +3d) between SPI and fAPAR 488 
anomalies. This finding further supports the need for a combined drought indicator that 489 
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captures multiple observations of the various states and fluxes of the land-atmosphere 490 
boundary.  491 

Notably, the correlation values across the 14 sites were slightly higher compared to those 492 
documented over Europe by Sepulcre-Canto et al. (2012) when comparing SPI-3, soil moisture 493 
and fAPAR anomalies. It is worth mentioning the higher correlation values between soil 494 
moisture and fAPAR observed over the Humid Pampas compared to Europe (r=0.54 vs. 495 
|r|=0.35). While this could be related to the difference in the analyzed period and/or to the 496 
region, it could also be due to a better representation of the ensemble soil moisture product 497 
currently used in the CDI. Given that the CDI evaluation performed by Sepulcre-Canto et al. 498 
(2012), used only the LISFLOOD soil moisture simulations. Furthermore, despite the different 499 
climatic regimes, the temporal lag of maximum correlation across the 14 sites aligns with those 500 
documented in Europe, highlighting similarities in temporal signals across variables over both 501 
agricultural regions.  502 

The better agreement between SPI-3 and soil moisture and fAPAR anomalies compared to SPI-503 
1, may be attributed to the longer accumulation period of SPI-3 as documented by Ji et al. 504 
(2003) over the Great Plains of the United States. The authors performed an evaluation of 505 
different SPI accumulation periods against the Normalized Difference Vegetation Index 506 
(NDVI) and found that the highest correlation values were found for SPI-3 and NDVI, 507 
highlighting the lagged and cumulative effect of precipitation on vegetation. Furthermore, the 508 
authors noted that the correlation showed fluctuations among the growing season, peaking 509 
during the middle of the growing season. The latter feature could be related to the different 510 
crop critical growing periods, as it was also documented in this study for soybean and corn 511 
summer crops.  512 

Other studies focused on the vegetation-soil moisture time response, like Ahmed et al. (2017), 513 
which analyzed the relationship between simulated soil moisture and NDVI over the Sahel 514 
region. The authors documented a strong NDVI-soil moisture relationship, with the highest 515 
correlation values for simultaneous and 1 month temporal lag, with a strong influence of the 516 
vegetation cover on the NDVI-soil moisture time response. For cropland and grassland, the 517 
authors observed a shorter time lag response (i.e. simultaneous and 1 month), while a longer 518 
time lag was observed for forest and deciduous shrubland. While the study of Ahmed et al. 519 
(2017) focused on a monthly time scale, similar lagged times responses spanning from 0 to 20 520 
days were documented in this study between fAPAR and soil moisture over the Humid Pampas. 521 
In addition, Mladenova et al. (2019, 2020), quantified a similar lag correlation of satellite-based 522 
global soil moisture and NDVI, and demonstrated the utility of satellite-based soil moisture for 523 
assessing agricultural drought with lag correlation varying by climate zones and land cover 524 
type.  525 

Over South America, Rossi et al. (2023), analyzed the drought propagation signal for different 526 
events focusing on meteorological aspects (i.e. precipitation deficit) leading to terrestrial water 527 
storage deficits over 3 different biomes in Brazil. In particular, the authors documented 528 
different timing responses between the precipitation deficit signal through soil moisture and 529 
vegetation, ranging from 1 up to 7 months across the biomes considered.  530 
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The findings of the studies mentioned above highlight the role of the different climates, 531 
vegetation cover and biomes on the temporal lagged relationships between the terrestrial 532 
hydrological variables. This aspect came forth in this study, when the lagged correlations for 533 
the whole domain were analyzed, showing regions with no significant correlation values and 534 
others with values above r=0.60. Across the Humid Pampas there is in general a ± 10 days time 535 
lag around the maximum correlation value between SPI, soil moisture and fAPAR anomalies 536 
which is not significantly different. This suggests potential flexibility of the CDI concerning 537 
near real time data availability, meaning that the utilization of different time lags may not 538 
significantly impact the CDI outcomes. Although not the primary focus of this study, these 539 
results could serve as a starting point for analyzing temporal relationships between these 540 
variables to enhance drought onsets and recovery prediction.  541 

The CDI accurately represented the onset, temporal and spatial evolution of both distinct 2008-542 
2009 and 2017-2018 drought events. Based on the number of dekads under  WARNING and 543 
ALERT categories, the CDI demonstrated consistency with periods when agricultural 544 
emergency declarations were issued, and with periods of negative soybean and corn yield 545 
estimations and simulations. Moreover, the indicator also showed a stronger correlation with 546 
agricultural impacts during the critical phenology growth periods compared to considering the 547 
whole crop season over the Humid Pampas. This outcome emphasizes that CDI severity more 548 
accurately captures the critical temporal stages when soybean and corn crops are most 549 
vulnerable to drought. Notably, this consistency persists despite the different spatial scales and 550 
uncertainties in estimations and simulations, thereby enhancing the robustness of CDI impact 551 
results. 552 

Despite using a relatively coarse spatial resolution (i.e. 1°x1°) and updating SPI on a monthly 553 
temporal frequency, the CDI proved to adequately represent the spatial and temporal 554 
propagation of the 2017-2018 flash drought event. However, in some locations (e.g. Marcos 555 
Juarez and Parana, Figure 3) during this event, the CDI transitioned directly from no-drought 556 
category to WARNING, without the early warning WATCH category. This aspect could be 557 
improved if the SPI-1 and SPI-3 calculations are more frequently performed (e.g. every dekad), 558 
in order to better represent the temporal progression of the drought.   559 

Conducting sensitivity tests on variables and drought indices by adjusting thresholds may 560 
improve the representation of the temporal propagation, and thus avoiding abrupt changes 561 
between categories (e.g. from no-drought to WARNING or ALERT). This may acquire high 562 
relevance when, for instance, a sequence of months that exhibits negative values of SPI 563 
between 0 and -1 (e.g. -0.6, -0.9), affects a region but without triggering the WATCH category. 564 
The CDI could change under this hypothetical scenario from no-drought to WARNING or 565 
ALERT category as the precipitation accumulation deficit, if it persists through time, can 566 
negatively affect soil moisture and vegetation biomass/greenness. In addition to this, further 567 
potential enhancements for CDI should point to improving the spatial resolution for 568 
precipitation. A finer spatial resolution can be decisive for identifying drought-affected regions, 569 
like for example in departments with relatively small areas such as Coronel Suarez covering 570 
5,985 km2 (i.e. less than 1 pixel 10,000 km2).  In this sense, a precipitation dataset like the 571 
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Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Funk, C. et al. 572 
2015) with a finer spatial resolution (0.05°×0.05°) could be an alternative to be tested. 573 

The CDI is globally utilized for monitoring the risks associated with agricultural drought 574 
impact. Consequently, evaluating the construction and representation of drought severity in the 575 
CDI holds significant global and regional importance. Additionally, the effective utilization 576 
and prospective regional enhancements of the CDI play a crucial role in advancing drought 577 
monitoring and representation for the Humid Pampas, Argentina, and the CRC-SAS region. 578 
Achieving this goal requires fostering robust and seamless collaboration among all involved 579 
institutions. Subsequent research endeavors will strive to enhance the temporal and spatial 580 
capabilities of CDI, fortifying its role as a drought early warning system. 581 

 582 
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